ADR130BUJZ-R2 [ADI]

Precision Series Sub-Band Gap Voltage Reference; 精准串联子带隙基准电压源
ADR130BUJZ-R2
型号: ADR130BUJZ-R2
厂家: ADI    ADI
描述:

Precision Series Sub-Band Gap Voltage Reference
精准串联子带隙基准电压源

电源电路 参考电压源 光电二极管
文件: 总16页 (文件大小:868K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Series Sub-Band Gap  
Voltage Reference  
ADR130  
FEATURES  
PIN CONFIGURATION  
Initial accuracy  
NC  
1
2
3
6
5
4
NC  
A grade: +0.70% (maximum)  
B grade: +0.35% (maximum)  
Maximum temperature coefficient  
A grade: 50 ppm/°C  
ADR130  
TOP VIEW  
(Not to Scale)  
GND  
SET  
V
V
OUT  
IN  
NC = NO CONNECT  
B grade: 25 ppm/°C  
Figure 1. 6-Lead TSOT (UJ-6)  
CLOAD = 50 nF to 10 μF  
Output current: +4 mA/−2 mA  
Low operating current: 80 ꢀA (typical)  
Output noise: 6 μV p-p @ 1.0 V output  
Input range: 2.0 V to 18 V  
Temperature range: −40°C to +125°C  
Tiny, Pb-free TSOT package  
APPLICATIONS  
Battery-powered instrumentation  
Portable medical equipment  
Communication infrastructure equipment  
GENERAL DESCRIPTION  
Available in the industrial temperature range of −40°C to  
+125°C, the ADR130 is housed in a tiny TSOT package.  
The ADR130 is the industrys first family of tiny, micropower,  
low voltage, high precision voltage references. Featuring 0.35%  
initial accuracy and 25 ppm/°C of temperature drift in the tiny  
TSOT-23 package, the ADR130 voltage reference only requires  
80 μA for typical operation. The ADR130 design includes a  
patented temperature drift curvature correction technique that  
minimizes the nonlinearities in the output voltage vs. tempera-  
ture characteristics.  
For 0.5 V output, tie SET (Pin 5) to VOUT (Pin 4). For 1.0 V  
output, tie SET (Pin 5) to GND (Pin 2).  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADR130  
TABLE OF CONTENTS  
Theory of Operation ...................................................................... 12  
Power Dissipation Considerations........................................... 12  
Input Capacitor........................................................................... 12  
Output Capacitor........................................................................ 12  
Application Notes........................................................................... 13  
Basic Voltage Reference Connection....................................... 13  
Stacking Reference ICs for Arbitrary Outputs ....................... 13  
Negative Precision Reference Without Precision Resistors.. 14  
Precision Current Source .......................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Terminology .................................................................................... 11  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADR130  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to VOUT (Pin 4).  
Table 1.  
Parameter  
Symbol Conditions  
Min  
Typ Max  
Unit  
OUTPUT VOLTAGE  
A Grade  
B Grade  
VO  
0.49650 0.5  
0.49825 0.5  
0.50350  
0.50175  
V
V
INITIAL ACCURACY ERROR  
A Grade  
B Grade  
VOERR  
−3.50  
−1.75  
+3.50  
+1.75  
mV  
mV  
TEMPERATURE COEFFICIENT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
15  
5
50  
25  
ppm/°C  
ppm/°C  
mV/mA  
LOAD REGULATION  
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V; −0.13  
+0.13  
0 mA < IOUT < 4 mA  
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V; −1.0  
−2 mA < IOUT < 0 mA  
+1.0  
mV/mA  
LINE REGULATION  
2.0 V to 18 V, IOUT = 0 mA  
−40°C < TA < +125°C, no load  
VIN = 2.0 V  
−40  
+10 +40  
ppm/V  
QUIESCENT CURRENT  
IQ  
75  
15  
50  
3
150  
μA  
SHORT-CIRCUIT CURRENT TO GROUND  
mA  
mA  
VIN = 18.0 V  
VOLTAGE NOISE  
0.1 Hz to 10 Hz  
μV p-p  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY  
OUTPUT VOLTAGE HYSTERESIS  
To 0.1%, CL = 0.1 μF  
1000 hours @ 25°C  
80  
100  
150  
μs  
ppm/1000 hours  
ppm  
Rev. 0 | Page 3 of 16  
 
