ADP5092 [ADI]

Ultralow Power Energy Harvester PMUs with MPPT and Charge Management;
ADP5092
型号: ADP5092
厂家: ADI    ADI
描述:

Ultralow Power Energy Harvester PMUs with MPPT and Charge Management

文件: 总28页 (文件大小:916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Power Energy Harvester PMUs  
with MPPT and Charge Management  
Data Sheet  
ADP5091/ADP5092  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Boost regulator with maximum power point tracking (MPPT)  
with dynamic sensing or no sensing mode  
ADP5091  
LLD  
TO MCU  
REG_D0  
REG_D1  
VID  
REG_OUT  
FROM MCU  
Hysteresis mode for best ultralight load efficiency  
Operating quiescent current of SYS pin (VIN > VCBP VMINOP): 510 nA  
Sleeping quiescent current of SYS pin (VCBP <VMINOP): 390 nA  
Input voltage operating range: 0.08 V to 3.3 V  
Fast cold start from 380 mV (typical) with charge pump  
Programmable shutdown point on MINOP pin based on the  
input open circuit voltage (OCV)  
150 mA regulated output from 1.5 V to 3.6 V  
Battery terminal charging threshold (2.2 V to 5.2 V) to  
support charging storage elements  
HYSTERESIS  
REGULATOR  
AND LDO  
REG_FB  
P
PGOOD  
SYS  
TO MCU  
IN  
SW  
VIN  
COLD START  
CHARGE PUMP  
SYSTEM  
LOAD  
MPPT  
CBP  
BAT  
REF  
RECHARGEABLE  
BATTERY OR  
SUPERCAP  
+
MPPT  
BOOST  
CONTROL REGULATOR  
MINOP  
CHARGE CONTROL  
AND  
POWER PATH  
MANAGEMENT  
SETSD  
SETPG  
Optional BACK_UP power path management  
Radio frequency (RF) transmission conducive to shutting  
down the switcher temporarily via microcontroller unit  
(MCU) communication  
SETHYST  
SETBK  
TERM  
DIS_SW  
FROM MCU  
BACK_UP  
OPTIONAL  
PRIMARY  
BATTERY  
+
AGND PGND  
APPLICATIONS  
Photovoltaic (PV) cell energy harvesting  
Thermoelectric generators (TEGs) energy harvesting  
Industrial monitoring  
Figure 1.  
Self powered wireless sensor devices  
Portable and wearable devices with energy harvesting  
GENERAL DESCRIPTION  
The ADP5091/ADP5092 are intelligent, integrated energy  
harvesting, ultralow power management unit (PMU) solutions  
that convert dc power from PV cells or TEGs. These devices charge  
storage elements such as rechargeable Li-Ion batteries, thin film  
batteries, super capacitors, or conventional capacitors, and  
power up small electronic devices and battery free systems.  
As a low light indicator for a microprocessor, the LLD pin of the  
ADP5091 is the MINOP comparator output. However, the  
REG_GOOD flag of the ADP5092 monitors the REG_OUT  
voltage. In addition, the DIS_SW pin can temporarily shut down  
the boost regulator and is RF transmission friendly.  
The charging control function of the ADP5091/ADP5092 protects  
the rechargeable energy storage, which is achieved by monitoring  
the battery voltage with the programmable charging termination  
voltage and the shutdown discharging voltage. In addition, a  
programmable PGOOD flag monitors the SYS voltage.  
The ADP5091/ADP5092 provide efficient conversion of the  
harvested limited power from a 6 µW to 600 mW range with  
submicrowatt operation losses. With the internal cold start circuit,  
the regulator can start operating at an input voltage as low as  
380 m V. After cold startup, the regulator is functional at an  
input voltage range of 0.08 V to 3.3 V. An additional 150 mA  
regulated output can be programmed by an external resistor  
divider or the VID pin.  
An optional primary cell battery can be connected and managed  
by an integrated power path management control block that is  
programmable to switch the power source from the energy  
harvester, rechargeable battery, and primary cell battery.  
The MPPT control keeps the input voltage ripple in a fixed range to  
maintain stable dc-to-dc boost conversion. The dynamic sensing  
mode and no sensing mode, both programming regulation points  
of the input voltage, allow extraction of the highest possible energy  
from the harvester. A programmable minimum operation  
The ADP5091/ADP5092 are available in a 24-lead LFCSP and  
are rated for a −40°C to +125°C temperature range.  
threshold enables boost shutdown during a low input condition.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP5091/ADP5092  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Regulated Output Configuration ............................................. 17  
REG_GOOD (ADP5092 Only)................................................ 18  
Energy Storage Charge Management ...................................... 18  
Backup Storage Path................................................................... 18  
Backup and BAT Selection Threshold..................................... 19  
Battery Overcharging Protection ............................................. 19  
Battery Discharging Protection................................................ 19  
Power Good (PGOOD)............................................................. 20  
Power Path Working Flow......................................................... 20  
Current-Limit and Short-Circuit Protection.............................. 20  
Thermal Shutdown .................................................................... 21  
Applications Information .............................................................. 23  
Energy Harvester Selection....................................................... 23  
Energy Storage Element Selection ........................................... 23  
Inductor Selection...................................................................... 23  
Capacitor Selection .................................................................... 24  
Layout and Assembly Considerations ..................................... 24  
Typical Application Circuits ..................................................... 25  
Factory Programmable Options................................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Detailed Functional Block Diagram .............................................. 3  
Specifications..................................................................................... 4  
Regulated Output Specifications ................................................ 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 16  
Fast Cold Start-Up Circuit (VSYS < VSYS_TH, VIN > VIN_COLD)... 16  
Main Boost Regulator (VBAT_TERM > VSYS > VSYS_TH)..................... 16  
VIN Open Circuit and MPPT .................................................. 16  
Minimum Operation Threshold Function ............................. 17  
Disabling Boost........................................................................... 17  
Regulated Output Working Mode............................................ 17  
REG_D0 and REG_D1 .............................................................. 17  
REVISION HISTORY  
5/2017—Rev. 0 to Rev. A  
Changes to Figure 2.......................................................................... 3  
Changes to Figure 7, Figure 10, Figure 7 Caption, and Figure 10  
Caption ............................................................................................. 10  
Changes to Figure 11 and Figure 11 Caption ............................. 11  
Changed CP-24-10 to CP-24-14.................................. Throughout  
Updated Outline Dimensions....................................................... 28  
Changes to Ordering Guide .......................................................... 28  
7/2016—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
Data Sheet  
ADP5091/ADP5092  
DETAILED FUNCTIONAL BLOCK DIAGRAM  
ADP5091/ADP5092  
SYS  
LDO  
C
R
SYS  
SYS  
REG_SWITCHES  
REG_OUT  
BACK_UP  
+
REG_FB  
BACK_UP  
BK  
BACK_UP  
CONTROL  
SWITCHES  
REG_D0  
HYSTERESIS  
REGULATOR  
AND LDO  
SYS SWITCH  
REG_D1  
VID  
BAT SWITCHES  
PHOTOVOLTAIC  
CELL  
L
BAT  
+
SW  
SD  
+
HS  
C
IN  
BAT  
SYS  
VIN  
COLD START  
CHARGE PUMP  
LS  
BK  
REF  
R
OC2  
MPPT  
CONTROLLER  
MPPT  
TERM_REF  
SD  
SETSD  
R
OC1  
EN_BST  
CHARGE  
CONTROL  
AND  
POWER PATH  
MANAGEMENT  
CBP  
BOOST  
CONTROLLER  
PGOOD  
PG  
MINOP  
SETPG  
PG  
BK  
SETHYST  
DIS_SW  
PG  
V
SETBK  
TERM  
INT_REF  
LLD (ADP5091)  
REG_GOOD (ADP5092)  
TERM_REF  
2R  
TERM  
CONTROL  
V
BIAS REFERENCE  
AND OSCILLATOR  
REF  
CLK  
R
PGND  
BAT  
AGND  
Figure 2. Detailed Functional Block Diagram  
Rev. A | Page 3 of 28  
 
