ADP3500AST-REEL [ADI]

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP64, PLASTIC, LQFP-64, Power Management Circuit;
ADP3500AST-REEL
型号: ADP3500AST-REEL
厂家: ADI    ADI
描述:

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP64, PLASTIC, LQFP-64, Power Management Circuit

文件: 总29页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
a
CDMA Power Management System  
Preliminary Technical Data  
ADP3500  
FEATURES  
Handles all CDMA Baseband and RF/IF Power Management  
Functions  
LDOs Optimized for Specific CDMA Subsystems  
Four Backup LDOs for Stand-By mode operation  
Four Li-Ion Battery Charge Modes  
5mA Pre Charge  
Low Current Charge  
Full Current Charge  
Regulator mode (no current limit)  
Ambient Temperature: -30 °C to +85 °C  
64pin 7x7 LQFP package  
LOGIC  
BLOCK  
ANALOG  
BLOCK  
BATTERY  
CHARGER  
POWER ON  
KEYPAD I/F  
GPIO  
DELAY 10mS  
INTERRUPT  
CONTROL  
REFERENCE  
LDO1 to 11  
LDO CONTROL  
RESET  
VOLTAGE  
DETECTOR  
APPLICATIONS  
CDMA/CDMA2000/PCS Handsets  
SERIAL I/F  
32KHz OUTPUT  
CONTROL  
RTC COUNTER  
ADP3500  
GENERAL DESCRIPTION  
The ADP3500 is a multifunction power system chip optimized  
for CDMA cell phone power management. It contains 15 LDOs.  
Sophisticated controls are available for power up during battery  
charging, keypad interface, GPIO/INT function and RTC  
function. The battery charger has four modes as Pre-charge, Low  
Current Charge, Full Current Charge, and Regulator modes, and  
is designed for Li-Ion/Li-Polymer batteries.  
STAY-ALIVE  
TIMER  
RESET OUTPUT  
Figure 1. Functional Block Diagram  
REV. PrP  
2/6/02  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or apatent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
World Wide Web Site: http://www.analog.com  
Fax: 781/326-87ß3  
ANALOG DEVICES, INC., 2002  
PRELIMINARY TECHNICAL DATA  
ADP3500 - SPECIFICATIONS  
MAIN FUNCTIONS  
TA =-30 to +85°C, CVBAT=1µF MLCC, VBAT=3.6V unless otherwise noted. See Table 2 for COUT  
.
Parameter  
SHUTDOWN GND CURRENT  
Power OFF  
Symbol  
IGND  
Conditions  
Min  
Typ  
25  
Max  
40  
Units  
LDO3b : ON, connect to RTCV  
through Schottky diode.  
RTC/32K OSC : Active  
All other LDOs: OFF  
µA  
All logic inputs : VBAT or GND  
MVBAT: OFF  
OPERATING GND CURRENT  
IGND  
Stand-by mode operation (light load)  
LDO1b, 2b, 3b, 6b: ON  
Io=1mA for LDO1b & 3b  
Io=300µA for LDO2b & 6b  
All other LDOs: OFF  
RTC/32K OSC: Active  
MVBAT: OFF  
60  
125  
µA  
All logic output: no load  
Stand-by mode operation (Mid-load)  
275  
650  
LDO1, 2, 3, 6, all Sub-LDO: ON,  
Io=70% load  
All other LDOs: OFF  
RTC/32K OSC: Active  
MVBAT: ON  
µA  
µA  
All logic outputs: no load  
Active operation  
LDO5: OFF  
All other LDOs: ON, 70% load  
RTC/32K OSC: Active  
All logic outputs: no load  
MVBAT: ON  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
Operational Temperature range  
Adapter Voltage range (recommendation)  
VBAT Voltage range  
160  
35  
°C  
°C  
°C  
V
Tope  
VADP  
VBAT  
-30  
5.5  
3.3  
+85  
12  
5.5  
V
LDO SPECIFICATIONS  
TA =25°C, CVBAT=1µF MLCC, VBAT = Vout+1V, NRCAP=0.1µF. See Table 2 for COUT  
.
Baseband VDD Main-LDO (LDO #1a)  
Parameter  
OUTPUT VOLTAGE  
Symbol  
VLDO#1  
Conditions  
Io = 1 to 150 mA  
Ta= -30 to +85°C  
Min  
2.81  
Typ  
2.90  
Max  
2.99  
Units  
V
OUTPUT CAPACITOR REQUIRED FOR  
STABILITY  
DROPOUT VOLTAGE  
Start-up time from shutdown  
GND Current  
C LDO#1  
VDO  
2.2  
µF  
Io = 150 mA  
Io = 150 mA  
200  
250  
50  
mV  
µS  
µA  
ILDO#1  
Baseband VDD Sub-LDO (LDO #1b)  
Parameter  
OUTPUT VOLTAGE  
Symbol  
VLDO#1b  
Conditions  
Io = 1mA  
Min  
2.8  
Typ  
2.87  
Max  
3.0  
Units  
V
Ta= -30 to +85°C  
GND Current  
ILDO#1b  
10  
µA  
REV.PrP 2/6/02  
- 2 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Baseband AVDD Main-LDO (LDO #2a)  
Parameter  
OUTPUT Voltage  
Symbol  
VLDO#2  
Conditions  
16 steps, 20mV/step, Ta= 25C,  
Io=50mA  
Min  
Typ  
Max  
Units  
Code : 1000  
Code : 0111  
Io = 50 mA, Ta= 25°C  
16 steps, 20mV/step, Io=50mA, Ta=  
-30 to +85°C  
2.30  
2.60  
2.46  
2.36  
2.66  
2.52  
2.43  
2.74  
2.6  
V
V
V
OUTPUT default voltage  
OUTPUT Voltage  
VLDO#2  
VLDO#2  
2.29  
2.57  
2.36  
2.66  
2.47  
2.81  
V
V
Code : 1000  
Code : 0111  
OUTPUT default voltage  
OUTPUT CAPACITOR REQUIRED FOR  
STABILITY  
VLDO#2  
C LDO#2  
2.42  
1
2.52  
2.66  
V
µF  
Io = 50 mA, Ta= -30 to +85°C  
DROPOUT VOLTAGE  
RIPPLE REJECTION  
VDO  
Io = 50 mA  
f = 1KHz  
210  
50  
mV  
dB  
OUTPUT NOISE VOLTAGE  
Start-up time from shutdown  
GND Current  
VNOISE  
ILDO#2  
f = 100 Hz to 100 kHz  
120  
250  
50  
µVRMS  
µS  
µA  
Io = 50 mA  
Baseband AVDD Sub-LDO (LDO #2b)  
Parameter  
OUTPUT Voltage  
Symbol  
VLDO#2b  
Conditions  
Io = 300 µA, VLDO#2a=2.6V  
Ta= -30 to +85°C  
Min  
2.50  
Typ  
5
Max  
2.70  
Units  
V
GND Current  
ILDO#2b  
µA  
REFO switch  
Parameter  
On resistance  
Off leak  
Symbol  
RON  
ILEAK  
Conditions  
Ta= -30~+85°C, Io=500µA  
LDO2: ON, Switch: OFF  
Min  
Typ  
50  
0.01  
Max  
130  
1
Units  
µA  
Coin Cell Main-LDO (LDO #3a)  
Parameter  
OUTPUT VOLTAGE  
Symbol  
VLDO#3  
Conditions  
Min  
2.85  
Typ  
3.0  
Max  
3.09  
Units  
V
Io = 1 to 50 mA  
Ta= -30 to +85°C  
Io= 50 mA  
Dropout Voltage  
VDO  
140  
mV  
OUTPUT CAPACITOR REQUIRED FOR  
STABILITY  
C LDO#3  
1
µF  
Start-up time from shutdown  
GND Current  
250  
50  
µS  
µA  
ILDO#3  
Io = 50 mA  
Coin Cell Sub-LDO (LDO #3b)  
Parameter  
OUTPUT VOLTAGE  
Symbol  
VLDO#3b  
Conditions  
Io=1mA  
Min  
2.85  
Typ  
2.97  
Max  
3.15  
Units  
V
Ta= -30 to +85°C  
GND Current  
ILDO#3b  
10  
µA  
Audio LDO (LDO #4)  
Parameter  
OUTPUT VOLTAGE  
Symbol  
VLDO#4  
Conditions  
Io = 1 to 180 mA  
Ta = -30 to +85°C  
Min  
2.81  
Typ  
2.90  
Max  
2.99  
Units  
V
OUTPUT CAPACITOR REQUIRED FOR  
STABILITY  
Dropout Voltage  
RIPPLE REJECTION  
OUTPUT NOISE VOLTAGE  
Start-up time from shutdown  
GND Current  
C LDO#4  
VDO  
2.2  
µF  
Io = 180 mA  
f = 1KHz  
f = 100 Hz to 10 kHz  
200  
50  
50  
250  
50  
mV  
dB  
µVRMS  
µS  
VNOISE  
ILDO#4  
Io = 180 mA  
µA  
REV.PrP 2/6/02  
- 3 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Vibrator LDO (LDO #5)  
Parameter  
Output Voltage  
Symbol  
VLDO#5  
Conditions  
Min  
2.75  
Typ  
2.9  
Max  
3.05  
Units  
V
Io = 1 to 150 mA  
Ta= -30 to +85°C  
Io = 150mA  
Dropout Voltage  
Output capacitor required for stability  
GND Current  
VDO  
C LDO#5  
ILDO#5  
200  
50  
mV  
µF  
µA  
2.2  
Io = 150 mA  
Baseband Core Main-LDO (LDO #6a)  
Parameter  
Output Voltage  
Symbol  
VLDO#6  
Conditions  
Io = 1 to 50 mA  
Ta= -30 to +85°C  
Min  
2.52  
Typ  
2.60  
Max  
2.68  
Units  
V
Output capacitor required for stability  
Dropout Voltage  
Start-up time from shutdown  
GND Current  
C LDO#6  
VDO  
1
µF  
mV  
µS  
Io = 50 mA  
Io = 50 mA  
160  
250  
50  
ILDO#6  
µA  
Baseband Core Sub-LDO (LDO #6b)  
Parameter  
OUTPUT VOLTAGE  
Symbol  
VLDO#6b  
Conditions  
Io = 300 µA  
Min  
2.5  
Typ  
2.57  
Max  
2.7  
Units  
V
Ta= -30 to +85°C  
GND Current  
ILDO#6b  
5
µA  
RF Rx1 LDO (LDO #7)  
Parameter  
Output voltage  
Symbol  
VLDO#7  
Conditions  
Io = 1 to 100 mA  
Ta= -30 to +85°C  
Min  
2.81  
Typ  
2.9  
Max  
2.99  
Units  
V
Output capacitor required for stability  
Dropout voltage  
Ripple rejection  
C LDO#7  
VDO  
1.5  
µF  
mV  
dB  
Io = 100 mA  
f = 1KHz  
200  
50  
Output noise voltage  
Start-up time from shutdown  
GND Current  
VNOISE  
