ADP2443ACPZN-R7 [ADI]

3 A, 36 V, Synchronous Step-Down DC-to-DC Regulator;
ADP2443ACPZN-R7
型号: ADP2443ACPZN-R7
厂家: ADI    ADI
描述:

3 A, 36 V, Synchronous Step-Down DC-to-DC Regulator

开关 输出元件
文件: 总25页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 A, 36 V, Synchronous Step-Down  
DC-to-DC Regulator  
ADP2443  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Continuous output current: 3 A  
ADP2443  
Input voltage: 4.5 V to 36 V  
Integrated MOSFETs: 98 mΩ/35 mΩ  
Reference voltage: 0.6 V 1%  
V
PVIN  
EN  
BST  
SW  
IN  
C
L
BST  
V
C
OUT  
IN  
C
R
R
OUT  
RAMP  
TOP  
RAMP  
Fast minimum on time: 50 ns  
PGOOD  
FB  
Programmable switching frequency: 200 kHz to 1.8 MHz  
Synchronizes to external clock: 200 kHz to 1.8 MHz  
Precision enable and power good  
Cycle-by-cycle current limit with hiccup protection  
External compensation  
RT/SYNC COMP  
R
R
C
R
VREG  
SS  
T
BOT  
C
C
C
VREG  
SS  
C
GND  
PGND  
Programmable soft start time  
Startup into a precharged output  
Supported by ADIsimPower design tool  
Figure 1.  
APPLICATIONS  
Intermediate power rail conversion  
Multicell battery powered systems  
Process control and industrial automation  
Healthcare and medical  
Networking and servers  
GENERAL DESCRIPTION  
The ADP2443 is synchronous step-down, dc-to-dc regulator  
with an integrated 98 mΩ, high-side power metal oxide semicon-  
ductor field effect transistor (MOSFET) and a 35 mΩ, synchronous  
rectifier MOSFET to provide a high efficiency solution in a  
compact 4 mm × 4 mm LFCSP package. The regulators operate  
from an input voltage range of 4.5 V to 36 V. The output voltage  
can be adjusted down to 0.6 V and deliver up to 3 A of  
continuous current. The fast 50 ns minimum on time allows the  
regulators convert high input voltage to low output voltage at high  
frequency.  
Other key features include undervoltage lockout (UVLO),  
overvoltage protection (OVP), overcurrent protection (OCP),  
short-circuit protection (SCP), and thermal shutdown (TSD).  
The ADP2443 operates over the −40°C to +125°C operating  
junction temperature range and is available in a 24-lead, 4 mm ×  
4 mm LFCSP package.  
100  
95  
90  
85  
80  
75  
70  
The ADP2443 uses an emulated current mode, constant frequency  
pulse-width modulation (PWM) control scheme for excellent  
stability and transient response. The switching frequency of the  
ADP2443 can be programmed from 200 kHz to 1.8 MHz. The  
synchronization function allows the switching frequency be syn-  
chronized with an external clock to minimize the system noise.  
V
V
= 5V  
= 3.3V  
OUT  
OUT  
65  
60  
55  
50  
The ADP2443 targets high performance applications that require  
high efficiency and design flexibility. External compensation  
and an adjustable soft start function provide design flexibility.  
The power-good output and precision enable input provide  
simple and reliable power sequencing.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT CURRENT (A)  
Figure 2. Efficiency vs. Output Current, VIN = 24 V, fSW = 300 kHz  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP2443* PRODUCT PAGE QUICK LINKS  
Last Content Update: 11/29/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADP2443 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
ADP2443 Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADP2443 EngineerZone Discussions.  
ADP2443: 3 A, 36 V, Synchronous Step-Down DC-to-DC  
Regulator Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-1029: Evaluation Board for the ADP2443 3 A, 36 V,  
Synchronous Step-Down DC-to-DC Regulator  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
• ADIsimPower™ Voltage Regulator Design Tool  
ADP244x Buck Regulator Design Tool  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADP2443  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information .............................................................. 15  
Input Capacitor Selection.......................................................... 15  
Output Voltage Setting .............................................................. 15  
Voltage Conversion Limitations............................................... 15  
Inductor Selection ...................................................................... 15  
Output Capacitor Selection....................................................... 17  
Programming Input Voltage UVLO ........................................ 17  
Slope Compensation Setting..................................................... 17  
Compensation Design ............................................................... 17  
ADIsimPower Design Tool ....................................................... 18  
Design Example.............................................................................. 19  
Output Voltage Setting .............................................................. 19  
Frequency Setting....................................................................... 19  
Inductor Selection...................................................................... 19  
Output Capacitor Selection....................................................... 20  
Slope Compensation Setting..................................................... 20  
Compensation Components..................................................... 20  
Soft Start Time Program ........................................................... 20  
Input Capacitor Selection.......................................................... 20  
Recommended External Components .................................... 21  
Printed Circuit Board Layout Recommendations ..................... 22  
Typical Applications Circuits........................................................ 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 13  
Control Scheme .......................................................................... 13  
Precision Enable/Shutdown ...................................................... 13  
Internal Regulator (VREG)....................................................... 13  
Bootstrap Circuitry .................................................................... 13  
Oscillator ..................................................................................... 13  
Synchronization.......................................................................... 13  
Soft Start ...................................................................................... 14  
Power Good................................................................................. 14  
Peak Current-Limit and Short-Circuit Protection................. 14  
Overvoltage Protection (OVP)................................................. 14  
Undervoltage Lockout (UVLO) ............................................... 14  
Thermal Shutdown..................................................................... 14  
REVISION HISTORY  
9/2016—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
Data Sheet  
ADP2443  
FUNCTIONAL BLOCK DIAGRAM  
VREG  
4µA  
ADP2443  
EN  
EN_BUF  
5V  
PVIN  
REGULATOR  
0.13µA  
1.2V  
PGOOD  
GND  
UVLO  
DEGLITCH  
0.66V  
BOOST  
REGULATOR  
0.54V  
0.7V  
BST  
SW  
OVP  
NFET  
DRIVER  
CONTROL  
LOGIC AND  
MOSFET  
DRIVER  
WITH  
ANTICROSS  
PROTECTION  
VREG  
DRIVER  
FB  
0.6V  
AMP  
I
NFET  
SS  
CMP  
SS  
PGND  
COMP  
SLOPE  
COMPENSATION  
AND RAMP  
GENERATOR  
RAMP  
A
CS  
HICCUP  
MODE  
OSC  
RT/SYNC  
OCP  
OCP  
I
I
MAX  
CLK  
NEG  
NEGATIVE CURRENT CMP  
Figure 3.  
Rev. 0 | Page 3 of 24  
 