ADR130  
TA = 25°C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to GND (Pin 2).  
Table 2.  
Parameter  
Symbol Conditions  
Min  
Typ Max  
Unit  
OUTPUT VOLTAGE  
A Grade  
B Grade  
VO  
0.9930 1.0  
0.9965 1.0  
1.0070  
1.0035  
V
V
INITIAL ACCURACY ERROR  
A Grade  
B Grade  
VOERR  
−7.0  
−3.5  
+7.0  
+3.5  
mV  
mV  
TEMPERATURE COEFFICIENT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
15  
5
50  
25  
ppm/°C  
ppm/°C  
mV/mA  
LOAD REGULATION  
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;  
0 mA < IOUT < 4 mA  
−0.25  
+0.25  
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;  
−2 mA < IOUT < 0 mA  
−2.0  
+2.0  
150  
mV/mA  
LINE REGULATION  
2.0 V to 18 V, IOUT = 0 mA  
−40°C < TA < +125°C, no load  
VIN = 2.0 V  
−40  
+10 +40  
ppm/V  
QUIESCENT CURRENT  
IQ  
85  
15  
50  
6
μA  
SHORT-CIRCUIT CURRENT TO GROUND  
mA  
mA  
VIN = 18.0 V  
VOLTAGE NOISE  
0.1 Hz to 10 Hz  
μV p-p  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY  
OUTPUT VOLTAGE HYSTERESIS  
To 0.1%, CL = 0.1 μF  
1000 hours @ 25°C  
80  
100  
150  
μs  
ppm/1000 hours  
ppm  
Rev. 0 | Page 4 of 16  
ADR130  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Ratings  
THERMAL RESISTANCE  
VIN to GND  
20 V  
40 mW  
−65°C to +150°C  
−40°C to +120°C  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Internal Power Dissipation  
Storage Temperature Range  
Specified Temperature Range  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
215°C  
220°C  
TSOT (UJ-6)  
186  
67  
°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 5 of 16  
 
ADR130  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.5020  
0.5015  
0.5010  
0.5005  
0.5000  
0.4995  
0.4990  
0.4985  
0.4980  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. VOUT vs. Temperature, VOUT = 0.5 V  
Figure 5. VOUT vs. Temperature, VOUT = 1 V  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
–504540353025201510 –5  
0
5
10 15 20 25 30 35 40 45 50  
–504540353025201510 –5  
0
5 10 15 20 25 30 35 40 45 50  
TEMPERATURE COEFFICIENT (ppm/°C)  
TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 3. Temperature Coefficient, VOUT = 0.5 V  
Figure 6. Temperature Coefficient, VOUT = 1 V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
–40°C  
+25°C  
–40°C  
+125°C  
+125°C  
+25°C  
–2  
–1  
0
1
2
3
4
5
–2  
–1  
0
1
2
3
4
5
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 4. Minimum Input Voltage vs. Load Current, VOUT = 0.5 V  
Figure 7. Minimum Input Voltage vs. Load Current, VOUT = 1 V  
Rev. 0 | Page 6 of 16  
 