 
ADP5091/ADP5092  
SPECIFICATIONS  
Data Sheet  
Voltage input (VIN) = 1.2 V, VSYS = VBAT = 3 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical  
specifications, unless otherwise noted. External components include the following: inductance (L) = 22 µH, input capacitance (CIN) = 4.7 µF,  
and CSYS = 4.7 µF.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
QUIESCENT CURRENT  
Operating Quiescent Current of SYS Pin  
IQ_SYS  
REG_D0 = low, REG_D1 = low  
510  
1000  
nA  
(VIN > VCBP ≥ VMINOP  
)
REG_D0 = high, REG_D1 = low  
REG_D0 = low, REG_D1 = high  
REG_D0 = high, REG_D1 = high  
REG_D0 = low, REG_D1 = low  
650  
750  
760  
390  
1150  
1290  
1300  
880  
nA  
nA  
nA  
nA  
Sleeping Quiescent Current of SYS Pin  
(VCBP < VMINOP  
COLD START CIRCUIT  
Minimum Input Voltage for Cold Start VIN_COLD  
IIQ_SLEEP_SYS  
)
VSYS = 0 V, 0°C < TA < 85°C  
380  
6
500  
mV  
µW  
Minimum Input Power for Cold Start  
End of Cold Start Operation  
Threshold  
PIN_COLD  
VSYS_TH  
1.73  
1.87  
95  
2.00  
V
mV  
Hysteresis  
VSYS_HYS  
BOOST REGULATOR  
Input Voltage Operating Range  
Input Power Operating Range  
Start Charging BAT Threshold on SYS  
Start Charging BAT Hysteresis on SYS  
Input Peak Current  
VIN  
PIN  
VSYS_CHG  
VSYS_CHG_HYS  
IIN_PEAK  
Cold start completed  
Cold start completed, VIN = 3 V  
0.08  
2.00  
3.3  
600  
2.35  
V
mW  
V
mV  
mA  
mA  
2.19  
150  
200  
300  
0.44  
0.85  
0.32  
Factory trim, 1 bit, Option 0  
Option 1  
Pin to pin measurement  
Pin to pin measurement  
250  
Low-Side Switch On Resistance  
High-Side Switch On Resistance  
SYS Switch On Resistance  
DIS_SW Voltage  
RLS_DS_ON  
RHS_DS_ON  
RSYS_DS_ON  
0.6  
1.2  
0.70  
High  
Low  
DIS_SW Delay  
VDIS_SW_HIGH  
VDIS_SW_LOW  
tDIS_SW_DELAY  
1
V
V
µs  
0.5  
1
VIN CONTROL AND MINOP  
VIN Open Circuit Voltage  
Default Sampling Cycle  
tOCV_CYCLE  
Factory trim, 2 bit (4 sec, 8 sec, 16 sec,  
32 sec)  
16  
sec  
Sampling Time  
MINOP Bias Current  
MINOP Operation Voltage Threshold  
of Dynamic MPPT Sensing Mode  
MPPT Bias Current of MPPT No  
Sensing Mode  
tOCV_SAMPL  
IMINOP  
VMINOP_DSM  
256  
2.00  
ms  
µA  
V
1.58  
1.7  
2.45  
1.5  
IMPPT  
2.0  
2.3  
µA  
LLD (ADP5091 Only)  
Pull-Up Resistor  
Pull-Down Resistor  
High Voltage  
12  
12  
VREG_OUT  
10  
17  
17  
kΩ  
kΩ  
V
VLLD_IH  
ICBP_LEAK  
Leakage Current at CBP Pin  
2000  
pA  
Rev. A | Page 4 of 28  
 
 
Data Sheet  
ADP5091/ADP5092  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ENERGY STORAGE MANAGEMENT  
Internal Reference Voltage  
Battery Stop Discharging  
Threshold  
Hysteresis Resistor  
Battery Terminal Charging  
Threshold  
VINT_REF  
0.955  
1.011  
1.067  
V
VSETSD  
RSETSD_HYS  
2.0  
80  
VBAT_TERM  
160  
V
kΩ  
115  
3
VBAT_TERM  
VBAT_TERM_HYS  
VSYS_PG  
2.2  
5.2  
3.1  
VBAT_TERM  
17.0  
17.0  
V
%
V
kΩ  
kΩ  
V
A
nA  
nA  
Hysteresis  
PGOOD Rising Threshold at SYS Pin  
PGOOD Pull-Up Resistor  
PGOOD Pull-Down Resistor  
PGOOD High Voltage  
Battery Switches On Resistance  
Battery Source Current  
Leakage Current at BAT Pin  
VSETSD  
11.6  
11.6  
VSYS  
VPGOOD_HIGH  
RBAT_SW_ON  
IBAT  
Pin to pin measurement  
0.59  
0.85  
1
50  
35  
IBAT_LEAK  
VBAT = 2 V, VSETSD = 2.2 V, VSYS = 2 V  
VBAT = 3.3 V, VSETSD = 2.2 V, VSYS = 0 V  
22  
3.5  
BACK_UP POWER PATH  
Turning Off BACK_UP Switch  
Threshold on BAT  
VSETBK  
RSETBK_HYS  
2.0  
80  
VBAT_TERM  
160  
1.20  
V
kΩ  
Hysteresis Resistor  
115  
0.85  
BACK_UP Switches On Resistance  
BACK_UP and BAT Comparator  
Offset  
VSYS ≥ VSYS_TH  
VBKP_OFFSET  
VBAT_HYS  
IBKP  
158  
68  
190  
75  
250  
16  
271  
108  
mV  
mV  
µA  
Hysteresis  
BACK_UP Current Capability  
Leakage Current at BACK_UP Pin  
THERMAL SHUTDOWN  
Threshold  
VSYS < VSYS_TH  
VBACK_UP = VSYS = VBAT = 3 V  
IBKP_LEAK  
40  
nA  
TSHDN  
THYS  
VSYS ≥ VSYS_TH  
142  
15  
°C  
°C  
Hysteresis  
Rev. A | Page 5 of 28  
ADP5091/ADP5092  
Data Sheet  
REGULATED OUTPUT SPECIFICATIONS  
VIN = 1.2 V, VSYS = VBAT = 3 V, VREG_OUT = 2 V, L = 22 µH, CIN = 4.7 µF, CSYS = 4.7 µF, CREG_OUT = 4.7 µF, TJ = −40°C to +125°C for  
minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
REGULATED OUTPUT  
Output Options by VID Control  
Rating Current  
REG_OUT Pull-Down Resistance  
REG_OUT IN BOOST MODE  
REG_OUT Wake Threshold  
VREG_OUT  
IREG_OUT  
RREG_OUT  
1.5  
3.6  
V
mA  
VREG_OUT = 1.5 V to 3.6 V  
150  
235  
VREG_WAKE  
1.008 × 1.027 ×  
VREG_OUT VREG_OUT  
1.048 ×  
VREG_OUT  
V
REG_OUT Wake Threshold  
Hysteresis  
Adjustable REG_OUT Wake  
Threshold  
Adjustable REG_OUT Sleep  
Threshold  
VREG_WAKE_HYS  
VADJ_REG_WAKE  
VADJ_REG_SLEEP  
1
%
V
1.008  
1.018  
1.028  
1.038  
1.048  
1.058  
V
High-Side Switches On Resistance  
Current-Limit Threshold of Boost  
Mode  
RBST_DS_ON  
IREG_BST_LIM  
1.63  
100  
2.15  
155  
mA  
REG_OUT IN LOW DROPOUT (LDO)  
MODE  
REG_OUT Accuracy  
Adjustable REG_OUT Accuracy  
VREG_LDO  
VREG_LDO_ADJ  
0 µA < IOUT < 150 mA, VSYS = (VREG_OUT + 0.5 V) −3.5  
IOUT = 1 mA 0.999  
0 µA < IOUT < 150 mA, VSYS = (VREG_OUT + 0.5 V) 0.985  
IOUT = 150 mA  
+3.5  
1.028  
1.045  
%
V
V
mV  
mA  
1.015  
1.015  
200  
REG_OUT Dropout  
Current-Limit Threshold of LDO  
Mode  
VREG_DROP  
IREG_LIM  
VSYS ≥ VSYS_TH  
200  
260  
Output Noise  
Power Supply Rejection Ratio  
OUTNOISE  
PSRR  
10 Hz to 100 kHz  
100 Hz  
700  
60  
µV rms  
dB  
1 kHz  
40  
dB  
REG_D0 and REG_D1  
Input Logic  
High  
Low  
VREG_DX_IH  
VREG_DX_IL  
IREG_DX_LEAK  
1.2  
V
V
nA  
0.4  
Input Leakage Current  
REG_GOOD (ADP5092 ONLY )  
Rising Threshold  
Hysteresis  
20  
VREG_GOOD  
VREG_GOOD_HYS  
89.5  
92.5  
2
95.7  
%
%
Pull-Up Resistor  
Pull-Down Resistor  
High Voltage  
11.6  
11.6  
VREG_OUT  
17  
17  
kΩ  
kΩ  
V
VREG_GOOD_IH  
Rev. A | Page 6 of 28  
 
Data Sheet  
ADP5091/ADP5092  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
θJA is specified for the worst case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
VIN, MPPT, CBP, MINOP  
−0.3 V to +3.6 V  
−0.3 V to +6.0 V  
DIS_SW, TERM, SETPG, SETSD, SETBK,  
PGOOD, SETHYST, REF, REG_D0, VID,  
REG_D1, LLD, REG_GOOD to AGND  
SW, SYS, BAT, BACK_UP, REG_OUT, REG_FB  
to PGND  
Table 4.  
Package Type  
θJA  
θJC  
Unit  
24-Lead LFCSP  
58.7  
36  
°C/W  
−0.3 V to +6.0 V  
−0.3 V to +0.3 V  
PGND to AGND  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 7 of 28  
 
 
 