ADP2443  
Data Sheet  
SPECIFICATIONS  
VPVIN = 12 V, TJ = −40°C to +125°C for minimum/maximum specifications, TA = 25°C for typical specifications, unless otherwise noted.  
Table 1.  
Parameters  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PVIN  
PVIN Voltage Range  
Quiescent Current  
VPVIN  
IQ  
4.5  
36  
V
mA  
No switching, RAMP connected to PVIN  
through a resistor  
0.868 1.1  
Shutdown Current  
PVIN Undervoltage Lockout Threshold  
ISHDN  
EN = GND  
PVIN rising  
PVIN falling  
28  
4.3  
3.9  
57  
4.45  
µA  
V
V
3.8  
FB  
Regulation Voltage  
Bias Current  
VFB  
IFB  
−40°C < TJ < +125°C  
0.594 0.6  
0.05  
0.606  
0.2  
V
µA  
ERROR AMPLIFIER (EA)  
Transconductance  
Source Current  
gm  
ISOURCE  
ISINK  
485  
515  
50  
50  
545  
µS  
µA  
µA  
VFB = 0.45 V  
VFB = 0.75 V  
Sink Current  
INTERNAL REGULATOR (VREG)  
VREG Voltage  
Dropout Voltage  
VVREG  
VPVIN = 12 V, IVREG = 10 mA  
VPVIN = 12 V, IVREG = 30 mA  
4.9  
5
320  
100  
5.1  
V
mV  
mA  
Regulator Current Limit  
SW  
High-Side On Resistance1  
Low-Side On Resistance1  
Low-Side Valley Current Limit  
Low-Side Negative Current Limit  
Leakage Current  
RDSON_HS  
RDSON_LS  
BST pin voltage (VBST) − VSW = 5 V  
VVREG = 5 V  
98  
35  
4.7  
2.5  
1.5  
50  
147  
58  
5.1  
3
7.9  
65  
235  
mΩ  
mΩ  
A
A
µA  
ns  
3.9  
2
VSW = 0 V, EN = GND  
SW Minimum On Time  
SW Minimum Off Time  
BST  
tMIN_ON  
tMIN_OFF  
200  
ns  
Bootstrap Voltage  
OSCILLATOR (RT/SYNC)  
Switching Frequency  
Switching Frequency Range  
Synchronization Range  
SYNC Minimum Pulse Width  
SYNC Minimum Off Time  
SYNC Input Voltage  
High  
VBOOT  
fSW  
4.65  
5
5.2  
V
RT = 280 kΩ  
540  
200  
200  
100  
100  
600  
660  
1800 kHz  
1800 kHz  
kHz  
ns  
ns  
1.3  
3.0  
V
V
Low  
0.4  
3.8  
SS  
SS Pin Pull-Up Current  
PGOOD  
ISS  
3.4  
µA  
Power-Good Range  
FB Rising Threshold  
FB Rising Hysteresis  
FB Falling Threshold  
FB Falling Hysteresis  
Power-Good Deglitch Time  
Power-Good Leakage Current  
Power-Good Output Low Voltage  
108  
88  
110  
5
90  
5
16  
0.1  
220  
112  
92  
%
%
%
%
Both rising and falling  
VPGOOD = 5 V  
IPGOOD = 1 mA  
Clock cycles  
µA  
mV  
1
300  
Rev. 0 | Page 4 of 24  
 
 
Data Sheet  
ADP2443  
Parameters  
EN  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
EN Rising Threshold  
EN Input Hysteresis  
EN Current  
1.16  
1.2  
100  
0.13  
4
1.24  
V
mV  
µA  
µA  
EN voltage < 1.1 V, sink current  
EN voltage > 1.2 V, source current  
THERMAL SHUTDOWN  
Threshold  
Hysteresis  
150  
25  
°C  
°C  
1 Pin to pin measurement.  
Rev. 0 | Page 5 of 24  
 
ADP2443  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
PVIN, EN, PGOOD, RAMP  
SW  
BST  
FB, SS, CO M P, RT/SYNC  
VREG  
PGND to GND  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−0.3 V to +40 V  
−1 V to +40 V  
VSW + 6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
Table 3. Thermal Resistance  
Package Type  
CP-24-121  
θJA  
θJC  
Unit  
42.6  
6.8  
°C/W  
1 Thermal impedance simulated value is based on a 4-layer, JEDEC standard board.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 6 of 24  
 
 
 
Data Sheet  
ADP2443  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADP2443  
TOP VIEW  
(Not to Scale)  
1
2
3
18  
17  
16  
15  
14  
13  
COMP  
FB  
PVIN  
PVIN  
PVIN  
BST  
25  
GND  
VREG  
GND 4  
26  
SW  
5
6
SW  
SW  
SW  
PGND  
NOTES  
1. EXPOSED GND PAD. THE EXPOSED GND PAD MUST  
BE SOLDERED TO A LARGE, EXTERNAL, COPPER  
GND PLANE TO REDUCE THERMAL RESISTANCE.  
2. EXPOSED SW PAD. THE EXPOSED SW PAD MUST  
BE CONNECTED TO THE SW PINS OF THE ADP2443  
BY USING SHORT, WIDE TRACES, OR SOLDERED  
TO A LARGE EXTERNAL SW COPPER PLANE TO  
REDUCE THERMAL RESISTANCE.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
COMP  
FB  
VREG  
Error Amplifier Output. Connect an RC network from COMP to GND.  
Feedback Voltage Sense Input. Connect this pin to a resistor divider from the output voltage (VOUT).  
Output of the Internal 5 V Regulator. The control circuits are powered from the voltage on this pin. Place a 1 µF,  
X7R or X5R ceramic capacitor between this pin and GND.  
4
GND  
Analog Ground. Return of internal control circuit.  
5, 6, 7, 14 SW  
Switch Node Output. Connect these pins to the output inductor.  
Power Ground. Return of low-side power MOSFET.  
Supply Rail for the High-Side Gate Drive. Place a 0.1 µF, X7R or X5R capacitor between SW and BST.  
8 to 13  
15  
PGND  
BST  
16 to 19  
PVIN  
Power Input. Connect these pins to the input power source and connect a bypass capacitor between these pins and  
PGND.  
20  
EN  
Precision Enable Pin. An external resistor divider can be used to set the turn-on threshold. To enable the device  
automatically, connect the EN pin to the PVIN pin.  
21  
22  
PGOOD  
RT/SYNC  
Power-Good Output (Open-Drain). A pull-up resistor of 10 kΩ to 100 kΩ is recommended.  
Frequency Setting (RT). Connect a resistor between RT and GND to program the switching frequency between  
200 kHz to 1.8 MHz.  
Synchronization Input (SYNC). Connect this pin to an external clock to synchronize the switching frequency  
between 200 kHz and 1.8 MHz. See the Oscillator section and the Synchronization section for more information.  
23  
24  
25  
RAMP  
SS  
E P, G N D  
Slope Compensation Setting. Connect a resistor from RAMP to PVIN to set the slope compensation.  
Soft Start Control. Connect a capacitor from SS to GND to program the soft start time.  
Exposed GND Pad. The exposed GND pad must be soldered to a large, external, copper GND plane to reduce  
thermal resistance.  
26  
E P, S W  
Exposed SW Pad. The exposed SW pad must be connected to the SW pins of the ADP2443 by using short, wide  
traces, or soldered to a large external SW copper plane to reduce thermal resistance.  
Rev. 0 | Page 7 of 24  
 
ADP2443  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25oC, VIN = 24 V, VOUT = 5 V, L = 6.8 µH, COUT = 47 µF × 2, fSW = 600 kHz, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
= 5V, L = 6.8µH  
= 3.3V, L = 4.7µH  
= 1.2V, L = 2.2µH  
V
V
V
= 5V, L = 6.8µH  
= 3.3V, L = 4.7µH  
= 1.2V, L = 2.2µH  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.0  
3.0  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.0  
3.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 5. Efficiency at VIN = 24 V, fSW = 600 kHz  
Figure 8. Efficiency at VIN = 12 V, fSW = 600 kHz  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
= 5V, L = 10µH  
= 3.3V, L = 10µH  
= 1.2V, L = 4.7µH  
V
V
V
= 5V, L = 10µH  
= 3.3V, L = 10µH  
= 1.2V, L = 4.7µH  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 6. Efficiency at VIN = 24 V, fSW = 300 kHz  
Figure 9. Efficiency at VIN = 12 V, fSW = 300 kHz  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
= 5V, L = 3.3µH  
= 3.3V, L = 2.2µH  
V
V
V
= 5V, L = 3.3µH  
= 3.3V, L = 2.2µH  
= 1.2V, L = 1µH  
OUT  
OUT  
OUT  
OUT  
OUT  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 7. Efficiency at VIN = 24 V, fSW = 1.2 MHz  
Figure 10. Efficiency at VIN = 12 V, fSW = 1.2 MHz  
Rev. 0 | Page 8 of 24  
 
