ADR03NBC [ADI]

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.501 V, UUC6, DIE-6, Voltage Reference;
ADR03NBC
型号: ADR03NBC
厂家: ADI    ADI
描述:

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.501 V, UUC6, DIE-6, Voltage Reference

输出元件
文件: 总24页 (文件大小:654K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultracompact, Precision  
10.0 V/5.0 V/2.5 V/3.0 V Voltage References  
ADR01/ADR02/ADR03/ADR06  
FEATURES  
PIN CONFIGURATIONS  
Ultracompact SC70 and TSOT packages  
Low temperature coefficient  
8-lead SOIC: 3 ppm/°C  
5-lead SC70, 5-lead TSOT: 9 ppm/°C  
Initial accuracy 0.1ꢀ  
No external capacitor required  
Low noise 10 μV p-p (0.1 Hz to 10.0 Hz)  
Wide operating range  
ADR01/  
TEMP  
GND  
1
2
3
5
TRIM  
ADR02/  
ADR03/  
ADR06  
V
V
TOP VIEW  
(Not to Scale)  
4
IN  
OUT  
Figure 1. 5-Lead, SC70/TSOT Surface-Mount Packages  
TP  
1
2
3
4
8
7
6
5
TP  
NIC  
V
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
IN  
TEMP  
GND  
ADR01: 12.0 V to 40.0 V  
ADR02: 7.0 V to 40.0 V  
ADR03: 4.5 V to 40.0 V  
OUT  
TOP VIEW  
(Not to Scale)  
TRIM  
ADR06: 5.0 V to 40.0 V  
High output current 10 mA  
NIC = NO INTERNAL CONNECT  
TP = TEST PIN (DO NOT CONNECT)  
Wide temperature range: –40°C to +125°C  
ADR01/ADR02/ADR03 pin compatible to industry-  
standard REF01/REF02/REF031  
Figure 2. 8-Lead, SOIC Surface-Mount Package  
APPLICATIONS  
Precision data acquisition systems  
High resolution converters  
Industrial process control systems  
Precision instruments  
PCMCIA cards  
GENERAL DESCRIPTION  
The ADR01, ADR02, ADR03, and ADR06 are compact, low  
drift voltage references that provide an extremely stable output  
voltage from a wide supply voltage range. They are available in  
5-lead SC70 and TSOT packages, and 8-lead SOIC packages  
with A, B, and C grade selections. All parts are specified over  
the extended industrial (–40°C to +125°C) temperature range.  
The ADR01, ADR02, ADR03, and ADR06 are precision 10.0 V,  
5.0 V, 2.5 V, and 3.0 V band gap voltage references featuring high  
accuracy, high stability, and low power. The parts are housed in  
tiny, 5-lead SC70 and TSOT packages, as well as in 8-lead SOIC  
versions. The SOIC versions of the ADR01, ADR02, and ADR03  
are drop-in replacements1 to the industry-standard REF01,  
REF02, and REF03. The small footprint and wide operating  
range make the ADR0x references ideally suited for general-  
purpose and space-constrained applications.  
Table 1. Selection Guide  
Part Number  
Output Voltage  
10.0 V  
ADR01  
ADR02  
ADR03  
ADR06  
5.0 V  
2.5 V  
3.0 V  
With an external buffer and a simple resistor network, the  
TEMP terminal can be used for temperature sensing and  
approximation. A TRIM terminal is provided on the devices for  
fine adjustment of the output voltage.  
1 ADRO1, ADR02, and ADR03 are component-level compatible with REF01, REF02, and REF03, respectively. No guarantees for syste-level compatibility are implied. SOIC  
versions of ADR01/ADR02/ADR03 are pin-to-pin compatible with 8-lead SOIC versions of REF01/REF02/REF03, respectively, with the additional temperature  
monitoring function.  
Rev. K  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
Tel: 781.329.4700  
www.analog.com  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.  
 
 
 
ADR01/ADR02/ADR03/ADR06  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................8  
Terminology.......................................................................................9  
Typical Performance Characteristics ........................................... 10  
Applications..................................................................................... 15  
Applying the ADR01/ADR02/ADR03/ADR06...................... 15  
Negative Reference..................................................................... 16  
Low Cost Current Source.......................................................... 16  
Precision Current Source with Adjustable Output................ 16  
Programmable 4 mA to 20 mA Current Transmitter............ 17  
Precision Boosted Output Regulator....................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guides......................................................................... 19  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR01 Electrical Characteristics............................................... 3  
ADR02 Electrical Characteristics............................................... 4  
ADR03 Electrical Characteristics............................................... 5  
ADR06 Electrical Characteristics............................................... 6  
Die Electrical Characteristics...................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
REVISION HISTORY  
2/08—Rev. J to Rev. K  
8/03—Rev. C to Rev D  
Changes to Terminology Section.................................................... 9  
Changes to Ordering Guide .......................................................... 19  
Added ADR06.....................................................................Universal  
Change to Figure 27 ....................................................................... 13  
3/07—Rev. I to Rev. J  
6/03—Rev. B to Rev C  
Renamed Parameters and Definitions Section............................. 9  
Changes to Temperature Monitoring Section ............................ 15  
Changes to Ordering Guide .......................................................... 19  
Changes to Features Section ............................................................1  
Changes to General Description Section .......................................1  
Changes to Figure 2...........................................................................1  
Changes to Specifications Section...................................................2  
Addition of Dice Electrical Characteristics and Layout...............6  
Changes to Absolute Maximum Ratings Section..........................7  
Updated SOIC (R-8) Outline Dimensions.................................. 19  
Changes to Ordering Guide.......................................................... 20  
7/05—Rev. H to Rev. I  
Changes to Table 5............................................................................ 7  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 19  
12/04—Rev. G to Rev. H  
Changes to ADR06 Ordering Guide............................................ 20  
2/03—Rev. A to Rev. B  
Added ADR03.....................................................................Universal  
Added TSOT-5 (UJ) Package............................................Universal  
Updated Outline Dimensions....................................................... 18  
9/04—Rev. F to Rev. G  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Changes to Table 4............................................................................ 6  
Changes to Table 5............................................................................ 7  
Changes to Ordering Guide .......................................................... 19  
12/02—Rev. 0 to Rev. A  
Changes to Features Section ............................................................1  
Changes to General Description .....................................................1  
Table I deleted ....................................................................................1  
Changes to ADR01 Specifications...................................................2  
Changes to ADR02 Specifications...................................................3  
Changes to Absolute Maximum Ratings Section..........................4  
Changes to Ordering Guide.............................................................4  
Updated Outline Dimensions....................................................... 12  
7/04—Rev. E to Rev. F  
Changes to ADR02 Electrical Characteristics, Table 2................ 4  
Changes to Ordering Guide .......................................................... 19  
2/04—Rev. D to Rev. E  
Added C grade ....................................................................Universal  
Changes to Outline Dimensions................................................... 19  
Updated Ordering Guide............................................................... 20  
Rev. K | Page 2 of 24  
 