ADP5091/ADP5092  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
18  
17  
16  
15  
14  
13  
18  
17  
16  
15  
14  
13  
REF  
SETSD  
SETBK  
BACK_UP  
1
2
3
REF  
SETSD  
SETBK  
BACK_UP  
BAT  
BAT  
SYS  
SYS  
ADP5092  
TOP VIEW  
(Not to Scale)  
ADP5091  
TOP VIEW  
(Not to Scale)  
REG_FB  
REG_OUT  
SW  
TERM 4  
REG_FB  
REG_OUT  
SW  
TERM 4  
5
6
SETPG  
5
6
SETPG  
SETHYST  
SETHYST  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO AGND.  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO AGND.  
Figure 4. ADP5092 Pin Configuration  
Figure 3. ADP5091 Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.1  
ADP5091 ADP5092 Mnemonic Description  
1
2
1
2
REF  
SETSD  
Internal Voltage Reference Monitoring Node for the SETSD, SETPG, SETBK, and TERM Pins.  
Shutdown Setting. The SETSD pin sets the shutdown discharging voltage based on the BAT pin  
voltage level.  
3
4
3
4
SETBK  
TERM  
BACK_UP Disabled Threshold Monitoring BAT Voltage Setting. Connect the SETBK pin to the AGND  
pin without the BACK_UP storage element.  
Termination Charging Voltage. This pin sets the termination charging voltage based on the BAT pin  
voltage level.  
5
6
5
6
SETPG  
SETHYST  
Power-Good Rising Threshold Monitoring SYS Node Voltage Level Setting.  
PGOOD Falling Hysteresis Setting. Connect a resistor between SETPG and SETHYST to program the  
PGOOD falling hysteresis.  
7
8
7
8
AGND  
CBP  
Analog Ground.  
Capacitor Bypass. This pin samples and holds the maximum power point level. Connect a 10 nF  
capacitor from the CBP pin to the AGND pin. When the MPPT pin is disabled, tie the CBP pin to an  
external reference that is lower than the VIN pin.  
9
9
MPPT  
Maximum Power Point Tracking. This pin sets the maximum power point ratio for the different  
energy harvesters with a resistor divider. In no sensing mode, place a resistor through AGND to set  
the MPPT voltage. The typical current value is 2.0 µA.  
10  
11  
10  
VIN  
LLD  
Input Supply from Energy Harvester Source. Connect at least a 10 µF capacitor as close as possible  
between VIN and PGND.  
Low Light Density Indicator to Microcontroller for the ADP5091. LLD pulls high at the MINOP voltage  
higher than the CBP voltage.  
N/A  
N/A  
12  
13  
11  
12  
13  
REG_GOOD Regulated Output Power Good for the ADP5092.  
PGND  
SW  
Power Ground.  
Switching Node for the Inductive Boost Regulator with a Connection to an External Inductor.  
Connect a 22 µH inductor between SW and VIN.  
14  
15  
14  
15  
REG_OUT  
REG_FB  
Regulated Output. Connect at least a 4.7 µF capacitor as close as possible between REG_OUT and PGND.  
Regulated Output Feedback Voltage Sense Input. The fixed output connects this pin to REG_OUT.  
The adjustable output connects this pin to a resistor divider from REG_OUT.  
16  
17  
18  
16  
17  
18  
SYS  
Output Supply to System Load. Connect at least a 4.7 µF capacitor as close as possible between SYS  
and PGND.  
SYS Output Supply Storage. This pin places the rechargeable battery or super capacitor as a storage  
for the SYS output supply.  
BAT  
BACK_UP  
Optional Input Supply from the Backup Primary Battery Cell.  
Rev. A | Page 8 of 28  
 
Data Sheet  
ADP5091/ADP5092  
Pin No.1  
ADP5091 ADP5092 Mnemonic Description  
19  
20  
21  
19  
20  
21  
PGOOD  
Output Signal to Microcontroller. This pin maintains a pulled high level when SYS is higher than the  
SETPG threshold.  
Voltage Configuration Pin for REG_OUT. This pin sets up to eight different regulated outputs tied  
low through a resistor to AGND. The output configuration details are in Table 7.  
Minimum Operating Power. Place a resistor on MINOP to set the minimum operating input voltage  
level. The boost regulator starts switching when the CBP voltage exceeds the MINOP voltage. When  
the MINOP pin is floating, the IC operates in no sensing mode with a fixed MPPT level. Connect this  
pin through AGND to disable the MINOP function.  
VID  
MINOP  
22  
23  
24  
22  
23  
24  
DIS_SW  
REG_D1  
REG_D0  
EPAD  
Control Signal from Microcontroller or RF Transceiver to Stop Switching Boost Charger.  
Regulated Output Working Mode Set D1. Enable LDO mode by pulling this pin high.  
Regulated Output Working Mode Set D0. Enable boost mode by pulling this pin high.  
Exposed Pad. The exposed pad must be connected to AGND.  
1 N/A means not applicable.  
Rev. A | Page 9 of 28  
ADP5091/ADP5092  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VBAT_TERM = 3.5 V, VSYS_PG = 2.8 V, VSETSD = 2.4 V, MPPT (OCV) = 80%, L = 22 μH, CIN = 10 μF, CSYS = 4.7 μF, CREG_OUT = 10 μF, CCBP = 10 nF.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
SYS = 2V  
SYS = 3V  
SYS = 5V  
SYS = 2V  
SYS = 3V  
SYS = 5V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 5. Efficiency vs. Input Voltage, IIN = 10 μA  
Figure 8. Efficiency vs. Input Voltage, IIN = 100 μA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SYS = 2V  
SYS = 3V  
SYS = 5V  
SYS = 2V  
SYS = 3V  
SYS = 5V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.01  
0.10  
1
10  
INPUT VOLTAGE (V)  
INPUT CURRENT (mA)  
Figure 6. Efficiency vs. Input Voltage, IIN = 10 mA  
Figure 9. Efficiency vs. Input Current, VIN = 0.2 V  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
SYS = 2V  
SYS = 3V  
SYS = 5V  
SYS = 2V  
SYS = 3V  
SYS = 5V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 7. Efficiency vs. Input Voltage, VIN = 0.5 V  
Figure 10. Efficiency vs. Input Voltage, VIN = 1 V  
Rev. A | Page 10 of 28  
 
 
Data Sheet  
ADP5091/ADP5092  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
SYS = 3V  
SYS = 5V  
SYS = 3V  
SYS = 5V  
60  
0.01  
.05  
0.5  
5
50  
0.1  
1
10  
100  
INPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
Figure 14. Efficiency vs. Input Current, VIN = 0.5 V, VREG_OUT = 2 V,  
REG_OUT = 10 µA  
Figure 11. Efficiency vs. Input Voltage, VIN = 2 V  
I
1400  
1200  
1000  
800  
600  
400  
200  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
SYS = 3V  
SYS = 5V  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
.02  
0.2  
2
20  
SYS VOLTAGE (V)  
INPUT CURRENT (mA)  
Figure 12. Efficiency vs. Input Current, VIN = 1 V, VREG_OUT = 2 V, IREG_OUT = 10 µA  
Figure 15. Quiescent Current vs. SYS Voltage, VMINOP ≤ VCBP  
1600  
1400  
1200  
1000  
800  
1200  
1000  
800  
600  
400  
200  
0
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
600  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
400  
200  
0
A
A
A
A
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SYS VOLTAGE (V)  
SYS VOLTAGE (V)  
Figure 13. Quiescent Current vs. SYS Voltage, VREG_D0 = VREG_D1 = VSYS, VMINOP ≤ VCBP  
Figure 16. Quiescent Current vs. SYS Voltage, VMINOP > VCBP  
Rev. A | Page 11 of 28  
 