ILDO#7  
f = 100 Hz to 100KHz  
40  
250  
50  
µVRMS  
µS  
µA  
Io=100mA  
RF Tx LDO (LDO #8)  
Parameter  
Output voltage  
Symbol  
VLDO#8  
Conditions  
Io = 1 to 150 mA  
Ta= -30 to +85°C  
Min  
2.81  
Typ  
2.9  
Max  
2.99  
Units  
V
Output capacitor required for stability  
Dropout voltage  
Ripple Rejection  
C LDO#8  
VDO  
2.2  
µF  
mV  
dB  
Io = 150mA  
f = 1KHz  
200  
50  
Output noise voltage  
Start-up time from shutdown  
GND Current  
VNOISE  
ILDO#8  
f = 100 Hz to 100KHz  
40  
250  
50  
µVRMS  
µS  
µA  
Io=150mA  
RF Rx 2 LDO (LDO #9)  
Parameter  
Output voltage  
Symbol  
VLDO#9  
Conditions  
Io = 1 to 50 mA  
Ta= -30 to +85°C  
Min  
2.81  
Typ  
2.9  
Max  
2.99  
Units  
V
Output capacitor required for stability  
Dropout voltage  
Ripple Rejection  
C LDO#9  
VDO  
1
µF  
mV  
dB  
Io = 50mA  
f = 1KHz  
150  
50  
Output noise voltage  
Start-up time from shutdown  
GND Current  
VNOISE  
ILDO#9  
f = 100 Hz to 100KHz  
40  
250  
50  
µVRMS  
µS  
µA  
Io=50mA  
RF Optional LDO (LDO #10)  
Parameter  
Output voltage  
Symbol  
VLDO#10  
Conditions  
Io= 1 to 50 mA  
Ta= -30 to +85°C  
Min  
2.81  
Typ  
2.9  
Max  
2.99  
Units  
V
REV.PrP 2/6/02  
- 4 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Output capacitor required for stability  
Dropout voltage  
C LDO#10  
VDO  
1
µF  
Io = 50mA  
150  
50  
mV  
dB  
Ripple rejection  
f = 1KHz  
Output noise voltage  
Start-up Time from Shutdown  
GND Current  
VNOISE  
ILDO#10  
f = 100 Hz to 100KHz  
40  
250  
50  
µVRMS  
µS  
µA  
Io=50mA  
Optional LDO (LDO #11)  
Parameter  
Output voltage  
Symbol  
VLDO#11  
Conditions  
Io = 1 to 100 mA  
Ta= -30 to +85°C  
Min  
1.42  
Typ  
1.5  
Max  
1.58  
Units  
V
Output capacitor required for stability  
Ripple rejection  
Output noise voltage  
Start-up Time from Shutdown  
GND Current  
C LDO#11  
VNOISE  
ILDO#11  
2.2  
µF  
dB  
µVRMS  
µS  
µA  
f = 1KHz  
f = 100 Hz to 100KHz  
50  
50  
250  
50  
Io=150mA  
Voltage Detector for LDO1 and LDO6  
Parameter  
LDO1 detect voltage  
Symbol  
VDET1  
VDET1  
Conditions  
Ta= -30 to +85°C  
Ta= -30 to +85°C  
Min  
2.7  
Typ  
2.72  
2.77  
Max  
Units  
V
V
LDO1 release voltage  
VLDO1  
-NOM  
LDO1 Hysteresis  
LDO6 detect voltage  
LDO6 release voltage  
VHYS1  
VDET6  
VDET6  
35  
2.3  
52  
2.33  
2.40  
85  
mV  
V
V
Ta= -30 to +85°C  
Ta= -30 to +85°C  
Ta= -30 to +85°C  
VLDO6  
-NOM  
LDO6 Hysteresis  
VHYS6  
40  
60  
100  
mV  
Ta= -30 to +85°C  
BATTERY VOLTAGE DIVIDER: MVBAT  
TA =-30 to 85°C, CVBAT=10µF MLCC, CAdapter=1µF MLCC unless otherwise noted  
Parameter  
MVBAT Output voltage  
Symbol  
VMVBAT  
Conditions  
VBAT=4.35V, MVEN = 1  
code 10000  
Min  
Typ  
Max  
Units  
5 – bit programmable  
2.484 2.508 2.533 V/V  
2.673 2.697 2.727 V/V  
code 01111  
MVBAT Output voltage step  
Output drive current capability  
MVBAT Load Regulation  
MVBAT Output Voltage Step  
Operating Battery Current  
Shutdown Current  
Vstep  
Iout  
∆ΜVBAT  
VBAT=4.35V, MVEN = 1  
6
2
3
6
65  
mV/lsb  
1
mA  
mV  
mV  
µA  
µA  
5
0 < Iout < 100 µA  
VBAT = 4.35 V, MVEN = 1  
VBAT = 4.35 V, MVEN = 1  
VBAT = 4.35 V, MVEN = 0  
85  
1
BATTERY CHARGER  
TA =-30 to 85°C, CVBAT =10µF MLCC, CAdapter =1µF MLCC, 4.0V ADAPTER 12V unless otherwise noted  
Parameter  
Charger Control Voltage Range  
2 – bit programmable  
Symbol  
VBAT  
SENSE  
Conditions  
Ta= 25 °C,  
VR_SENSE = 6mV & 115mV,  
5.5V ADAPTER 12V (note 1)  
code 00 (default)  
code 01  
Min  
Typ  
Max  
Units  
3.926 3.980 4.034  
4.150 4.190 4.230  
4.170 4.210 4.250  
4.190 4.230 4.270  
V
V
V
V
code 10  
code 11  
Charger Control Voltage Range  
2 – bit programmable  
VBAT  
SENSE  
Ta= -20 to 55°C,  
VR_SENSE = 6mV & 115mV,  
5.5V ADAPTER 12V (note 1)  
code 00 (default)  
code 01  
3.905 3.980 4.065  
4.130 4.190 4.250  
4.146 4.210 4.278  
4.166 4.230 4.300  
V
V
V
V
code 10  
code 11  
REV.PrP 2/6/02  
- 5 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Charger Detect On Threshold  
Charger Detect Off Threshold  
ADAPT  
ER-  
110  
165  
23  
225  
mV  
VBAT  
ADAPT  
ER-  
5
50  
mV  
VBAT  
IADAPTER  
ADAPT  
Charger Supply Current  
Current Limit Threshold  
High Current Limit  
(Full charge current enabled)  
Low Current Limit  
(Full charge current disabled)  
Pre-Charge Current Source  
Base Pin Drive Current  
ADAPTER=5V, VBAT=4.3V  
ADAPTER=5V  
2
185  
70  
7
mA  
mV  
mV  
ER-VISNS VBAT=3.6V  
135  
40  
160  
55  
VBAT=3.0 V  
3
15  
5
28  
2.675  
mA  
mA  
V
VBAT DDLO  
Note 2.  
VBAT<DDLO, Ta=25C, 5mA Pre-  
Deep Discharge Lock-Out (Releasing voltage)  
DDLO  
2.78  
charge, VBAT ramping up  
Deep Discharge Lock-Out Hysteresis  
ISENSE Bias Current  
BATID pull-up resistor to ADAPTER  
Minimum Load for Stability  
200  
100  
mV  
µA  
KΩ  
mA  
IISNS  
RBATID  
IL  
VISNS=5V  
1
130  
10  
70  
BATID=H. Note 3.  
Note 1: Overhead includes external components, including sense resistor, PNP and isolation diode.  
2: DDLO hysteresis is dependent upon DDLO threshold value. If DDLO threshold is at maximum, DDLO hysteresis is at  
maximum at the same time.  
3: Guaranteed but not tested.  
REV.PrP 2/6/02  
- 6 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
LOGICS  
DC Specifications  
TA =25°C, CVBAT=1µF MLCC, VBAT = 3.6 V  
Parameter  
Symbol  
Conditions  
Min  
2.25  
Typ  
Max  
0.5  
Units  
CS, CLKIN, RESETIN-, TCXO_ON, SLEEP-,  
KEYPADROW (Internal 10Kpull-up)  
Input High Voltage  
VIH  
VIL  
V
V
Input Low Voltage  
470  
470  
mV  
V
V
V
mV  
V
Hysteresis  
GPIO, DATA  
VIH  
VIL  
2.25  
2.69  
2.69  
Input High Voltage  
Input Low Voltage  
Hysteresis  
0.5  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
INT-  
Output High Voltage  
Output Low Voltage  
BLIGHT (Open Drain Output)  
Output Low Voltage  
KEYPADCOL (Open Drain Output)  
Output Low Voltage  
IOH=400µA  
IOL=-1.8mA  
0.28  
V
VOH  
VOL  
V
V
IOH=400µA  
IOL=-1.8mA  
0.28  
0.4  
VOL  
VOL  
V
V
IOL=-100mA  
IOL=-1.8mA  
0.15  
PWRONKEY-, OPT1 (Internal 140KPull-up)  
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
Vhys  
0.8xVBAT  
0.8xVBAT  
V
V
mV  
0.2xVBAT  
950  
950  
Hysteresis  
OPT2- (Input/Open Drain Output)  
Input High Voltage  
Input Low Voltage  
Hysteresis  
Output Low Voltage  
OPT3  
VIH  
VIL  
Vhys  
VOL  
V
V
mV  
V
0.2xVBAT  
0.1xVBAT  
IOL=-1.8mA  
VIH  
VIL  
Vhys  
0.7xVBAT  
0.9xRTCV  
V
V
mV  
Input High Voltage  
Input Low Voltage  
Hysteresis  
0.2xVBAT  
300  
32KOUT  
Output High Voltage  
Output Low Voltage  
RESET+ (Open Drain Output)  
Output Low Voltage  
OFF Leak  
VOH  
VOL  
V
V
IOH=400µA  
IOL=-1.8mA  
0.1xRTCV  
VOL  
OFFLEAK  
IOL=-1.8mA  
0.1xRTCV  
1
V
µA  
0.005  
RSTDELAY-, RESETOUT- (Open Drain Output)  
Output Low Voltage  
VOL  
IOL=-1.8mA  
0.1xRTCV  
V
BATID (Internal 100Kpull-up)  
Input High Voltage  
Input Low Voltage  
Hysteresis  
VIH  
VIL  
VADP=5 to 12V  
0.8xVADP  
V
V
V
0.2xVADP  
0.16 x  
VADP  
1
Supply Current of RTCV  
IOSC  
RTCV=3V,  
µA  
VBAT=0V  
All logic: No load.  
VADP: Adapter voltage  
AC Specifications  
All specs include temperature unless otherwise noted  
Parameter  
Symbol  
RTCV  
FCLK  
tSTART  
fDEV  
Conditions  
Min  
2
Typ  
Max  
3.1*  
Units  
V
KHz  
mS  
Operational Supply Range  
Oscillator Frequency  
Start-up Time (note)  
Frequency deviation  
32.768  
100  
TBD  
RTCV=0V to 3V  
RTCV=2 to 3V  
200  
REV.PrP 2/6/02  
- 7 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Frequency Jitter  
Cycle to Cycle  
>100cycles  