Data Sheet  
ADP2443  
60  
50  
40  
30  
20  
10  
0
1000  
950  
900  
850  
800  
750  
700  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= –40°C  
J
J
J
J
J
J
12  
16  
20  
24  
28  
32  
36  
12  
16  
20  
24  
28  
32  
36  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 11. Shutdown Current vs. Input Voltage (VPVIN  
)
Figure 14. Quiescent Current vs. Input Voltage (VPVIN)  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
RISING  
FALLING  
RISING  
FALLING  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. PVIN UVLO Threshold vs. Temperature  
Figure 15. EN Threshold vs. Temperature  
606  
604  
602  
600  
598  
596  
594  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Feedback Voltage vs. Temperature  
Figure 16. SS Pin Pull-Up Current vs. Temperature  
Rev. 0 | Page 9 of 24  
ADP2443  
Data Sheet  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
620  
610  
600  
590  
580  
570  
R
= 280k  
T
4.80  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. VREG Voltage vs. Temperature  
Figure 20. Frequency vs. Temperature  
140  
120  
100  
80  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
60  
40  
20  
R
DSON_HS  
R
DSON_LS  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. Current-Limit Threshold vs. Temperature  
Figure 18. MOSFET On Resistor vs. Temperature  
T
T
V
(AC)  
OUT  
1
EN  
3
I
L
V
OUT  
SW  
1
2
4
PGOOD  
4
2
I
L
B
B
B
B
B
CH1 2.00V  
CH3 20.0V  
CH2 5.00V  
CH4 1.00A  
M2.00ms  
25.30%  
A CH3  
11.2V  
CH1 10.0mV  
CH2 10.0V  
CH4 1.0A  
M2.00µs  
50.00%  
A CH2  
10.0V  
W
W
W
W
W
B
T
T
W
Figure 22. Voltage Precharged Output  
Figure 19. Working Mode Waveform  
Rev. 0 | Page 10 of 24  
Data Sheet  
ADP2443  
T
T
EN  
3
EN  
3
V
OUT  
V
OUT  
1
2
PGOOD  
I
OUT  
1
4
2
PGOOD  
I
OUT  
4
B
B
B
B
B
B
CH1 2.00V  
CH3 20.0V  
CH2 5.00V  
CH4 2.00A  
M2.00ms  
27.20%  
A CH3  
11.2V  
CH1 2.00V  
CH3 5.00V  
CH2 5.00V  
CH4 2.00A  
M1.00ms  
30.00%  
A CH3  
2.60V  
W
W
W
W
W
W
B
B
T
T
W
W
Figure 23. Soft Start with Full Load  
Figure 26. Shutdown with Full Load  
T
T
V
(AC)  
V
(AC)  
OUT  
OUT  
1
1
PVIN  
SW  
3
2
I
OUT  
4
B
B
B
CH2 20.0V  
CH1 100mV  
M200µs  
20.00%  
A CH4  
1.44A  
CH1 20.0mV  
CH3 10.0V  
M2.00ms A CH3  
W
21.0V  
W
W
B
B
CH4 1.00A  
T
T
20.10%  
W
W
Figure 24. Load Transient Response, 0.3 A to 2.7 A  
Figure 27. Line Transient Response, VIN = 12 V to 30 V, IOUT = 3 A  
T
T
V
V
OUT  
OUT  
1
1
2
4
SW  
SW  
2
4
I
I
L
L
B
B
B
B
B
CH1 2.00V  
CH2 20.0V  
CH4 5.00A  
M10.0ms  
20.00%  
A CH1  
3.04V  
CH1 2.00V  
CH2 20.0V  
CH4 5.00A  
M10.0ms  
W
A CH1  
3.04V  
W
W
W
W
B
T
T
80.10%  
W
Figure 25. Output Short Entry  
Figure 28. Output Short Recovery  
Rev. 0 | Page 11 of 24  
ADP2443  
Data Sheet  
4
4
3
2
1
0
3
2
1
0
V
V
V
V
= 12V  
= 9V  
= 5V  
V
V
V
V
= 12V  
= 9V  
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.2V  
= 2.5V  
65  
70  
75  
80  
85  
90  
95  
100  
105  
65  
70  
75  
80  
85  
90  
95  
100  
105  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 29. Load Current vs. Ambient Temperature at VIN = 24 V, fSW = 600 kHz,  
Measured on ADP2443-EVALZ  
Figure 31. Load Current vs. Ambient Temperature at VIN = 36 V, fSW = 600 kHz,  
Measured on ADP2443-EVALZ  
4
3
2
V
V
V
= 5V  
= 3.3V  
= 1.2V  
OUT  
OUT  
OUT  
1
0
70  
75  
80  
85  
90  
95  
100  
105  
110  
AMBIENT TEMPERATURE (°C)  
Figure 30. Load Current vs. Ambient Temperature at VIN = 12 V, fSW = 600 kHz,  
Measured on ADP2443-EVALZ  
Rev. 0 | Page 12 of 24  
Data Sheet  
ADP2443  
THEORY OF OPERATION  
The ADP2443 is synchronous step-down, dc-to-dc regulator that  
uses an emulated current-mode architecture with an integrated  
high-side power switch and a low-side synchronous rectifier.  
The regulator targets high performance applications that require  
high efficiency and design flexibility.  
INTERNAL REGULATOR (VREG)  
The on-board 5 V regulator provides a stable supply for the  
internal circuits. It is recommended that a 1 µF ceramic capacitor  
be placed between the VREG pin and GND. The internal regulator  
includes a current-limit circuit to protect the output if the  
maximum external load current is exceeded.  
The ADP2443 operates with an input voltage from 4.5 V to 36 V  
and regulates the output voltage down to 0.6 V. Additional features  
that maximize design flexibility include programmable switching  
frequency, programmable soft start, external compensation,  
precision enable, and a power-good output.  
BOOTSTRAP CIRCUITRY  
The ADP2443 includes a regulator to provide the gate drive  
voltage for the high-side N-MOSFET. It uses differential sensing  
to generate a 5 V bootstrap voltage between the BST and SW pins.  
CONTROL SCHEME  
It is recommended that a 0.1 µF, X7R or X5R ceramic capacitor  
be placed between the BST pin and the SW pin.  
The ADP2443 uses a fixed frequency, current mode PWM control  
architecture to achieve high efficiency and low noise operation.  
OSCILLATOR  
The ADP2443 operates at a fixed frequency set by an external  
resistor from RT/SYNC to GND. It uses the low side NFET current  
for the PWM control as shown in Figure 32. The valley current  
information is captured at the end of the off period and combines  
with the slope ramp to form the emulated current ramp voltage.  
The slope ramp voltage is controlled by the resistor between  
RAMP and PVIN. At the start of each oscillator cycle, the high-  
side NFET turns on and the inductor current increases until the  
emulated current ramp voltage crosses the COMP voltage, which  
turns off the high-side NFET and turns on the low-side NFET,  
which in turn places a negative voltage across the inductor,  
causing a reduction in the inductor current. The low-side NFET  
stays on for the remainder of the cycle.  
The switching frequency of ADP2443 is controlled by the  
RT/SYNC pin. A resistor from RT/SYNC to GND programs the  
switching frequency according to the following equation:  
168,000  
fSW (kHz) =  
RT (kΩ)  
A 280 kΩ resistor sets the frequency to 600 kHz, and a 560 kΩ  
resistor sets the frequency to 300 kHz. Figure 33 shows the  
typical relationship between fSW and RT.  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
PVIN  
PVIN  
I
RAMP  
V
CLK  
PWM  
L
RAMP  
S
R
Q
IN DH  
DL  
V
C
OUT  
SW  
OUT  
600  
– A  
CS  
400  
R
R
TOP  
200  
V
COMP  
0
g
m
BOT  
0
100  
200  
300  
400  
500  
(kΩ)  
600  
700  
800  
900  
R
C
0.6V  
R
T
C
C
Figure 33. Switching Frequency vs. RT  
Figure 32. PWM Control Scheme  
SYNCHRONIZATION  
PRECISION ENABLE/SHUTDOWN  
To synchronize the ADP2443, connect an external clock to the  
RT/SYNC pin. The frequency of the external clock can be in the  
range of 200 kHz to 1.8 MHz. During synchronization, the reg-  
ulator operates in continuous conduction mode (CCM) and the  
rising edge of the switching waveform runs 180° out of phase to  
the rising edge of the external clock.  
The EN input pin has a precision analog threshold of 1.2 V  
(typical) with 100 mV of hysteresis. When the enable voltage  
exceeds 1.2 V, the regulator turns on; when it falls below 1.1 V  
(typical), the regulator turns off. To force the regulator to start  
automatically when input power is applied, connect EN to PVIN.  
The precision EN pin has an internal pull-down current source  
(0.13 µA) that provides a default turn-off when the EN pin is open.  
When the ADP2443 is operating in synchronization mode,  
a resistor must be connected from the RT/SYNC pin to GND  
to program the internal oscillator to run at 80% to 120% of the  
external synchronization clock.  
When the EN pin voltage exceeds 1.2 V (typical), the ADP2443  
is enabled and the internal pull-up current increases to 4 µA, which  
allows users to program the PVIN UVLO and hysteresis.  
Rev. 0 | Page 13 of 24  
 
