ADP2140ACPZ1233R7 [ADI]

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator;
ADP2140ACPZ1233R7
型号: ADP2140ACPZ1233R7
厂家: ADI    ADI
描述:

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator

开关 光电二极管
文件: 总32页 (文件大小:2811K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 MHz, 600 mA, Low Quiescent Current  
Buck with 300 mA LDO Regulator  
Data Sheet  
ADP2140  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
V
= 3.6V  
Input voltage range: 2.3 V to 5.5 V  
LDO input (VIN2) 1.65 V to 5.5 V  
Buck output voltage range: 1.0 V to 3.3 V  
LDO output voltage range: 0.8 V to 3.3 V  
Buck output current: 600 mA  
IN1  
+
C
10µF  
IN  
ADP2140  
100kΩ  
PG  
10  
9
1
2
3
4
5
VIN1  
PGND  
1µH  
V
= 1.2V  
OUT  
PG  
SW  
8
+
C
EN1  
EN2  
EN1  
AGND  
FB  
OUT  
10µF  
LDO output current: 300 mA  
7
EN2  
V
= 1.8V  
OUT2  
6
LDO quiescent current: 22 μA with zero load  
Buck quiescent current: 20 μA in PSM mode  
Low shutdown current: <0.3 μA  
Low LDO dropout 110 mV @ 300 mA load  
High LDO PSRR  
VOUT2  
VIN2  
+
C
OUT2  
1µF  
Figure 1. ADP2140 with LDO Connected to VIN1  
V
= 3.3V  
IN1  
65 dB @ 10 kHz at VOUT2 = 1.2 V  
+
C
IN  
10µF  
ADP2140  
55 dB @ 100 kHz at VOUT2 = 1.2 V  
Low noise LDO: 40 μV rms at VOUT2 = 1.2 V  
Initial accuracy: 1ꢀ  
Current-limit and thermal overload protection  
Power-good indicator  
100kΩ  
PG  
10  
9
1
2
3
4
5
VIN1  
PGND  
1µH  
V
= 1.8V  
OUT  
PG  
SW  
8
+
C
EN1  
EN2  
EN1  
AGND  
FB  
OUT  
10µF  
7
EN2  
V
= 1.2V  
OUT2  
6
VOUT2  
VIN2  
+
Optional enable sequencing  
10-lead 0.75 mm × 3 mm × 3 mm LFCSP package  
C
OUT2  
1µF  
Figure 2. ADP2140 with LDO Connected to Buck Output  
APPLICATIONS  
Mobile phones  
Personal media players  
Digital camera and audio devices  
Portable and battery-powered equipment  
GENERAL DESCRIPTION  
The ADP2140 includes a high efficiency, low quiescent 600 mA  
stepdown dc-to-dc converter and a 300 mA LDO packaged in a  
small 10-lead 3 mm × 3 mm LFCSP. The total solution requires  
only four tiny external components.  
ADP2140 includes a power-good pin, soft start, and internal  
compensation. Numerous power sequencing options are user-  
selectable through two enable inputs. In autosequencing mode,  
the highest voltage output enables on the rising edge of EN1.  
During logic controlled shutdown, the input disconnects from  
the output and draws less than 300 nA from the input source.  
Other key features include: undervoltage lockout to prevent deep  
battery discharge, soft start to prevent input current overshoot  
at startup, and both short-circuit protection and thermal overload  
protection circuits to prevent damage in adverse conditions.  
The buck regulator uses a proprietary high speed current-  
mode, constant frequency, pulse-width modulation (PWM)  
control scheme for excellent stability and transient response. To  
ensure the longest battery life in portable applications, the  
ADP2140 has a power saving variable frequency mode to reduce  
switching frequency under light loads.  
When the ADP2140 is used with two 0603 capacitors, one 0402  
capacitor, one 0402 resistor, and one 0805 chip inductor, the  
total solution size is approximately 90 mm2 resulting in the smallest  
footprint solution to meet a variety of portable applications.  
The LDO is a low quiescent current, low dropout linear regulator  
designed to operate in a split supply mode with VIN2 as low as  
1.65 V. The low input voltage minimum allows the LDO to be  
powered from the output of the buck regulator increasing effi-  
ciency and reducing power dissipation. The ADP2140 runs from  
input voltages of 2.3 V to 5.5 V allowing single Li+/Li− polymer  
cell, multiple alkaline/NiMH cell, PCMCIA, and other standard  
power sources.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2010–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADP2140  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Short-Circuit Protection............................................................ 20  
Undervoltage Lockout ............................................................... 20  
Thermal Protection.................................................................... 20  
Soft Start ...................................................................................... 20  
Current Limit.............................................................................. 20  
Power-Good Pin......................................................................... 20  
LDO Section ............................................................................... 20  
Applications Information.............................................................. 21  
Power Sequencing ...................................................................... 21  
Power-Good Function............................................................... 24  
External Component Selection ................................................ 24  
Selecting the Inductor................................................................ 24  
Output Capacitor........................................................................ 24  
Input Capacitor........................................................................... 24  
Efficiency..................................................................................... 25  
Recommended Buck External Components .......................... 25  
LDO Capacitor Selection .......................................................... 26  
LDO as a Postregulator to Reduce Buck Output Noise ........ 26  
Thermal Considerations................................................................ 28  
PCB Layout Considerations...................................................... 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Recommended Specifications: Capacitors and Inductor........ 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Buck Output.................................................................................. 7  
LDO Output................................................................................ 14  
Theory of Operation ...................................................................... 19  
Buck Section................................................................................ 19  
Control Scheme .......................................................................... 19  
PWM Operation......................................................................... 19  
PSM Operation ........................................................................... 19  
Pulse Skipping Threshold.......................................................... 19  
Selected Features............................................................................. 20  
REVISION HISTORY  
10/2019—Rev. A to Rev. B  
Changes to Output Capacitor Section ......................................... 24  
Updated Outline Dimensions....................................................... 30  
Changes to Ordering Guide .......................................................... 30  
9/2012—Rev. 0 to Rev. A  
Updated Outline Dimensions....................................................... 30  
Changes to Ordering Guide .......................................................... 30  
6/2010—Revision 0: Initial Version  
Rev. B | Page 2 of 32  
 
Data Sheet  
ADP2140  
SPECIFICATIONS  
VIN1 = 3.6 V, VIN2 = VOUT2 + 0.3 V or 1.65 V, whichever is greater; 5 V EN1 = EN2 = VIN1; IOUT = 200 mA, IOUT2 = 10 mA, CIN = 10 μF,  
C
OUT = 10 µF, COUT2 = 1 µF, LOUT = 1 μH; TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical  
specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
BUCK SECTION  
Input Voltage Range  
Buck Output Accuracy  
VIN1  
VOUT  
2.3  
−1.5  
−2.5  
5.5  
+1.5  
+2.5  
V
%
%
IOUT = 10 mA  
VIN1 = 2.3V or (VOUT + 0.5V) to 5.5 V, IOUT = 1 mA to  
600 mA  
Transient Load Regulation  
Transient Line Regulation  
VTR-LOAD  
VOUT = 1.8 V  
Load = 50 mA to 250 mA, rise/fall time = 200 ns  
Load = 200 mA to 600 mA, rise/fall time = 200 ns  
Line transient = 4 V to 5 V, 4 μs rise time  
VOUT = 1.0 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
75  
75  
mV  
mV  
VTR-LINE  
40  
25  
25  
100  
mV  
mV  
mV  
mA  
mA  
mA  
PWM To PSM Threshold  
Output Current  
Current Limit  
VIN1 = 2.3 V or (VOUT + 0.5 V) to 5.5 V  
IOUT  
ILIM  
600  
VIN1 = 2.3 V or (VOUT + 0.5 V) to 5.5 V  
1100 1300  
Switch On Resistance  
PFET  
NFET  
Switch Leakage Current  
Quiescent Current  
Minimum On Time  
Oscillator Frequency  
Frequency Foldback Threshold VFOLD  
Start-Up Time1  
Soft Start Time2  
RPFET  
RNFET  
ILEAK-SW  
IQ  
ON-TIMEMIN  
FREQ  
VIN1 = 2.3 V to 5.5 V  
VIN1 = 2.3 V to 5.5 V  
EN1 = GND, VIN1 = 5.5 V, and SW = 0 V  
No load, device not switching  
250  
250  
−1  
mΩ  
mΩ  
μA  
μA  
ns  
MHz  
%
µs  
20  
30  
70  
2.55  
3.0  
50  
3.15  
Output voltage where fSW ≤ 50% of nominal frequency  
VOUT = 1.8 V, 600 mA load  
VOUT = 1.8 V, 600 mA load  
tSTART-UP  
SSTIME  
70  
150  
μs  
LDO SECTION  
Input Voltage Range  
LDO Output Accuracy  
VIN2  
VOUT2  
1.65  
−1  
5.5  
+1  
+1.5  
V
%
%
IOUT2 = 10 mA, TJ = 25°C  
1 mA < IOUT2 < 300 mA, VIN2 = (VOUT2 + 0.3 V) to 5.5 V, TJ −1.5  
= 25°C  
1 mA < IOUT2 < 300 mA, VIN2 = (VOUT2 + 0.3 V) to 5.5 V  
−3  
+3  
%
Line Regulation  
Load Regulation3  
Dropout Voltage4  
∆VOUT2/∆VIN2 VIN2 = (VOUT2 + 0.3 V) to 5.5 V, IOUT2 = 10 mA  
∆VOUT2/∆IOUT2 IOUT2 = 1 mA to 300 mA  
−0.05  
+0.05 %/V  
0.001 0.005 %/mA  
VDROPOUT  
IOUT2 = 10 mA, VOUT2 = 1.8 V  
IOUT2 = 300 mA, VOUT2 = 1.8 V  
No load, buck disabled  
IOUT2 = 10 mA  
4
7
mV  
mV  
μA  
μA  
μA  
110  
22  
65  
150  
200  
35  
90  
220  
Ground Current  
IAGND  
IOUT2 = 300 mA  
Power Supply Rejection Ratio  
PSRR on VIN2  
PSRR  
VIN2 = VOUT2 + 1 V, VIN1 = 5 V, IOUT2 = 10 mA  
10 kHz, VOUT2 = 1.2 V, 1.8 V, 3.3 V  
100 kHz, VOUT2 = 3.3 V  
100 kHz, VOUT2 = 1.8 V  
100 kHz, VOUT2 = 1.2 V  
65  
53  
54  
55  
dB  
dB  
dB  
dB  
Rev. B | Page 3 of 32  
 