Long term Drift  
fJITTER/S  
EC  
RTCV=3V, TA=25°C  
40*  
50*  
10*  
nS  
nS  
ppm  
RTCV=3V, 3 minutes  
SERIAL INTERFACE  
Parameter  
tCKS  
tCSS  
Min.  
50  
50  
Typ.  
Max  
Units  
nS  
nS  
Test Condition/Comments  
CLK set-up time  
CS set-up time  
tCKH  
tCKL  
tCSH  
tCSR  
tDS  
tDH  
tRD  
tRZ  
tCSZ  
100  
100  
100  
62  
50  
40  
nS  
nS  
nS  
µS  
nS  
nS  
nS  
nS  
CLK “High” Duration  
CLK “Low” Duration  
CS hold time  
CS recovery time  
Input data set-up time  
Input data hold time  
Data output delay time  
Data output floating time  
Data output floating time after CS goes low.  
50  
50  
50  
nS  
Note: These parameters are not tested.  
ABSOLUTE MAXIMUM RATINGS  
Voltage on ADAPTER pin to GND ……………………………..... -0.3, 15Vmax  
Voltage on VBAT pin to GND …………………………………… -0.3, 7Vmax  
Voltage on Pin 6-13, 21-28 to GND ……………………………… -0.3, VLDO1+0.3Vmax  
Voltage on Pin 1, 62-64 ………………………………………….. - 0.3, VBAT+0.3V max  
Voltage on Pin 20, 32 …………………………………………….. - 0.3, VRTCV+0.3V max  
Voltage on Pin 60, 61 ……………………………………………... - 0.3, VADAPTER+0.3V max  
Voltage on Pin 2-5, 14, 30, 31, 33 …………………………………. - 0.3, 7V max  
Storage Temperature Range ………………………………………. - 65 to +150 °C  
Operating Temperature Range ……………………………………. - 30 to +85°C  
Maximum Junction Temperature …………………………………. 125°C  
θJA Thermal Impedance (LQFP-64) ………………………………. 2 layer board 76°C/W  
θ
JA Thermal Impedance (LQFP-64) ………………………………. 4 layer board 54°C/W  
Lead Temperature Range (Soldering, 60sec) ……………………... 300°C  
ORDERING GUIDE  
Model  
Temperature Range  
Package  
ADP3500AST  
-30 C to 85 C  
LQFP 64 pins  
REV.PrP 2/6/02  
- 8 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
PIN CONFIGURATION  
64  
49  
1
48  
VBAT  
OPT3  
KEYPADCOL0  
LDO7 (RF Rx1)  
LDO6 (Baseband Core)  
VBAT  
KEYPADCOL1  
KEYPADCOL2  
KEYPADCOL3  
KEYPADROW0  
KEYPADROW1  
LDO5 (Vibrator)  
LDO4 (Audio)  
VBAT  
KEYPADROW2  
KEYPADROW3  
KEYPADROW4  
LDO2 (Baseband AVDD)  
REFO  
AGND  
LDO3 (RTC/Coin-cell)  
VBAT  
KEYPADROW5  
TCXO_ON  
SLEEP-  
BLIGHT  
LDO1 (Baseband VDD)  
LDO11 (Option)  
VBAT  
DGND  
INT-  
RSTDELAY-  
16  
33  
17  
32  
Figure 2. Pin Configuration  
PIN DESCRIPTION  
Pin Mnemonic  
I/O  
I
Supply Function  
1
2
3
4
5
6
7
8
9
OPT3  
VBAT  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
LDO1  
Optional Power ON input. ADP3500 will keep “power ON” during this pin goes “High”.  
Keypad Column Strobe 0 (Open Drain, pull low)  
Keypad Column Strobe 1 (Open Drain, pull low)  
Keypad Column Strobe 2 (Open Drain, pull low)  
Keypad Column Strobe 3 (Open Drain, pull low)  
Keypad Row Input 0. Pulled up internally, 10KΩ  
Keypad Row Input 1. Pulled up internally, 10KΩ  
Keypad Row Input 2. Pulled up internally, 10KΩ  
Keypad Row Input 3. Pulled up internally, 10KΩ  
Keypad Row Input 4. Pulled up internally, 10KΩ  
Keypad Row Input 5. Pulled up internally, 10KΩ  
Logic input pin for Main LDOs (LDO1, LDO2, LDO3, LDO6) turning on control. L: OFF, H:  
ON  
KEYPADCOL0  
KEYPADCOL1  
KEYPADCOL2  
KEYPADCOL3  
KEYPADROW0  
KEYPADROW1  
KEYPADROW2  
KEYPADROW3  
O
O
O
O
I
I
I
I
10 KEYPADROW4  
11 KEYPADROW5  
12 TCXO_ON  
I
I
I
13 SLEEP-  
I
LDO1  
Logic input pin for RF Rx LDOs (LDO7 and LDO9). Gating register data with this input for  
these LDOs. LDO7 and LDO9 are turned OFF when SLEEP- goes Low even if the registers  
set to ON.  
14 BLIGHT  
15 DGND  
16 INT-  
O
-
O
-
VBAT  
LED drive. Open drain output.  
Digital Ground  
Interrupt signal output  
Supply input for RTC, 32KHz OSC, and some other logics. Connects to Coin cell battery in  
typical operation.  
-
LDO1  
-
17 RTCV  
18 OSCOUT  
19 AGND  
20 OSCIN  
21 GPIO0  
-
-
-
RTCV  
-
RTCV  
LDO1  
Connect to 32.768KHz crystal.  
Analog Ground  
Connect to 32.768KHz crystal.  
General Purpose Input and Output port. Integrated Interrupt function. Interrupt occurs both  
falling and raising edge.  
I/O  
22 GPIO1  
23 GPIO2  
24 GPIO3  
I/O  
I/O  
I/O  
LDO1  
LDO1  
LDO1  
General Purpose Input and Output port. Integrated Interrupt function. Interrupt occurs both  
falling and raising edge.  
General Purpose Input and Output port. Integrated Interrupt function. Interrupt occurs both  
falling and raising edge.  
General Purpose Input and Output port. Integrated Interrupt function. Interrupt occurs both  
falling and raising edge.  
25 DATA  
26 CS  
27 CLKIN  
28 RESETIN-  
29 32KOUT  
I/O  
I
I
I
O
LDO1  
LDO1  
LDO1  
LDO1  
RTCV  
Serial Interface data input and output.  
Serial Interface Chip Select input. Active High input.  
Serial Interface Clock input.  
Reset input signal for internal reset signal and starts Stay-Alive timer.  
32.768KHz output. Output after 30mS when Reset is released.  
REV.PrP 2/6/02  
- 9 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
30 RESET+  
31 RESETOUT-  
32 TEST  
O
O
I
RTCV  
RTCV  
RTCV  
RTCV  
Reset output. Invert signal of RESETOUT-. Open drain and low OFF leak.  
Reset output. Follows Voltage Detector operation. Open drain output.  
Test pin. If the pin tied to RTCV, test mode runs. Connect to GND for normal operation.  
Reset output. 50mS delayed. Connect to baseband’ reset input as typical application. Open  
drain output.  
33 RSTDELAY-  
O
34 VBAT  
35 LDO11  
36 LDO1  
37 VBAT  
38 LDO3  
39 AGND  
40 REFO  
41 LDO2  
42 VBAT  
43 LDO4  
44 LDO5  
45 VBAT  
46 LDO6  
47 LDO7  
48 VBAT  
49 LDO8  
50 AGND  
51 LDO9  
52 VBAT  
53 LDO10  
54 BVS  
-
O
O
-
O
-
O
O
-
O
O
-
O
O
-
O
-
O
-
O
-
-
Supply input. Connect to Battery.  
VBAT  
VBAT  
-
VBAT  
-
VBAT  
VBAT  
-
VBAT  
VBAT  
-
VBAT  
VBAT  
-
VBAT  
-
VBAT  
-
VBAT  
-
Regulator #11 output. Use for Optional circuit.  
Regulator #1 output. Use for Baseband I/O supply.  
Supply input. Connect to Battery.  
Regulator #3 output. If VBAT>2.7V, the output is always active. Use for Coin cell supply.  
Analog Ground  
Output of LDO2 through FET switch.  
Regulator #2 output. Use for Baseband analog supply.  
Supply input. Connect to Battery.  
Regulator #4 output. Use for General analog supplies. Ex. Speaker Amp.  
Regulator #5 output. Use for Vibrator.  
Supply input. Connect to Battery.  
Regulator #6 output. Use for Baseband core supply.  
Regulator #7 output. Use for RF Rx IC supply. Gated with SLEEP- signal input.  
Supply input. Connect to Battery.  
Regulator #8 output. Use for RF Tx IC supply.  
Analog Ground  
Regulator #9 output. Use for RF Rx IC supply. Gated with SLEEP- input signal.  
Supply input. Connect to Battery.  
Regulator #10 output. Use for Optional circuit.  
Battery Voltage Sense input for Charger. Connect to Battery.  
Noise reduction capacitor. 0.1µF MLCC.  
55 NRCAP  
56 AGND  
57 MVBAT  
58 BASE  
59 ADAPTER  
60 BATID  
O
-
O
O
-
VBAT  
-
VBAT  
Analog Ground  
Battery voltage divider output. Buffered internally. Connect to Baseband ADC.  
ADAPTER Base drive output for PNP pass transistor  
-
AC adapter input. Use to charger supply.  
Battery identification. 100Kpulled up internally. “L”: Battery exist, “H”: No battery. If  
BATID=”H”, Charger operates with “No current Limit”.  
I
ADAPTER  
61 ISENSE  
62 PWRONKEY-  
63 OPT1-  
I
I
I
ADAPTER Charge current sense input  
VBAT  
VBAT  
VBAT  
Power ON/OFF key input. Pulled up internally (140K).  
Optional Power ON input. ADP3500 will keep “power ON” during this pin goes “Low”.  
Optional Power ON input. ADP3500 will keep “power ON” during this pin goes “Low”.  
While the part is powered up, the input is pulled to Low (GND) internally. Don’t connect to  