ADR01/ADR02/ADR03/ADR06  
SPECIFICATIONS  
ADR01 ELECTRICAL CHARACTERISTICS  
VIN = 12.0 V to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
10.010  
10  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
A and C grades  
A and C grades  
9.990 10.000  
VOERR  
mV  
0.1  
10.005  
5
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
9.995 10.000  
V
VOERR  
mV  
0.05  
10  
%
TEMPERATURE COEFFICIENT  
TCVO  
3
1
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
A grade, 8-lead SOIC, 40°C < TA < +125°C  
A grade, 5-lead TSOT, –40°C < TA < +125°C  
A grade, 5-lead SC70, –40°C < TA < +125°C  
B grade, 8-lead SOIC, –40°C < TA < +125°C  
B grade, 5-lead TSOT, –40°C < TA < +125°C  
B grade, 5-lead SC70, –40°C < TA < +125°C  
C grade, 8-lead SOIC, –40°C < TA < +125°C  
25  
25  
3
9
9
40  
10  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
2
VIN VO  
∆VO/∆VIN  
∆VO/∆ILOAD  
VIN = 12.0 V to 40.0 V, –40°C < TA < +125°C  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
7
30  
70  
ppm/V  
LOAD REGULATION  
40  
ppm/mA  
V
IN = 15.0 V  
QUIESCENT CURRENT  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
20  
1
mA  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
VOLTAGE OUTPUT AT TEMP PIN  
TEMPERATURE SENSITIVITY  
510  
4
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
1000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
70  
75  
30  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. K | Page 3 of 24  
 
ADR01/ADR02/ADR03/ADR06  
ADR02 ELECTRICAL CHARACTERISTICS  
VIN = 7.0 V to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
A and C grades  
A and C grades  
4.995 5.000 5.005  
V
VOERR  
5
mV  
0.1  
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
4.997 5.000 5.003  
V
VOERR  
3
mV  
0.06  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, 8-lead SOIC, –40°C < TA < +125°C  
A grade, 5-lead TSOT, –40°C < TA < +125°C  
A grade, 5-lead SC70, –40°C < TA < +125°C  
A grade, 5-lead SC70, –55°C < TA < +125°C  
B grade, 8-lead SOIC, –40°C < TA < +125°C  
B grade, 5-lead TSOT, –40°C < TA < +125°C  
B grade, 5-lead SC70, –40°C < TA < +125°C  
C grade, 8-lead SOIC, –40°C < TA < +125°C  
3
10  
25  
25  
30  
3
9
9
40  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
10  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
2
∆VO/∆VIN  
VIN = 7.0 V to 40.0 V, –40°C < TA < +125°C  
VIN = 7.0 V to 40.0 V, –55°C < TA < +125°C  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
7
7
30  
40  
70  
ppm/V  
ppm/V  
ppm/mA  
LOAD REGULATION  
∆VO/∆ILOAD  
40  
V
IN = 10.0 V  
ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C,  
VIN = 10.0 V  
45  
80  
1
ppm/mA  
QUIESCENT CURRENT  
VOLTAGE NOISE  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
10  
mA  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
230  
4
tR  
∆VO  
∆VO_HYS  
1000 hours  
50  
ppm  
ppm  
ppm  
dB  
70  
80  
–55°C < TA < +125°C  
fIN = 10 kHz  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
RRR  
–75  
30  
ISC  
mA  
VOLTAGE OUTPUT AT TEMP PIN  
TEMPERATURE SENSITIVITY  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. K | Page 4 of 24  
 
ADR01/ADR02/ADR03/ADR06  
ADR03 ELECTRICAL CHARACTERISTICS  
VIN = 4.5 V to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
2.505  
5
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
A and C grades  
A and C grades  
2.495  
2.500  
VOERR  
mV  
0.2  
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grades  
B grades  
2.4975 2.5000 2.5025  
V
VOERR  
2.5  
0.1  
mV  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, 8-lead SOIC, –40°C < TA < +125°C  
A grade, 5-lead TSOT, –40°C < TA < +125°C  
A grade, 5-lead SC70, –40°C < TA < +125°C  
A grade, 5-lead SC70, –55°C < TA < +125°C  
B grade, 8-lead SOIC, –40°C < TA < +125°C  
B grade, 5-lead TSOT, –40°C < TA < +125°C  
B grade, 5-lead SC70, –40°C < TA < +125°C  
C grade, 8-lead SOIC, –40°C < TA < +125°C  
3
10  
25  
25  
30  
3
9
9
40  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
1
10  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
2
V
VIN VO  
∆VO/∆VIN  
VIN = 4.5 V to 40.0 V, –40°C < TA < +125°C  
VIN = 4.5 V to 40.0 V, –55°C < TA < +125°C  
7
7
30  
40  
70  
ppm/V  
ppm/V  
LOAD REGULATION  
∆ VO/∆ILOAD  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
VIN = 7.0 V  
25  
ppm/mA  
ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C,  
45  
80  
1
ppm/mA  
V
IN = 7.0 V  
QUIESCENT CURRENT  
VOLTAGE NOISE  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
6
mA  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
230  
4
tR  
∆VO  
∆VO_HYS  
1000 hours  
50  
ppm  
ppm  
ppm  
dB  
70  
–55°C < TA < +125°C  
fIN = 10 kHz  
80  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
RRR  
–75  
30  
ISC  
mA  
VOLTAGE OUTPUT AT TEMP PIN  
TEMPERATURE SENSITIVITY  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. K | Page 5 of 24  
 