 
ADP5091/ADP5092  
Data Sheet  
120  
60  
50  
40  
30  
20  
10  
0
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
A
A
A
A
100  
80  
60  
40  
20  
0
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
4.4  
4.8  
5.2  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
4.4  
4.8  
5.2  
BACK_UP VOLTAGE (V)  
BAT VOLTAGE (V)  
Figure 17. BACK_UP Leakage Current vs. BACK_UP Voltage  
Figure 20. BAT Leakage Current vs. BAT Voltage  
VIN  
VIN  
1
1
BAT  
SYS  
BAT  
SYS  
2
4
2
4
SW  
SW  
B
B
B
B
B
B
B
B
CH1 1.00V  
CH3 1.00V  
CH2 1.00V  
CH4 2.00V  
M40.0ms  
A
CH2  
1.00V  
CH1 1.00V  
CH3 1.00V  
CH2 1.00V  
CH4 2.00V  
M100ms  
A
CH2  
1.00V  
W
W
W
W
W
W
W
W
Figure 18. Startup with 100 µF Battery, VBAT > VSETSD  
Figure 21. Startup with Empty 100 µF Capacitor  
VIN  
CH3: BAT (AC)  
CH2: SYS (AC)  
VIN  
1
3
1
SYS  
BAT  
3
4
SW  
PGOOD  
4
B
B
B
B
B
CH1 1.00V  
CH3 50.0mV  
CH2 50.0mV  
CH4 2.00V  
M20.0ms A CH3  
5.00mV  
CH1 500mV  
B
CH3 1.00V  
CH2 1.00V  
CH4 2.00V  
W
M40.0ms  
A
CH4  
1.00V  
W
W
W
W
W
B
B
T
80.0000µs  
W
W
Figure 19. Output Ripple of TERM Function with 100 µA Load  
Figure 22. PGOOD Function Waveform  
Rev. A | Page 12 of 28  
Data Sheet  
ADP5091/ADP5092  
VIN  
1
BAT  
SYS  
VIN  
1
BACK_UP  
BAT  
3
4
SW  
SYS  
3
B
B
B
B
B
B
CH1 500mV  
CH3 1.00V  
CH2 1.00V  
CH4 2.00V  
M10.0ms  
A
CH2  
2.00V  
CH1 500mV  
B
CH3 1.00V  
CH2 1.00V  
CH4 1.00V  
W
M2.00s  
A
CH2  
2.12V  
W
W
W
W
W
W
B
T
–80.0000µs  
W
Figure 23. Battery Protection Function Waveform  
Figure 26. BACK_UP Function, VBAT < VSETBK, VBACK_UP < VBAT  
VIN  
VIN  
1
3  
1
BAT  
BACK_UP  
BACK_UP  
BAT  
CH2: SYS  
SYS  
3
B
B
B
B
B
B
CH1 500mV  
CH3 1.00V  
CH2 1.00V  
CH4 2.00V  
M2.00s  
A
CH2  
2.12V  
CH1 500mV  
B
CH3 1.00V  
CH2 1.00V  
CH4 1.00V  
W
M2.00s  
A
CH2  
2.12V  
W
W
W
W
W
W
B
W
Figure 24. Backup Function, VBAT < VSETBK, VBACK_UP > VBAT  
Figure 27. BACK_UP Function, VBAT > VSETBK, VBACK_UP > VBAT  
VIN  
VIN  
SYS  
SYS  
BAT  
1
3
4
1
DIS_SW  
3
2
4
SW  
SW  
B
B
B
CH1 500mV  
CH3 2.00V  
CH2 2.00V  
CH4 2.00V  
M40.0µs  
996.400µs  
A
CH4  
2.00V  
W
W
W
CH1 500mV  
CH3 2.00V  
CH2 1.00V  
CH4 1.00V  
M100ms  
A
CH1  
880mV  
B
T
W
Figure 25. Main Boost Pulse Frequency Modulation (PFM) Waveform with  
200 µA Load  
Figure 28. DIS_SW Function Waveform  
Rev. A | Page 13 of 28  
ADP5091/ADP5092  
Data Sheet  
VIN  
VIN  
SYS  
SYS  
1
1
BAT  
BAT  
SW  
2
3
4
SW  
2
3
B
B
B
B
CH1 500mV  
B
B
CH1 500mV  
CH3 1.00V  
CH2 1.00V  
CH4 2.00V  
M4.00s  
A
CH2  
2.12V  
W
CH2 2.00V  
CH4 5.00V  
W
M4.00s  
A
CH2  
2.04V  
780mV  
2.00V  
W
W
W
W
W
B
B
CH3 2.00V  
W
Figure 29. MPPT No Sensing Mode, RMPPT = 400 kΩ  
Figure 32. MPPT Dynamic Sensing Mode  
VIN  
VIN  
SYS  
LLD  
1
1
2
4
MINOP  
MINOP  
3
2
4
SW  
SW  
B
B
CH1 500mV  
CH3 500mV  
B
B
CH1 500mV  
CH3 500mV  
B
B
W
CH2 1.00V  
CH4 2.00V  
M100ms  
A
CH1  
780mV  
W
CH2 1.00V  
CH4 2.00V  
W
M400ms  
A CH1  
W
W
W
W
B
B
W
Figure 30. MINOP Function  
Figure 33. LLD Function  
VIN  
SYS  
VIN  
1
3
1
REG_OUT (AC)  
SYS  
REG_OUT  
BAT  
3
4
2
4
SW  
B
CH1 500mV  
B
B
B
B
W
CH2 1.00V  
CH4 2.00V  
M400ms  
A
CH4  
220mV  
CH1 500mV  
CH3 20.0mV  
CH2 1.00V  
CH4 2.00V  
W
M400µs  
T 0.0000s  
A CH3  
W
W
W
W
B
B
B
CH3 1.00V  
W
W
Figure 31. REG_OUT Start (Hybrid Mode)  
Figure 34. REG_OUT Ripple (Boost Mode)  
Rev. A | Page 14 of 28  
Data Sheet  
ADP5091/ADP5092  
SYS  
REG_OUT (AC)  
1
VIN  
3
1
4
2
REG_OUT  
2
REG_GOOD  
LOAD CURRENT  
B
B
CH1 50.0mV  
CH2 10.0mAΩ  
A
CH2 –129mA  
CH1 500mV  
CH3 1.00V  
CH2 2.00V  
CH4 2.00V  
M200ms  
A
CH2  
1.68V  
W
W
T 0.0000s  
M1.00ms  
Figure 35. REG_GOOD Function  
Figure 38. REG_OUT Load Transient (Hybrid), IREG_OUT from 10 µA to 10 mA  
1200  
1000  
800  
REG_OUT (AC)  
1
600  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
400  
200  
0
2
LOAD CURRENT  
B
B
10  
100  
1k  
10k  
100k  
1M  
10M  
CH1 50.0mV  
CH2 50.0mAΩ  
M1.00µs  
A
CH1 –36.0mV  
W
W
T 0.0000s  
FREQUENCY (Hz)  
Figure 36. REG_OUT Load Transient (LDO), IREG_OUT from 10 µA to 50 mA  
Figure 39. REG_OUT RMS Noise vs. Frequency  
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
100m  
10m  
1m  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
100µ  
10µ  
1µ  
100n  
10n  
1n  
100p  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. REG_OUT Noise Density vs. Frequency at Various Current Loads (ILOAD  
)
Figure 40. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Rev. A | Page 15 of 28  
ADP5091/ADP5092  
Data Sheet  
THEORY OF OPERATION  
The ADP5091/ADP5092 are intelligent, integrated energy  
harvesting, ultralow power management solutions that include  
a cold start-up circuit, one synchronous main boost controller,  
and one regulated output hybrid controller with integrated  
switches, a charging controller with integrated switches, and  
backup power path switches. The main boost controller converts  
maximum power from low voltage, high impedance dc sources,  
such as PV cells, TEGs, and piezoelectric modules, to store energy  
in a rechargeable battery or capacitor with storage protection  
and provides power to the load. Another regulated output with  
automatic hysteresis boost/LDO mode, or pure LDO mode, is  
optimized to provide high efficiency across low output currents  
(10 μA), see Figure 14) to high currents of 200 mA. The ADP5091/  
ADP5092 can also control an additional power path from a  
primary battery cell to the system. An external signal can  
temporarily stop the two boost circuits to prevent interference  
with RF transmission.  
MAIN BOOST REGULATOR (VBAT_TERM > VSYS > VSYS_TH  
)
The switching mode synchronous boost regulator, with an external  
inductor connected between the VIN and the SW pins, operates  
in pulse frequency modulation (PFM) mode, transferring energy  
stored in the input capacitor to the energy storage connected to  
the BAT pin. The MPPT control loop regulates the VIN voltage  
at the level sampled at the MPPT pin and stored at the capacitor  
through the CBP and the AGND pins. To maintain the high  
efficiency of the regulator across a wide input power range, the  
current sense circuitry employs an internal dither peak current  
limit to control the inductor current.  
The main boost regulator operation reaches an asynchronous  
mode via the energy storage controller if the BAT pin voltage is  
less than the battery terminal charging threshold programmed at  
the SETSD pin, or stops switching if the BAT pin voltage is  
more than the battery overcharging threshold programmed at  
the TERM pin. The boost regulator disables when the voltage  
on the CBP pin decreases to the threshold set by the resistor at  
the MINOP pin. In addition, the boost is periodically stopped  
by an open voltage sampling circuit and can also be temporary  
disabled by driving the DIS_SW pin high.  
FAST COLD START-UP CIRCUIT (VSYS < VSYS_TH  
,
VIN > VIN_COLD  
)
The fast cold start-up circuit extracts energy available at the  
VIN pin and charges only the capacitors at the SYS pin up to  
V
SYS_TH above which the main boost regulator and charge controller  
VIN OPEN CIRCUIT AND MPPT  
start working. The efficient boost regulator charges storage  
elements on the BAT pin when the SYS voltage is more than  
the internal BAT charging threshold (VSYS_CHG). When the SYS  
voltage is less than the internal BAT charging threshold with a  
hysteresis, it stops charging the BAT pin and restarts charging  
the SYS pin to ensure that it does not enter cold startup. Figure 41  
shows the fast cold start-up sequence.  
By floating the MINOP pin, the MPPT no sensing mode can  
operate on a fixed MPPT voltage. The MPPT pin, with a 2.0 μA  
(typical) bias current through a resistor, sets the MPPT voltage,  
which is the boost input regulation reference.  
When the MINOP pin voltage is set lower than VMINOP_DSM  
through a resistor to AGND, the ADP5091/ADP5092 operate in  
MPPT dynamic sensing mode. The boost input regulation  
reference is the open circuit voltage at the VIN pin scaled to a ratio  
programmed by the resistor divider at the MPPT pin. To keep  
the VIN voltage operating at the maximum power points available  
from the energy harvester at the input of the ADP5091/ADP5092,  
periodically sample the MPPT voltage and store it in the capacitor  
connected to the CBP pin. The reference voltage refreshes every  
16 sec (default value) by periodically disabling the boost regulator  
for 256 ms (default value) and by sampling the ratio of the open  
circuit voltage when the BAT voltage level exceeds the SETSD  
rising threshold. The factory bit can program the sampling  
cycle. Set the reference voltage by  
The cold start-up circuit is required when the VIN pin is more  
than the minimum input voltage for the cold start (VIN_COLD),  
and the energy storage voltage at the SYS pin is less than the end  
of the cold start operation threshold (VSYS_TH). To complete the  
cold startup, the energy harvester must supply sufficient power  
(see the Energy Harvester Selection section). The cold startup,  
with much lower efficiency compared to the main boost regulator,  
achieves a short start-up time, creating a low shutdown current  
from the system load enabled by the PGOOD signal. To bypass  
the cold startup, place a primary battery at the BACK_UP pin  
(see the Backup Storage Path section).  
V
SETSD  
ROC1  
OC1 ROC2  
VMPPT VIN  
where:  
Open Circuit  
(1)  
V
SYS_CHG  
R
V
SYS_CHG_HYS  
V
SYS_TH  
VIN (Open Circuit) is the input open circuit voltage (VIN_OCV) of  
FAST  
COLD  
START  
the input voltage.  
See Figure 2 for ROC1 and ROC2  
.
SYS  
BAT  
0V  
LOW  
EFFICIENCY  
HIGH EFFICIENCY  
Figure 41. Fast Cold Start-Up Sequence  
Rev. A | Page 16 of 28  
 