any supply or signal source.  
64 OPT2-  
I/O  
REV.PrP 2/6/02  
- 10 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
BLOCK DIAGRAM  
VBAT  
AGND  
BVS  
54  
ADAPTER ISENSE BASE  
56 50 39 19  
52 48 45 42 37 34  
59  
61  
58  
100KΩ  
60  
BATID  
VBAT  
Charger_Detect  
Charger Control  
Battery Charger  
140K  
57  
40  
55  
36  
MVBAT (VBAT Measure)  
REFO  
POWERON_N  
OPT1_N  
DDLO  
LDO_EN  
62  
63  
PWRONKEY-  
OPT1-  
REF  
power_on  
OPT2_N  
OPT3  
OPT2- 64  
1
OPT3  
RTC  
Alarm  
REF  
NRCAP  
LPF  
LDO1  
BATID  
Main  
Sub  
LDO1 (Baseband VDD)  
ON/OFF  
LOGIC  
voltage_detect  
PWROFF  
CLK  
LDO1  
Delay  
10mS  
Main  
41  
38  
ON/OFF  
LOGIC  
LDO2 (Baseband AVDD)  
LDO3 (RTC/Coin-cell)  
LDO2  
Sub  
sync  
5
CLK  
Main  
ON/OFF  
LOGIC  
LDO3  
LDO6  
LDO4  
LDO5  
LDO7  
LDO8  
LDO9  
LDO10  
LDO11  
Data  
In  
Main  
Sub  
46  
43  
ON/OFF  
LOGIC  
LDO6 (Baseband Core)  
LDO4 (Audio)  
INT_N  
Level  
trans  
16  
INT-  
2
KEYPADCOL0  
44  
47  
49  
51  
LDO5 (Vibrator)  
LDO7 (RF Rx1)  
LDO8 (RF Tx)  
LDO9 (RF Rx2)  
5
3
4
LDO1  
KEYPADCOL1  
KEYPADCOL2  
KEYPADCOL3  
KEYPADROW0  
KEYPADROW1  
KEYPADROW2  
KEYPADROW3  
KEYPADROW4  
KEYPADROW5  
Level  
trans  
INT  
5
4
6
KEY  
PAD  
I/F  
7
8
Level  
trans  
9
6
10  
11  
14  
53  
35  
LDO10 (RF Option)  
LDO11 (Option)  
LDO1  
GPIO_INT / gpi_intrst  
BLIGHT  
DGND  
15  
26  
27  
CS  
CLKIN  
DATA  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
Voltage  
Detector  
Serial  
I/F  
DATA  
25  
21  
22  
23  
13  
12  
SLEEP-  
TCXO_ON  
Level  
trans  
Level  
trans  
DATA  
CLKs  
GPIO  
+
INT  
28 RESETIN-  
Level Translator  
VBAT & RTCV  
LDO1  
RTCV  
24  
LDO1  
DGND  
Level Translator  
17  
20  
18  
RTCV  
RTCV  
OSC IN  
DGND  
32KHz  
OSC OUT  
Delay  
30mS  
32K OUT 29  
32  
TEST  
Open Drain  
RTC  
/clock  
CLKs  
33  
Delay  
50mS  
RSTDELAY-  
Data  
31  
RESETOUT-  
Stay/Alive  
Timer  
0.25-8sec  
Data  
30 RESET+  
RESETIN_N  
Figure 3. Overall Block Diagram  
REV.PrP 2/6/02  
- 11 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Theory of Operations  
As illustrated in Figure 1 at the beginning, ADP3500 can be divided into two high level blocks – Analog and Logic. The Analog  
block mainly consists of LDO regulators, battery charger, reference voltage, and voltage detector sub-blocks, all of which are  
powered by the main power source(VBAT), namely the main battery or the charging adapter. On the other hand, the Logic block is  
more complicated. All the Logic sub-blocks are also powered by VBAT except the RTC counter, 32MHz Output control, RESET  
Output, and Stay-Alive Timer. These sub-blocks are powered from RTCV pin, as indicated in Figure 4 in shaded area.  
[VBAT]  
5
4
3
2
1
6
7
DELAY 10mS  
POWER ON  
KEYPAD I/F  
GPIO  
INTERRUPT  
CONTROL  
SERIAL I/F  
RESET  
ANALOG  
BLOCK  
LDO CONTROL  
8
[RTCV]- RTC BLOCK  
32K OUTPUT  
RTC COUNTER  
9
CONTROL  
10  
RESET OUTPUT  
11  
STAY-ALIVE TIMER  
Figure 4. Power partitioning of sub-blocks  
1. ANALOG BLOCKS  
1.1 LOW DROP-OUT(LDO) REGULATORS  
There are total four Sub-LDOs for each LDO1, 2, 3, and 6, in order to meet lower power consumption at light load (stand-by  
operation). They are used at low load condition, but they are continuously ON even if the each Main-LDOs are ON. The LDO3 and  
3b are used for Coin cell and LDO3b is always ON until Main battery (VBAT) is downed to 2.5V due to DDLO function. LDO7 and  
9 are controlled with SLEEP- signal. For detail of LDO ON/OFF control, please refer to Section “2.8 LDO Control”.  
Table 1. Ground currents of LDOs with each handset operations.  
Baseband Baseband  
Baseband  
AVDD  
RF  
Rx1  
RF  
Tx  
RF  
Rx2  
RF  
Option  
Main Total LDO  
LDO names  
Coin Cell Audio Vibrator  
Option  
VDD  
Core  
REF  
IGND  
LDO #  
1
6
3
4
5
2
7
8
9
10  
11  
Power OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF OFF OFF  
OFF  
OFF  
10µA  
20µA  
20µA  
30µA  
50µA  
Light load  
Mid-load  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF OFF OFF  
OFF  
OFF  
OFF  
OFF  
10µA  
60µA  
60µA  
5µA  
55µA  
55µA  
10µA  
60µA  
60µA  
5µA  
55µA  
55µA  
Stand-  
by  
mode  
OFF OFF OFF  
50µA  
20µA 300µA  
20µA 450µA  
Active load  
50µA 50µA 50µA 50µA  
Talk  
Ring  
OFF  
50µA  
60µA  
60µA  
55µA  
55µA  
60µA 50µA  
60µA 50µA  
55µA  
55µA  
50µA 50µA 50µA 50µA  
50µA 50µA 50µA 50µA  
50µA 20µA 550µA  
50µA 20µA 600µA  
REV.PrP 2/6/02  
- 12 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Table 2. LDO operation overview  
Current  
Rating (mA)  
Voltage (Typ)  
Or Range  
2.90V  
Step size  
(mV)  
N/A  
N/A  
20  
Regulator  
Names  
Program steps  
Default  
Cout  
LDO1a  
LDO1b  
LDO2a  
LDO2b  
LDO3a  
LDO3b  
LDO4  
Baseband VDD  
Baseband VDD sub  
Baseband AVDD  
Baseband AVDD sub  
RTC/Coin Cell  
RTC/Coin Cell sub  
Audio  
150  
1
50  
0.3  
50  
1
180  
150  
50  
0.3  
100  
150  
50  
N/A  
N/A  
16  
-
-
2.2µF  
2.2µF  
1µF  
1µF  
1µF  
2.87V  
2.36V~2.66V  
2.33V~2.63V  
3.0V  
2.52V  
2.49V  
16  
20  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
-
-
-
-
-
-
-
-
-
-
-
2.97V  
2.9V  
2.9V  
2.6V  
2.57V  
2.9V  
2.9V  
2.9V  
1µF  
2.2µF  
2.2µF  
1µF  
LDO5  
Vibrator  
LDO6a  
LDO6b  
LDO7  
LDO8  
LDO9  
Baseband Core  
Baseband Core sub  
RF Rx1  
1µF  
2.2µF  
2.2µF  
1µF  
1µF  
2.2µF  
RF Tx  
RF Rx2  
RF Option  
LDO10  
LDO11  
50  
100  
2.9V  
1.5V  
Option  
1.2 BATTERY CHARGER  
1.2.1. Block Diagram  
Cvbat  
RSENSE  
ISENSE  
AC Adapter  
CADAPTER  
VBAT  
ADAPTER  
BASE  
BVS  
Battery  
Pre-charge  
5m A  
+
V(ISENSE)  
-
gm  
EN  
gm  
EN  
DDLO  
EN  
MVBAT  
EN  
MVBAT  
REF  
100KΩ  
BVS  
BATID  
CHI  
CHEN  
Charger_  
Detect  
CHV MVEN  
0/1  
MV4:0  
LDO_  
EN  
BATID  
LOGIC Block  
Figure 5. Battery charger block diagram  
REV.PrP 2/6/02  
- 13 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
1.2.2. Flow Chart  
Battery charger start  
N
VADAPTER>VBAT  
?
Y
Set Charger Detect flag  
DDLO comparator will  
operate if VBAT>2V.  
Even if VBAT<2V, pre-  
charge is continuously  
applying 5mA.  
Pre-charge 5mA  
RESETIN- should be  
asserted until baseband  
chip active.  
VBAT>DDLO  
?
Then, CHEN=1 as default.  
LDO3b: ON  
BATID=0: Battery connected  
BATID=1: Battery disconnected  
BATID=0  
?
Set Low Current Charge  
IADAPTER=250mA  
Current Loop Disabled  
Voltage Loop Regulates  
VBAT to 4.0V  
Determined by external  
sense resistor  
(50mV on Rsense)  
Pre-charge: OFF  
Pre-charge: OFF  
LDO1, 1b, 2, 2b, 3, 6, 6b  
Voltage Detector  
all enabled  
Voltage Detector  
VLDO6>2.5V  
AND  
VLDO1>2.7V  
?
Figure 6. Charger flow chart A  
REV.PrP 2/6/02  
- 14 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
A
Reset sequence runs  
Baseband sets Charge Voltage  
Baseband sets MVBAT gain  
Baseband Enables  
Full charge current?  
(CHI=1?)  
CHI=0: Full current charge OFF  
CHI=1: Full current charge ON  
N
Y
Low Current Charge: OFF  
Set Full current charge  
I
=750mA  
ADAPTER  
(150mV on Rsense)  
N
Baseband  
CHEN=0?  
Y
Charging Terminated  
Figure 7. Charger flow chart B  
1.2.3. Charger Detect function  
The ADP3500 will detect that a charging adapter has been applied when the voltage at the ADAPTER pin exceeds the voltage at  
BATSNS. The ADAPTER pin voltage must exceed the BVS voltage by a small positive offset. This offset has hysteresis to prevent  
jitter at the detection threshold. The charger detection comparator will set the Charger_Detect flag in the 20h register and generate an  