ADP2140  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
VIN2 = VIN1 = 5 V, IOUT2 = 10 mA  
10 Hz to 100 kHz, VOUT2 = 0.8 V  
10 Hz to 100 kHz, VOUT2 = 1.2 V  
10 Hz to 100 kHz, VOUT2 = 1.8 V  
10 Hz to 100 kHz, VOUT2 = 2.5 V  
10 Hz to 100 kHz, VOUT2 = 3.3 V  
TJ = 25°C  
Min  
Typ  
Max  
Unit  
Output Noise  
OUTNOISE  
29  
40  
50  
66  
88  
500  
µV rms  
µV rms  
µV rms  
µV rms  
µV rms  
mA  
μA  
µs  
μs  
Current Limit  
ILIM  
360  
760  
1
Input Leakage Current  
Start-Up Time1  
Soft Start Time2  
ILEAK-LDO  
tSTART-UP  
SSTIME  
EN2 = GND, VIN2 = 5.5 V and VOUT2 = 0 V  
VOUT2 = 3.3 V, 300 mA load  
VOUT2 = 3.3 V, 300 mA load  
70  
130  
ADDITIONAL FUNCTIONS  
Undervoltage Lockout  
Input Voltage Rising  
Input Voltage Falling  
EN Input  
UVLO  
UVLORISE  
UVLOFALL  
2.23  
2.16  
2.3  
V
V
2.05  
1.0  
EN1, EN2 Input Logic High  
EN1, EN2 Input Logic Low  
EN1, EN2 Input Leakage  
VIH  
VIL  
IEN-LKG  
2.3 V ≤ VIN1 ≤ 5.5 V  
2.3 V ≤ VIN1 ≤ 5.5 V  
EN1, EN2 = VIN1 or GND  
EN1, EN2 = VIN1 or GND  
V
V
µA  
µA  
μA  
0.27  
0.05  
0.3  
1
1.2  
Shutdown Current  
Thermal Shutdown  
Threshold  
ISHUT  
VIN1 = 5.5 V, EN1, EN2 = GND, TJ = −40°C to +85°C  
TSSD  
TJ rising  
150  
20  
°C  
°C  
Hysteresis  
TSSD-HYS  
Power Good  
Rising Threshold  
Falling Threshold  
Power-Good Hysteresis  
Output Low  
Leakage Current  
Buck to LDO Delay  
Power-Good Delay  
PGRISE  
PGFALL  
PGHYS  
VOL  
IOH  
tDELAY  
tRESET  
92  
86  
6
%VOUT  
%VOUT  
%VOUT  
V
μA  
ms  
ISINK = 4 mA  
Power-good pin pull-up voltage = 5.5 V  
PWM mode only  
0.2  
1
5
5
PWM mode only  
ms  
1 Start-up time is defined as the time between the rising edge of ENx to VOUTx being at 10% of the VOUTx nominal value.  
2 Soft start time is defined as the time between VOUTx being at 10% to VOUTx being at 90% of the VOUTx nominal value.  
3 Based on an endpoint calculation using 1 mA and 300 mA loads.  
4 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.3 V.  
RECOMMENDED SPECIFICATIONS: CAPACITORS AND INDUCTOR  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
TA = −40°C to +125°C  
Min  
Typ  
Max  
Unit  
MINIMUM INPUT AND OUTPUT CAPACITANCE1  
Buck  
LDO  
CMIN  
CMIN  
7.5  
0.7  
10  
1.0  
µF  
µF  
Ω
Ω
Ω
TA = −40°C to +125°C  
CAPACITOR ESR  
Buck  
LDO  
RESR  
RESR  
0.001  
0.001  
0.7  
0.01  
1
MINIMUM INDUCTOR  
INDMIN  
1
μH  
1 The minimum input and output capacitance should be greater than 0.70 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R- and X5R-type capacitors are recommended,  
Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. B | Page 4 of 32  
 
Data Sheet  
ADP2140  
ABSOLUTE MAXIMUM RATINGS  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on  
the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit  
board. Refer to JESD 51-7 for detailed information on the board  
construction.  
Table 3.  
Parameter  
Rating  
VIN1, VIN2 to PGND, AGND  
VOUT2 to PGND, AGND  
SW to PGND, AGND  
−0.3 V to +6.5 V  
−0.3 V to VIN2  
−0.3 V to VIN1  
FB to PGND, AGND  
PG to PGND, AGND  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−65°C to +150°C  
−40°C to +85°C  
−40°C to +125°C  
JEDEC J-STD-020  
EN1, EN2 to PGND, AGND  
Storage Temperature Range  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
For more information, see AN-772 Application Note, A Design  
and Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP).  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ΨJB is the junction-to-board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer board. The JESD51-12, Guidelines for  
Reporting and Using Package Thermal Information, states that  
thermal characterization parameters are not the same as thermal  
resistances. ΨJB measures the component power flowing through  
multiple thermal paths rather than a single path, as in thermal  
resistance, θJB. Therefore, ΨJB thermal paths include convection  
from the top of the package as well as radiation from the package,  
factors that make ΨJB more useful in real-world applications.  
Maximum junction temperature (TJ) is calculated from the  
board temperature (TB) and power dissipation (PD) using the  
formula  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in com-  
bination. The ADP2140 can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature may  
need to be derated.  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8 and JESD51-12 for more detailed  
information about ΨJB.  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long as  
the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction-to-ambient thermal resistance of the  
package (θJA).  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
ΨJB  
Unit  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
formula  
10-Lead 3 mm × 3 mm LFCSP  
35.3  
16.9  
°C/W  
ESD CAUTION  
TJ = TA + (PD × θJA)  
Rev. B | Page 5 of 32  
 
 
 
 
ADP2140  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PGND  
1
2
3
4
5
10  
VIN1  
SW  
9
PG  
ADP2140  
TOP VIEW  
AGND  
FB  
8
EN1  
(Not to Scale)  
7
EN2  
VIN2  
6
VOUT2  
NOTES  
1. THE EXPOSED PAD ON THE BOTTOM OF THE LFCSP PACKAGE ENHANCES  
THERMAL PERFORMANCE AND IS ELECTRICALLY CONNECTED TO GROUND  
INSIDE THE PACKAGE. IT IS RECOMMENDED THAT THE EXPOSED PAD BE  
CONNECTED TO THE GROUND PLANE ON THE CIRCUIT BOARD.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin  
Mnemonic  
PGND  
SW  
AGND  
FB  
Description  
1
2
3
4
Power Ground.  
Connection from Power MOSFETs to Inductor.  
Analog Ground.  
Feedback from Buck Output.  
LDO Input Voltage.  
5
VIN2  
6
7
VOUT2  
EN2  
LDO Output Voltage.  
Logic 1 to Enable LDO or No Connect for Autosequencing.  
8
EN1  
Logic 1 to Enable Buck or Initiate Sequencing. This is a dual function pin and the state of EN2 determines  
which function is operational.  
9
PG  
Power Good. Open-drain output. PG is held low until both output voltages (which includes the external  
inductor and capacitor sensed by the FB pin) rise above 92% of nominal value. PG is held high until both  
outputs fall below 85% of nominal value.  
10  
VIN1  
EP  
Analog Power Input.  
Exposed Pad. The exposed pad on the bottom of the LFCSP package enhances thermal performance and is  
electrically connected to ground inside the package. It is recommended that the exposed pad be connected  
to the ground plane on the circuit board.  
Rev. B | Page 6 of 32  
 