ADR130  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
+125°C  
+125°C  
+25°C  
+25°C  
–40°C  
–40°C  
60  
60  
40  
40  
20  
20  
0
2
0
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 8. Supply Current vs. Input Voltage, VOUT = 0.5 V  
Figure 11. Supply Current vs. Input Voltage, VOUT = 1 V  
6
6
5
4
3
2
1
0
T
= –40°C, +25°C, +125°C  
T
= –40°C, +25°C, +125°C  
A
A
5
4
3
2
1
0
–2  
–1  
0
1
2
3
4
5
–2  
–1  
0
1
2
3
4
5
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 9. Supply Current vs. Load Current, VOUT = 0.5 V  
Figure 12. Supply Current vs. Load Current, VOUT = 1 V  
10  
8
10  
8
V
= 2V TO 18V  
V
= 2V TO 18V  
IN  
IN  
6
6
4
4
2
2
0
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Line Regulation vs. Temperature, VOUT = 0.5 V  
Figure 13. Line Regulation vs. Temperature, VOUT = 1 V  
Rev. 0 | Page 7 of 16  
ADR130  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Load Regulation (Source) vs. Temperature, VOUT = 0.5 V  
Figure 17. Load Regulation (Source) vs. Temperature, VOUT = 1 V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Load Regulation (Sink) vs. Temperature, VOUT = 0.5 V  
Figure 18. Load Regulation (Sink) vs. Temperature, VOUT = 1 V  
C
= C = 0.1µF  
OUT  
C
= C = 0.1µF  
OUT  
IN  
IN  
CH1 PEAK-TO-PEAK 5.72µV  
CH1 PEAK-TO-PEAK 3.16µV  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 16. 0.1 Hz to 10 Hz Noise, VOUT = 0.5 V  
Figure 19. 0.1 Hz to 10 Hz Noise, VOUT = 1 V  
Rev. 0 | Page 8 of 16  
ADR130  
PEAK-TO-PEAK  
291µV  
C
IN  
= C = 0.1µF  
OUT  
C
= C  
= 0.1µF  
IN  
OUT  
CH1 PEAK-TO-PEAK 172µV  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 20. 10 Hz to 10 kHz Noise, VOUT = 0.5 V  
Figure 23. 10 Hz to 10 kHz Noise, VOUT = 1 V  
C
= C = 0.1µF  
OUT  
C
IN  
= C = 0.1µF  
OUT  
IN  
V
= 1V/DIV  
IN  
V
= 1V/DIV  
IN  
V
200mV/DIV  
OUT  
V
= 500mV/DIV  
OUT  
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 24. Turn-On Response, VOUT = 1 V  
Figure 21. Turn-On Response, VOUT = 0.5 V  
V
= 1V/DIV  
IN  
C
= C = 0.1µF  
C
= C  
= 0.1µF  
IN  
OUT  
IN  
OUT  
V
= 1V/DIV  
IN  
V
= 200mV/DIV  
V
= 500mV/DIV  
OUT  
OUT  
TIME (10ms/DIV)  
TIME (400µs/DIV)  
Figure 22. Turn-Off Response, VOUT = 0.5 V  
Figure 25. Turn-Off Response, VOUT = 1 V  
Rev. 0 | Page 9 of 16  
ADR130  
V
= 1V/DIV  
IN  
C
= C = 0.1µF  
IN  
OUT  
C
= C = 0.1µF  
OUT  
IN  
V
= 1V/DIV  
IN  
V
= 20mV/DIV  
V
= 20mV/DIV  
OUT  
OUT  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 26. Line Transient Response, VOUT = 0.5 V  
Figure 29. Line Transient Response, VOUT = 1 V  
V
C
R
= 0.5V/DIV  
V
C
R
= 1V/DIV  
LOAD  
LOAD  
= C  
= 0.1µF  
= C  
= 0.1µF  
IN  
LOAD  
OUT  
IN  
OUT  
= 125  
= 250Ω  
LOAD  
I
= 0mA  
I
= 0mA  
LOAD  
LOAD  
I
= 4mA  
LOAD  
I
= 4mA  
LOAD  
V
= 20mV/DIV  
V
= 20mV/DIV  
OUT  
OUT  
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 30. Load Transient Response (Source), VOUT = 1 V  
Figure 27. Load Transient Response (Source), VOUT = 0.5 V  
V
C
R
= 500mV/DIV  
V
C
R
= 200mV/DIV  
LOAD  
LOAD  
I
= 2mA  
= C  
= 0.1µF  
= 250  
= C = 0.1µF  
LOAD  
IN  
OUT  
IN  
OUT  
I
= 2mA  
= 125Ω  
LOAD  
LOAD  
LOAD  
I
= 0mA  
LOAD  
I
= 0mA  
LOAD  
V
= 100mV/DIV  
V
= 100mV/DIV  
OUT  
OUT  
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 31. Load Transient Response (Sink), VOUT = 1 V  
Figure 28. Load Transient Response (Sink), VOUT = 0.5 V  
Rev. 0 | Page 10 of 16  
ADR130  
TERMINOLOGY  
Temperature Coefficient  
Long-Term Stability  
Temperature coefficient is the change of output voltage with  
respect to the operating temperature change normalized by the  
output voltage at 25°C. This parameter is expressed in ppm/°C  
and is determined by  
Long-term stability is the typical shift of output voltage at 25°C  
on a sample of parts subjected to a test of 1000 hours at 25°C.  
ΔVO = VO  
(
t0  
)
VO  
VO t0  
VO  
(
t1  
)
(
)
VO  
(t0 )  
t1  
( )  
ΔVO ppm  
[
]
=
× 106  
VO  
(
T2  
)
VO  
(
T1  
)
TCVO  
[
ppm/°C  
]
=
×106  
VO 25°C  
(
)
×
(
T2 T1  
)
where:  
where:  
VO(25°C) = VO at 25°C.  
VO(T1) = VO at Temperature 1.  
VO(T2) = VO at Temperature 2.  
VO(t0) = VO at 25°C at Time 0.  
VO(t1) = VO at 25°C after 1000 hours operating at 25°C.  
Thermal Hysteresis  
Thermal hysteresis is the change of output voltage after the  
device is cycled through temperatures from +25°C to −40°C to  
+125°C, then back to +25°C. This is a typical value from a  
sample of parts put through such a cycle.  
Line Regulation  
Line regulation is the change in the output due to a specified  
change in input voltage. This parameter accounts for the effects  
of self-heating. Line regulation is expressed in either %/V,  
ppm/V, or μV/ΔVIN.  
where:  
VO(25°C) = VO at 25°C.  
Load Regulation  
VOTC = VO at 25°C after temperature cycle from +25°C to −40°C  
Load regulation is the change in output voltage due to a  
specified change in load current. This parameter accounts for  
the effects of self-heating. Load regulation is expressed in either  
mV/mA, ppm/mA, or dc output resistance (Ω).  
to +125°C, then back to +25°C.  
Rev. 0 | Page 11 of 16  
 