ADR01/ADR02/ADR03/ADR06  
ADR06 ELECTRICAL CHARACTERISTICS  
VIN = 5.0 V to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
3.006  
6
Unit  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
A and C grades  
A and C grades  
2.994  
3.000  
V
VOERR  
mV  
0.2  
3.003  
3
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
2.997  
3.000  
V
VOERR  
mV  
0.1  
10  
25  
25  
3
9
9
40  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, 8-lead SOIC, –40°C < TA < +125°C  
A grade, 5-lead TSOT, –40°C < TA < +125°C  
A grade, 5-lead SC70, –40°C < TA < +125°C  
B grade, 8-lead SOIC, –40°C < TA < +125°C  
B grade, 5-lead TSOT, –40°C < TA < +125°C  
B grade, 5-lead SC70, –40°C < TA < +125°C  
C grade, 8-lead SOIC, –40°C < TA < +125°C  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
10  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN – VO  
2
∆VO/∆VIN  
VIN = 5.0 V to 40.0 V, –40°C < TA < +125°C  
7
30  
70  
ppm/V  
ppm/mA  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
IN = 7.0 V  
40  
V
QUIESCENT CURRENT  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
10  
1
mA  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
VOLTAGE OUTPUT AT TEMP PIN  
TEMPERATURE SENSITIVITY  
510  
4
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
1000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
70  
–75  
30  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. K | Page 6 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
DIE ELECTRICAL CHARACTERISTICS  
VIN = up to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
ADR01NBC  
ADR03BNC  
VO  
VO  
25°C  
25°C  
9.995  
2.4975  
10.004  
2.501  
10  
10.005  
2.5025  
V
V
TEMPERATURE COEFFICIENT  
LINE REGULATION  
ADR01NBC  
TCVO  
–40°C < TA < +125°C  
ppm/°C  
∆VO/∆VIN  
∆VO/∆VIN  
∆VO/∆ILOAD  
IIN  
VIN = 15.0 V to 40.0 V  
VIN = 4.5 V to 40.0 V  
ILOAD = 0 to 10 mA  
No load  
7
7
ppm/V  
ppm/V  
ppm/mA  
mA  
ADR03BNC  
LOAD REGULATION  
QUIESCENT CURRENT  
VOLTAGE NOISE  
40  
0.65  
25  
eN p-p  
0.1 Hz to 10.0 Hz  
μV p-p  
TEMP  
V
IN  
GND  
TRIM  
V
V
OUT  
(SENSE)  
OUT  
(FORCE)  
DIE SIZE: 0.83mm × 1.01mm  
Figure 3. Die Layout  
Rev. K | Page 7 of 24  
 
ADR01/ADR02/ADR03/ADR06  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Ratings at 25°C, unless otherwise noted.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 7.  
Parameter  
Rating  
Table 8. Thermal Resistance  
Supply Voltage  
40.0 V  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Indefinite  
Package Type  
θJA  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
–65°C to +150°C  
–40°C to +125°C  
–65°C to +150°C  
5-Lead SC70 (KS-5)  
5-Lead TSOT (UJ-5)  
8-Lead SOIC (R-8)  
376  
230  
130  
189  
146  
43  
Lead Temperature Range (Soldering, 60 sec) 300°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. K | Page 8 of 24  
 
ADR01/ADR02/ADR03/ADR06  
TERMINOLOGY  
smaller for the subsequent 1000 hours of time points than for  
the first.  
Temperature Coefficient  
The change of output voltage with respect to operating tempera-  
ture changes normalized by the output voltage at 25°C. This  
parameter is expressed in ppm/°C and can be determined by the  
following equation:  
Thermal Hysteresis  
The change of output voltage after the device is cycled through  
temperatures from +25°C to –40°C to +125°C and back to  
+25°C. This is a typical value from a sample of parts put  
through such a cycle.  
VO  
(
(
T2  
)
VO  
(
T
)
ppm  
°C  
1
TCVO  
=
× 106  
VO 25°C  
)
×
(
T2 T  
)
1
V
O_HYS = VO(25°C) − VO_TC  
where:  
VO(25°C) = VO at 25°C.  
VO(T1) = VO at Temperature 1.  
VO  
(
25°C  
)
VO_TC  
VO_HYS  
[
ppm  
]
=
×106  
VO 25°C  
(
)
VO(T2) = VO at Temperature 2.  
where:  
VO(25°C) = VO at 25°C.  
O_TC = VO at 25°C after temperature cycle at +25°C to −40°C  
Line Regulation  
The change in output voltage due to a specified change in input  
voltage. This parameter accounts for the effects of self-heating. Line  
regulation is expressed in either percent per volt, parts-per-million  
per volt, or microvolts per volt change in input voltage.  
V
to +125°C and back to +25°C.  
Input Capacitor  
Input capacitors are not required on the ADR01/ADR02/  
ADR03/ADR06. There is no limit to the value of the capacitor  
used on the input, but a 1 μF to 10 μF capacitor on the input  
improves transient response in applications where the supply  
suddenly changes. An additional 0.1 μF in parallel also helps to  
reduce noise from the supply.  
Load Regulation  
The change in output voltage due to a specified change in load  
current. This parameter accounts for the effects of self-heating.  
Load regulation is expressed in either microvolts per milliampere,  
parts-per-million per milliampere, or ohms of dc output resistance.  
Long-Term Stability  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to a test of 1000 hours at 25°C.  
Output Capacitor  
The ADR01/ADR02/ADR03/ADR06 do not require output  
capacitors for stability under any load condition. An output  
capacitor, typically 0.1 μF, filters out any low-level noise voltage  
and does not affect the operation of the part. Alternatively, the  
load transient response can be improved with an additional  
1 μF to 10 μF output capacitor in parallel. A capacitor here acts  
as a source of stored energy for a sudden increase in load  
current. The only parameter that degrades by adding an output  
capacitor is the turn-on time, and it depends on the size of the  
capacitor chosen.  
ΔVO = VO (t0 ) VO (t1 )  
VO (t0 ) VO (t1)  
ΔVO[ppm] =  
×106  
VO (t0 )  
where:  
VO(t0) = VO at 25°C at Time 0.  
VO(t1) = VO at 25°C after 100 hours of operation at 25°C.  
The majority of the shift is seen in the first 200 hours, and as  
time goes by, the drift decreases significantly. This drift is much  
Rev. K | Page 9 of 24  
 