interrupt to the system. If the ADAPTER input voltage drops below the detection threshold, charging will stop automatically and the  
Charger_Detect flag will be cleared and generate an interrupt also.  
1.2.4. DDLO function and operation  
The ADP3500 contains a comparator that will lock out system operation if the battery voltage drops to the point of deep discharge.  
When the battery voltage exceeds 2.675 V, the reference will start as will the sub-LDO 3b. If the battery voltage drops below the  
hysteresis level, the reference and LDO's will be shut down, if for some reason they are still active. Since LDO1 will be in deep  
dropout and well below the voltage detector threshold at this point, the reset generator will have already shut down the rest of the  
system via RESET+, RESETOUT-, and RSTDELAY-.  
If a charging adapter has been applied to the system, the DDLO comparator will force the charging current to trickle charge if the  
battery is below the DDLO threshold. During this time, the charging current is limited to 5 mA. When the battery voltage exceeds  
the upper threshold, the low current charging is enabled, which allows 55 mV (typical) across the external charge current sense  
resistor. See also Figure 6, the Battery Charger Flowchart.  
1.3 MVBAT  
The ADP3500 provides a scaled buffered output voltage for use in reading the battery voltage with an A/D converter. The battery  
voltage is divided down to be nominally 2.600 V at full scale battery of 4.35 V. To assist with calibrating out system errors in the  
REV.PrP 2/6/02  
- 15 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
ADP3500 and the external A/D converter, this full scale voltage may be trimmed digitally with 5 bits stored in register 12h. At full  
scale input voltage, the output voltage of MVBAT can be scaled in 6 mV steps, allowing a very fine calibration of the battery voltage  
measurement. The MVBAT buffer is enabled by the MVEN bit of register 11h, and will consume less than 1 uA of leakage current  
when disabled.  
1.4 REFERENCE  
The ADP3500 has an internal, temperature compensated and trimmed band-gap reference. The battery charger and LDO's all use  
this system reference. This reference is not available for use externally. However, to reduce thermal noise in the LDOs, the  
reference voltage is brought out to the NRCAP pin through a 50kohm internal resistor. A cap on the NRCAP pin will complete a low  
pass filter that will reduce the noise on the reference voltage. All the LDO's, with the exception of LDO3, use the filtered reference.  
Since the reference voltage appears at NRCAP through a 50kohm series internal impedance, it is very important to never place any  
load current on this pin. Even a volt meter with 10 megohm input impedance will affect the resulting reference voltage by about 6 or  
7 mV, affecting the accuracy of the LDO's and charger. If for some reason the reference must be measured, be certain to use a high  
impedance range on the volt meter or a discrete high impedance buffer prior to the measurement system.  
2. LOGIC BLOCKS  
ADP3500 has following logic functions.  
Three wire Serial Interface (CS, CLK, DATA)  
RTC counter section has Year, Month, Day, Week,  
Hour, Minute, and Second, and controls Leap year,  
and days in month automatically.  
Detect Alarms based on RTC counter.  
Periodically constant interrupt feature. (2Hz, 1Hz,  
1/60Hz, 1/3600Hz, Once a months)  
GPIO and INT ports control  
Key-pad interface  
LED light control  
LDO functions  
Clock and Reset output control  
Stay-Alive timer  
Following is a block diagram based on Logic circuit.  
REV.PrP 2/6/02  
- 16 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
[VBAT]  
voltage_detect  
chager_detect  
DELAY  
10mS  
voltage detect_delay  
SYNC.  
power_on  
PWRONKEY_N  
OPT1_N  
Interrupt  
register  
block  
OPT2_N  
POWER  
OFF  
OPT3  
pwronkey_n_sync,  
opt1_n_sync,  
opt3_sync  
batid  
SYNC.  
BL  
SYNC.  
DATA  
IN  
Analog block  
LED control  
BLIGHT  
DGND  
KEY PAD  
I/F control  
4
6
KEYPADCOL  
KEYPADROW  
INT  
control  
register  
keypad_int  
KEY PAD  
I/F  
(reset & mask)  
4
GPIO  
control  
GPIO[3:0]  
GPIO  
INT_N  
TCXO_ON  
SLEEP_N  
LDO control register  
Analog  
Blocks  
write_enable  
write_data[7:0]  
CS  
CLKIN  
DATA  
Analog  
control  
registers  
Serial  
I/F  
sp_addr[4:0]  
Data  
select  
resetin_n  
(reset for registers)  
RESETIN_N  
LDO  
Control  
rtc_resetin_n  
analog block  
rtc_clk32k  
OSCOUT  
OSCIN  
32K OSC  
clk32k  
32K CLK  
output  
control  
Output data  
select  
32K OUT  
clk512  
Address  
decode  
RTC  
Test mode  
register  
block  
clk1k  
Stay-Alive  
Timer  
test_ldoenable  
test_mode  
RTC register block  
rtc_test  
TEST  
rtc_voltage_detect  
rtc_voltage_detect  
RESETOUT_N  
RSTDELAY_N  
reset output  
control  
RESET  
[RTCV]  
Figure 8. LOGIC block diagram  
2.1 RESET  
2.1.1 RESETIN- signal  
The internal reset function is activated by external reset input, RESETIN-, and this is an asynchronous signal. The internal  
reset signal is used in the following blocks.  
Serial I/F  
Interrupt control  
Stay-Alive timer  
Registers (refer to the Register section for detail).  
LDOs, controlled by Serial I/F, are applied “RESET” by RESETIN-. LDO4, LDO5, LDO7, LDO8, LDO9, LDO10, LDO11  
and REF0 are set to “0”. In case RESETIN- has noise, the internal circuit may be in reset and cause the system unexpected  
result. Please take enough treatment. RESETIN- is level translated from LDO1 to both VBAT and RTCV supplies.  
REV.PrP 2/6/02  
- 17 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
2.1.2 RESET output control and 32KHz output control  
Using Voltage Detect signal, device generates 32K OUT, RSTDELAY-, RESETOUT-, and RESET signals. About 32mS after  
rtc_voltage_detect (Voltage Detect signal in RTCV supply) signal goes from “0” to “1”, 32K OUT signal is generated from  
internal RTC_CLK32K signal. RSTDELAY_N (RSTDELAY-) goes to “0” when rtc_voltage_detect is “0”, and it goes to “1”  
at 50mS after the “0” to “1” transition of rtc_voltage_detect. RESETOUT_N (RESETOUT-) and RESET toggle their states.  
Signal clk512 is a 512Hz, which generated in USEC counter block.  
2.2 SERIAL INTERFACE  
tCSR  
CS  
tCKS tCSS  
tCSH  
tCKH  
CKL  
t
CLKIN  
Serial  
DATA  
CTRL2 (W)  
ADDR5  
ADDR4 0 CTRL1 (W)  
DATA7  
1
DATA0  
Serial I/F WRITE Timing  
tCSR  
CS  
tCKS CSS  
t
tCKH  
tCKL  
CLKIN  
Serial  
DATA  
ADDR5 ADDR4  
0
CTRL1 (R) CTRL2 (R)  
1
DATA0  
DATA7  
tRD  
tCSZ  
Serial I/F READ Timing Single Mode  
CS  
tCKS tCSS  
tCKH  
tCKL  
CLKIN  
Serial  
DATA  
CTRL1 (R) CTRL2 (R) DATA7  
ADDR4 0  
1
DATA0  
ADDR5  
ADDR4  
ADDR5  
tRD  
tRZ  
Serial I/F READ Timing Continuous Mode  
Figure 9. Serial Interface signal  
Table 3. Set up and Hold Specifications  
Parameter Min. Typ. Max  
Units  
Test Condition/Comments  
REV.PrP 2/6/02  
- 18 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
tCKS  
tCSS  
tCKH  
tCKL  
tCSH  
tCSR  
tDS  
tDH  
tRD  
tRZ  
tCSZ  
200  
400  
400  
400  
500  
62  
nS  
nS  
nS  
nS  
nS  
µS  
nS  
nS  
nS  
nS  
nS  
CLK set-up time  
CS set-up time  
CLK “High” Duration  
CLK “Low” Duration  
CS hold time  
CS recovery time  
200  
200  
Input data set-up time  
Input data hold time  
Data output delay time  
Data output floating time  
Data output floating time after CS goes low.  
300  
300  
300  
2.2.1. Function block  