 
 
 
 
Data Sheet  
ADP5091/ADP5092  
The typical MPPT ratio depends on the type of harvester. For  
example, it is 0.7 to 0.85 for PV cells, and 0.5 for TEGs. The  
sampling OCV rate is adjustable depending on the previously  
sampled OCV level. To disable the MPPT function, leave the  
MPPT pin floating and set the CBP pin to an external voltage  
reference lower than the VIN voltage.  
In LDO mode, the output generates power from the SYS pin  
with at least a small 4.7 µF ceramic output capacitor. Using new  
innovative design techniques, the LDO provides ultralow quiescent  
current and superior transient performance for digital and RF  
applications, and supports noise sensitive applications.  
In hybrid mode, the VIN and SYS pins both extract energy to  
the REG_OUT pin. When the load power is lower than the input  
power, the regulator exits LDO mode and obtains the energy  
only from the input side.  
MINIMUM OPERATION THRESHOLD FUNCTION  
By setting the MINOP pin voltage lower than the MINOP  
operation voltage range of the dynamic MPPT sensing mode  
(VMINOP_DSM) through a resistor to AGND, the minimum operation  
threshold function can disable the main boost regulator to prevent  
discharging the storage element when the energy generated by the  
harvester is less than the system consumption. When the voltage  
of the CBP pin decreases to the threshold set by the resistor at  
the MINOP pin, the boost regulator stops switching. The  
typical MINOP bias current is 2.00 µA. The minimum operation  
threshold function disables the MPPT function to achieve the  
sleeping quiescent current of 390 nA (typical). Disable this  
function by connecting the MINOP pin to the AGND pin.  
REG_D0 AND REG_D1  
The REG_D0 and REG_D1 pins allow flexible configuration of  
the working mode of the regulated output. Table 6 details the  
working mode configuration set by these two pins.  
Table 6. Regulated Output Working Mode Configuration  
Working Mode  
Boost Disable  
Boost Enable  
LDO Disable  
LDO Enable  
REG_D0  
REG_D1  
Not applicable  
Not applicable  
Low  
Low  
High  
Not applicable  
Not applicable  
High  
The low light density (LLD) indicator (ADP5091 only) is the  
MINOP comparator output that signals the microprocessor to  
calculate the cycle with insufficient input energy in a certain  
period.  
REGULATED OUTPUT CONFIGURATION  
The 150 mA regulated output of the ADP5091/ADP5092 is  
available in eight fixed output voltage options ranging from  
1.5 V to 3.6 V by connecting one resistor through the VID pin  
to the AGND pin. Table 7 shows the output voltage options set by  
the VID pin.  
DISABLING BOOST  
For noise or electromagnetic interference (EMI) sensitive  
applications, pull the DIS_SW pin high to stop the boost  
switcher temporarily to prevent interference with RF circuits.  
Pull the DIS_SW pin low to resume the boost switching. The  
transition delay is 1 µs (typical).  
Table 7. Output Voltage Options Set by the VID Pin  
VID Configuration  
Short to Ground  
Floating  
Output Voltage Set by the VID Pin  
Programmed with external resistors  
VOUT = 2.5 V  
REGULATED OUTPUT WORKING MODE  
The 150 mA regulated output of the ADP5091/ADP5092 not  
only operates in the hysteresis boost mode or the LDO mode  
but also operates in the hybrid mode in which the regulator can  
smoothly transition between these two modes automatically.  
After the BAT voltage exceeds the SETSD threshold or the SYS  
voltage is greater than SETPG threshold, the regulator can be  
enabled.  
RVID = 7 kΩ  
RVID = 14 kΩ  
VOUT = 1.5 V  
VOUT = 1.8 V  
VOUT = 3.6 V  
VOUT = 3.3 V  
VOUT = 2.0 V  
VOUT = 3.0 V  
VOUT = 2.8 V  
RVID = 27.7 kΩ  
RVID = 55.6 kΩ  
RVID = 111 kΩ  
RVID = 221 kΩ  
RVID = 442 kΩ  
In hysteresis boost mode, the boost regulator in the ADP5091/  
ADP5092 charges the output voltage slightly higher than its  
preset output voltage. When the output voltage increases until  
the output sense signal exceeds the hysteresis comparator upper  
threshold (the sleep threshold), the regulator enters sleep mode. In  
sleep mode, to allow a low quiescent current as well as high  
efficiency performance, the low-side and high-side switches  
and a majority of the circuitry are disabled.  
The external resistor divider or the VID pin can program the  
regulated output. The ratio of the two external resistors sets the  
adjustable output voltage range of 1.5 V to 3.6 V, as shown in  
Figure 47. The device acts as a servo to the output to maintain  
the voltage at the REG_FB pin at 1.0 V referenced to ground.  
The current in R1 is then equal to 1.0 V/R2, and the current in  
R1 is the current in R2 plus the REG_FB pin bias current.  
Calculate the output voltage by  
During sleep mode, the output capacitor supplies the energy into  
the load, the output voltage decreases until it falls below the  
hysteresis comparator lower threshold (the wake threshold),  
and the boost regulator wakes up and generates the pulse-width  
modulation (PWM) pulses to charge the output again. The  
hysteresis mode allows the regulator to act as the keep alive  
power supply.  
V
OUT = 1.02 V × (1 + R1/R2)  
(2)  
where:  
OUT = VREG_OUT  
See Figure 47 for R1 and R2.  
V
.
To minimize quiescent current, it is recommended to use large  
resistance values for R1 and R2.  
Rev. A | Page 17 of 28  
 
 
 
 
 
 
 
ADP5091/ADP5092  
Data Sheet  
REG_GOOD (ADP5092 ONLY)  
BACKUP STORAGE PATH  
A logic high on the REG_GOOD pin indicates that the REG_OUT  
voltage is above 92.5% (typical) of its nominal output for a delay  
time greater than approximately 2 ms. The logic high level on  
REG_GOOD is equal to the REG_OUT voltage, and the logic low  
level is ground. When the REG_OUT voltage falls below a 2%  
hysteresis (typical) of the rising threshold, the REG_GOOD pin  
goes low. The logic high level has about 11.6 kΩ internally in  
series to limit the available current.  
The ADP5091/ADP5092 provide an optional backup storage  
energy path, an integrated backup controller, and two back to  
back power switches between the BACK_UP pin and the SYS  
pin. When the system operates at a condition where the harvested  
and stored energy is periodically insufficient, attach a backup  
energy storage element to the BACK_UP pin.  
The backup controller enables when the SYS voltage exceeds the  
end of the cold start operation threshold (VSYS_TH). Before the BAT  
voltage lowers the SETBK threshold, the backup switches turn  
off. While the BAT voltage is less than the SETBK threshold, the  
switches status depends on the voltage level of the BACK_UP pin  
and the BAT pin. The internal BACK_UP_Mx and BACK_UP  
control circuit automatically determine the BACK_UP switches  
(BACK_UP_M1 and BACK_UP_M2) on/off status and selects  
the high voltage terminal as the power source of SYS. The 190 mV  
(typical) comparator input offset of the BAT pin prevents the  
input source and the BAT pin from charging the BACK_UP pin  
(see Figure 44).  
ENERGY STORAGE CHARGE MANAGEMENT  
Energy storage is connected to the BAT pin. The storage can be  
a rechargeable battery, super capacitor, or 100 µF or larger  
capacitor. The energy storage controller manages the charging  
and discharging operations, monitors the SYS pin voltage, and  
asserts the PGOOD signal high when it is above the threshold  
programmed at the SETPG pin.  
When the BAT pin voltage exceeds the battery terminal charging  
threshold programmed at the TERM pin, the boost operation  
terminates to prevent battery overcharging. The battery terminal  
charging threshold is programmable from 2.2 V to 5.2 V. When  
the BAT voltage drops below the battery stop charging threshold  
level programmed at the SETSD pin, the switches between the  
BAT pin and the SYS pin are turned off to prevent a deep, destruc-  
tive battery discharge, and the boost operates in asynchronous  
mode. Although there is no current limit at the SYS and the  
BAT pins, it is recommended to limit the system load current  
to lower than 1000 mA. The large system load current generates a  
droop between the SYS pin and the rechargeable battery at the  
BAT pin, with consideration given to the resistance of the SYS  
switch, the BAT switch, and the rechargeable battery internal  
resistance.  
In addition, the backup storage element can bypass the cold  
startup with inrush current protection circuitry. Nevertheless,  
the current capability is only 250 µA (typical) when plugging in  
the backup battery before completing the cold start. It is recom-  
mended to restrict the system load current from the SYS pin to  
ensure that the power path can enter normal operation status.  
Table 9 explains the power path working state. For long-term  
store mode, disconnect the backup storage element and then  
discharge SYS to ground.  
When no input source is attached, discharge the SYS pin to  
ground before attaching a storage element to the BAT pin.  
After hot plugging a charged storage element, release the SYS pin  
because a SYS voltage that is less than the end of the cold start  
operation threshold (VSYS_TH) results in the BAT switch remaining  
off to protect the storage element until the SYS voltage reaches  
V
SYS_TH. The BAT switches remaining off can also be described  
as store mode, a state with the lowest leakage (3.5 nA typical)  
that allows a long store period without discharging the storage  
element on BAT.  
Rev. A | Page 18 of 28  
 
 
 