ADR01/ADR02/ADR03/ADR06  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.002  
3.001  
3.000  
10.010  
10.005  
10.000  
9.995  
9.990  
9.985  
2.999  
2.998  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. ADR01 Typical Output Voltage vs. Temperature  
Figure 7. ADR06 Typical Output Voltage vs. Temperature  
5.008  
0.8  
0.7  
0.6  
5.004  
5.000  
+125°C  
+25°C  
–40°C  
0.5  
0.4  
4.996  
4.992  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
12  
16  
20  
24  
28  
32  
36  
40  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. ADR02 Typical Output Voltage vs. Temperature  
Figure 8. ADR01 Supply Current vs. Input Voltage  
2.502  
0.8  
0.7  
0.6  
+125°C  
2.501  
2.500  
+25°C  
–40°C  
0.5  
0.4  
2.499  
2.498  
8
12  
16  
20  
24  
28  
32  
36  
40  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 6. ADR03 Typical Output Voltage vs. Temperature  
Figure 9. ADR02 Supply Current vs. Input Voltage  
Rev. K | Page 10 of 24  
 
ADR01/ADR02/ADR03/ADR06  
0.85  
0.80  
50  
40  
30  
20  
10  
0
I
= 0mA TO 5mA  
L
0.75  
0.70  
0.65  
V
= 40V  
IN  
+125°C  
+25°C  
0.60  
0.55  
0.50  
–40°C  
V
= 8V  
IN  
–10  
–20  
0.45  
0.40  
5
10  
15  
20  
25  
30  
35  
40  
–40  
0
25  
TEMPERATURE (°C)  
85  
125  
INPUT VOLTAGE (V)  
Figure 10. ADR03 Supply Current vs. Input Voltage  
Figure 13. ADR02 Load Regulation vs. Temperature  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
60  
50  
I
= 0mA TO 10mA  
L
V
= 7V  
IN  
+125°C  
40  
30  
20  
V
= 40V  
IN  
+25°C  
–40°C  
10  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
5
10  
15  
20  
25  
30  
35  
40  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 11. ADR06 Supply Current vs. Input Voltage  
Figure 14. ADR03 Load Regulation vs. Temperature  
40  
30  
40  
30  
I
= 0mA TO 10mA  
L
I
= 0mA TO 10mA  
L
V
= 40V  
IN  
V
= 40V  
IN  
20  
10  
20  
10  
0
V
= 14V  
IN  
0
–10  
–20  
V
= 7V  
IN  
–10  
–20  
–30  
–30  
–40  
–40  
0
50  
TEMPERATURE (°C)  
25  
85  
125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 12. ADR01 Load Regulation vs. Temperature  
Figure 15. ADR06 Load Regulation vs. Temperature  
Rev. K | Page 11 of 24  
ADR01/ADR02/ADR03/ADR06  
10  
8
2
V
= 14V TO 40V  
IN  
V
= 6V TO 40V  
IN  
0
–2  
–4  
–6  
6
4
2
0
–8  
–2  
–10  
–4  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. ADR06 Line Regulation vs. Temperature  
Figure 16. ADR01 Line Regulation vs. Temperature  
5
8
4
V
= 8V TO 40V  
IN  
4
3
2
+125°C  
0
–40°C  
–4  
1
0
+25°C  
–8  
0
2
4
6
8
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 20. ADR01 Minimum Input-Output  
Voltage Differential vs. Load Current  
Figure 17. ADR02 Line Regulation vs. Temperature  
8
4
2
0
4
2
V
= 5V TO 40V  
IN  
+125°C  
0
–40°C  
–2  
+25°C  
–4  
0
2
4
6
8
10  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 18. ADR03 Line Regulation vs. Temperature  
Figure 21. ADR02 Minimum Input-Output  
Voltage Differential vs. Load Current  
Rev. K | Page 12 of 24  
ADR01/ADR02/ADR03/ADR06  
6
5
4
3
2
1
0
+125°C  
+25°C  
–40°C  
TIME (1s/DIV)  
0
0
0
2
4
6
8
10  
10  
10  
LOAD CURRENT (mA)  
Figure 25. ADR02 Typical Noise Voltage 0.1 Hz to 10.0 Hz  
Figure 22. ADR03 Minimum Input-Output  
Voltage Differential vs. Load Current  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+125°C  
+25°C  
–40°C  
TIME (1ms/DIV)  
2
4
6
8
LOAD CURRENT (mA)  
Figure 26. ADR02 Typical Noise Voltage 10 Hz to 10 kHz  
Figure 23. ADR06 Minimum Input-Output  
Voltage Differential vs. Load Current  
0.70  
0.65  
0.60  
10V  
8V  
T
= 25°C  
A
V
5V/DIV  
OUT  
0.55  
0.50  
NO LOAD CAPACITOR  
NO INPUT CAPACITOR  
TIME (2ms/DIV)  
2
4
6
8
LOAD CURRENT (mA)  
Figure 24. ADR01 Quiescent Current vs. Load Current  
Figure 27. ADR02 Line Transient Response  
Rev. K | Page 13 of 24  
 