 
 
 
 
 
 
 
 
ADP2443  
Data Sheet  
The overcurrent counter increments during this process; otherwise  
the overcurrent counter decreases. If the overcurrent counter reaches  
10 or the FB voltage drops below 0.2 V after the soft start, the  
device enters hiccup mode. During hiccup mode, the high-side  
NFET and low-side NFET are both turned off. The device remains  
in this mode for seven soft start cycles and then attempts to restart  
with soft start. If the current-limit fault is cleared, the device  
resumes normal operation; otherwise, it reenters hiccup mode.  
SOFT START  
The ADP2443 uses the SS pin to program the soft start time.  
Place a capacitor between SS and GND; an internal current  
charges this capacitor to establish the soft start ramp. Calculate  
the soft start time (tSS) using the following equation:  
0.6 V ×CSS  
tSS  
=
ISS  
CYCLE-BY-CYCLE  
THRESHOLD  
where:  
SS is the soft start capacitance.  
SS is the typical soft start pull-up current (3.4 µA).  
PVIN  
CURRENT-LIMIT  
COMPARATOR  
C
I
I
RAMP  
V
RAMP  
HICCUP  
CONTROL  
BLOCK  
If the output voltage is precharged before power up, the ADP2443  
prevents the low-side MOSFET from turning on until the soft  
start voltage exceeds the voltage on the FB pin.  
R
C
RAMP  
RAMP  
V
FB  
PWM  
SW  
POWER GOOD  
– A  
CS  
The power-good pin (PGOOD) is an active high, open-drain  
output that requires an external resistor to pull it up to a  
voltage. A logic high on the PGOOD pin indicates that the  
voltage on the FB pin (and therefore the output voltage) is  
within regulation.  
Figure 35. Current-Limit Circuit  
CYCLE-BY-CYCLE PEAK  
CURRENT-LIMIT THRESHOLD  
V
RAMP  
The power-good circuitry monitors the output voltage on the  
FB pin and compares it to the rising and falling thresholds that  
are specified in Table 1. If the rising output voltage exceeds the  
target value, the PGOOD pin is held low. The PGOOD pin  
continues to be held low until the falling output voltage returns  
to the target value.  
PWM  
VALLEY  
CURRENT-LIMIT  
THRESHOLD  
Figure 36. Cycle-By-Cycle Current-Limit Waveform  
If the output voltage falls below the target output voltage, the  
PGOOD pin is held low. The PGOOD pin continues to be held  
low until the rising output voltage returns to the target value.  
OVERVOLTAGE PROTECTION (OVP)  
The ADP2443 includes an OVP feature to protect the regulator  
against an output short to a higher voltage supply or when a strong  
load disconnect transient occurs. If the feedback voltage increases  
to 0.7 V, the internal high-side MOSFET and low-side MOSFET  
are turned off until the voltage at the FB pin decreases to 0.63 V.  
At that time, the ADP2443 resumes normal operation.  
The power-good rising and falling thresholds are shown in  
Figure 34. There is always a 16-cycle waiting period (deglitch)  
before the PGOOD pin is pulled from low to high or from high  
to low.  
V
RISING  
V
FALLING  
OUT  
OUT  
UNDERVOLTAGE LOCKOUT (UVLO)  
110%  
105%  
100%  
95%  
UVLO circuitry is integrated in the ADP2443 to prevent the  
occurrence of power-on glitches. If the VPVIN voltage drops below  
3.9 V typical, the device shuts down and both the power switch  
and synchronous rectifier turn off. When the VPVIN voltage rises  
again above 4.3 V typical, the soft start period is initiated and  
the device is enabled.  
90%  
PGOOD  
16-CYCLE  
16-CYCLE  
16-CYCLE  
16-CYCLE  
THERMAL SHUTDOWN  
DEGLITCH DEGLITCH  
DEGLITCH DEGLITCH  
Figure 34. PGOOD Rising and Falling Thresholds  
If the ADP2443 junction temperature rises above 150°C, the  
internal thermal shutdown circuit turns off the regulator for self  
protection. Extreme junction temperatures can be the result of high  
current operation, poor PCB layout thermal design, and/or high  
ambient temperature. A 25°C hysteresis is included in the thermal  
shutdown circuit so that, if an overtemperature event occurs, the  
ADP2443 does not return to normal operation until the on-chip  
temperature drops below 125°C. Upon recovery, a soft start is  
initiated before normal operation begins.  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
The ADP2443 uses the emulated current ramp voltage for cycle-  
by-cycle current limit protection to prevent current runaway. When  
the emulated current ramp voltage reaches the valley current  
limit threshold plus the ramp voltage, the high-side MOSFET  
turns off and the low-side MOSFET turns on until the next cycle.  
Rev. 0 | Page 14 of 24  
 
 
 
 
 
 
 
Data Sheet  
ADP2443  
APPLICATIONS INFORMATION  
R
I
DSON_LS is the low-side MOSFET on resistance.  
OUT_MIN is the minimum output current.  
RL is the series resistance of output inductor.  
INPUT CAPACITOR SELECTION  
The input capacitor reduces the input voltage ripple caused by  
the switch current on PVIN. Place the input capacitor as close  
as possible to the PVIN pin. A ceramic capacitor in the 10 μF to  
47 μF range is recommended. The loop that is composed of this  
input capacitor, the high-side N-MOSFET, and the low-side N-  
MOSFET must be kept as small as possible.  
The maximum output voltage for a given input voltage and  
switching frequency is constrained by the minimum off time  
and the maximum duty cycle. The minimum off time is typically  
200 ns.  
Calculate the maximum output voltage, limited by the minimum  
off time at a given input voltage and frequency, using the  
following equation:  
The voltage rating of the input capacitor must be greater than  
the maximum input voltage. The rms current rating of the input  
capacitor must be larger than the value calculated from the  
following equation:  
V
OUT_MAX = VIN × (1 − tMIN_OFF × fSW) − (RDSON_HS RDSON_LS) ×  
OUT_MAX × (1 − tMIN_OFF × fSW) − (RDSON_LS + RL) × IOUT_MAX  
where:  
OUT_MAX is the maximum output voltage.  
MIN_OFF is the minimum off time.  
I
(2)  
I
CIN_RMS = IOUT ×  
D × (1 D)  
OUTPUT VOLTAGE SETTING  
V
The output voltage of the ADP2443 is set by an external resistor  
divider. The resistor values are calculated using  
t
I
OUT_MAX is the maximum output current.  
RTOP  
RBOT  
As Equation 1 and Equation 2 show, reducing the switching  
frequency alleviates the minimum on time and minimum off  
time limitations.  
VOUT = 0.6 ×  
1 +  
To limit output voltage accuracy degradation due to FB bias  
current (0.1 µA maximum) to less than 0.5% (maximum),  
ensure that RBOT < 30 kΩ.  
INDUCTOR SELECTION  
The inductor value is determined by the operating frequency,  
input voltage, output voltage, and inductor ripple current. Using  
a small inductor results in a faster transient response but degrades  
efficiency, due to a larger inductor ripple current; whereas using  
a large inductor value results in s smaller ripple current and  
better efficiency, but also results in a slower transient response.  
Table 5 lists the recommended resistor divider values for  
various output voltages.  
Table 5. Resistor Divider Values for Various Output Voltages  
VOUT (V)  
RTOP 1% (kΩ)  
RBOT 1% (kΩ)  
1.0  
10  
15  
As a guideline, the inductor ripple current, ΔIL, is typically set  
to one-third of the maximum load current. Calculate the  
inductor value using the following equation:  
1.2  
10  
10  
1.5  
15  
10  
1.8  
20  
10  
(VIN VOUT ) × D  
L =  
2.5  
3.3  
5.0  
8.0  
10.0  
12.0  
47.5  
10  
22  
44.2  
39.2  
52.3  
15  
2.21  
3
3.57  
2.49  
2.74  
IL × fSW  
where:  
IN is the input voltage.  
OUT is the output voltage.  
D is the duty cycle.  
V
V
ΔIL is the inductor current ripple.  
VOLTAGE CONVERSION LIMITATIONS  
fSW is the switching frequency.  
The minimum output voltage for a given input voltage and  
switching frequency is constrained by the minimum on time.  
The minimum on time of the ADP2443 is typically 50 ns.  
Calculate the minimum output voltage at a given input voltage  
and frequency using the following equation:  
VOUT  
D =  
VIN  
Calculate the peak inductor current using  
IL  
2
I
PEAK = IOUT +  
V
OUT_MIN = VIN × tMIN_ON × fSW − (RDSON_HS RDSON_LS) ×  
OUT_MIN × tMIN_ON × fSW − (RDSON_LS + RL) × IOUT_MIN  
where:  
OUT_MIN is the minimum output voltage.  
MIN_ON is the minimum on time.  
SW is the switching frequency.  
I
(1)  
The saturation current (ISAT) of the inductor must be larger than the  
peak inductor current. For ferrite core inductors with a quick  
saturation characteristic, the saturation current rating of the  
inductor must be greater than the current limit threshold of the  
switch, which prevents the inductor from reaching saturation.  
V
t
f
RDSON_HS is the high-side MOSFET on resistance.  
Rev. 0 | Page 15 of 24  
 