ADP3500 integrates the serial bus interface for easy communication with the system. The data bus consists of three wires,  
CLK, CS, and DATA, and is capable of Serial to Parallel / Parallel to Serial conversion of data, as well as clock transfer.  
resetin_n  
CS  
CLKIN  
sp_addr [5:0]  
Creation of  
DATAIN  
write_enable  
Serial To Parallel  
Conversion  
write Data  
sp_data [7:0]  
RW_SEL  
Synchlonization  
and Data Selection  
ps_data [7:0]  
Parallel to Serial  
Conversion  
DATA  
Figure 10. Serial Interface block diagram  
Serial interface block works during the time period at CS signal enable. After the falling edge of CLKIN signal right after the  
rising edge of CS signal, Address, transfer control signal and write data are held in sequentially. In case DATA READ, each of  
data will be prepared by rising edge of CLKIN and baseband chip may want to read or latch the data at falling edge of CLKIN.  
While CS is not asserted, CLKIN is ignored. If CS goes “L” while CLKIN is continuously applied or input DATA, all data is  
canceled and DATA line would be High impedance. In this case, user needs to input the data again. Please note that CLKIN  
should be stayed “L” when CS goes H. RTC counter registers should be accessed at a certain time (>62µS) later after CS  
assertion. Asserting RESETIN_N (RESETIN-) signal resets the block..  
Notes:  
CLKIN=10KHz to 1MHz, 20/80% duty cycle.  
CLKIN should be “L” when CS goes “H”.  
In case of RTC counter access, the access should be approximately 62µS, (2 clock cycles of CLK32K) after the CS signal  
is asserted, to hold the RTC value.  
The CS should not be asserted for 62µS, (2 clock cycles of CLK32K) after the CS is released.  
CS signal should never be asserted for 1 sec or longer, otherwise RTC counter makes error.  
2.2.2 Data input/output timing  
5
4
3
2
1
0
1
0
7
6
5
4
3
2
1
0
Read DATA(8bit)  
Address(6bit)  
R/W(2bit)  
REV.PrP 2/6/02  
- 19 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Figure 11. Serial I/F Data read/write timing  
SP_ADDR[5:0]  
SP_CTRL[1:0]  
SP_DATA[7:0]  
: 6bit address  
: 2bit Read/Write control (01: Write, 10: Read)  
: 8bit Input/Output Data  
* All transfer will be done MSB first.  
2.3 GPIO+INT  
GPIO block has 4 channel I/O function and interrupt. With GPIO CONTROL register (1Ah), it is possible to control Input or  
Output setting of each channel individually. The output data is set in GPIO register (1Ch). When the port is set as input mode,  
the input signal transition from “1” to “0” and from “0” to “1”, then generate interrupt signal with Edge detection. The held  
interrupt signals are reset by GPIO INT RESET register (1Dh). Setting GPIO MASK register (1Bh) to “1” enables the  
interrupt of GPIO. (Not MASKED, “1” at default in reset.)  
2.4 INT REGISTER  
In case the interrupt event has occurred, “1”, the signal is held in this register. INT detect and Reset are synchronized at the  
rising edge of CLK32K. In case the interrupt event and reset signal are occurred at same time, interrupt event has priority.  
RESETIN_N signal resets INT register (1Eh) to “0” (No INT detected), except alarm_int and ctfg_int. INT MASK register  
(1Fh) to “1” (not masked). This block masks alarm_int and ctfg_int, which generated in RTCV block, but these signals are  
reset with ALARM CONTROL register (0Dh) and CTFG CONTROL register (0Eh). The interrupt signal, INT_N, is an  
“inverted OR” signal of value in INT register and GPIO register.  
DATA-IN register is a port to read an interrupt status. The input data are through SYNC block except Alarm signal. Since this  
is for just read back purpose, user cannot write any data.  
SYNC block  
BATID  
Register  
RTC Alarm  
Charger_Detect  
DATA_IN registor (Addr: 20h)  
OPT3  
OPT1-  
PWRONKEY-  
Figure 12. DATA-IN block  
2.5 KEYPAD CONTROL & LED DRIVE  
KEYPADCOL[3:0] are Open Drain output. The KEYPADROW[5:0] are Falling edge trigger input (input state transition from  
“1” to “0”) and generate Interrupt signal, and are pulled up to LDO1. By providing 4 keypad-column outputs and 6 keypad-  
row inputs the ADP3500 can monitor up to 24 keys with baseband chip. Writing Column outputs and Reading Row inputs are  
controlled through serial interface. The address of the KEYPADROW is 19h, and KEYPADCOL is 18h. Initial register value  
is “0” that means an output of KEYPADCOL is “High Impedance”.  
Back-light drive is an open drain output. Maximum current of internal FET is 100mA. Initial register value is “0” that means  
the output of BLIGHT is “High impedance”.  
REV.PrP 2/6/02  
- 20 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
2.6 POWER ON INPUT  
PWRONKEY and OPT1 have pull-up resistors, and others are not. In addition to these inputs, other internal input signals such  
as charger_detect and Alarm signal (alarm_int) from RTC enable Main and Sub LDOs of LDO1, 2, 3 and LDO6. Power ON  
status is hold by a latch data in Delay circuit, called voltage_detect_delay (please see 4.8 for more detail). OPT3 has a lower  
voltage threshold. OPT2 is different structure to the other inputs, and is pulled down to zero by internal signal when phone is  
Power ON status, in order to make sure to have Power ON status even if short-term disconnection is happened. Following is a  
block diagram and Power on sequence.  
VBAT  
140KΩ  
140KΩ  
voltage_detect_delay  
charger_detect  
alarm_int  
PWRONKEY-  
OPT1-  
power_on  
OPT2-  
OPT3  
INT  
Block  
Figure 13. Power ON input block diagram  
Voltage_detect_delay  
charger_detect  
alarm_int  
PWRONKEY-  
OPT1-  
: Voltage Detect Signal (10mS delay)  
: Charger Detect Signal  
: Alarm Detect Signal (Alarm 1 or 2)  
: Power On key input  
: Power On signal  
: Power On signal  
(1: Assert)  
(1: Assert)  
(1: Assert)  
(0: Assert)  
(0: Assert)  
(0: Assert)  
(1: Assert)  
OPT2-  
OPT3  
: Power On signal  
REV.PrP 2/6/02  
- 21 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
POWER OFF  
POWER ON  
PowerOnKey  
POWERON  
LDO1, 2, 3, 6  
LDO1b, 2b, 6b  
Voltage Detector  
voltage_detect_delay  
RSTDELAY-  
OPT2  
10mS  
50mS  
INT-  
Clear INT-  
Serial I/F  
Clear INT- and set PWROFF(21h)=1  
Figure 14. Power ON sequence  
2.7 10 MILISECOND DELAY  
This block generates a 10mS delayed signal after the reset of the voltage_detect signal is released. After 10mS (11 clocks of  
1024Hz) since the voltage_detect signal is asserted, the voltage_detect_delay signal is asserted. If the duration of the  
voltage_detect signal is less than 10mS, voltage_detect_delay signal will not be asserted. When the voltage_detect signal is  
released, the voltage_detect_delay signal is also released simultaneously. The voltage_detect_delay signal can be reset with  
writing “1” in POWER OFF register (21h).  
* User just need to write “1” in the POWER OFF register to reset voltage_detect _delay, and not need to over-write it with “0”.  
2.8 LDO CONTROL  
The LDO control block controls Power ON/OFF of LDO block. The function in this block has:  
Hardware control using external signals  
Software control using serial interface  
Mixture of hardware and software above  
LDO1, LDO2, LDO3, and LDO6 are structured with Main and Sub LDOs. LDO4, LDO5, LDO7, LDO8, LDO9, LDO10, and  
LDO11 are set through serial interface but LDO7 and LDO9 are gated (AND gate) with SLEEP- signal, in order to get into  
Sleep mode. If the SLEEP- signal is enabled (goes “Low”), the outputs of LDO7 and LDO9 are turned OFF. Remainder of  