Data Sheet  
ADP2140  
TYPICAL PERFORMANCE CHARACTERISTICS  
BUCK OUTPUT  
VIN1 = 4 V, V OUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 10 µF, TA = 25°C, unless otherwise noted.  
30  
25  
20  
15  
10  
5
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 300mA  
LOAD CURRENT = 600mA  
–40°C  
–5°C  
+25°C  
+85°C  
+125°C  
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
–40  
–5  
25  
85  
125  
INPUT VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
Figure 4. Quiescent Supply Current vs. Input Voltage, Different Temperatures  
Figure 7. Output Voltage vs. Temperature, VIN1 = 2.3 V, Different Loads  
3.1  
3.0  
2.9  
2.8  
1200  
1150  
1100  
1050  
2.3V  
3.0V  
4.0V  
5.0V  
5.5V  
1000  
950  
900  
850  
800  
750  
700  
2.7  
+25°C  
–40°C  
–5°C  
+85°C  
2.6  
+125°C  
2.5  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
INPUT VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
Figure 5. Switching Frequency vs. Input Voltage, Different Temperatures  
Figure 8. Current Limit vs. Temperature, Different Input Voltages  
3.10  
3.05  
140  
120  
100  
80  
5.5V  
4.6V  
3.1V  
2.3V  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
60  
40  
–40°C  
–5°C  
+25°C  
+85°C  
+125°C  
20  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
3.50  
3.75  
4.00  
4.25  
4.50  
4.75  
5.00  
5.25  
5.50  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 6. Switching Frequency vs. Temperature, Different Input Voltages  
Figure 9. PSM to PWM Mode Transition vs. Input Voltage, Different  
Temperatures  
Rev. B | Page 7 of 32  
 
 
ADP2140  
Data Sheet  
VIN1 = 4 V, V OUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 10 µF, TA = 25°C, unless otherwise noted.  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
3.350  
3.325  
3.300  
3.275  
3.250  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 300mA  
LOAD CURRENT = 600mA  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
1000  
1000  
1
10  
100  
1000  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 10. Line Regulation, VOUT = 1.8 V, Different Loads  
Figure 13. Load Regulation, VOUT = 3.3 V  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5V  
3.0V  
4.0V  
5.0V  
5.5V  
1
10  
100  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 11. Load Regulation, VOUT = 1.8 V, VIN1 = 2.3 V  
Figure 14. Efficiency vs. Load Current, VOUT = 1.8 V, Different Input Voltages  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
100  
90  
80  
70  
60  
50  
40  
30  
–40°C  
20  
–5°C  
+25°C  
+85°C  
+125°C  
10  
0
1
10  
100  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 12. Load Regulation, VOUT = 1.2 V, VIN1 = 2.3 V  
Figure 15. Efficiency vs. Load Current, VOUT = 1.8 V, Different Temperatures  
Rev. B | Page 8 of 32  
Data Sheet  
ADP2140  
VIN1 = 4 V, V OUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 10 µF, TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5V  
3.0V  
4.0V  
5.0V  
5.5V  
–40°C  
–5°C  
+25°C  
+85°C  
+125°C  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 16. Efficiency vs. Load Current, VOUT = 1.2 V, Different Input Voltages  
Figure 19. Efficiency vs. Load Current, VOUT = 3.3 V, Different Temperatures  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
–40°C  
–5°C  
20  
20  
4.0V  
5.0V  
+25°C  
+85°C  
10  
10  
5.5V  
+125°C  
0
0
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 17. Efficiency vs. Load Current, VOUT = 1.2 V, Different Temperatures  
Figure 20. Efficiency vs. Load Current, VOUT = 3.3 V, Different Input Voltages  
T
T
INPUT VOLTAGE  
INPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
2
2
1
1
SWITCH NODE  
SWITCH NODE  
3
3
CH1 1.00V  
CH3 5.00V  
CH2 50.0mV M20.0µs  
11.60%  
A
CH1  
4.68V  
CH1 1.00V  
CH3 5.00V  
CH2 20.0mV M20.0µs  
11.60%  
A
CH1  
4.68V  
T
T
Figure 18. Line Transient, VOUT = 1.8 V, Power Save Mode, 50 mA,  
IN1 = 4 V to 5 V, 4 μs Rise Time  
Figure 21. Line Transient, VOUT = 1.8 V, PWM Mode, 600 mA, VIN1 = 4 V to 5 V,  
4 μs Rise Time  
V
Rev. B | Page 9 of 32  
ADP2140  
Data Sheet  
VIN1 = 4 V, V OUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 10 µF, TA = 25°C, unless otherwise noted.  
T
T
INPUT VOLTAGE  
INPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
2
1
2
1
SWITCH NODE  
SWITCH NODE  
3
3
CH1 1.00V  
CH3 5.00V  
CH2 50.0mV M20.0µs  
A
CH1  
4.68V  
CH1 1.00V  
CH3 5.00V  
CH2 20.0mV M20.0µs  
A
CH1  
4.68V  
T
11.60%  
T 11.60%  
Figure 22. Line Transient, VOUT = 1.2 V, PSM Mode, 50 mA, VIN1 = 4 V to 5 V,  
4 μs Rise Time  
Figure 25. Line Transient, VOUT = 3.3 V, PWM Mode, 600 mA, VIN1 = 4 V to 5 V,  
4 μs Rise Time  
T
T
INPUT VOLTAGE  
SWITCH NODE  
3
LOAD CURRENT  
2
OUTPUT VOLTAGE  
1
1
2
SWITCH NODE  
OUTPUT VOLTAGE  
3
CH1 1.00V  
CH3 5.00V  
CH2 20.0mV M20.0µs  
10.80%  
A
CH1  
4.32V  
CH1 200mA  
CH3 5.00V  
CH2 50.0mV M20.0µs  
10.40%  
A
CH1  
288mA  
T
T
Figure 23. Line Transient, VOUT = 1.2 V, PWM Mode, 600 mA, VIN1 = 4 V to 5 V,  
4 μs Rise Time  
Figure 26. Load Transient, VOUT = 1.8 V, 200 mA to 600 mA, Load Current Rise  
Time = 200 ns  
T
T
INPUT VOLTAGE  
SWITCH NODE  
3
OUTPUT VOLTAGE  
LOAD OUTPUT  
2
1
1
2
SWITCH NODE  
OUTPUT VOLTAGE  
3
CH1 1.00V  
CH3 5.00V  
CH2 50.0mV M20.0µs  
11.60%  
A
CH1  
4.68V  
CH1 100mA  
CH3 5.00V  
CH2 50.0mV M20.0µs  