Data Sheet  
ADP5091/ADP5092  
BACKUP AND BAT SELECTION THRESHOLD  
BATTERY OVERCHARGING PROTECTION  
To determine when to enable the BACK_UP function, the switch  
threshold on the BAT pin must be set by using external resistors at  
SETBK pin. When the BAT voltage is lower than the SETBK  
threshold, the internal BACK_UP_Mx control circuit automatically  
selects the high voltage terminal as the SYS power source. Figure 42  
shows the VSETBK falling threshold voltage given by Equation 3.  
To prevent rechargeable batteries from being overcharged and  
damaged, the battery terminal charging threshold (VBAT_TERM) must  
be set by using external resistors. Figure 42 shows the VBAT_TERM  
rising threshold voltage given by Equation 6.  
R
3
2
TERM1   
V
BAT_TERM  VINT_REF 1  
(6)  
RTERM2  
R
(3)  
BK1   
VSETBK V  
1  
INT _ REF   
RBK2  
Considering the quiescent current consumption, the sum of the  
resistors must be more than 6 MΩ, that is,  
The ADP5091/ADP5092 have an internal resistor, RSETBK_HYS  
115 kΩ (typical), to program the hysteresis, given by  
Equation 4.  
=
R
TERM1 + RTERM2 ≥ 6 Mꢀ  
The battery terminal charging threshold is given by VBAT_TERM_HYS  
which is internally set to the battery terminal charging threshold  
minus an internal hysteresis voltage denoted by VBAT_TERM_HYS  
(7)  
,
RSETBK_HYS  
(4)  
VSETBK_HYS VSETBK  
.
RE  
When the voltage at the battery exceeds the VBAT_TERM threshold,  
the main boost regulator disables. The main boost starts again  
when the battery voltage falls below the VBAT_TERM_HYS level. When  
input energy is excessive, the VBAT pin voltage ripples between  
the VBAT_TERM and the VBAT_TERM_HYS levels.  
where RE is the equivalent resistor of the four external  
configuration resistor dividers.  
Considering the quiescent current consumption, the sum of the  
resistors that comprise the resistor divider (RSETBK_HYS, RBK1, and  
RBK2) must be greater than 6 MΩ, that is,  
BATTERY DISCHARGING PROTECTION  
R
SETBK_HYS + RBK1 + RBK2 > 6 Mꢀ  
(5)  
To prevent rechargeable batteries from being deeply discharged  
and damaged, the battery stop discharging threshold (VSETSD  
must be set by using external resistors. Figure 42 shows the  
VSETSD falling threshold voltage given by Equation 8.  
)
The equivalent resistor of the four external configuration resistor  
dividers (RE) is equivalent to the paralleling value of the three  
resistor dividers.  
R
(8)  
SD1   
VSETSD V  
1  
TERM_REF  
INT _ REF   
RSD2  
BK  
The ADP5091/ADP5092 have an internal resistor, RSETSD_HYS  
=
BAT  
115 kΩ (typical), to program the hysteresis, given by Equation 9.  
R
R
SETBK_HYS  
REF  
RSETSD_HYS  
SD  
(9)  
VSETSD_HYS VSETSD  
BAT  
RE  
R
R
R
R
TERM1  
SD1  
PG1  
BK1  
SETSD_HYS  
Considering the quiescent current consumption, the sum of the  
resistors that comprise the resistor divider (RSETSD_HYS, RSD1, and  
SETSD  
SD  
R
SD2) must be more than 6 MΩ, that is,  
SETSD_HYS + RSD1 + RSD2 ≥ 6 Mꢀ  
The equivalent resistor of the three external configuration  
resistor dividers (RE) is equivalent to the paralleling value of the  
three resistor dividers.  
PG  
PGOOD  
SETPG  
R
(10)  
PG  
PG  
BK  
R
PG_HYST  
SETHYST  
PG  
V
INT_REF  
SETBK  
TERM  
TERM_REF  
2R  
TERM  
CONTROL  
TRM  
R
R
R
R
TERM2  
SD2  
PG2  
BK2  
R
BAT  
Figure 42. ADP5091/ADP5092 Program Paramater Setting  
Rev. A | Page 19 of 28  
 
 
 
 
ADP5091/ADP5092  
Data Sheet  
POWER GOOD (PGOOD)  
POWER PATH WORKING FLOW  
The ADP5091/ADP5092 allow users to set a programmable  
PGOOD voltage threshold, which indicates that the SYS voltage  
is at an acceptable level. It must be set by using external resistors.  
Figure 42 shows the VSETPG falling threshold voltage given by  
Equation 11.  
Figure 44 shows the power switches structure when the backup  
primary battery is used. During the cold start, when a primary  
battery connects to the BACK_UP pin, the S1 switch turns on.  
The primary battery with the Diode D1 forward voltage drop  
can be the SYS power source.  
After completing the cold start, if the BAT voltage is above the  
SETBK falling threshold, the BACK_UP switches remain off.  
When the BAT voltage is lower than the SETBK falling threshold,  
the backup control automatically selects the high voltage terminal  
as the SYS power source as long as the SYS voltage is more than  
RPG1  
VSETPG_FALLING =V  
1 +  
(11)  
INT _REF   
RPG2 + RPG_HYST  
The SETHYST pin can program the hysteresis with an external  
resistor (RPG_HYST) given by Equation 12.  
V
SYS_CHG. The backup control also prevents the BACK_UP  
R
PG1 + RPG_HYST  
primary battery from charging the BAT pin. Meanwhile, the BAT  
offset of the comparator prevents the input source from  
charging the BACK_UP primary battery. Table 9 shows the  
power path of the working state.  
(12)  
INT _REF   
VSETPG _RISING = V  
1 +  
RPG2  
Considering the quiescent current consumption, the sum of the  
resistors that comprise the power-good resistor divider  
(RPG_HYST, RPG1, and RPG2) must be more than 6 MΩ, that is,  
S1  
D1  
R
PG_HYST + RPG1 + RPG2 ≥ 6 MΩ  
BACK_UP  
+
BACK_UP_M1  
The logic high level on PGOOD is equal to the SYS voltage and  
the logic low level is ground. The logic high level has approximately  
11.6 kΩ (typical) internally in series to limit the available current.  
The VSETPG_FALLING threshold must be greater than the VSETSD  
threshold.  
BACK_UP_M2  
SYS SWITCH  
HS  
SYS  
SW  
For the best operation of the system, use PGOOD to enable the  
system load or to turn on an ultralow power load switch or to  
drive an external positive channel field effect transistor (PFET)  
between SYS and the system load via an inverter to determine  
when the system load can be connected or removed (see Figure 48).  
BAT_M1 BAT_M2  
BAT  
+
BSTO  
LS  
GATE  
DRIVER  
GATE DRIVER  
Figure 44. ADP5091/ADP5092 Power Switches Structure  
Table 8 shows programming threshold resistor examples  
corresponding to various voltages with a 10 MΩ resistor divider.  
Figure 43 shows various threshold voltages states.  
MAXIMUM DEVICE  
CURRENT-LIMIT AND SHORT-CIRCUIT PROTECTION  
The boost regulator and regulated output in hysteresis boost mode  
in the ADP5091/ADP5092 includes current-limit protection  
circuitry to limit the amount of positive current flowing through  
the low-side boost switch. The boost regulator current-limit  
protection circuitry is a cycle-by-cycle, three-level peak current-  
limit protection with a third level of 200 mA (typical), and the  
regulated output current-limit protection circuitry is 100 mA  
(typical). In LDO mode, the current-limit protection is designed  
to limit the current when the output load reaches 260 mA  
(typical). When the output load exceeds 260 mA, the output  
voltage reduces to maintain a constant current limit.  
RATING VOLTAGE  
MAIN BOOST  
CHARGER OFF  
TURN OFF MAIN BOOST  
V
V
BAT_TERM  
BAT_TERM_HYS  
PGOOD BECOMES HIGH  
V
V
SETPG_RISING  
SETPG_FALLING  
MAIN BOOST  
CHARGER ON  
MAIN BOOST IN  
SYNCHRONOUS MODE  
TURN ON SWITCH BETWEEN  
BSTO AND BAT  
V
V
SETSD_HYS  
Although there is no current limit at the SYS and the BAT pins,  
it is recommended to limit the system load current to lower  
than 1000 mA. The total resistance of the SYS switch and the  
BAT switch (1.03 Ω, typical) generates a voltage drop when the  
system load sinks a large current from BAT. It is also necessary  
to consider the internal resistance of the storage elements  
connected to the BAT pin.  
SETSD  
V
SYS_CHG  
CHARGING BATTERY  
V
SYS_CHG_HYS  
TURN ON MAIN BOOST IN  
ASYNCHRONOUS MODE  
V
V
SYS_TH  
SYS_TH  
COLD STARTUP  
ENABLE CHIP  
0V  
Figure 43. ADP5091/ADP5092 Various Threshold Voltages States (See  
Equation 8 and Equation 9)  
Rev. A | Page 20 of 28  
 
 
 
 
 