ADR130  
THEORY OF OPERATION  
The ADR130 sub-band gap reference is the high performance  
solution for low supply voltage and low power applications. The  
uniqueness of this product lies in its architecture.  
INPUT CAPACITOR  
Input capacitors are not required on the ADR130. There is no  
limit for the value of the capacitor used on the input, but a 1 ꢀF  
to 10 ꢀF capacitor on the input improves transient response in  
applications where there is a sudden supply change. An addi-  
tional 0.1 ꢀF capacitor in parallel also helps reduce noise from  
the supply.  
POWER DISSIPATION CONSIDERATIONS  
The ADR130 is capable of delivering load currents to 4 mA  
with an input range from 3.0 V to 18 V. When this device is  
used in applications with large input voltages, care must be  
taken to avoid exceeding the specified maximum power  
dissipation or junction temperature, because this results in  
premature device failure.  
OUTPUT CAPACITOR  
The ADR130 requires a small 0.1 ꢀF output capacitor for  
stability. Additional 0.1 ꢀF to 10 ꢀF capacitance in parallel can  
improve load transient response. This acts as a source of stored  
energy for a sudden increase in load current. The only parame-  
ter affected by the additional capacitance is turn-on time.  
Use the following formula to calculate the maximum junction  
temperature or dissipation:  
TJ TA  
PD =  
θJA  
where:  
TJ is the junction temperature.  
TA is the ambient temperature.  
PD is the device power dissipation.  
θJA is the device package thermal resistance.  
Rev. 0 | Page 12 of 16  
 
ADR130  
APPLICATION NOTES  
BASIC VOLTAGE REFERENCE CONNECTION  
U2  
1
2
3
6
5
4
NC  
NCADR130  
GND  
The circuits in Figure 32 and Figure 33 illustrate the basic  
configuration for the ADR130 voltage reference.  
SET  
V
OUT2  
V
V
OUT  
IN  
0.1µF  
ADR130  
1
2
3
6
5
4
NC  
NC  
0.1µF  
GND  
SET  
INPUT  
OUTPUT  
0.1µF  
V
V
OUT  
IN  
1
U1  
6
5
4
NC  
NCADR130  
INPUT  
0.1µF  
2
3
GND  
SET  
V
OUT1  
V
V
OUT  
IN  
Figure 32. Basic Configuration, VOUT = 0.5 V  
0.1µF  
0.1µF  
ADR130  
1
2
3
6
5
4
NC  
NC  
GND  
SET  
Figure 35. Stacking References with ADR130, VOUT1 = 0.5 V. VOUT2 = 1.5 V  
INPUT  
OUTPUT  
0.1µF  
V
V
OUT  
IN  
Two reference ICs are used and fed from an unregulated input,  
VIN. The outputs of the individual ICs that are connected in  
series provide two output voltages, VOUT1 and VOUT2. VOUT1 is the  
terminal voltage of U1, and VOUT2 is the sum of this voltage and  
the terminal voltage of U2. U1 and U2 are chosen for the two  
voltages that supply the required outputs (see Table 5). For  
example, if U1 is set to have an output of 1 V or 0.5 V, the user  
can stack on top of U2 to get an output of 2 V or 1.5 V.  
0.1µF  
Figure 33. Basic Configuration, VOUT = 1 V  
STACKING REFERENCE ICs FOR  
ARBITRARY OUTPUTS  
Some applications may require two reference voltage sources  
that are a combined sum of the standard outputs. Figure 34 and  
Figure 35 show how these stacked output references can be  
implemented.  
Table 5. Required Outputs  
U1/U2  
Comments  
VOUT1  
1 V  
0.5 V  
VOUT2  
2 V  
1.5 V  
ADR130/ADR130  
ADR130/ADR130  
See Figure 34  
See Figure 35  
U2  
1
2
3
6
5
4
NCADR130  
GND  
NC  
SET  
V
OUT2  
V
V
OUT  
IN  
0.1µF  
0.1µF  
1
U1  
6
5
4
NCADR130  
GND  
NC  
INPUT  
2
3
SET  
V
OUT1  
V
V
OUT  
IN  
0.1µF  
0.1µF  
Figure 34. Stacking References with ADR130, VOUT1 = 1.0 V, VOUT2 = 2.0 V  
Rev. 0 | Page 13 of 16  
 