ADR01/ADR02/ADR03/ADR06  
C
= 0.01µF  
NO LOAD CAPACITOR  
IN  
NO LOAD CAPACITOR  
V
10V/DIV  
IN  
V
5V/DIV  
IN  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
V
5V/DIV  
OUT  
OUT  
LOAD = 5mA  
TIME (1ms/DIV)  
TIME (4µs/DIV)  
Figure 28. ADR02 Load Transient Response  
Figure 31. ADR02 Turn-On Response  
C
= 100nF  
LOAD  
V
10V/DIV  
IN  
V
5V/DIV  
IN  
C
= 0.01µF  
L
NO INPUT CAPACITOR  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
V
5V/DIV  
OUT  
OUT  
LOAD = 5mA  
TIME (1ms/DIV)  
TIME (4µs/DIV)  
Figure 29. ADR02 Load Transient Response  
Figure 32. ADR02 Turn-Off with No Input Capacitor  
C
= 0.01µF  
L
NO INPUT CAPACITOR  
V
10V/DIV  
V
10V/DIV  
IN  
IN  
C
= 0.01µF  
IN  
NO LOAD CAPACITOR  
V
5V/DIV  
V
5V/DIV  
OUT  
OUT  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 30. ADR02 Turn-Off Response  
Figure 33. ADR02 Turn-Off with No Input Capacitor  
Rev. K | Page 14 of 24  
ADR01/ADR02/ADR03/ADR06  
APPLICATIONS  
U1  
The ADR01/ADR02/ADR03/ADR06 are high precision, low  
drift 10.0 V, 5.0 V, 2.5 V, and 3.0 V voltage references available  
in an ultracompact footprint. The 8-lead SOIC versions of the  
devices are drop-in replacements of the REF01/REF02/REF03  
sockets with improved cost and performance.  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
V
V
V
O
IN  
IN  
OUT  
C1  
C2  
0.1µF  
TEMP TRIM  
GND  
0.1µF  
These devices are standard band gap references (see Figure 35).  
The band gap cell contains two NPN transistors (Q18 and Q19)  
that differ in emitter area by 2×. The difference in their VBE  
produces a proportional-to-absolute temperature current  
(PTAT) in R14, and, when combined with the VBE of Q19,  
produces a band gap voltage, VBG, that is almost constant in  
temperature. With an internal op amp and the feedback  
network of R5 and R6, VO is set precisely at 10.0 V, 5.0 V, 2.5 V,  
and 3.0 V for the ADR01, ADR02, ADR06, and ADR03,  
respectively. Precision laser trimming of the resistors and other  
proprietary circuit techniques are used to further enhance the  
initial accuracy, temperature curvature, and drift performance  
of the ADR01/ADR02/ADR03/ADR06.  
Figure 34. Basic Configuration  
V
IN  
R1  
Q1  
R2  
R3  
R4  
Q23  
Q2  
Q3  
Q7  
Q8  
Q9  
D1  
D2  
Q10  
Q4  
V
O
D3  
C1  
Q13  
R5  
Q12  
R12  
R13  
I1  
The PTAT voltage is made available at the TEMP pin of the  
ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/°C  
temperature coefficient, such that users can estimate the  
temperature change of the device by knowing the voltage  
change at the TEMP pin.  
Q14 Q15  
2×  
V
R20  
BG  
1×  
Q19  
TRIM  
Q18  
R27  
R14  
TEMP  
Q16  
Q17  
Q20  
R6  
R32  
APPLYING THE ADR01/ADR02/ADR03/ADR06  
R24  
R41  
R42  
R17 R11  
The devices can be used without any external components to  
achieve the specified performance. Because of the internal op  
amp amplifying the band gap cell to 10.0 V/5.0 V/2.5 V/3.0 V,  
power supply decoupling helps the transient response of the  
ADR01/ADR02/ADR03/ADR06. As a result, a 0.1 μF ceramic  
type decoupling capacitor should be applied as close as possible  
to the input and output pins of the device. An optional 1 μF to  
10 μF bypass capacitor can also be applied at the VIN node to  
maintain the input under transient disturbance.  
GND  
Figure 35. Simplified Schematic Diagram  
U1  
ADR01/  
ADR02/  
ADR03/  
ADR06  
IN  
V
V
IN  
V
OUT  
V
O
POT  
10k  
TEMP TRIM  
GND  
R1  
470kΩ  
Output Adjustment  
R2  
1kΩ  
The ADR01/ADR02/ADR03/ADR06 trim terminal can be used  
to adjust the output voltage over a nominal voltage. This feature  
allows a system designer to trim system errors by setting the  
reference to a voltage other than 10.0 V/5.0 V/2.5 V/3.0 V. For  
finer adjustment, add a series resistor of 470 kΩ. With the con-  
figuration shown in Figure 36, the ADR01 can be adjusted from  
9.70 V to 10.05 V, the ADR02 can be adjusted from 4.95 V to  
5.02 V, the ADR06 can be adjusted from 2.8 V to 3.3 V, and the  
ADR03 can be adjusted from 2.3 V to 2.8 V. Adjustment of the  
output does not significantly affect the temperature performance  
of the device, provided the temperature coefficients of the resis-  
tors are relatively low.  
Figure 36. Optional Trim Adjustment  
Temperature Monitoring  
As described at the end of the Applications section, the ADR01/  
ADR02/ADR03/ADR06 provide a TEMP output (Pin 1 in Figure 1  
and Pin 3 in Figure 2) that varies linearly with temperature. This  
output can be used to monitor the temperature change in the  
system. The voltage at VTEMP is approximately 550 mV at 25°C,  
and the temperature coefficient is approximately 1.96 mV/°C  
(see Figure 37). A voltage change of 39.2 mV at the TEMP pin  
corresponds to a 20°C change in temperature.  
Rev. K | Page 15 of 24  
 