10.40%  
A
CH1  
136mA  
T
T
Figure 24. Line Transient, VOUT = 3.3 V, PSM Mode, 50 mA, VIN1 = 4 V to 5 V,  
4 μs Rise Time  
Figure 27. Load Transient, VOUT = 1.8 V, 50 mA to 250 mA, Load Current Rise  
Time = 200 ns  
Rev. B | Page 10 of 32  
Data Sheet  
ADP2140  
VIN1 = 4 V, V OUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 10 µF, TA = 25°C, unless otherwise noted.  
T
T
SWITCH NODE  
SWITCH NODE  
3
3
LOAD CURRENT  
LOAD CURRENT  
1
2
1
2
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
CH1 50.0mA CH2 50.0mV M20.0µs  
CH3 5.00V 10.40%  
A
CH1  
51.0mA  
CH1 50.0mA CH2 100.0mV M20.0µs  
CH3 5.00V 10.40%  
A
CH1  
50.0mA  
T
T
Figure 28. Load Transient, VOUT = 1.8 V,10 mA to 110 mA, Load Current Rise  
Time = 200 ns  
Figure 31. Load Transient, VOUT = 3.3 V,10 mA to 110 mA, Load Current Rise  
Time = 200 ns  
T
T
SWITCH NODE  
SWITCH NODE  
3
3
LOAD CURRENT  
LOAD CURRENT  
1
1
2
2
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
CH1 200mA  
CH3 5.00V  
CH2 100.0mV M20.0µs  
10.40%  
A
CH1  
292mA  
CH1 200.0mA CH2 50.0mV M20.0µs  
CH3 5.00V 10.40%  
A
CH1  
376mA  
T
T
Figure 29. Load Transient, VOUT = 3.3 V, 200 mA to 600 mA, Load Current Rise  
Time = 200 ns  
Figure 32. Load Transient, VOUT = 1.2 V, 200 mA to 600 mA, Load Current Rise  
Time = 200 ns  
T
T
SWITCH NODE  
3
SWITCH NODE  
3
LOAD CURRENT  
LOAD CURRENT  
1
1
2
2
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
CH1 100mA  
CH3 5.00V  
CH2 100.0mV M20.0µs  
10.40%  
A
CH1  
80.0mA  
CH1 100.0mA CH2 50.0mV M20.0µs  
CH3 5.00V 10.40%  
A
CH1  
154mA  
T
T
Figure 30. Load Transient, VOUT = 3.3 V, 50 mA to 250 mA, Load Current Rise  
Time = 200 ns  
Figure 33. Load Transient, VOUT = 1.2 V, 50 mA to 250 mA, Load Current Rise  
Time = 200 ns  
Rev. B | Page 11 of 32  
ADP2140  
Data Sheet  
VIN1 = 4 V, V OUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 10 µF, TA = 25°C, unless otherwise noted.  
T
T
3
3
SWITCH NODE  
SWITCH NODE  
INDUCTOR CURRENT  
LOAD CURRENT  
1
1
2
OUTPUT VOLTAGE  
ENABLE 1  
OUTPUT VOLTAGE  
2
4
CH1 50.0mA CH2 50.0mV M20.0µs  
CH3 5.00V 10.40%  
A
CH1  
48.0mA  
CH1 500mA  
CH3 5.00V  
CH2 2.00V  
CH4 5.00V  
M40.0µs  
10.40%  
A
CH4  
2.70V  
T
T
Figure 34. Load Transient, VOUT = 1.2 V,10 mA to 110 mA, Load Current Rise  
Time = 200 ns  
Figure 37. Startup, VOUT = 3.3 V, 10 mA  
T
T
SWITCH NODE  
3
SWITCH NODE  
3
INDUCTOR CURRENT  
INDUCTOR CURRENT  
1
1
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
ENABLE 1  
ENABLE 1  
2
4
2
4
CH1 500mA  
CH3 5.00V  
CH2 1.00V  
CH4 5.00V  
M100µs  
10.40%  
A
CH4  
2.70V  
CH1 500mA  
CH3 5.00V  
CH2 2.00V  
CH4 5.00V  
M40.0µs  
10.40%  
A
CH4  
2.70V  
T
T
Figure 35. Startup, VOUT = 1.8 V, 10 mA  
Figure 38. Startup, VOUT = 3.3 V, 600 mA  
T
T
SWITCH NODE  
3
SWITCH NODE  
3
1
INDUCTOR CURRENT  
INDUCTOR CURRENT  
1
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
ENABLE 1  
ENABLE 1  
2
4
2
4
CH1 500mA  
CH3 5.00V  
CH2 1.00V  
CH4 5.00V  
M40.0µs  
10.40%  
A
CH4  
2.70V  
CH1 200mA  
CH3 5.00V  
CH2 1.00V  
CH4 5.00V  
M100µs  
10.40%  
A
CH4  
2.30V  
T
T
Figure 36. Startup, VOUT = 1.8 V, 600 mA  
Figure 39. Startup, VOUT = 1.2 V, 10 mA  
Rev. B | Page 12 of 32  
Data Sheet  
ADP2140  
VIN1 = 4 V, V OUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 10 µF, TA = 25°C, unless otherwise noted.  
T
T
BUCK OUTPUT  
LDO OUTPUT  
3
SWITCH NODE  
1
2
1
INDUCTOR CURRENT  
OUTPUT VOLTAGE  
PG SIGNAL  
ENABLE 1  
3
4
2
4
ENABLE 1  
CH1 500mA  
CH3 5.00V  
CH2 1.00V  
CH4 5.00V  
M40.0µs  
10.00%  
A
CH4  
2.30V  
CH1 1.00V  
CH3 5.00V  
CH2 1.00V  
CH4 5.00V  
M2.00ms  
10.00%  
A
CH4  
2.30V  
T
T
Figure 40. Startup, VOUT = 1.2 V, 600 mA  
Figure 41. Startup, Autosequence Mode, VOUT = 1.8 V, VOUT2 = 1.2 V  
Rev. B | Page 13 of 32  
ADP2140  
Data Sheet  
LDO OUTPUT  
VIN1 = 5 V, VIN2 = 2.3 V, VOUT2 = 1.8 V, IOUT2 = 10 mA, CIN2 = COUT2 = 1 µF, TA = 25°C, unless otherwise noted.  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
180  
160  
140  
120  
100  
80  
LOAD CURRENT = 1mA  
LOAD CURRENT = 5mA  
LOAD CURRENT = 10mA  
60  
LOAD CURRENT = 1mA  
LOAD CURRENT = 5mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 300mA  
40  
LOAD CURRENT = 50mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 300mA  
20  
0
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 42. Output Voltage vs. Junction Temperature, Different Loads  
Figure 45. Ground Current vs. Junction Temperature, Different Loads  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
160  
140  
120  
100  
80  
60  
40  
20  
0
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 43. Output Voltage vs. Load Current  
Figure 46. Ground Current vs. Load Current  
1.820  
160  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
140  
120  
100  
80  
60  
LOAD CURRENT = 1mA  
LOAD CURRENT = 5mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 300mA  
40  
LOAD CURRENT = 1mA  
LOAD CURRENT = 5mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 300mA  
20  
0
2.2  
2.2  
2.6  
3.0  
3.4  
3.8  
4.2  
4.6  
5.0  
5.4  
2.6  
3.0  
3.4  
3.8  
4.2  
4.6  
5.0  
5.4  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 44. Output Voltage vs. Input Voltage, Different Loads  
Figure 47. Ground Current vs. Input Voltage, Different Loads  
Rev. B | Page 14 of 32  
 