 
 
 
 
 
ADR130  
PRECISION CURRENT SOURCE  
NEGATIVE PRECISION REFERENCE WITHOUT  
PRECISION RESISTORS  
In low power applications, the need can arise for a precision  
current source that can operate on low supply voltages. The  
ADR130 can be configured as a precision current source (see  
Figure 37). The circuit configuration shown is a floating current  
source with a grounded load. The reference output voltage is  
bootstrapped across RSET, which sets the output current into the  
load. With this configuration, circuit precision is maintained for  
load currents ranging from the reference supply current,  
typically 85 μA, to approximately 4 mA.  
A negative reference is easily generated by adding an op amp,  
A1, and is configured as shown in Figure 36. VOUT is at virtual  
ground and, therefore, the negative reference can be taken  
directly from the output of the op amp. The op amp must be  
dual-supply, low offset, and rail-to-rail if the negative supply  
voltage is close to the reference output.  
U2  
1
2
3
6
5
4
NC  
NCADR130  
GND  
ADR130  
SET  
1
2
3
6
5
4
NC  
NC  
+V  
DD  
V
V
OUT  
IN  
GND  
SET  
V
IN  
V
V
OUT  
IN  
0.1µF  
R
SET  
1k  
V+  
P1  
A1  
OP291  
–V  
REF  
V–  
R
L
–V  
DD  
Figure 36. Negative Reference, −VREF = −0.5 V  
Figure 37. ADR130 as a Precision Current Source  
Rev. 0 | Page 14 of 16  
 
 
 
ADR130  
OUTLINE DIMENSIONS  
2.90 BSC  
6
1
5
2
4
3
2.80 BSC  
1.60 BSC  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.60  
0.45  
0.30  
0.50  
0.30  
0.10 MAX  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AA WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 38. 6-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature Coefficient Temperature  
Package  
Description  
Package  
Option  
Ordering  
Branding Quantity  
Model  
ADR130AUJZ-REEL71 50  
ADR130AUJZ-R21  
ADR130BUJZ-REEL71  
ADR130BUJZ-R21  
(ppm/°C)  
Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
R0W  
R0W  
R0X  
R0X  
3,000  
250  
3,000  
250  
50  
25  
25  
1 Z = Pb-free part.  
Rev. 0 | Page 15 of 16  
 
 
ADR130  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06322-0-10/06(0)  
Rev. 0 | Page 16 of 16  

相关型号:

ADR130BUJZ-REEL7

Precision Series Sub-Band Gap Voltage Reference
ADI

ADR1500

1.2875 V Micropower, Shunt Voltage Reference
ADI

ADR1500BKSZ-REEL

1.2875 V Micropower, Shunt Voltage Reference
ADI

ADR1500BKSZ-REEL7

TWO TERM VOLTAGE REFERENCE
ADI

ADR1581

1.25 V Micropower, Precision Shunt Voltage Reference
ADI

ADR1581ARTZ-R2

1.25 V Micropower, Precision Shunt Voltage Reference
ADI

ADR1581ARTZ-R21

1.25 V Micropower, Precision Shunt Voltage Reference
ADI

ADR1581ARTZ-REEL

1.25 V Micropower, Precision Shunt Voltage Reference
ADI

ADR1581ARTZ-REEL71

1.25 V Micropower, Precision Shunt Voltage Reference
ADI

ADR1581BRTZ-R2

1.25 V Micropower, Precision Shunt Voltage Reference
ADI

ADR1581BRTZ-R21

1.25 V Micropower, Precision Shunt Voltage Reference
ADI

ADR1581BRTZ-REEL7

1.25 V Micropower, Precision Shunt Voltage Reference
ADI