 
 
ADR01/ADR02/ADR03/ADR06  
U1  
0.80  
V
= 15V  
IN  
SAMPLE SIZE = 5  
ADR01/  
ADR02/  
ADR03/  
ADR06  
0.75  
0.70  
V
V
OUT  
+5V TO +15V  
IN  
0.65  
0.60  
TEMP TRIM  
GND  
+15V  
U2  
ΔV  
/ΔT 1.96mV/°C  
TEMP  
V+  
OP1177  
V–  
0.55  
0.50  
0.45  
–V  
REF  
–15V  
Figure 39. Negative Reference  
0.40  
–50  
–25  
0
25  
50  
75  
100  
125  
V
IN  
TEMPERATURE (°C)  
I
IN  
Figure 37. Voltage at TEMP Pin vs. Temperature  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
OUT  
The TEMP function is provided as a convenience rather than a  
precise feature. Because the voltage at the TEMP node is  
acquired from the band gap core, current pulling from this pin  
has a significant effect on VOUT. Care must be taken to buffer the  
TEMP output with a suitable low bias current op amp, such as  
the AD8601, AD820, or OP1177, all of which result in less than  
a 100 μV change in ΔVOUT (see Figure 38). Without buffering,  
even tens of microamps drawn from the TEMP pin can cause  
VOUT to fall out of specification.  
R
I
I
= (V  
– V )/R  
OUT L  
SET  
SET  
SET  
GND  
V
L
I
0.6mA  
Q
= I  
SET  
+ I  
Q
R
L
L
Figure 40. Low Cost Current Source  
U1  
ADR01/  
ADR02/  
PRECISION CURRENT SOURCE WITH  
ADJUSTABLE OUTPUT  
ADR03/  
15V  
ADR06  
V
V
V
V
O
IN  
IN  
OUT  
Alternatively, a precision current source can be implemented  
with the circuit shown in Figure 41. By adding a mechanical or  
digital potentiometer, this circuit becomes an adjustable current  
source. If a digital potentiometer is used, the load current is  
simply the voltage across Terminal B to Terminal W of the  
TEMP TRIM  
GND  
V+  
OP1177  
V–  
V
TEMP  
1.9mV/°C  
U2  
digital potentiometer divided by RSET  
.
Figure 38. Temperature Monitoring  
VREF ×D  
(1)  
IL  
=
RSET  
NEGATIVE REFERENCE  
Without using any matching resistors, a negative reference can  
be configured, as shown in Figure 39. For the ADR01, the  
voltage difference between VOUT and GND is 10.0 V. Because  
VOUT is at virtual ground, U2 closes the loop by forcing the  
GND pin to be the negative reference node. U2 should be a  
precision op amp with a low offset voltage characteristic.  
where D is the decimal equivalent of the digital potentiometer  
input code.  
U1  
ADR01/  
ADR02/  
ADR03/  
0V TO (5V + V )  
ADR06  
L
V
V
OUT  
+12V  
IN  
B
AD5201  
LOW COST CURRENT SOURCE  
W
TEMP TRIM  
GND  
100k  
Unlike most references, the ADR01/ADR02/ADR03/ADR06  
employ an NPN Darlington in which the quiescent current  
remains constant with respect to the load current, as shown in  
Figure 24. As a result, a current source can be configured as  
shown in Figure 40 where ISET = (VOUT − VL)/RSET. IL is simply  
the sum of ISET and IQ. Although simple, IQ varies typically from  
0.55 mA to 0.65 mA, limiting this circuit to general-purpose  
applications.  
A
+12V  
R
1kΩ  
SET  
U2  
V+  
OP1177  
V–  
–5V TO V  
V
L
L
R
L
1kΩ  
I
L
–12V  
Figure 41. Programmable 0 mA to 5 mA Current Source  
Rev. K | Page 16 of 24  
 