 
 
 
 
 
ADP2443  
Data Sheet  
Calculate the rms current of the inductor from the following  
equation:  
Shielded ferrite core materials are recommended for low core  
loss and low EMI. Table 6 lists recommended inductors.  
2
IL  
2
IRMS  
=
IOUT  
+
12  
Table 6. Recommended Inductors  
Vendor  
Part Number  
Value (µH)  
0.75  
1.0  
1.5  
2.2  
3.3  
4.7  
5.6  
6.8  
10  
ISAT (A)  
10.9  
9.5  
13.7  
11.4  
9.8  
8.2  
7.9  
7.1  
6.1  
19.8  
18.5  
23  
IRMS (A)  
10.7  
9.5  
14.6  
11.6  
9.0  
8.0  
7.3  
7.1  
5.2  
17.7  
13  
18  
16  
14  
10  
8
11  
10  
9
DC Resistance (DCR) (mΩ)  
Toko  
FDVE0630-R75M  
FDVE0630-1R0M  
FDVE1040-1R5M  
FDVE1040-2R2M  
FDVE1040-3R3M  
FDVE1040-4R7M  
FDVE1040-5R6M  
FDVE1040-6R8M  
FDVE1040-100M  
XAL5030-601ME  
XAL5030-801ME  
XAL6030-102ME  
XAL6030-122ME  
XAL6030-182ME  
XAL6030-222ME  
XAL6030-332ME  
XAL6060-472ME  
XAL6060-562ME  
XAL6060-682ME  
XAL6060-822ME  
XAL6060-103ME  
XAL6060-153ME  
XAL6060-223ME  
744 333 0068  
6.2  
8.5  
4.6  
6.8  
10.1  
13.8  
18.0  
20.2  
34.1  
4.52  
5.65  
6.18  
7.5  
10.5  
14.0  
20.8  
16.4  
17.8  
20.8  
26.4  
29.8  
43.8  
60.6  
1.35  
1.35  
1.35  
2.5  
3.7  
5.4  
8.2  
13.2  
13.2  
20.7  
4.5  
4.9  
6.5  
9
12  
20.9  
30.8  
51.5  
63  
CoilCraft  
0.6  
0.8  
1.0  
1.2  
1.8  
2.2  
3.3  
4.7  
5.6  
6.8  
8.2  
10  
22  
18.2  
15.9  
12.2  
10.5  
9.9  
9.2  
8.4  
7.6  
5.8  
5.6  
38  
36  
27.5  
27  
22  
15.5  
15  
8
7
6
5
15  
22  
Würth Elektronik  
0.68  
0.82  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
8.2  
10  
0.68  
0.82  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
8.2  
10  
20  
20  
20  
18  
16.5  
14  
13  
11.5  
11.5  
9
12  
11.3  
10  
8
7.5  
6
744 333 0082  
744 333 0100  
744 333 0150  
744 333 0220  
744 333 0330  
744 333 0470  
744 333 0680  
744 333 0820  
11  
8
8
26  
744 333 100 0  
744 373 490 068  
744 373 490 082  
744 373 490 10  
744 373 490 15  
744 373 490 22  
744 373 490 33  
744 373 490 47  
744 373 490 68  
744 373 490 82  
744 373 491 00  
744 373 492 20  
25  
19.5  
14.5  
14  
12  
11  
9.5  
9
8
5
3.5  
3.3  
3.2  
2.1  
69  
170  
22  
6.5  
Rev. 0 | Page 16 of 24  
 
Data Sheet  
ADP2443  
OUTPUT CAPACITOR SELECTION  
PROGRAMMING INPUT VOLTAGE UVLO  
The output capacitor selection affects the output ripple voltage  
load step transient and the loop stability of the regulator.  
The ADP2443 has a precision enable input to program the  
UVLO threshold of the input voltage (see Figure 37).  
For example, during a load step transient where the load is  
suddenly increased, the output capacitor supplies the load until  
the control loop can ramp up the inductor current. The delay  
caused by the control loop causes the output to undershoot.  
Calculate the output capacitance that is required to satisfy the  
voltage droop requirement using the following equation:  
ADP2443  
PVIN  
4µA  
R
R
TOP_EN  
EN  
1.2V  
0.13µA  
BOT_EN  
EN CMP  
2
KUV × ∆ISTEP × L  
2 ×(VIN VOUT )× ∆VOUT _UV  
Figure 37. Programming the Input Voltage UVLO  
Use the following equation to calculate RTOP_EN and RBOT_EN  
1.1V ×VIN _ RISING 1.2 V ×VIN _ FALLING  
COUT_UV  
where:  
UV is a factor, with a typical setting of KUV = 2.  
=
:
K
RTOP _ EN  
=
ΔISTEP is the load step.  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
1.1 V ×0.13µA +1.2 V ×3.87 µA  
where:  
Another example occurs when a load is suddenly removed from  
the output, and the energy stored in the inductor rushes into  
the output capacitor, causing the output to overshoot.  
VIN_RISING is the VIN rising threshold.  
VIN_FALLING is the VIN falling threshold.  
1.2 V × RTOP _ EN  
Calculate the output capacitance that is required to meet the  
overshoot requirement using the following equation:  
RBOT _ EN  
=
VIN _ RISING RTOP _ EN ×0.13µA 1.2 V  
2
KOV × ∆ISTEP × L  
SLOPE COMPENSATION SETTING  
COUT_OV  
=
2
2
The slope compensation is necessary in a current mode control  
architecture to prevent subharmonic oscillation and to maintain a  
stable output. The ADP2443 uses the emulated current mode  
and the slope compensation is implemented by connecting a  
resistor (RRAMP) between the RAMP pin and PVIN pin.  
(VOUT + ∆VOUT _ OV ) VOUT  
where:  
OV is a factor, with a typical setting of KOV = 2.  
ΔVOUT_OV is the allowable overshoot on the output voltage.  
K
The output ripple is determined by the effective series resistance  
(ESR) and the value of the capacitance. Use the following equation  
to select a capacitor that can meet the output ripple requirements:  
Theoretically, an extra slope of VOUT/(2 × L) is enough to  
stabilize the system. To guarantee that any noise is decimated in  
one cycle and the system is stable from subharmonic oscillation,  
the ADP2443 uses an extra slope of VOUT/L.  
IL  
COUT_RIPPLE  
=
8 × fSW × ∆VOUT _ RIPPLE  
Calculate the ramp resistor value, RRAMP, using the following  
equation:  
where ΔVOUT_RIPPLE is the allowable output ripple voltage.  
VOUT _ RIPPLE  
L ×1012  
3.9  
RRAMP  
=
RESR  
=
IL  
where L is the inductor value.  
where RESR is the equivalent series resistance of the output  
capacitor in ohms (Ω).  
COMPENSATION DESIGN  
The ADP2443 uses an emulated current mode control  
architecture that combines the fast line transient response of  
traditional peak current mode with the capability to convert a  
high input voltage to a very low output voltage. Furthermore,  
the small signal characteristics of the emulated current mode  
are almost identical to those of traditional peak current mode.  
Therefore, the compensation network design method used in  
traditional peak current mode can also be applied to the  
emulated current mode control.  
Select the largest output capacitance given by COUT_UV, COUT_OV  
and COUT_RIPPLE to meet both load transient and output ripple  
performance.  
,
The selected output capacitor voltage rating must be greater  
than the output voltage. The rms current rating of the output  
capacitor must be greater than the value that is calculated by  
using the following equation:  
IL  
12  
ICOUT_RMS  
=
The power stage can be simplified as a voltage controlled current  
source supplying current to the output capacitor and load resistor.  
It is composed of one domain pole and a zero.  
Rev. 0 | Page 17 of 24  
 