Data Sheet  
ADP5091/ADP5092  
included, allowing the ADP5091/ADP5092 to return to operation  
when the on-chip temperature drops to less than 127°C. When  
exiting thermal shutdown, the boost and the energy storage  
controller resume their functions.  
THERMAL SHUTDOWN  
In the event that the ADP5091/ADP5092 junction temperature  
rises above 142°C, the thermal shutdown circuit turns off the  
switch between the BAT pin and the SYS pin to prevent the  
damage of the energy storage at a high ambient temperature. In  
addition, the boost operation terminates. A 15°C hysteresis is  
Table 8. Programming Threshold Resistors (See Figure 42)  
Voltage Threshold (V)  
RBK1, RSD1, and RPG1 (MΩ)  
RBK2, RSD2, and RPG2 (MΩ)  
RTERM1 (MΩ)  
Not applicable  
Not applicable  
3.2  
3.48  
3.74  
4
4.22  
4.42  
4.64  
4.87  
5
5.11  
5.36  
5.49  
5.6  
RTERM2 (MΩ)  
Not applicable  
Not applicable  
6.81  
6.49  
6.2  
6.04  
5.76  
5.6  
5.36  
5.23  
5
4.87  
4.7  
4.53  
4.42  
4.3  
4.12  
2
5
5
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
5.23  
5.49  
5.62  
5.9  
6.04  
6.19  
6.34  
6.49  
6.6  
4.75  
4.53  
4.32  
4.12  
4
3.83  
3.74  
3.57  
3.48  
3.32  
3.24  
3.09  
3.01  
2.94  
2.87  
2.8  
6.65  
6.8  
6.81  
6.98  
6.98  
7.15  
7.15  
7.32  
7.32  
7.5  
5.76  
5.9  
5.9  
6.04  
6.19  
6.2  
2.7  
4.02  
3.92  
3.83  
3.74  
2.61  
2.55  
2.5  
7.5  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5
7.5  
2.43  
2.37  
2.32  
2.26  
2.21  
2.15  
2.15  
2.1  
2.05  
2
1.96  
1.91  
6.34  
6.49  
6.49  
6.6  
6.65  
6.8  
6.81  
6.81  
6.98  
6.98  
6.98  
7.15  
3.65  
3.57  
3.48  
3.4  
3.32  
3.24  
3.2  
3.09  
3.09  
3
2.94  
2.87  
7.68  
7.68  
7.68  
7.87  
7.87  
7.87  
7.87  
7.87  
8.06  
8.06  
8.06  
5.1  
5.2  
Rev. A | Page 21 of 28  
 
 
ADP5091/ADP5092  
Data Sheet  
Table 9. Power Path Working State (See Figure 44)  
Backup Battery Power Condition1  
Main Boost  
BAT_M1  
BAT_M2 SYS Switch BACK_UP_M1  
BACK_UP_M2  
Without  
VSYS_CHG > VSYS > VSYS_TH  
SETSD > VBAT  
VSYS > VSYS_CHG, VSETSD > VBAT  
,
Asynchronous  
Off  
Off  
On  
Off  
Off  
V
Asynchronous  
On  
On  
On  
Off  
Off  
On  
On  
Off  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
VBAT_TERM > VBAT = VSYS > VSETSD Synchronous  
VSYS > VSYS_TH, VBAT > VBAT_TERM  
VSYS_CHG > VSYS > VSYS_TH  
SETSD > VBAT  
VSYS > VSYS_CHG, VSETSD > VBAT  
BACK_UP > VBAT  
VSYS > VSYS_TH, VBAT > VSETSD  
BAT > VSETBK  
VSYS > VSYS_TH, VBAT > VSETSD  
Disabled  
With  
,
Asynchronous  
V
,
Asynchronous  
Synchronous  
Synchronous  
Disabled  
On  
On  
On  
Off  
Off  
On  
On  
Off  
Off  
On  
Off  
On  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
V
,
,
V
V
BAT < VSETBK, VBACK_UP > VBAT  
VSYS < VSYS_TH  
1 VBACK_UP is the voltage on the BACK_UP pin, and VSETBK is the threshold of the SETBK pin.  
Rev. A | Page 22 of 28  
 
Data Sheet  
ADP5091/ADP5092  
APPLICATIONS INFORMATION  
The ADP5091/ADP5092 extract the energy from the VIN pin  
to charge the SYS and the BAT pins. This process occurs in  
three stages: cold start, asynchronous boost, and synchronous  
boost. This section describes the procedures for selecting the  
external components to maintain the energy transmission  
system with the layout and assembly considerations.  
Table 10. Recommended Solar Cells  
Vendor  
Device Type  
Alta Devices  
Fujikura  
Gcell  
GaAs  
Dye sensitized solar cell  
Dye sensitized solar cell  
Dye sensitized solar cell  
ElectricFilm  
ENERGY HARVESTER SELECTION  
ENERGY STORAGE ELEMENT SELECTION  
The energy harvester input source must provide a minimum level  
of power for cold start, asynchronous boost, and synchronous  
boost. To estimate the minimum input power required to  
complete the cold start using the following equation:  
To protect the storage element from overcharging or overdis-  
charging, the storage element must be connected to the BAT pin  
and the system load tied to the SYS pin. The ADP5091/ADP5092  
support many types of storage elements, such as rechargeable  
batteries, super capacitors, and conventional capacitors. A  
storage element with a 100 µF equivalent capacitance is required  
to filter the pulse currents of the PFM switching converter. The  
storage element capacity must provide the entire system load  
when the input source is no longer generating power.  
VIN × IIN × ηCOLD > VSYS_TH × ISYS_LOAD  
(13)  
where:  
V
IN is clamped to VIN_COLD = 380 mV (typical), which indicates  
the minimum input voltage for cold start.  
IN is the input current.  
COLD is the cold start efficiency, which is about 5% to 7%.  
(VSYS_TH is the end of cold start operation.  
SYS_LOAD is the system load current of the SYS pin. Minimizing  
I
η
If there is a high pulse current or the storage element has  
significant impedance, it may be necessary to increase the SYS  
capacitor from the 4.7 µF minimum, or add additional capacitance  
to the BAT pin to prevent a droop in the SYS voltage. Note that  
increasing the SYS capacitor causes the boost regulator to operate  
in the less efficient cold start stage for a longer period at startup.  
If the application is unable to accept the longer cold start time,  
place the additional capacitor parallel to the storage element. See  
the Capacitor Selection section for more information.  
I
the system load accelerates the cold start. Programming the  
PGOOD threshold to enable the system load current is  
recommended.  
After the ADP5091/ADP5092 complete the cold start, the MPPT  
function enables. To meet the average system load current, the  
input source must provide the boost regulator with enough power  
to fully charge the storage element while the system is in low  
power or sleep mode. To estimate the power required by the  
system, use the following equation:  
INDUCTOR SELECTION  
The boost regulator needs an appropriate inductor for proper  
operation. The inductor saturation current must be at least 30%  
higher than the expected peak inductor currents, as well as a  
low series resistance (DCR) to maintain high efficiency. The  
boost regulator internal control circuitry is designed to optimize  
the efficiency and control the switching behavior with a nominal  
inductance of 22 µH 20%. Table 11 lists some of the  
recommended inductors.  
V
IN × IIN × ηBOOST > VBAT_TERM × (ISTR_LEAK + ISYS_LOAD  
)
(14)  
where:  
V
I
η
IN is regulated to the MPPT pin voltage (MPPT ratio × OCV).  
IN is the input current.  
BOOST is the boost regulator efficiency. See Figure 5 through  
Figure 12 in the Typical Performance Characteristics section for  
more information.  
VBAT_TERM is the battery terminal charging threshold (see Table 1).  
ISTR_LEAK is the storage element leakage current at the BAT pin.  
ISYS_LOAD is the average system load current of the SYS pin.  
Table 11. Recommended Inductors  
Vendor  
Device No.  
L (µH)  
22  
22  
ISAT (A)1  
2
IRMS (A)2  
1
0.88  
0.65  
DCR (mΩ)  
470  
255  
Würth Elektronik  
74437324220  
744042220  
0.6  
Coilcraft  
LPS4018-223M  
22  
0.8  
360  
1 ISAT is the dc current that causes the 20% inductance drop from its value without current.  
2 IRMS is the current that causes a 20°C rise from a 25°C ambient temperature.  
Rev. A | Page 23 of 28  
 
 
 
 
 