 
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
To optimize the resolution of this circuit, dual-supply op amps  
should be used because the ground potential of ADR02 can  
swing from −5.0 V at zero scale to VL at full scale of the  
potentiometer setting.  
latter is true, oscillation can occur. For this reason, connect  
Capacitor C1 in the range of 1 pF to 10 pF between VP and the  
output terminal of U4 to filter any oscillation.  
Vt  
It  
R1′  
R1R2  
R1R2′  
ZO  
=
=
(3)  
PROGRAMMABLE 4 mA TO 20 mA CURRENT  
TRANSMITTER  
1  
In this circuit, an ADR01 provides the stable 10.000 V reference  
for the AD5544 quad 16-bit DAC. The resolution of the adjust-  
able current is 0.3 μA/step; the total worst-case INL error is  
merely 4 LSBs. Such error is equivalent to 1.2 μA or a 0.006%  
system error, which is well below most systems’ requirements.  
The result is shown in Figure 43 with measurement taken at 25°C  
and 70°C; total system error of 4 LSBs at both 25°C and 70°C.  
Because of their precision, adequate current handling, and small  
footprint, the devices are suitable as the reference sources for  
many high performance converter circuits. One of these  
applications is the multichannel 16-bit, 4 mA to 20 mA current  
transmitter in the industrial control market (see Figure 42).  
This circuit employs a Howland current pump at the output to  
yield better efficiency, a lower component count, and a higher  
voltage compliance than the conventional design with op amps  
and MOSFETs. In this circuit, if the resistors are matched such  
that R1 = R1, R2 = R2, R3 = R3, the load current is  
5
R
= 500Ω  
L
I
= 0mA TO 20mA  
L
4
3
(R2 + R3) R1  
R3′  
V
REF ×D  
IL =  
×
(2)  
2N  
where D is similarly the decimal equivalent of the DAC input  
code and N is the number of bits of the DAC.  
2
25°C  
70°C  
1
According to Equation 2, R3can be used to set the sensitivity.  
R3can be made as small as necessary to achieve the current  
needed within U4 output current driving capability. Alter-  
natively, other resistors can be kept high to conserve power.  
0
–1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
In this circuit, the AD8512 is capable of delivering 20 mA of  
current, and the voltage compliance approaches 15.0 V.  
Figure 43. Result of Programmable 4 mA to 20 mA Current Transmitter  
0V TO –10V  
PRECISION BOOSTED OUTPUT REGULATOR  
5V  
U2  
+15V  
R1  
150k  
R2  
15kΩ  
U1  
V
RF  
V
V
A precision voltage output with boosted current capability can  
be realized with the circuit shown in Figure 44. In this circuit,  
U2 forces VO to be equal to VREF by regulating the turn-on of  
N1, thereby making the load current furnished by VIN. In this  
configuration, a 50 mA load is achievable at VIN of 15.0 V.  
Moderate heat is generated on the MOSFET, and higher current  
can be achieved with a replacement of a larger device. In  
addition, for a heavy capacitive load with a fast edging input  
signal, a buffer should be added at the output to enhance the  
transient response.  
DD  
IO  
15V  
10V  
AD5544  
IO  
V
U3  
–15V  
REF  
IN  
OUT  
V
VP  
X
R3  
50Ω  
GND  
TEMP TRIM  
GND  
C1  
10pF  
U4  
DIGITAL INPUT  
CODE 20%–100% FULL SCALE  
V
AD8512  
O
R3'  
50Ω  
R2'  
15kΩ  
V
U1 = ADR01/ADR02/ADR03/ADR06, REF01  
U2 = AD5543/AD5544/AD5554  
U3, U4 = AD8512  
L
VN  
R1'  
150kΩ  
LOAD  
500Ω  
N1  
V
V
IN  
O
4mA TO 20mA  
R
200  
C
L
1µF  
U1  
L
2N7002  
15V  
Figure 42. Programmable 4 mA to 20 mA Transmitter  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
The Howland current pump yields a potentially infinite output  
impedance, that is highly desirable, but resistance matching is  
critical in this application. The output impedance can be deter-  
mined using Equation 3. As shown by this equation, if the  
resistors are perfectly matched, ZO is infinite. Alternatively, if  
they are not matched, ZO is either positive or negative. If the  
V
OUT  
V+  
OP1177  
IN  
TEMP TRIM  
GND  
V–  
U2  
Figure 44. Precision Boosted Output Regulator  
Rev. K | Page 17 of 24  
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
1.35  
1.25  
1.15  
2.40  
2.10  
1.80  
5
1
4
3
2
PIN 1  
0.65 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.30  
0.15  
0.22  
0.08  
0.10 M  
AX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AA  
Figure 45. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 46. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 47. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. K | Page 18 of 24  
 
ADR01/ADR02/ADR03/ADR06  
ORDERING GUIDES  
ADR01 Ordering Guide  
Output  
Voltage  
VO (V)  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Temperature  
Range  
Package  
Package Ordering  
Model  
(mV)  
10  
10  
10  
10  
5
5
5
5
10  
10  
10  
5
5
5
10  
10  
10  
5
5
5
(ꢀ)  
0.1  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.1  
Description  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
8-Lead SOIC-N  
8-Lead SOIC-N  
Die  
Option  
Quantity  
Branding  
ADR01AR  
ADR01AR-REEL7  
ADR01ARZ1  
ADR01ARZ-REEL71  
ADR01BR  
ADR01BR-REEL7  
ADR01BRZ1  
ADR01BRZ-REEL71  
ADR01AUJ-REEL7  
ADR01AUJ-R2  
ADR01AUJZ-REEL71  
ADR01BUJ-REEL7  
ADR01BUJ-R2  
ADR01BUJZ-REEL71  
ADR01AKS-REEL7  
ADR01AKS-R2  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
R-8  
98  
R-8  
R-8  
1,000  
98  
R-8  
R-8  
1,000  
98  
R-8  
R-8  
1,000  
98  
R-8  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
R8A  
R8A  
R1E  
R8B  
R8B  
R1F  
R8A  
R8A  
R1E  
R8B  
R8B  
R1F  
ADR01AKSZ-REEL71 10  
ADR01BKS-REEL7  
ADR01BKS-R2  
ADR01BKSZ-REEL71  
ADR01CRZ1  
ADR01CRZ-REEL1  
ADR01NBC  
10  
10  
10  
10  
10  
10  
3,000  
98  
10  
10  
5
40  
40  
10 (typ)  
0.1  
0.05  
R-8  
2,500  
360  
1 Z = RoHS Compliant Part.  
Rev. K | Page 19 of 24  
 
 
 