 
 
 
 
ADP2443  
Data Sheet  
The control to output transfer function is based on the following  
equations:  
1 RC CC s  
RC CC CCP  
GVD (s)  
s (1   
s)  
CC CCP  
s
1  
1  
The following design guideline shows how to select the RC, CC,  
and CCP compensation components for ceramic output  
capacitor applications:  
fZ  
V
OUT (s)  
GVD (s)   
AVI R   
VCOMP (s)  
s
fP  
1. Determine the cross frequency, fC. Generally, fC is between  
fSW/12 and fSW/6.  
2. Calculate RC using the following equation:  
where:  
AVI = 10 A/V.  
R is the load resistance.  
2 VOUT COUT fC  
RC  
1
0.6 V gm AVI  
fZ  
RESR COUT  
3. Place the compensation zero at the domain pole, fP; then  
determine CC using the following equation:  
where:  
ESR is the ESR of the output capacitor.  
R
(R RESR )COUT  
COUT is the output capacitance.  
CC  
RC  
1
fP   
4. CCP is optional. It can be used to cancel the zero caused by  
the ESR of the output capacitor.  
2π(R RESR )COUT  
The ADP2443 uses a transconductance amplifier for the error  
amplifier and to compensate the system. Figure 38 shows the  
simplified, peak current mode control, small signal circuit.  
RESR COUT  
CCP  
RC  
V
OUT  
ADIsimPOWER DESIGN TOOL  
V
OUT  
R
The ADP2443 is supported by the ADIsimPower™ design tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs that are optimized for a specific design goal. The  
tools enable the user to generate a full schematic and bill of  
materials and calculate performance in minutes. ADIsimPower  
can optimize designs for cost, area, efficiency, and component  
count, while taking into consideration the operating conditions  
and limitations of the IC and all real external components. For  
more information about the ADIsimPower design tools, refer to  
www.analog.com/ADIsimPower. The tool set is available from  
this website, and users can request an unpopulated board.  
TOP  
C
OUT  
ESR  
A
V
VI  
COMP  
g
m
R
R
R
C
C
BOT  
CP  
R
C
C
Figure 38. Simplified Peak Current Mode Control, Small Signal Circuit  
The compensation components, RC and CC, contribute a zero,  
and the optional CCP and RC contribute an optional pole.  
The closed-loop transfer equation is as follows:  
RBOT  
RBOT RTOP CC CCP  
gm  
TV (s)   
Rev. 0 | Page 18 of 24  
 
 
Data Sheet  
ADP2443  
DESIGN EXAMPLE  
ADP2443  
V
= 24V  
IN  
L
PVIN  
EN  
BST  
SW  
C
BST  
0.1µF  
6.8µH  
C
10µF  
50V  
IN  
V
= 5V  
OUT  
R
RAMP  
1.5M  
C
OUT  
R
TOP  
47µF  
16V  
RAMP  
PGOOD  
RT/SYNC  
VREG  
SS  
22kΩ  
1%  
R
T
280kΩ  
FB  
COMP  
R
BOT  
3kΩ  
1%  
C
VREG  
R
C
20kΩ  
C
C
1µF  
SS  
C
CP  
22nF  
3.3pF  
C
GND PGND  
2.7nF  
Figure 39. Schematic for Design Example  
This section describes the procedures for selecting the external  
components based on the example specifications that are listed  
in Table 7. See Figure 39 for the schematic of this design example.  
This calculation results in L = 7.33 μH. Choose the standard  
inductor value of 6.8 μH.  
The peak-to-peak inductor ripple current can be calculated by  
using the following equation:  
Table 7. Step-Down DC-to-DC Regulator Requirements  
Parameter  
Symbol  
Specification  
VIN = 24.0 V 10%  
VOUT = 5 V  
(VIN VOUT )D  
IL   
Input Voltage  
Output Voltage  
Output Current  
VIN  
VOUT  
IOUT  
LfSW  
This calculation results in ΔIL = 0.97 A.  
IOUT = 3 A  
Output Voltage Ripple ∆VOUT_RIPPLE  
Load Transient ILOAD  
Switching Frequency fSW  
∆VOUT_RIPPLE = 50 mV  
5%ꢀ 0.5 A to 2.5 Aꢀ 2 A/μs  
fSW = 600 kHz  
Use the following equation to calculate the peak inductor current:  
IL  
IPEAK IOUT  
2
OUTPUT VOLTAGE SETTING  
This calculation results in IPEAK = 3.49 A.  
Choose a 22 kΩ resistor as the top feedback resistor (RTOP),  
and calculate the bottom feedback resistor (RBOT) by using the  
following equation:  
Use the following equation to calculate the rms current flowing  
through the inductor:  
2
IL  
2
IRMS  
IOUT  
0.6  
VOUT 0.6  
12  
RBOT RTOP  
This calculation results in IRMS = 3.013 A.  
To set the output voltage to 5 V, the resistors values are as  
follows: RTOP = 22 kΩ and RBOT = 3 kΩ.  
Based on the calculated current value, select an inductor with  
a minimum rms current rating of 3.013 A and a minimum  
saturation current rating of 3.49 A.  
FREQUENCY SETTING  
However, to protect the inductor from reaching its saturation  
point under the current-limit condition, the inductor must be  
rated for at least a 5.1 A saturation current for reliable operation.  
To set the switching frequency to 600 kHz, connect a 280 kΩ  
resistor from the RT/SYNC pin to GND.  
INDUCTOR SELECTION  
Based on the requirements described previously, select a 6.8 μH  
inductor, such as the FDVE1040-6R8M from Toko, which has  
a 20.2 mΩ DCR and an 7.1 A saturation current.  
The peak-to-peak inductor ripple current, ΔIL, is set to 30% of  
the maximum output current. Use the following equation to  
estimate the inductor value:  
(VIN VOUT )D  
L   
IL fSW  
where:  
V
V
IN = 24 V.  
OUT = 5 V.  
D = 0.208.  
ΔIL = 0.9 A.  
f
SW = 600 kHz.  
Rev. 0 | Page 19 of 24  
 
 
 
 
 