Data Sheet  
ADP2140  
VIN1 = 5 V, V IN2 = 2.3 V, VOUT2 = 1.8 V, IOUT2 = 10 mA, CIN2 = COUT2 = 1 µF, TA = 25°C, unless otherwise noted.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
200  
180  
160  
140  
120  
100  
80  
2.2V  
2.6V  
3.4V  
3.8V  
4.6V  
5.5V  
60  
I
I
I
I
I
I
= 1mA  
= 5mA  
= 10mA  
= 50mA  
= 100mA  
= 300mA  
GND  
GND  
GND  
GND  
GND  
GND  
40  
20  
0
–50  
–25  
0
25  
50  
75  
100  
125  
1.6  
1.7  
1.8  
1.9  
2.0  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 48. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 51. Ground Current vs. Input Voltage (in Dropout)  
150  
125  
100  
75  
0
300mA  
100mA  
10mA  
1mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
50  
25  
0
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 49. Dropout Voltage vs. Load Current  
Figure 52. Power Supply Rejection Ratio vs. Frequency VOUT2 = 1.2 V, VIN1 = 5 V,  
VIN2 = 2.2 V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
300mA  
200mA  
100mA  
10mA  
1mA  
V
V
V
V
V
V
= 1mA  
= 5mA  
= 10mA  
= 50mA  
DROP  
DROP  
DROP  
DROP  
DROP  
DROP  
= 100mA  
= 300mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
Figure 53. Power Supply Rejection Ratio vs. Frequency VOUT2 = 1.2 V, VIN1 = 5 V,  
IN2 = 1.7 V  
Figure 50. Output Voltage vs. Input Voltage (in Dropout)  
V
Rev. B | Page 15 of 32  
ADP2140  
Data Sheet  
VIN1 = 5 V, V IN2 = 2.3 V, VOUT2 = 1.8 V, IOUT2 = 10 mA, CIN2 = COUT2 = 1 µF, TA = 25°C, unless otherwise noted.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
300mA  
100mA  
10mA  
1mA  
300mA  
200mA  
100mA  
10mA  
1mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54. Power Supply Rejection Ratio vs. Frequency, VOUT2 = 3.3 V,  
IN1 = 5 V, VIN2 = 4.3 V  
Figure 57. Power Supply Rejection Ratio vs. Frequency, VOUT2 = 3.3 V,  
IN1 = 5 V, VIN2 = 3.8 V  
V
V
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
300mA  
100mA  
10mA  
1mA  
300mA  
200mA  
100mA  
10mA  
1mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 55. Power Supply Rejection Ratio vs. Frequency, VOUT2 = 1.8 V,  
Figure 58. Power Supply Rejection Ratio vs. Frequency VOUT2 = 1.8 V,  
IN1 = 5 V, VIN2 = 2.3 V  
VIN1 = 5 V, VIN2 = 2.8 V  
V
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.2V  
1.8V  
2.5V  
3.3V  
1.2V  
1.8V  
2.5V  
3.3V  
1
0.1  
0.01  
10  
100  
1k  
10k  
100k  
100n  
1µ  
10µ  
100µ  
1m  
10m  
100m  
1
FREQUENCY (Hz)  
LOAD CURRENT (A)  
Figure 56. Output Noise Spectrum, VIN2 = 5 V, Load Current = 10 mA  
Figure 59. Output Noise vs. Load Current and Output Voltage  
IN2 = 5 V  
V
Rev. B | Page 16 of 32  
Data Sheet  
ADP2140  
VIN1 = 5 V, V IN2 = 2.3 V, VOUT2 = 1.8 V, IOUT2 = 10 mA, CIN2 = COUT2 = 1 µF, TA = 25°C, unless otherwise noted.  
T
T
V
LOAD CURRENT  
IN2  
1
2
V
OUT2  
2
1
V
OUT2  
CH1 100mA  
CH2 100mV  
M40.0µs  
10.40%  
A
CH1  
68mA  
CH1 1.00V  
CH2 5.00mV M2.00µs  
10.20%  
A
CH4  
12mV  
T
T
Figure 60. Load Transient Response, VIN2 = 4 V, VOUT2 = 1.2 V,  
1 mA to 300 mA, Load Current Rise Time = 200 ns  
Figure 63. Line Transient Response, VOUT2 = 1.8 V, Load Current = 1 mA,  
IN2 = 4 V to 5 V, 1 μs Rise Time  
V
T
T
LOAD CURRENT  
V
IN2  
1
2
V
2
1
OUT2  
V
OUT2  
CH1 100mA  
CH2 100mV  
M40.0µs  
A
CH1  
68mA  
CH1 1.00V  
CH2 5.00mV M2.00µs  
10.20%  
A
CH4  
12mV  
T
10.40%  
T
Figure 61. Load Transient Response, VIN2 = 4 V, VOUT2 = 1.8 V,  
1 mA to 300 mA, Load Current Rise Time = 200 ns  
Figure 64. Line Transient Response, VOUT2 = 1.2 V, Load Current = 1 mA,  
IN2 = 4 V to 5 V, 1 μs Rise Time  
V
T
T
LOAD CURRENT  
V
IN2  
1
2
V
2
1
OUT2  
V
OUT2  
CH1 100mA  
CH2 100mV  
M40.0µs  
10.40%  
A
CH1  
68mA  
CH1 1.00V  
CH2 5.00mV M2.00µs  
10.20%  
A
CH4  
12mV  
T
T
Figure 62. Load Transient Response, VIN2 = 4 V, VOUT2 = 3.3 V,  
1 mA to 300 mA, Load Current Rise Time = 200 ns  
Figure 65. Line Transient Response, VOUT2 = 3.3 V, Load Current = 1 mA,  
IN2 = 4 V to 5 V, 1 μs Rise Time  
V
Rev. B | Page 17 of 32  
ADP2140  
Data Sheet  
VIN1 = 5 V, V IN2 = 2.3 V, VOUT2 = 1.8 V, IOUT2 = 10 mA, CIN2 = COUT2 = 1 µF, TA = 25°C, unless otherwise noted.  
T
T
V
V
IN2  
IN2  
V
V
OUT2  
OUT2  
2
1
2
1
CH1 1.00V  
CH2 5.00mV M2.00µs  
10.20%  
A
CH4  
12mV  
CH1 1.00V  
CH2 5.00mV M2.00µs  
10.20%  
A
CH4  
12mV  
T
T
Figure 66. Line Transient Response, VOUT2 = 1.8 V, Load Current = 300 mA,  
IN2 = 4 V to 5 V, 1 μs Rise Time  
Figure 68. Line Transient Response, VOUT2 = 3.3 V, Load Current = 300 mA,  
IN2 = 4 V to 5 V, 1 μs Rise Time  
V
V
T
V
IN2  
V
OUT2  
2
1
CH1 1.00V  
CH2 5.00mV M2.00µs  
10.20%  
A
CH4  
12mV  
T
Figure 67. Line Transient Response, VOUT2 = 1.2 V, Load Current = 300 mA,  
IN2 = 4 V to 5 V, 1 μs Rise Time  
V
Rev. B | Page 18 of 32  
Data Sheet  
ADP2140  
THEORY OF OPERATION  
SOFT  
START  
UVLO  
VIN1  
CURRENT  
SENSE AMP  
FB  
Gm ERROR  
AMP  
CURRENT  
LIMIT  
PWM/  
PSM  
CONTROL  
REFERENCE  
3MHz  
OSCILLATOR  
0.5V  
DRIVER  
AND  
THERMAL  
SHUTDOWN  
ANTISHOOT  
THROUGH  
VIN2  
SW  
R1  
R2  
ZERO-CROSS  
COMPARATOR  
PGND  
PG  
FB  
AGND  
POWER  
GOOD  
EPAD  
EN1  
EN2  
ENABLE/  
SEQUENCING  
Figure 69. Internal Block Diagram  
positive voltage across the inductor. Current in the inductor  
increases until the current sense signal crosses the peak inductor  
current level that turns off the P-channel MOSFET switch and  
turns on the N-channel MOSFET synchronous rectifier. This  
puts a negative voltage across the inductor, causing the inductor  
current to decrease. The synchronous rectifier stays on for the  
remainder of the cycle, unless the inductor current reaches zero,  
which causes the zero-crossing comparator to turn off the  
N-channel MOSFET.  
BUCK SECTION  
The ADP2140 contains a step-down dc-to-dc converter that  
uses a fixed frequency, high speed current-mode architecture. The  
high 3 MHz switching frequency and tiny 10-lead, 3 mm × 3 mm  
LFCSP package allow for a small step-down dc-to-dc converter  
solution.  
The ADP2140 operates with an input voltage from 2.3 V to 5.5 V.  
Output voltage options are 1 . 0 V, 1.1 V, 1.2 V, 1.5 V, 1.8 V, 1.875 V,  
2.5 V, and 3.3 V.  
PSM OPERATION  
CONTROL SCHEME  
The ADP2140 has a smooth transition to the variable frequency  
PSM mode of operation when the load current decreases below  
the pulse skipping threshold current, switching only as necessary to  
maintain the output voltage within regulation. When the output  
voltage dips below regulation, the ADP2140 enters PWM mode  
for a few oscillator cycles to increase the output voltage back to  
regulation. During the wait time between bursts, both power  
switches are off, and the output capacitor supplies the entire  
load current. Because the output voltage occasionally dips and  
recovers, the output voltage ripple in this mode is larger than the  
ripple in the PWM mode of operation.  
The ADP2140 operates with a fixed frequency, current-mode  
PWM control architecture at medium to high loads for high  
efficiency, but shifts to a variable frequency control scheme at  
light loads for lower quiescent current. When operating in fixed  
frequency PWM mode, the duty cycle of the integrated switches  
adjust to regulate the output voltage, but when operating in power  
saving mode (PSM) at light loads, the switching frequency adjusts  
to regulate the output voltage.  
The ADP2140 operates in the PWM mode only when the load  
current is greater than the pulse skipping threshold current. At  
load currents below this value, the converter smoothly transitions  
to the PSM mode of operation.  
PULSE SKIPPING THRESHOLD  
The output current at which the ADP2140 transitions from  
variable frequency PSM control to fixed frequency PWM control  
is called the pulse skipping threshold. The pulse skipping threshold  
has been optimized for excellent efficiency over all load currents.  
PWM OPERATION  
In PWM mode, the ADP2140 operates at a fixed frequency of  
3 MHz set by an internal oscillator. At the start of each oscillator  
cycle, the P-channel MOSFET switch is turned on, putting a  
Rev. B | Page 19 of 32  
 