ADR01/ADR02/ADR03/ADR06  
ADR02 Ordering Guide  
Output  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Voltage  
Temperature  
Range  
Package  
Description  
Package  
Option  
Ordering  
Quantity  
Model  
VO (V)  
(mV)  
(ꢀ)  
Branding  
ADR02AR  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3
3
3
3
5
5
5
3
3
3
3
5
5
5
3
3
3
5
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.06  
0.06  
0.06  
0.06  
0.1  
10  
10  
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
98  
ADR02AR-REEL  
ADR02AR-REEL7  
ADR02ARZ1  
ADR02ARZ-REEL1  
ADR02ARZ-REEL71  
ADR02BR  
2,500  
1,000  
98  
2,500  
2,500  
98  
1,000  
98  
1,000  
3,000  
250  
ADR02BR-REEL7  
ADR02BRZ1  
ADR02BRZ-REEL71  
ADR02AUJ-REEL7  
ADR02AUJ-R2  
ADR02AUJZ-REEL71  
ADR02BUJ-REEL7  
ADR02BUJ-R2  
ADR02BUJZ-R21  
ADR02BUJZ-REEL71  
ADR02AKS-REEL7  
ADR02AKS-R2  
ADR02AKSZ-REEL71  
ADR02BKS-REEL7  
ADR02BKS-R2  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
UJ-5  
R9A  
R9A  
R1G  
R9B  
R9B  
R9B  
R1H  
R9A  
R9A  
R1G  
R9B  
R9B  
R1H  
0.1  
0.1  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
3,000  
3,000  
250  
0.06  
0.06  
0.06  
0.06  
0.1  
0.1  
0.1  
0.06  
0.06  
0.06  
0.1  
250  
9
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
98  
2,500  
25  
25  
25  
9
9
9
ADR02BKSZ-REEL71  
ADR02CRZ1  
ADR02CRZ-REEL1  
40  
40  
8-Lead SOIC-N R-8  
8-Lead SOIC-N R-8  
5
0.1  
1 Z = RoHS Compliant Part.  
Rev. K | Page 20 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
ADR03 Ordering Guide  
Output  
Voltage  
VO (V)  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Temperature  
Range  
Package  
Package Ordering  
Model  
(mV)  
5
(ꢀ)  
0.2  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
Description  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
8-Lead SOIC-N  
8-Lead SOIC-N  
Die  
Option  
Quantity  
Branding  
ADR03AR  
ADR03AR-REEL7  
ADR03ARZ1  
ADR03ARZ-REEL71  
ADR03BR  
ADR03BR-REEL7  
ADR03BRZ1  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
R-8  
98  
5
5
5
R-8  
R-8  
1,000  
98  
R-8  
R-8  
1,000  
98  
2.5  
2.5  
2.5  
2.5  
5
R-8  
R-8  
1,000  
98  
ADR03BRZ-REEL71  
ADR03AUJ-REEL7  
ADR03AUJ-R2  
ADR03AUJZ-REEL71  
ADR03BUJ-REEL7  
ADR03BUJ-R2  
ADR03BUJZ-REEL71  
ADR03AKS-REEL7  
ADR03AKS-R2  
ADR03AKSZ-REEL71  
ADR03BKS-REEL7  
ADR03BKS-R2  
ADR03BKSZ-REEL71  
ADR03CRZ1  
R-8  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
RFA  
RFA  
R1J  
RFB  
RFB  
R1K  
RFA  
RFA  
R1J  
5
5
2.5  
2.5  
2.5  
5
5
5
2.5  
2.5  
2.5  
5
RFB  
RFB  
R1K  
3,000  
98  
40  
40  
10 (typ)  
ADR03CRZ-REEL1  
ADR03NBC  
5
2.5  
R-8  
2,500  
360  
1 Z = RoHS Compliant Part.  
Rev. K | Page 21 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
ADR06 Ordering Guide  
Output  
Voltage  
VO (V)  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Temperature  
Range  
Package  
Description  
Package Ordering  
Model  
(mV)  
6
(ꢀ)  
0.2  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
Option  
Quantity  
Branding  
ADR06AR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
10  
10  
10  
10  
3
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
R-8  
98  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
8-Lead SOIC-N  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead SC70  
ADR06AR-REEL7  
ADR06ARZ1  
ADR06ARZ-REEL71  
6
R-8  
1,000  
98  
6
R-8  
6
R-8  
1,000  
98  
ADR06BR  
3
R-8  
ADR06BR-REEL7  
ADR06BRZ1  
3
3
R-8  
1,000  
98  
3
3
R-8  
ADR03BRZ-REEL71  
ADR06AUJ-REEL7  
ADR06AUJ-R2  
ADR06AUJZ-REEL71  
ADR06BUJ-REEL7  
ADR06BUJ-R2  
ADR06BUJZ-REEL71  
ADR06AKS-REEL7  
ADR06AKS-R2  
ADR06AKSZ-REEL71  
ADR06BKS-REEL7  
ADR06BKS-R2  
ADR06BKSZ-REEL71  
ADR06CRZ1  
3
3
R-8  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
6
6
6
3
3
3
6
6
6
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
RWA  
RWA  
R1L  
RWB  
RWB  
R1M  
RWA  
RWA  
R1L  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
RWB  
RWB  
R1M  
5-Lead SC70  
3,000  
98  
6
40  
40  
8-Lead SOIC-N  
8-Lead SOIC-N  
ADR06CRZ-REEL1  
6
R-8  
2,500  
1 Z = RoHS Compliant Part.  
Rev. K | Page 22 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
NOTES  
Rev. K | Page 23 of 24  
ADR01/ADR02/ADR03/ADR06  
NOTES  
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02747-0-2/08(K)  
Rev. K | Page 24 of 24  

相关型号:

ADR03TKSZ-EP-R7

Ultracompact, Precision 2.5 V Voltage Reference
ADI

ADR03WARZ-R7

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage References
ADI

ADR03WARZ-RL

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage References
ADI

ADR06

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR06AKS-R

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO5, MO-203AA, SC-70, 5 PIN, Voltage Reference
ADI

ADR06AKS-R2

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR06AKS-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO5, MO-203-AA, SC-70, 5 PIN
ROCHESTER

ADR06AKS-REEL7

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR06AKS-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO5, MO-203-AA, SC-70, 5 PIN
ROCHESTER

ADR06AKSZ-REEL7

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage References
ADI

ADR06AR

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR06AR

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO8, MS-012-AA, SOIC-8
ROCHESTER