 
ADP2443  
Data Sheet  
OUTPUT CAPACITOR SELECTION  
COMPENSATION COMPONENTS  
The output capacitor is required to meet both the output voltage  
ripple and load transient response requirements.  
For better load transient and stability performance, set the cross  
frequency, fC, to fSW/10. In this case, fSW is running at 600 kHz;  
therefore, the fC is set to 60 kHz.  
To meet the output voltage ripple requirement, use the following  
equation to calculate the ESR and capacitance value of the output  
capacitor:  
The 47 µF ceramic output capacitor has a derated value of 32 µF.  
2 × π × 5 V × 32 µF × 60 kHz  
RC =  
= 19.5 kΩ  
IL  
0.6 V × 515 µs ×10 A/V  
COUT _ RIPPLE  
=
8 × fSW × ∆VOUT _ RIPPLE  
VOUT _ RIPPLE  
1.667 Ω + 0.002 Ω × 32 µF  
CC  
=
= 2739 pF  
19.5 kΩ  
RESR  
=
IL  
0.002 Ω × 32 µF  
CCP  
=
= 3.3 pF  
This calculation results in COUT_RIPPLE = 4.04 μF, and RESR = 51.5 mΩ.  
19.5 kΩ  
To meet the 5% overshoot and undershoot transient  
requirements, use the following equations to calculate the  
capacitance:  
Choose standard components, as follows: RC = 20 kΩ,  
CC = 2700 pF, and CCP = 3.3 pF.  
Figure 40 shows the Bode plot at a 3 A load current. The cross  
frequency is 59 kHz, and the phase margin is 66°.  
KOV × ∆ISTEP 2 × L  
COUT _OV  
=
2
2
(VOUT + ∆VOUT _OV ) VOUT  
60  
180  
144  
108  
72  
48  
where:  
OV = KUV = 2 are the coefficients for estimation purposes.  
K
36  
ISTEP = 2 A is the load transient step.  
VOUT_OV = 5% VOUT is the overshoot voltage.  
24  
PHASE  
12  
36  
KUV × ∆ISTEP 2 × L  
0
0
COUT _UV  
=
MAGNITUDE  
2×(VIN VOUT )× ∆VOUT _UV  
–12  
–24  
–36  
–48  
–60  
–36  
–72  
–108  
–144  
–180  
where ∆VOUT_UV = 5% VOUT is the undershoot voltage.  
This calculation results in COUT_OV = 21.2 μF, and COUT_UV = 5.7 μF.  
According to the calculation, the output capacitance must be  
greater than 21.2 μF, and the ESR of the output capacitor must be  
smaller than 51.5 mΩ. It is recommended that one 47 μF/X5R/16 V  
ceramic capacitor be used, such as the GRM32ER61C476KE15K  
from Murata, with an ESR of 2 mΩ.  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 40. Bode Plot at 3 A  
SOFT START TIME PROGRAM  
SLOPE COMPENSATION SETTING  
The soft start feature allows the output voltage to ramp up in a  
controlled manner, eliminating output voltage overshoot during  
soft start and limiting the inrush current. Set the soft start time  
to 4 ms.  
The ramp resistor, RRAMP, determines the slope compensation.  
Use the following equation to calculate the RRAMP value:  
6.8 μH ×1012  
L ×1012  
RRAMP  
=
=
= 1.74 MΩ  
tSS _ EXT × ISS 4 ms × 3.4 µA  
3.9  
3.9  
CSS  
=
=
= 22.7 nF  
0.6 V  
0.6 V  
Choose a standard component value, as follows: RRAMP = 1.5 MΩ.  
Choose a standard component value, as follows: CSS = 22 nF.  
INPUT CAPACITOR SELECTION  
A minimum 10 μF ceramic capacitor must be placed near the  
PVIN pin. In this application, it is recommended that one 10 μF,  
X5R, 50 V ceramic capacitor be used.  
Rev. 0 | Page 20 of 24  
 
 
 
 
 
 
Data Sheet  
ADP2443  
RECOMMENDED EXTERNAL COMPONENTS  
Table 8. Recommended External Components for Typical Applications with a 3 A Output Current  
fSW (kHz) VIN (V) VOUT (V)  
L (µH) COUT (µF)1  
RTOP (kΩ)  
RBOT (kΩ)  
RRAMP (kΩ) RC (kΩ)  
CC (pF)  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
5600  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
CCP (pF)  
120  
100  
100  
82  
300  
12  
1
3.3  
3.3  
4.7  
4.7  
6.8  
8.2  
10  
470 + 100  
330 + 100  
330  
10  
15  
845  
33.2  
29.4  
30.9  
24.9  
28  
1.2  
1.5  
1.8  
2.5  
3.3  
5
10  
10  
845  
15  
10  
1000  
1000  
1500  
2700  
2700  
845  
220  
20  
10  
3 × 100  
2 × 100  
2 × 47  
470 + 100  
470 + 100  
330  
47.5  
10  
15  
12  
2.21  
3
24.9  
18.7  
33.2  
40.2  
30.9  
37.4  
34.8  
37.4  
28  
10  
22  
6.8  
120  
100  
100  
82  
24  
1
3.3  
4.7  
4.7  
6.8  
8.2  
10  
10  
15  
1.2  
1.5  
1.8  
2.5  
3.3  
5
10  
10  
1000  
1000  
1500  
2700  
2700  
3300  
5600  
5600  
383  
15  
10  
330  
20  
10  
220  
47.5  
10  
15  
68  
3 × 100  
2 × 100  
2 × 47  
47  
2.21  
3
10  
15  
22  
6.8  
3.9  
2.7  
56  
47  
10  
8
22  
44.2  
52.3  
10  
10  
15  
3.57  
2.74  
15  
10  
10  
22.1  
10.5  
31.6  
37.4  
34  
12  
1
22  
600  
12  
24  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
2.2  
2.2  
3.3  
4.7  
4.7  
6.8  
10  
220 + 47  
220 + 47  
3 × 100  
3 × 100  
100 + 47  
2 × 47  
47  
1.2  
1.5  
1.8  
2.5  
3.3  
5
562  
562  
20  
47.5  
10  
10  
15  
2.21  
3
845  
845  
41.2  
28  
8.2  
6.8  
4.7  
3.3  
47  
1000  
1000  
562  
24.9  
18.7  
37.4  
34  
22  
1.2  
1.5  
1.8  
2.5  
3.3  
5
220 + 47  
3 × 100  
3 × 100  
2 × 100  
2 × 47  
100  
10  
15  
20  
47.5  
10  
10  
10  
10  
15  
2.21  
3
3.57  
2.74  
10  
562  
10  
845  
41.2  
37.4  
24.9  
28  
22.1  
21  
8.2  
6.8  
4.7  
3.3  
1.8  
1.2  
6.8  
5.6  
4.7  
3.3  
2.2  
1.5  
3.3  
2.2  
1.5  
1
1000  
1000  
1500  
2700  
2700  
255  
22  
8
47  
44.2  
52.3  
10  
12  
1.2  
1.5  
1.8  
2.5  
3.3  
5
10  
47  
1200  
12  
24  
1
2 × 100  
2 × 47  
100 + 47  
100  
36.5  
22.6  
41.2  
37.4  
24.9  
37.4  
37.4  
24.9  
37.4  
44.2  
42.2  
1
15  
10  
255  
1.5  
1.5  
2.2  
2.2  
2.2  
2.2  
3.3  
4.7  
4.7  
20  
10  
383  
47.5  
10  
15  
383  
47  
2.21  
3
562  
47  
22  
562  
2.5  
3.3  
5
100  
47.5  
10  
15  
562  
47  
2.21  
3
562  
47  
22  
845  
8
47  
44.2  
52.3  
3.57  
2.74  
1000  
1000  
12  
47  
0.5  
1 680 μF: 4 V, KEMET T520Y687M004ATE010; 470 μF: 6.3 V, KEMET T520X477M006ATE010; 330 μF: 6.3 V, KEMET T520D337M006ATE009; 220 μF: 6.3 V, KEMET  
T520D227M006ATE009; 100 μF: 6.3 V, X5R, Murata GRM32ER60J107ME20; 47 μF: 16 V, X5R, Murata GRM32ER61C476KE15K.  
Rev. 0 | Page 21 of 24  
 