LDOs as LDO1, LDO2, and LDO6 is controlled by “Power On Logic”. A Sub LDO called “LDO3b” is independent control  
and this LDO control block doesn’t control LDO3b. And Main LDO3 called “LDO3a” is turned on by power_on signal, but  
Sub LDO3 called “LDO3b” is always ON while Battery supplies and LDO3b is only controlled by DDLO. A DDLO is control  
signal from Battery charger block and is monitoring Battery voltage. When VBAT is under 2.5V (200mV hysteresis from  
VBAT=2.7V), DDLO minimizes (DDLO enable) current flow from Li-Ion battery.  
Main LDOs  
Sub LDOs  
: LDO1a, LDO2a, LDO3a, LDO6a  
: LDO1b, LDO2b, LDO3b, LDO6b  
Table 4a. DDLO status table  
Status  
LDO1a LDO1b LDO2a LDO2b LDO3a LDO3b LDO4 REFO LDO5 LDO6a LDO6b LDO7 LDO8 LDO9 LDO10 LDO11  
Baseband  
AVDD  
RF  
Option  
Baseband VDD  
Coin cell  
Audio REFO Vibrator Baseband Core Rx1  
Tx  
Rx2  
Option  
DDLO Enable  
DDLO Disable  
OFF  
X
OFF  
X
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
X
OFF  
X
OFF  
X
OFF  
X
OFF  
X
OFF  
X
OFF  
X
OFF  
X
OFF  
X
OFF  
X
X
X
X
Note  
REV.PrP 2/6/02  
- 22 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
1. “X” means a status of LDO depends on other conditions.  
Table 4b. LDO Control Event Table  
Event  
LDO1a LDO1b LDO2a LDO2b LDO3a LDO3b LDO4 REFO LDO5 LDO6a LDO6b LDO7 LDO8 LDO9 LDO10 LDO11  
Baseband  
AVDD  
RF  
Option  
Baseband VDD  
Coin cell  
ON  
Audio REFO Vibrator Baseband Core Rx1  
Tx  
Rx2  
Option  
POWER ON  
(Note 2)  
ON  
ON  
ON  
ON  
ON  
ON  
TCXO_ON  
(Note 3)  
ON/  
OFF  
ON/  
OFF  
ON/  
OFF  
ON/  
OFF  
SLEEP-  
(Note 4)  
ON/  
OFF  
ON/  
OFF  
RESETIN-  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
“ALLOFF” bit  
goes “H”  
OFF  
OFF  
“PWROFF” bit  
goes “H”  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Notes  
1. This table only indicate the change of status caused by an event. Blank cells means “no change” and keep previous status  
2. Power ON Event: Indicating a status just after the power ON event. After the event, a status of LDO1a, 2a, 3a, and  
LDO6a are changed by TCXO_ON signal.  
3. TCXO_ON: Hardware control, change all Main-LDO’ ON/OFF status.  
4. SLEEP-: The LDO7 and LDO9 are able to be controlled by software if SLEEP=”H” level. If SLEEP- goes “L”, these  
LDOs are turned OFF immediately.  
Table 4c. Software Controllability of LDOs  
LDO1a LDO1b LDO2a LDO2b LDO3a LDO3b LDO4 REFO LDO5 LDO6a LDO6b LDO7 LDO8 LDO9 LDO10 LDO11  
LDO description  
Baseband  
AVDD  
RF  
Option  
Baseband VDD  
Coin cell  
Audio REFO Vibrator Baseband Core Rx1  
Tx  
Rx2  
Option  
Software Turn  
ON  
(Note1)  
(Note1)  
Software Turn  
OFF  
Note  
1. LDO7 and LDO9 have a gate with SLEEP-. If SLEEP- is in “L” (active) status, user cannot control and both LDOs are kept  
to “OFF” status. User may want to use this function as immediate control to get OFF status by using SLEEP- hardware control  
while set register “1” to the LDO control register.  
2.9 RTC BLOCK  
The Calendar registers are set through serial interface.  
2.9.1 Function  
RTC counter using binary  
Reading out and writing setting s of Year, Month, Day, Week, Hour, Minute, and second data.  
Leap year controls, Number of days in a month control  
Alarm function (Weak, Hour, Minute)  
Periodic Interrupt function - 2Hz, 1Hz, 1/60Hz, 1/3600Hz, Each month (First day of each month)  
Protection of wrong data readout during RTC data update.  
REV.PrP 2/6/02  
- 23 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
RTC_CLK32K  
RTC_SP_ADDR[5:0]  
RTC  
Register  
block  
Loading Alarm times  
RTC_WRITE_ENABLE  
RTC_WRITE_DATA[7:0]  
(from serial I/F)  
Alarm  
Comparator  
rtc_alarm_int  
rtc_ctfg_int  
Periodic  
Interrupt  
RTC  
Counter  
leap year  
and Date  
Control  
Reset will be asserted when  
RTC counter is writed.  
Data  
Select  
rtc_data[7:0]  
RTC_CS  
Sec counter  
Increment  
control  
USEC  
Counter  
Registers for  
Test mode  
- Reset to RTC & USEC counters  
- Write initial data of USEC counter  
Figure 15. RTC counter block  
2.9.2 Operation  
Synchronizing with RTC_CLK32K clock, USEC counter generates 1sec timing clock and the clock hits RTC counter.  
Through the serial interface, CPU can write setting value and read RTC counter value. In case the RTC counter toggles during  
the serial interface access to RTC counter, the wrong data can be read/write between RTC counter and interface. CS signal  
stops the clocking to RTC counter until CS signal is released. In case CPU writes data into SEC counter, USEC counter is  
reset to zero.  
Note  
In case of RTC counter access, the access should be waited approximately 62µS, (2 clock cycles of CLK32K) after the  
CS signal is asserted, to hold the RTC value.  
CS signal should never be asserted 1sec or longer, this affects counter operation.  
2.9.3 Operation of USEC counter  
USEC counter counts up synchronizing with RTC_CLK32K clock. It generates 1sec timing signal and it is used as an  
increment clocking of RTC counter. In case the 1sec signal is generated during CS signal asserted, the increment clock is  
delayed until CS signal is released.  
2.9.4 Operation of RTC counter  
RTC counter uses the increment signal from USEC counter to control counting operation including the leap year control and  
numbers of days in a month control.  
REV.PrP 2/6/02  
- 24 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Enabled signals created  
by decoding of  
RTC_SP_ADDR[5:0]  
06h  
Year 100 scale  
addr06h_write  
addr00h_write  
Leap year  
&
days in month  
control  
12 scale  
31 scale  
7 scale  
05h Month  
Initial data  
Date  
04h  
To following  
counters  
03h Week  
year_count  
month_count  
day_count  
week_count  
hour_count  
min_count  
sec_count  
12 scale  
60 scale  
Hour  
02h  
01h  
00h  
Minute  
inc_enb  
inc_clk  
USEC  
counter  
Second 60 scale  
Figure 16. RTC counter block diagram  
Definition of Leap year  
The definition of a leap year is, “a year which can be divided by 4 and can not be divided by 100” and “a year which can be  
divided by 400.” For this device, the following definition is used instead.  
“A year which can be divided by 4”  
Note  
-
-
Year counter = “00” means year 2000, and is a leap year because it can be divided by 400.  
Actual covered year period is from 1901 to 2099.  
Number of days of month control  
Months 1, 3, 5, 7, 8, 10, 12 have 31days.  
Months 4, 6, 9, 11 have 30days.  
Month 2 has 28days, but has 29 in leap year.  
2.9.5 Alarm Function  
Comparing the RTC counter value with the seting value in alarm_setting register (07h-09h), alarm condition is detected.  
Setting of week uses 7bits for each day in a week, and works with multiple days setting. There is a delay of 62µS from Alarm  
detection to setting up to AOUT/BOUT registers.  
ALA_EN flag in ALARM CONTROL register (0Dh) sets Enable/Disable of alarm detection. INT register (1Eh) indicates the  
interrupt signals, alarm_int of ALA or/and ALB. INT MASK register (1Fh) do mask of alarm interrupt signal. Alarm  
detection state is indicated as AOUT of ALARM CONTROL register (0Dh), and the alarm can be released by writing “1” at  
the bit. Alarm B is also controlled as same as Alarm A is.  
Note: User just need to write “1” to release the alarm, and not need to write “0” after “1”. User doesn’t need to wait 62µS  
from CS assertion.  
2.9.6 Periodic Interrupt function  
This is a function, which generates interrupt periodically. The timing of cycle can be selected from 2Hz (0.5sec clock pulse),  