 
 
 
 
 
ADP2140  
Data Sheet  
SELECTED FEATURES  
The ADP2140 also provides a negative current limit to prevent  
an excessive reverse inductor current when the switching section  
sinks current from the load in forced continuous conduction  
mode. Under negative current limit conditions, both the high-  
side and low-side switches are disabled.  
SHORT-CIRCUIT PROTECTION  
The ADP2140 includes frequency foldback to prevent output  
current runaway on a hard short. When the voltage at the feed-  
back pin falls below 50% of the nominal output voltage, indicating  
the possibility of a hard short at the output, the switching frequency  
is reduced to 1/2 of the internal oscillator frequency. The reduc-  
tion in the switching frequency gives more time for the inductor  
to discharge, preventing a runaway of output current.  
POWER-GOOD PIN  
The ADP2140 has a dedicated pin (PG) to signal the state of the  
monitored output voltages. The voltage monitor circuit has an  
active high, open-drain output requiring an external pull-up  
resistor typically supplied from the I/O supply rail, as shown  
in . The voltage monitor circuit has a small amount  
UNDERVOLTAGE LOCKOUT  
To protect against battery discharge, undervoltage lockout  
circuitry is integrated on the ADP2140. If the input voltage  
drops below the 2.15 V UVLO threshold, the ADP2140 shuts  
down and both the power switch and synchronous rectifier turn  
off. When the voltage rises again above the UVLO threshold,  
the soft start period initiates and the part is enabled.  
of hysteresis and is deglitched to ensure that noise or external  
perturbations do not trigger the PG line.  
LDO SECTION  
The ADP2140 low dropout linear regulator uses an advanced  
proprietary architecture to achieve low quiescent current, and  
high efficiency regulation. It also provides high power supply  
rejection ratio (PSRR), low output noise, and excellent line and  
load transient response with just a small 1 μF ceramic output capa-  
citor. The wide input voltage range of 1.65 V to 5.5 V allows it to  
operate from either the input or output of the buck. Supply current  
in shutdown mode is typically 0.3 µA.  
THERMAL PROTECTION  
In the event that the ADP2140 junction temperatures rises above  
150°C, the thermal shutdown circuit turns off the converter.  
Extreme junction temperatures can be the result of high current  
operation, poor circuit board design, and/or high ambient tem-  
perature. A 20°C hysteresis is included; thus, when thermal  
shutdown occurs, the ADP2140 does not return to operation  
until the on-chip temperature drops below 130°C. When  
emerging from a thermal shutdown, soft start initiates.  
Internally, the LDO consists of a reference, an error amplifier, a  
feedback voltage divider, and a pass device. The output current  
is delivered via the pass device, which is controlled by the error  
amplifier, forming a negative feedback system ideally driving  
the feedback voltage to be equal to the reference voltage. If the  
feedback voltage is lower than the reference voltage, the negative  
feedback drives more current, increasing the output voltage. If  
the feedback voltage is higher than the reference voltage, the  
negative feedback drives less current, decreasing the output  
voltage. The positive supply for all circuitry, except the pass  
device, is the VIN1 pin.  
SOFT START  
The ADP2140 has an internal soft start function that ramps the  
output voltage in a controlled manner upon startup, thereby  
limiting the inrush current. This prevents possible input voltage  
drops when a battery or a high impedance power source is con-  
nected to the input of the converter.  
CURRENT LIMIT  
The ADP2140 has protection circuitry to limit the direction and  
amount of current to 1000 mA flowing through the power switch  
and synchronous rectifier. The positive current limit on the power  
switch limits the amount of current that can flow from the input  
to the output, and the negative current limit on the synchronous  
rectifier prevents the inductor current from reversing direction  
and flowing out of the load.  
The LDO has an internal soft start that limits the output voltage  
ramp period to approximately 130 µs.  
The LDO is available in 0.8 V, 1.0 V, 1.1 V, 1.2 V, 1.3 V, 1.5 V, 2.5 V,  
2.8 V, 3.0 V, and 3.3 V output voltage options.  
Rev. B | Page 20 of 32  
 
 
 
 
 
 
 
 
Data Sheet  
ADP2140  
APPLICATIONS INFORMATION  
POWER SEQUENCING  
Table 6. Power Sequencing Modes  
EN21 EN1  
Description  
The ADP2140 has a flexible power sequencing system  
supporting two distinct activation modes:  
0
0
1
1
0
1
0
1
Individual mode: both regulators are off.  
Individual mode: buck regulator is on.  
Individual mode: LDO regulator is on.  
Individual mode: both regulators are on.  
Individual activation control is where EN1 controls only  
the buck regulator and EN2 controls only the LDO. A high  
level on Pin EN1 turns on the buck and a high level on  
Pin EN2 turns on the LDO. A logic low level turns off the  
respective regulator.  
NC  
Rising edge Autosequence: Buck regulator turns on,  
then the LDO regulator turns on. The LDO  
voltage is less than the buck voltage.  
Autosequencing is where the two regulators turn on in a  
specified order and delay after a low-to-high transition on  
the EN1 pin.  
NC  
Rising edge Autosequence: LDO regulator turns on,  
then the buck regulator turns on. The LDO  
voltage is greater than the buck voltage.  
NC  
NC  
Rising edge Autosequence: If the buck voltage is 1.875 V,  
then the LDO regulator always turns on first.  
Falling edge Autosequence: The LDO and buck regula-  
tors turn off at the same time.  
Select the activation mode (individual or autosequence) by  
decoding the state of Pin EN2. The individual activation mode  
is selected when the EN2 pin is driven externally or hardwired  
to a voltage level (VIN1 or PGND). The autosequencing mode  
is selected when the EN2 pin remains unconnected (floating).  
1 NC means not connected.  
Figure 70 to Figure 75 use the following symbols, as described in  
Table 7.  
To minimize quiescent current consumption, the mode selection  
executes one time only during the rising edge of VIN1. The  
detection circuit then activates for the time needed to assess the  
EN2 state, after which time the circuit is disabled until VIN1 falls  
below 0.5 V.  
Table 7. Timing Symbols  
Typical  
Value  
Symbol  
Description  
tSTART  
Time needed for the internal circuitry 60 μs  
to activate the first regulator  
When EN2 is unconnected, the internal control circuit provides  
a termination resistance to ground. The 100 kΩ termination  
resistance is low enough to guarantee insensitivity to noise and  
transients. The termination resistor is disabled in the event that  
the EN2 pin is driven externally to a logic level high (individual  
activation mode assumed) to reduce the quiescent current con-  
sumption.  
tSS  
tRESET  
Regulator soft start time  
Time delay from power-good  
condition to the release of PG  
330 μs  
5 ms  
tREG12  
Delay time between buck and LDO  
activation  
5 ms  
When the autosequencing mode is selected, the EN1 pin is used to  
start the on/off sequence of the regulators. A logic high sequences  
the regulators on whereas a logic low sequences the regulators  
off. The regulator activation order is associated with the voltage  
selected for the buck regulator and the LDO.  
V
EN1  
92% V  
BUCK  
V
BUCK  
tSS  
When the turn on or turn off autosequence starts, the start-up  
delay between the first and the second regulator is fixed to 5 ms  
in PWM mode (tREG12, as shown in Figure 71 and Figure 72).  
EN2  
92% V  
LDO  
85% V  
LDO  
When the application requires activating and deactivating the  
regulators at the same time, use the individual activation mode,  
which connects the EN1 and EN2 pins together, as shown in  
Figure 75.  
V
LDO  
tSS  
PG  
tRESET  
Figure 70. Individual Activation Mode  
TIME  
Rev. B | Page 21 of 32  
 
 
 
 
ADP2140  
Data Sheet  
V
EN1  
92% V  
BUCK  
EN2 = UNCONNECTED  
85% V  
85% V  
BUCK  
V
BUCK  
EN1  
EN2  
92% V  
92% V  
LDO  
BUCK  
LDO  
V
LDO  
V
V
BUCK  
LDO  
tSTART  
92% V  
LDO  
tSS  
PG  
85% V  
LDO  
tRESET  
tREG12  
tSS  
Figure 74. Individual Activation Mode, One Regulator Only (Buck) Sensed  
PG  
tRESET  
TIME  
EN1  
EN2  
Figure 71. Autosequencing Mode, Buck First Then LDO  
V
92% V  
92% V  
BUCK  
85% V  
BUCK  
V
BUCK  
LDO  
EN2 = UNCONNECTED  
EN1  
85% V  
LDO  
LDO  
V
92% V  
PG  
LDO  
V
V
LDO  
tRESET  
tSTART  
92% V  
BUCK  
85% V  
tSS  
Figure 75. Individual Activation Mode, No Activation/Deactivation Delay  
Between Regulators, EN1 and EN2 Pins Tied Together  
BUCK  
BUCK  
tREG12  
T
tSS  
BUCK OUTPUT  
PG  
tRESET  
TIME  
Figure 72. Autosequencing Mode, LDO First Then Buck  
The PG responds to the last activated regulator. As described in  
the Power Sequencing section, the regulator order in the auto-  
sequencing mode is defined by the voltage option combination.  
Therefore, if the sequence is buck first, the LDO and the PG  
signal are active low for tRESET after VLDO reaches 92% of the rated  
output voltage, at which time PG goes high and remains high  
for as long as VLDO is above 86% of the rated output voltage.  
When the sequencing is LDO first then buck, VBUCK controls  
PG. This control scheme also applies when the individual  
activation mode is selected.  
1
LDO OUTPUT  
2
EN1  
3
CH1 500mV  
CH3 2.00V  
CH2 500mV  
M1.00ms  
10.00%  
A
CH3  
1.16V  
T
Figure 76. Autosequence Mode Turn On Behavior, Buck Voltage = 1.8 V,  
LDO Voltage = 1.2 V, Buck Load = 500 mA, LDO Load = 100 mA  
As soon as either regulator output voltage drops below 86% of  
the respective nominal level, the PG pin is forced low.  
T
BUCK OUTPUT  
EN1  
92% V  
95%  
BUCK  
85%  
BUCK  
BUCK  
85% V  
BUCK  
V
V
V
BUCK  
1
EN2  
LDO OUTPUT  
2
92% V  
85% V  
LDO  
LDO  
V
LDO  
EN1  
PG  
3
tRESET  
tRESET  
CH1 500mV  
CH3 2.00V  
CH2 500mV  
M40.0µs  
10.00%  
A
CH3  
1.16V  
Figure 73. Individual Activation Mode, Both Regulators Sensed  
T
Figure 77. Autosequence Mode Turn On Behavior, Buck Voltage = 1.8 V,  
LDO Voltage = 1.2 V, Buck Load = 500 mA, LDO Load = 100 mA  
Rev. B | Page 22 of 32  
 