ADP5091/ADP5092  
Data Sheet  
influences the effectiveness of MPPT. When the IC junction  
CAPACITOR SELECTION  
temperature exceeds 85°C, a larger capacitance is beneficial to  
the effectiveness of MPPT, and for a higher CPB pin leakage  
current. It is recommended to keep the same RC time constant  
of the MPPT resistors and CBP capacitor (up to 22 µF) as shown  
in the typical application circuit in Figure 45. Considering the  
time constant of the MPPT resistor divide and the CBP capacitor, a  
low leakage X7R or C0G 10 nF ceramic capacitor is recommended.  
Low leakage capacitors are required for ultralow power  
applications that are sensitive to the leakage current. Any  
leakage from the capacitors reduces efficiency, increases the  
quiescent current, and degrades the MPPT effectiveness.  
Input Capacitor  
A capacitor (CIN) connected to the VIN pin and the PGND pin  
stores energy from the input source. For the energy harvester,  
capacitive behavior dominates the source impedance. Scale the  
input capacitor according to the value of the output capacitance  
of the energy harvester; a minimum of 10 µF is recommended.  
LAYOUT AND ASSEMBLY CONSIDERATIONS  
Carefully consider the printed circuit board (PCB) layout  
during the design of the switching power supply, especially at  
high peak currents and high switching frequency. Therefore, it  
is recommended to use wide and short traces for the main power  
path and the power ground paths. Place the input capacitors,  
output capacitors, inductor, and storage elements as close as  
possible to the IC. It is most important for the boost regulator to  
minimize the power path from output to ground. Therefore,  
place the output capacitor as close as possible between the SYS  
pin and the PGND pin. Keep a minimum power path from the  
input capacitor to the inductor from the VIN pin to the PGND  
pin. Place the input capacitor as close as possible between the  
VIN pin and the PGND pin, and place the inductor close to the  
VIN pin and the SW pin. It is best to use vias and bottom traces  
for connecting the inductors to their respective pins. To minimize  
noise pickup by the high impedance threshold setting nodes  
(REF, TERM, SETBK, SETSD, and SETPG), place the external  
resistors close to the IC with short traces.  
For the primary battery application, a larger capacitance helps  
to reduce the input voltage ripple and keeps the source current  
stable to extend the battery life.  
SYS Capacitor  
The ADP5091/ADP5092 require two capacitors to be connected  
between the SYS pin and the PGND pin. Connect a low ESR  
ceramic capacitor of at least 4.7 µF parallel to a high frequency,  
0.1 µF bypass capacitor. Connect the bypass capacitor as close as  
possible between SYS and PGND.  
REG_OUT Capacitor  
The ADP5091/ADP5092 regulated output is designed for  
operation with small, space-saving ceramic capacitors but  
functions with the most commonly used capacitors as long as  
care is taken with regard to the effective series resistance (ESR)  
value. The ESR of the output capacitor affects stability of the  
LDO control loop. A minimum capacitance of 4.7 µF with an  
ESR of 1 Ω or less is recommended to ensure stability of the  
regulated output. Transient response to changes in load current  
is also affected by output capacitance. Using a larger value of  
output capacitance improves the transient response of the  
regulated output to large changes in load current.  
The CBP capacitor must hold the MPPT voltage for 16 sec,  
because any leakage can degrade the MPPT effectiveness. During  
board assembly and cleaning, contaminants such as solder flux  
and residue may form parasitic resistance to ground, especially  
in humid environments with fast airflow. Contamination can  
significantly degrade the voltage regulation and change threshold  
levels set by the external resistors. Therefore, it is recommended  
that no ground planes be poured near the CBP capacitor or the  
threshold setting resistors. In addition, carefully clean the boards. If  
possible, clean ionic contamination with deionized water for the  
CBP capacitor and the threshold setting resistors.  
CBP Capacitor  
The operation of the MPPT pin depends on the sampled value  
of the OCV. The voltage stored on the CBP capacitor regulates  
to the VIN pin. This capacitor is sensitive to leakage because the  
holding period is around 16 sec. As the capacitor voltage drops  
due to leakage, the VIN regulation voltage also drops and  
Rev. A | Page 24 of 28  
 
 
Data Sheet  
ADP5091/ADP5092  
TYPICAL APPLICATION CIRCUITS  
VID  
LLD  
REG_OUT  
REG_FB  
TO MCU  
111k  
2V  
SENSOR  
10µF  
REG_D0  
REG_D1  
FROM MCU  
22µH  
PGOOD  
SYS  
SOLAR  
HARVESTER  
SW  
VIN  
4.7µF  
10µF  
4.7MΩ  
BAT  
+
MPPT  
CBP  
18MΩ  
PA-5R0H224  
0.22F  
MCU  
(ALWAYS ON)  
10nF  
ADP5091  
REF  
SETSD  
SETPG  
BACK_UP  
CR2032  
+
3V  
DIS_SW  
MINOP  
225mAh  
ADF7024  
(Rx/Tx)  
SETHYST  
SETBK  
150kΩ  
TERM  
AGND PGND  
Figure 45. ADP5091-Based Energy Harvester Wireless Sensor Application with PV Cell as the Harvesting Energy Source (Trony 0.7 V, 60 μA, Alta Devices 0.72 V, 42 ꢀA,  
Gcell 1.1 V, 100 μA), Cooper Bussmann Super Capacitor PA-5R0H224 as the Harvested Energy Storage, and Panasonic Primary Li-Ion Coin Cell CR2032 as the Backup  
Battery  
VID  
LLD  
REG_OUT  
REG_FB  
TO MCU  
111k  
2V  
10µF  
FROM MCU  
22µH  
REG_D0  
REG_D1  
THERMOELECTRIC  
GENERATOR  
PGOOD  
SYS  
SW  
VIN  
4.7µF  
+
10µF  
BAT  
+
MPPT  
CBP  
250kΩ  
PA-5R0H224  
0.22F  
10nF  
ADP5091  
REF  
SETSD  
SETPG  
BACK_UP  
CR2032  
3V  
225mAh  
+
DIS_SW  
MINOP  
SETHYST  
SETBK  
TERM  
AGND PGND  
Figure 46. ADP5091-Based Energy Harvester Circuit with a Thermoelectric Generator as the Harvesting Energy Source, Cooper Bussmann Super Capacitor  
PA-5R0H224 as the Harvested Energy Storage, and Panasonic Primary Li-Ion Coin Cell CR2032 as the Backup Battery  
Rev. A | Page 25 of 28  
 
 
ADP5091/ADP5092  
Data Sheet  
VID  
LLD  
REG_OUT  
REG_FB  
TO MCU  
2V  
R1 10MΩ  
R2 10MΩ  
10µF  
REG_D0  
REG_D1  
FROM MCU  
22µH  
PIEZOELECTRIC  
HARVESTER  
PGOOD  
SYS  
SW  
VIN  
4.7µF  
10MΩ  
10MΩ  
BAT  
+
10µF  
MPPT  
CBP  
PA-5R0H224  
0.22F  
10nF  
ADP5091  
REF  
SETSD  
SETPG  
BACK_UP  
CR2032  
+
3V  
DIS_SW  
MINOP  
225mAh  
SETHYST  
SETBK  
200kΩ  
TERM  
AGND PGND  
Figure 47. ADP5091-Based Energy Harvester Circuit with a Piezoelectric Generator as the Harvesting Energy Source, Cooper Bussmann Super Capacitor PA-5R0H224  
as the Harvested Energy Storage, and Panasonic Primary Li-Ion Coin Cell CR2032 as the Backup Battery  
VID  
REG_GOOD  
REG_OUT  
111kΩ  
2V  
1µF  
REG_D0  
REG_D1  
REG_FB  
SYS  
FROM MCU  
22µH  
SYSTEM  
LOAD  
4.7µF  
SYS  
SW  
VIN  
TRANSFORMER  
PGOOD  
BAT  
6.34MΩ  
AC  
10µF  
MPPT  
CBP  
+
14.7MΩ  
PA-5R0H224  
0.22F  
10nF  
ADP5092  
REF  
SETSD  
SETPG  
BACK_UP  
CR2032  
3V  
225mAh  
+
DIS_SW  
MINOP  
SETHYST  
SETBK  
20kΩ  
TERM  
AGND PGND  
Figure 48. ADP5092 AC Input Source and PGOOD Function Determines the Time to Enable the System Load  
Rev. A | Page 26 of 28  
 
 
Data Sheet  
ADP5091/ADP5092  
FACTORY PROGRAMMABLE OPTIONS  
To order a device with options other than the default options,  
contact a local Analog Devices, Inc., sales or distribution  
representative.  
Table 13. VIN Open Circuit Voltage Sampling Cycle Options  
Option  
Description  
Option 0  
Option 1  
Option 2  
Option 3  
4 sec  
8 sec  
16 sec (default)  
32 sec  
Table 12. Input Current-Limit Options  
Option  
Description  
200 mA (default)  
300 mA  
Option 0  
Option 1  
Rev. A | Page 27 of 28  
 
ADP5091/ADP5092  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.44  
2.30 SQ  
2.16  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8  
Figure 49. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-24-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADP5091ACPZ-1-R7  
−40°C to + 125°C  
24-Lead Lead Frame Chip Scale Package [LFCSP], 200 mA Input  
Peak Current  
CP-24-14  
ADP5091ACPZ-2-R7  
ADP5092ACPZ-1-R7  
−40°C to + 125°C  
−40°C to + 125°C  
24-Lead Lead Frame Chip Scale Package [LFCSP], 300 mA Input  
Peak Current  
24-Lead Lead Frame Chip Scale Package [LFCSP], 200 mA Input  
Peak Current  
CP-24-14  
CP-24-14  
ADP5091-1-EVALZ  
ADP5091-2-EVALZ  
ADP5092-1-EVALZ  
Evaluation Board  
Evaluation Board with Solar Harvester and Super Capacitor  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2016–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14145-0-5/17(A)  
Rev. A | Page 28 of 28  
 
 

相关型号:

ADP5092-1-EVALZ

Ultralow Power Energy Harvester PMUs with MPPT and Charge Management
ADI

ADP5092ACPZ-1-R7

Ultralow Power Energy Harvester PMUs with MPPT and Charge Management
ADI

ADP5100

Strain Guage Sensor, Gage, 0Psi Min, 14.5Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5101

Strain Guage Sensor, Gage, 0Psi Min, 14.5Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5110

Strain Guage Sensor, Gage, 0Psi Min, -14.5Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5111

Strain Guage Sensor, Gage, 0Psi Min, -14.5Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5120

Strain Guage Sensor, Gage, 0Psi Min, 3.62Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5121

PS-A压力传感器
PANASONIC

ADP5130

Strain Guage Sensor, Gage, 0Psi Min, 7.25Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5131

Strain Guage Sensor, Gage, 0Psi Min, 7.25Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5133ACBZ-R7

Dual 3 MHz, 800 mA Buck Regulators in WLCSP
ADI

ADP5134ACPZ-R7

Dual 3 MHz, 1200 mA Buck Regulators and Two 300 mA LDO Regulators With Precision Enable and Power-Good Output
ADI