1Hz (1sec clock pulse), 1/60Hz (minutes), 1/3600Hz (hour), and month (first day of each month).  
The cycle is set using CT2-CT0 value in CTFG CONTROL register (0Eh). The state when interrupt is generated is indicated at  
INTRA bit of CTFG CONTROL register (0Eh). INT MASK register (1Fh) only does mask of periodic interrupt signal. There  
are two kinds of pattern of CTFG Interrupt signal output.  
Hold the value when the interrupt is occurred (level).  
After the interrupt event is happened, assert interrupt signal in certain time period then release it (pulse).  
REV.PrP 2/6/02  
- 25 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
In level case, interrupt is occurred at each 0 min (1/60Hz), 0 o’clock (1/3600Hz) or at first day of month. Because they are  
happened in long cycle, the value is held at register. After the CPU checks the state, it is released by writing “1” at CTFG bit  
of CTFG CONTROL register. In case of 2Hz and 1Hz, the interrupt is not held because the event happens in short cycle.  
These event signal output pulse signal of 2Hz or 1Hz in RTC counter directly. Interrupt release operation doesn’t affect on the  
interrupt signal in the case.  
2.10 STAY-ALIVE TIMER  
This is a counter, which increments each 250mS after RTC_RESETIN_N is asserted. It holds its value when the counter  
counts full up. Signal clk4 is a 4Hz (250mS) clock which generated in USEC counter. The counter can be reset by writing “1”  
at CLR of Stay-Alive TIMER CONTROL register (0Fh). The RTC_RESETIN_N signal is transferred from a logic input  
circuit, that is supplied by VBAT, of RESETIN_N.  
Note  
:
User just need to write “1” to release the interrupt, and not need to write “0” after “1”.  
clk4  
Stay-Alive Timer  
test_reset  
SA[4:0]  
RTC_RESETIN_N  
D
5bit counter  
CLRB  
Register  
Stay-alive Timer Control register (0Fh): CLR  
Stay-alive Timer Control register (0Fh): SAx  
Figure 17. Stay-Alive Timer block diagram  
rtc_voltage_detect  
sa_clear  
clk4  
0
1
2
3
4
5
30  
31  
0
sa_count[4:0]  
Figure 18. Stay-Alive Timer operation timing  
REV.PrP 2/6/02  
- 26 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
2.11 REGISTERS  
ADDR  
Description  
Sec. Counter  
Min. Counter  
Hour Counter  
Week Counter  
Day Counter  
Month Counter  
Year Counter  
Alarm_A Min Register  
Alarm_A Hour Register  
Alarm_A Week Register  
Alarm_B Min Register  
Alarm_B Hour Register  
Alarm_B Week Register (Option)  
Alarm Control  
Periodic Interrupt Control  
Stay-Alive Timer Control  
Charger Control  
Charger MVBAT Control  
Charger MVBAT  
LDO Control 1  
Not available  
LDO Control 2  
D7 D6  
D5  
S5  
M5  
D4  
S4  
M4  
H4  
D3  
S3  
M3  
H3  
D2  
S2  
M2  
H2  
W2  
D2  
MO2  
Y2  
AM2  
AH2  
AW2  
BM2  
BH2  
BW2  
D1  
S1  
M1  
H1  
W1  
D1  
MO1  
Y1  
AM1  
AH1  
AW1  
BM1  
BH1  
BW1  
ALB_EN Bout  
CT1  
SA1  
CHI  
D0  
S0  
M0  
H0  
W0  
D0  
MO0  
Y0  
AM0  
AH0  
AW0  
BM0  
BH0  
BW0  
Comment  
Note 1,5  
Note 1,5  
Note 1,5  
Note 1,5  
Note 1,5  
Note 1,5  
Note 1,5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
D4  
D3  
MO3  
Y3  
AM3  
AH3  
AW3  
BM3  
BH3  
BW3  
Y6  
Y5  
AM5  
Y4  
AM4  
AH4  
AW4  
BM4  
BH4  
BW4  
AW6  
AW5  
BM5  
BW6  
BW5  
CLR  
Note 5  
Note 5  
Note 5  
Note 5  
ALA_EN Aout  
CTFG  
SA3  
CT2  
SA2  
CT0  
SA0  
CHEN  
MVEN  
MV0  
SA4  
Note 4  
REF0  
MV1  
LDO5  
Note 4  
Note 4  
Note 4  
Note 7  
Note 4  
CHV1  
CHV0  
MV4  
MV3  
MV2  
LDO11  
LDO4  
LDO10  
LDO9  
LDO8  
LDO7  
ALLOF  
F
16h  
LDO Control 3  
Note 4  
17h  
18h  
19h  
1Ah  
LDO2 Gain  
Keypad Column/B-light Register  
Keypad Row  
G23  
KO3  
KI3  
G22  
KO2  
KI2  
G21  
KO1  
KI1  
G20  
KO0  
KI0  
GPC0  
GPMSK  
0
GPI0  
GPO0  
GPINT0  
GPRST0  
Note 4  
Note 6  
Note 6  
Note 6  
BL  
KI4  
KI5  
GPIO Control Register  
GPC3  
GPC2  
GPC1  
1Bh  
1Ch  
1Dh  
GPIO MASK  
GPIO Register  
GPIO INT  
GPMSK3 GPMSK2 GPMSK1  
Note 6  
Note 6  
Note 2,6  
GPI3  
GPO3  
GPINT3  
GPRST3  
GPI2  
GPO2  
GPINT2  
GPRST2  
GPI1  
GPO1  
GPINT1  
GPRST1  
IN  
T7  
IR  
ST  
7
INT6  
IRST6  
INT3  
IRST3  
INT2  
IRST2  
INT1  
IRST1  
INT0  
IRST0  
1Eh  
INT Register  
INT5  
INT4  
Note 2,6  
MS  
K7  
1Fh  
20h  
21h  
3Fh  
INT MASK  
MSK6  
DI6  
MSK5  
DI5  
MSK4  
DI4  
MSK3  
DI3  
MSK2  
DI2  
MSK1  
DI1  
MSK0  
Note 6  
Note 6  
Note 6  
Note 3,5  
DATA IN  
DI0  
PWROF  
F
Power OFF  
TEST register (option)  
LDOENB USENB  
TEST  
Notes:  
1. For the RTC counter data protection, the access should be waited for certain time (62µS) period after CS signal assertion.  
(Refer to RTC counter section for the wait time).  
2. The INT reset operation will be valid at 62µS or later after its setting.  
3. This is a set register for internal test, and should not be accessed at normal operation.  
4. Analog block control registers. They control LDO etc. They are powered by VBAT.  
5. Registers regarding RTC counter. They are powered by RTCV.  
6. Registers for INT, GPIO, KEYPAD I/F etc. They are powered by VBAT.  
7. Not available.  
REV.PrP 2/6/02  
- 27 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
Typical Performance Characteristics  
(Vin = 4.2 V, TA = 25 C)  
2.879  
2.879  
2.878  
2.878  
2.877  
2.877  
2.876  
2.925  
2.920  
2.915  
2.910  
2.905  
2.900  
0
50  
100  
150  
0
0.2  
0.4  
0.6  
0.8  
1
Output Current, mA  
Output Current, mA  
TPC1, LDO1a load regulation  
TPC2, LDO1b load regulation  
2.872  
2.870  
2.868  
2.866  
2.864  
2.862  
2.860  
2.813  
2.813  
2.813  
2.812  
2.812  
2.812  
2.812  
2.812  
2.811  
0
10  
20  
30  
40  
50  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Output Current, mA  
Output Current, mA  
TPC3, LDO6a load regulation  
TPC4, LDO6b load regulation  
2.920  
2.915  
2.910  
2.905  
2.900  
2.895  
2.890  
2.885  
2.920  
2.915  
2.910  
2.905  
2.900  
2.895  
2.890  
2.885  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Output Current, mA  
Output Current, mA  
TPC5, LDO4 load regulation  
TPC6, LDO7 load regulation  
REV.PrP 2/6/02  
- 28 -  
PRELIMINARY TECHNICAL DATA  
ADP3500  
PACKAGE DIMENSION  
ST-64A  
64-Lead Thin Plastic Quad Flatpack [LQFP]  
7 X 7mm Body, 1.4mm Thick  
0.063 (1.60)  
MAX  
0.354 (9.00) BSC  
SQ  
0.030 (0.75)  
0.024 (0.60)  
0.018 (0.45)  
49  
64  
1
48  
SEATING  
PLANE  
0.276  
(7.00)  
BSC  
SQ  
TOP VIEW  
(PINS DOWN)  
16  
33  
0.003 (0.008)  
MAX LEAD  
COPLANARITY  
32  
17  
0.016 (0.4) 0.009 (0.23)  
BSC  
0.007 (0.18)  
0.005 (0.13)  
0.057  
(1.45)  
0.055  
(1.40)  
0.053  
(1.35)  
7
8
0
8
0.006 (0.15)  
0.002 (0.05)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS  
REV.PrP 2/6/02  
- 29 -  

相关型号:

ADP3502

CDMA Power Management System
ADI

ADP3502ASU

CDMA Power Management System
ADI

ADP3510

CDMA Power Management System
ADI

ADP3510ARU

CDMA Power Management System
ADI

ADP3510ARU-REEL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, TSSOP-28, Power Management Circuit
ADI

ADP3510ARU-REEL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, TSSOP-28, Power Management Circuit
ADI

ADP3522

GSM Power Management System
ADI

ADP3522ACP-1.8

GSM Power Management System
ADI

ADP3522ACP-1.8-RL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32, Power Management Circuit
ADI

ADP3522ACP-1.8-RL7

1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32
ROCHESTER

ADP3522ACP-3

GSM Power Management System
ADI

ADP3522ACP-3-REEL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32, Power Management Circuit
ADI