ADP2443  
Data Sheet  
PRINTED CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good PCB layout is essential for obtaining the best performance  
from the ADP2443. Poor PCB layout can degrade the output  
regulation, as well as the electromagnetic interface (EMI) and  
electromagnetic compatibility (EMC) performance. Figure 42  
shows an example of a good PCB layout for the ADP2443. For  
optimum layout, refer to the following guidelines:  
Connect the exposed GND pad of the ADP2443 to a large,  
external copper ground plane to maximize its power  
dissipation capability and minimize junction temperature.  
In addition, connect the exposed SW pad to the SW pins  
of the ADP2443, using short, wide traces; or connect the  
exposed SW pad to a large copper plane of the switching  
node for high current flow.  
Place the feedback resistor divider as close as possible to  
the FB pin to prevent noise pickup. Minimize the length of  
the trace that connects the top of the feedback resistor divider  
to the output while keeping the trace away from the high  
current traces and the switching node to avoid noise  
pickup. To reduce noise pickup further, place an analog  
ground plane on either side of the FB trace and ensure that  
the trace is as short as possible to reduce the parasitic  
capacitance pickup.  
Use separate analog ground planes and power ground planes.  
Connect the ground reference of sensitive analog circuitry,  
such as output voltage divider components, compensation  
components, frequency setting components, and soft start  
capacitor, to analog ground (GND). In addition, connect the  
ground reference of the power components, such as input  
and output capacitors, to power ground (PGND). Connect  
both ground planes to the exposed GND pad of the  
ADP2443.  
Place the input capacitor, inductor, and output capacitor as  
close as possible to the IC, and use short traces.  
ADP2443  
Ensure that the high current loop traces are as short and as  
wide as possible. Make the high current path from the input  
capacitor through the inductor, the output capacitor, and the  
power ground plane back to the input capacitor as short as  
possible. To accomplish this, ensure that the input and output  
capacitors share a common power ground plane.  
V
IN  
PVIN  
BST  
SW  
C
L
BST  
C
IN  
V
EN  
OUT  
R
C
RAMP  
OUT  
R
TOP  
RAMP  
FB  
COMP  
SS  
PGOOD  
RT/SYNC  
VREG  
R
C
R
C
R
BOT  
T
C
C
VREG  
SS  
C
In addition, ensure that the high current path from the power  
ground plane through the inductor and output capacitor  
back to the power ground plane is as short as possible by  
tying the PGND pins of the ADP2443 to the PGND plane  
as close as possible to the input and output capacitors.  
GND PGND  
Figure 41. High Current Path in the PCB Circuit  
ANALOG GROUND PLANE  
VIA  
BOTTOM LAYER TRACE  
COPPER PLANE  
R
RAMP  
PVIN  
COMP  
PVIN  
PVIN  
R
TOP  
GND  
FB  
INPUT  
INPUT  
BYPASS CAP BULK CAP  
VREG  
PVIN  
BST  
C
VREG  
GND  
SW  
C
BST  
SW  
SW  
SW  
PGND  
SW  
INDUCTOR  
OUTPUT  
CAPACITOR  
POWER GROUND PLANE  
VOUT  
Figure 42. Recommended PCB Layout  
Rev. 0 | Page 22 of 24  
 
 
Data Sheet  
ADP2443  
TYPICAL APPLICATIONS CIRCUITS  
ADP2443  
V
= 24V  
IN  
L
C
BST  
0.1µF  
PVIN  
EN  
BST  
SW  
4.7µH  
V
= 3.3V  
OUT  
C
IN  
10µF  
50V  
C
47µF  
6.3V  
C
R
OUT1  
OUT2  
47µF  
6.3V  
RAMP  
1M  
R
10kΩ  
TOP  
RAMP  
1%  
PGOOD  
R
PGOOD  
100kΩ  
FB  
VREG  
RT/SYNC  
COMP  
SS  
R
C
R
BOT  
C
4.7pF  
CP  
26.7kΩ  
C
2.7nF  
2.21kΩ  
1%  
C
22nF  
C
R
T
280kΩ  
SS  
VREG  
1µF  
C
GND PGND  
Figure 43. Typical Application Circuit, VIN = 24 V, VOUT = 3.3 V, IOUT = 3A, fSW = 600 kHz  
ADP2443  
V
= 24V  
IN  
L
C
BST  
0.1µF  
PVIN  
EN  
BST  
SW  
2.2µH  
V
= 1.2V  
R
C
OUT  
C
TOP_EN  
84.5k  
IN  
R
RAMP  
10µF  
50V  
C
220µF  
6.3V  
499kΩ  
OUT1  
OUT2  
R
10kΩ  
R
TOP  
BOT_EN  
100µF  
6.3V  
5.36kΩ  
1%  
PGOOD  
RAMP  
FB  
VREG  
COMP  
SS  
R
C
R
RT/SYNC  
C
BOT  
CP  
56pF  
34.8kΩ  
10kΩ  
1%  
C
47nF  
C
C
C
3.3nF  
R
SS  
VREG  
1µF  
T
GND PGND  
340kΩ  
Figure 44. Programming Input Voltage UVLO Rising Threshold at 20 V, Falling Threshold at 18 V, VIN = 24 V, VOUT = 1.2 V, IOUT = 3 A, fSW = 500 kHz  
ADP2443  
V
= 24V  
IN  
L
C
0.1µF  
PVIN  
EN  
BST  
SW  
BST  
3.3µH  
V
= 5V  
C
OUT  
IN  
10µF  
50V  
C
47µF  
16V  
OUT  
R
22k  
R
TOP  
RAMP  
845kΩ  
RAMP  
PGOOD  
1%  
C
1µF  
R
VREG  
PGOOD  
FB  
100kΩ  
VREG  
RT/SYNC  
SS  
COMP  
R
C
R
3kΩ  
1%  
C
1.5pF  
BOT  
CP  
40.2kΩ  
R
T
140kΩ  
C
1.2nF  
C
GND PGND  
C
22nF  
SS  
Figure 45. Typical Application Circuit, VIN = 24 V, VOUT = 5 V, IOUT = 3 A, fSW = 1.2 MHz  
Rev. 0 | Page 23 of 24  
 
ADP2443  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
2.80  
2.70  
2.60  
0.20  
MIN  
0.20 MIN  
PIN 1  
INDICATOR  
1.50  
PIN 1  
INDICATOR  
0.20  
MIN  
19  
24  
18  
1.40  
1
1.30  
0.45  
EXPOSED  
PAD  
0.35  
0.25  
0.50  
BSC  
EXPOSED  
PAD  
1.05  
0.95  
0.85  
6
13  
7
12  
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
0.20  
MIN  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD .  
Figure 46. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-24-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
Output Voltage  
Package Description  
Package Option  
CP-24-12  
ADP2443ACPZN-R7  
ADP2443-EVALZ  
Adjustable  
24-Lead LFCSP  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14794-0-9/16(0)  
Rev. 0 | Page 24 of 24  
 
 

相关型号:

ADP2503

600 mA/1000 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-2.8-R7

1.4 A SWITCHING REGULATOR, 2900 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, ROHS COMPLIANT, LFCSP-10
ROCHESTER

ADP2503ACPZ-2.8-R71

600 mA/1000 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-3.3-R7

600 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-3.3-R71

600 mA/1000 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-3.5-R7

1.4 A SWITCHING REGULATOR, 2900 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, ROHS COMPLIANT, LFCSP-10
ROCHESTER

ADP2503ACPZ-3.5-R71

600 mA/1000 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-4.2-R7

600 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-4.2-R71

600 mA/1000 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-4.5-R7

600 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-4.5-R71

600 mA/1000 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI

ADP2503ACPZ-5.0-R7

600 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
ADI