 
Data Sheet  
ADP2140  
T
T
LDO OUTPUT  
BUCK OUTPUT  
LDO OUTPUT  
1
2
2
1
BUCK OUTPUT  
EN1  
EN1  
3
3
CH1 500mV  
CH3 2.00V  
CH2 500mV  
M40.0µs  
10.00%  
A
CH3  
1.16V  
CH1 500mV  
CH3 2.00V  
CH2 1.00V  
M40.0µs  
10.00%  
A
CH3  
2.04V  
T
T
Figure 78. Autosequence Mode Turn On Behavior, Buck Voltage = 1.8 V,  
LDO Voltage = 1.2 V, Buck Load = 500 mA, LDO Load = 100 mA  
Figure 81. Autosequence Mode Turn On Behavior, Buck Voltage = 1.0 V,  
LDO Voltage = 3.3 V, Buck Load = 500 mA, LDO Load = 100 mA  
(Expanded Version of Figure 80)  
T
BUCK OUTPUT  
LDO OUTPUT  
1
2
BUCK OUTPUT  
LDO OUTPUT  
1
2
EN1  
EN1  
3
3
CH1 1.00V  
CH3 2.00V  
CH2 1.00V  
M100ms  
A
CH3  
3.04V  
CH1 500mV  
CH3 2.00V  
CH2 1.00V  
M40.0µs  
10.00%  
A
CH3  
2.04V  
T
Figure 79. Autosequence Mode Turn On Behavior, Buck Voltage =1.8 V,  
LDO Voltage = 1.2 V, Buck Load = 1 mA, LDO Load = 100 mA  
Figure 82. Autosequence Mode Turn Off Behavior, Buck Voltage = 1.0 V,  
LDO Voltage = 3.3 V, Buck Load = 500 mA, LDO Load = 100 mA  
LDO OUTPUT  
T
LDO OUTPUT  
T
2
1
2
1
BUCK OUTPUT  
EN1  
BUCK OUTPUT  
EN1  
3
3
CH1 500mV  
CH3 2.00V  
CH2 1.00V  
M2.00ms  
10.00%  
A
CH3  
2.04V  
CH1 500mV  
CH3 2.00V  
CH2 1.00V  
M2.00ms  
10.00%  
A
CH3  
3.04V  
T
T
Figure 80. Autosequence Mode Turn On Behavior, Buck Voltage = 1.0 V,  
LDO Voltage = 3.3 V, Buck Load = 500 mA, LDO Load = 100 mA  
Figure 83. Autosequence Mode Turn On Behavior, Buck Voltage = 1.0 V,  
LDO Voltage = 3.3 V, Buck Load = 1 mA, LDO Load = 100 mA  
Rev. B | Page 23 of 32  
 
ADP2140  
Data Sheet  
T
BUCK OUTPUT  
SELECTING THE INDUCTOR  
The high frequency switching of the ADP2140 allows the selection  
of small chip inductors. The inductor value affects the transition  
between CFM to PSM, efficiency, output ripple, and current limit  
values. Use the following equation to calculate the inductor ripple  
current:  
LDO OUTPUT  
1
2
VOUT ×(VIN VOUT  
VIN × fsw × L  
)
ΔIL =  
EN1  
where:  
SW is the switching frequency (3 MHz typical).  
L is the inductor value.  
f
3
CH1 500mV  
CH3 2.00V  
CH2 500mV  
M40.0µs  
10.00%  
A
CH3  
1.16V  
T
The dc resistance (DCR) value of the selected inductor affects  
efficiency, but a decrease in this value typically means an increase  
in root mean square (rms) losses in the core and skin. As a  
minimum requirement, the dc current rating of the inductor  
should be equal to the maximum load current plus half of the  
inductor current ripple, as shown by the following equation:  
Figure 84. Individual Activation Mode, EN1 and EN2 Pins Tied Together  
POWER-GOOD FUNCTION  
The ADP2140 power-good (PG) pin indicates the state of the  
monitored output voltages. The PG function is the logical AND  
of the state of both outputs. The PG function is an active high,  
open-drain output, requiring an external pull-up resistor typically  
supplied from the I/O supply rail, as shown in . When the sensed  
output voltages are below 92% of their nominal value, the PG pin is  
held low. When the sensed output voltages rise above 92% of  
the nominal levels, the PG line is pulled high after tRESET. The  
PG pin remains high as long as the sensed output voltages are  
above 86% of the nominal output voltage levels.  
ΔIL  
2
IPK = ILOAD(MAX) +(  
)
OUTPUT CAPACITOR  
Output capacitance is required to minimize the voltage over-  
shoot and ripple present on the output. Capacitors with low  
equivalent series resistance (ESR) values are recommended to  
produce low output ripple. For good stability over temperature,  
use capacitors such as the X5R or X7R dielectric. Do not use the  
Y5V and Z5U capacitors; they are not suitable for this application  
because of their large variation in capacitance over temperature  
The typical PG delay when the buck is in PWM mode is 5 ms.  
When the part is in PSM mode, the PG delay is load dependent  
because the internal clock is disabled to reduce quiescent current  
during the sleep stage. PG delay varies from hundreds of micro-  
seconds at 10 mA, up to seconds at current loads of less than 10 μA.  
and dc bias voltage. The minimum output capacitance (COUT_MIN  
is determined by the following VRIPPLE and COUT_MIN equations.  
)
T
For acceptable maximum output voltage ripple,  
EN1  
VRIPPLE = ΔIL × (ESRCOUT + 1/(8 × fSW × COUT_MIN))  
1
Therefore,  
BUCK  
2
COUT_MIN = ΔIL/(8 × fSW × (VRIPPLE ΔIL × ESRCOUT))  
LDO  
where:  
VRIPPLE is allowable peak-to-peak output voltage ripple in V.  
3
ΔIL is the inductor ripple current in A.  
ESRCOUT is the equivalent series resistance of the capacitor in Ω.  
SW is the converter switching frequency in Hz.  
PG  
f
4
Increasing the output capacitor has no effect on stability and  
increasing the output capacitance may further reduce output  
ripple and enhance load transient response. When choosing this  
value, it is also important to account for the loss of capacitance  
due to output voltage dc bias. For recommended 10 μF  
capacitors, please refer to Table 9.  
CH1 2.00V  
CH3 2.00V  
CH2 2.00V  
CH4 2.00V  
M2.00ms  
10.20%  
A
CH1  
2.20V  
T
Figure 85. Typical PG Timing  
EXTERNAL COMPONENT SELECTION  
The external component selection for the ADP2140 application  
circuit that is shown in Table 8, Table 9, and Figure 86 is  
dependent on input voltage, output voltage, and load current  
requirements. Additionally, trade-offs between performance  
parameters such as efficiency and transient response can be  
made by varying the choice of external components.  
INPUT CAPACITOR  
Input capacitance is required to reduce input voltage ripple; there-  
fore, place the input capacitor as close as possible to the VINx pins.  
As with the output capacitor, a low ESR X7R- or X5R-type  
capacitor is recommended to help minimize the input voltage  
Rev. B | Page 24 of 32  
 
 
 
 
 
Data Sheet  
ADP2140  
ripple. Use the following equation to determine the minimum  
input capacitance:  
Switching Losses  
Switching losses are associated with the current drawn by the  
driver to turn on and turn off the power devices at the switching  
frequency. Each time a power device gate is turned on and  
turned off, the driver transfers a charge, ΔQ, from the input  
supply to the gate, and then from the gate to ground.  
VOUT (VIN VOUT  
)
ICIN ILOAD(MAX)  
VIN  
EFFICIENCY  
Estimate switching losses using the following equation:  
Efficiency is defined as the ratio of output power to input power.  
The high efficiency of the ADP2140 has two distinct advantages.  
First, only a small amount of power is lost in the dc-to-dc con-  
verter package, which in turn, reduces thermal constraints. In  
addition, high efficiency delivers the maximum output power  
for the given input power, thereby extending battery life in  
portable applications.  
PSW = (CGATE_P + CGATE_N) × VIN2 × fSW  
where:  
CGATE_P is the gate capacitance of the internal high-side switch.  
CGATE_N is the gate capacitance of the internal low-side switch.  
fSW is the switching frequency.  
Transition Losses  
Power Switch Conduction Losses  
Transition losses occur because the P-channel switch cannot  
turn on or turn off instantaneously. In the middle of an SW  
node transition, the power switch provides all of the inductor  
current. The source-to-drain voltage of the power switch is half  
the input voltage, resulting in power loss. Transition losses  
increase with both load current and input voltage and occur  
twice for each switching cycle.  
Power switch dc conduction losses are caused by the flow of  
output current through the P-channel power switch and the  
N-channel synchronous rectifier, which have internal resis-  
tances (RDS(ON)) associated with them. The amount of power  
loss can be approximated by  
2
PSW _COND (RDS(ON)_ P D RDS(ON)_ N (1D))IOUT  
Use the following equation to estimate transition losses:  
VOUT  
where D   
VIN  
PTRAN = VIN/2 × IOUT × (tr + tf) × fSW  
The internal resistance of the power switches increases with  
temperature but decreases with higher input voltage.  
where:  
tr is the rise time of the SW node.  
tf is the fall time of the SW node.  
Inductor Losses  
RECOMMENDED BUCK EXTERNAL COMPONENTS  
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an internal resistance (DCR)  
associated with it. Larger size inductors have smaller DCR, which  
can decrease inductor conduction losses. Inductor core losses  
relate to the magnetic permeability of the core material. Because  
the ADP2140 is a high switching frequency dc-to-dc converter,  
shielded ferrite core material is recommended for its low core  
losses and low EMI.  
The recommended buck external components for use with the  
ADP2140 are listed in Table 8 (inductors) and Table 9 (capacitors).  
V
= 3.6V  
IN1  
+
CIN  
10µF  
ADP2140  
100kΩ  
PG  
10  
9
1
2
3
4
5
VIN1  
PGND  
1µH  
V
= 1.2V  
OUT  
PG  
SW  
8
+
COUT  
10µF  
EN1  
EN2  
EN1  
AGND  
FB  
To estimate the total amount of power lost in the inductor, use  
the following equation:  
7
EN2  
V
= 1.8V  
OUT2  
6
VOUT2  
VIN2  
+
COUT2  
1µF  
PL = DCR × IOUT2 + Core Losses  
Figure 86. Typical Application Circuit with LDO Connected to Input Voltage  
Table 8. 1.0 μH Inductors  
Vendor  
Murata  
Murata  
Murata  
FDK  
Model  
Case Size  
0805  
1206  
Dimensions  
ISAT (mA)  
DCR (mΩ)  
LQM21PN1R0MC0D  
LQM31PN1R0M00L  
LQM2HPN1R0MJ0  
MIPSA2520D1R0  
2.0 mm × 1.25 mm × 0.5 mm 800  
3.2 mm × 1.6 mm × 0.95 mm 1200  
2.5 mm × 2.0 mm × 0.95 mm 1500  
190  
120  
90  
1008  
2.5 mm × 2.0 mm × 1.0 mm  
1200  
90  
Table 9. 10 μF Capacitors  
Vendor  
Murata  
Taiyo Yuden  
TDK  
Type  
X5R  
X5R  
X5R  
Model  
Case Size  
0805  
0805  
Voltage Rating  
6.3 V  
6.3 V  
GRM219R60J106  
JMK212BJ106  
C1608X5R0J106  
0603  
6.3 V  
Rev. B | Page 25 of 32  
 
 
 
 
ADP2140  
Data Sheet  
1.2  
1.0  
0.8  
0.6  
LDO CAPACITOR SELECTION  
Output Capacitor  
MURATA PART NUMBER:  
GRM155R61A105KE15  
The ADP2140 LDO is designed for operation with small, space-  
saving ceramic capacitors, but functions with most commonly  
used capacitors as long as care is taken about the effective series  
resistance (ESR) value. The ESR of the output capacitor affects  
stability of the LDO control loop. A minimum of 0.70 µF capa-  
citance with an ESR of 1 Ω or less is recommended to ensure  
stability of the ADP2140. Transient response to changes in load  
current is also affected by output capacitance. Using a larger  
value of output capacitance improves the transient response of  
the ADP2140 to large changes in load current. Figure 87 shows  
the transient response for an output capacitance value of 1 µF.  
0.4  
0.2  
0
0
2
4
6
8
10  
VOLTAGE (V)  
Figure 88. Capacitance vs. Voltage Characteristic  
T
LOAD CURRENT  
Use Equation 1 to determine the worst-case capacitance accounting  
for capacitor variation over temperature, component tolerance, and  
voltage.  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
1
where:  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
V
OUT2  
2
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 0.94 μF at 1.8 V as shown in Figure 88.  
CH1 100mA  
CH2 100mV  
M40.0µs  
10.40%  
A
CH1  
68mA  
T
Figure 87. Output Transient Response, VOUT2 = 1.8 V, COUT = 1 µF,  
1 mA to 300 mA, Load Current Rise Time = 200 ns  
Substituting these values in Equation 1 yields  
Input Bypass Capacitor  
CEFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 μF  
Connecting a 1 µF capacitor from VIN to GND reduces the cir-  
cuit sensitivity to the PCB layout, especially when long input  
traces or high source impedance are encountered. If greater than  
1 µF of output capacitance is required, increase the input  
capacitor to match it.  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temper-  
ature and tolerance at the chosen output voltage.  
To guarantee the performance of the ADP2140, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors are evaluated for each application.  
Input and Output Capacitor Properties  
Use any good quality ceramic capacitors with the ADP2140, as  
long as they meet the minimum capacitance and maximum ESR  
requirements. Ceramic capacitors are manufactured with a variety  
of dielectrics, each with different behavior over temperature and  
applied voltage. Capacitors must have a dielectric adequate to  
ensure the minimum capacitance over the necessary temperature  
range and dc bias conditions. X5R or X7R dielectrics with a voltage  
rating of 6.3 V or 10 V are recommended for best performance.  
Y5V and Z5U dielectrics are not recommended for use with any  
LDO because of their poor temperature and dc bias characteristics.  
LDO AS A POSTREGULATOR TO REDUCE BUCK  
OUTPUT NOISE  
The output of the buck regulator may not be suitable for many  
noise sensitive applications because of its inherent switching  
noise. This is particularly true when the buck is operating in  
PSM mode because the switching noise may be in the audio  
range. The ADP2140 LDO can greatly reduce the noise at the  
output of the buck at high efficiency because of the load dropout  
voltage of the LDO and the high PSRR of the LDO. Figure 89  
and Figure 90 show the noise reduction that is possible when  
the LDO is used as a post regulator.  
Figure 88 depicts the capacitance vs. voltage bias characteristic  
of a 0402 1 µF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is about 15% over the −40°C to +85°C tempera-  
ture range and is not a function of package or voltage rating.  
Rev. B | Page 26 of 32  
 
 
 
Data Sheet  
ADP2140  
T
T
BUCK OUTPUT VOLTAGE  
BUCK OUTPUT VOLTAGE  
1
2
1
2
LDO OUTPUT VOLTAGE  
LDO OUTPUT VOLTAGE  
CH1 50.0mV CH2 10.0mV M40.0µs  
48.00%  
A
CH1  
–27.0mV  
CH1 10.0mV CH2 10.0mV M2.00µs  
A
CH1  
800µV  
T
T 48.00%  
Figure 89. LDO as a Postregulator (see Figure 2), VOUT = 1.8 V,  
Load Current = 50 mA, VOUT2 = 1.2 V, Load Current = 50 mA  
Figure 90. LDO as a Postregulator (see Figure 2), VOUT = 1.8 V,  
Load Current = 500 mA, VOUT2 = 1.2 V, Load Current = 50 mA  
Rev. B | Page 27 of 32  
 
 
ADP2140  
Data Sheet  
THERMAL CONSIDERATIONS  
In most applications, the ADP2140 does not dissipate much  
heat due to its high efficiency. However, in applications with  
high ambient temperature and high supply voltage-to-output  
voltage differential, the heat dissipated in the package is large  
enough that it can cause the junction temperature of the die to  
exceed the maximum junction temperature of 125°C.  
where:  
I
I
LOAD is the LDO load current.  
AGND is the analog ground current.  
VIN and VOUT are the LDO input and output voltages,  
respectively.  
PSW, PTRAN, and PSW_COND are defined in the Efficiency section.  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature has decreased below 130°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is very important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the tempera-  
ture rise of the package due to the power dissipation, as shown  
in Equation 2.  
For a given ambient temperature and total power dissipation,  
there exists a minimum copper size requirement for the PCB to  
ensure the junction temperature does not rise above 125°C. The  
following figures show junction temperature calculations for  
different ambient temperatures, total power dissipation, and  
areas of PCB copper.  
145  
135  
125  
115  
105  
95  
To guarantee reliable operation, the junction temperature of the  
ADP2140 must not exceed 125°C. To ensure the junction temper-  
ature stays below this maximum value, the user needs to be aware  
of the parameters that contribute to junction temperature changes.  
These parameters include ambient temperature, power dissipa-  
tion in the power device, and thermal resistances between the  
junction and ambient air (θJA). The θJA number is dependent on  
the package assembly compounds that are used and the amount of  
copper used to solder the package GND pins to the PCB. Table 10  
shows typical θJA values of the 10-lead, 3 mm × 3 mm LFCSP for  
various PCB copper sizes.  
85  
75  
65  
55  
2
500mm  
45  
35  
25  
2
50mm  
2
0mm  
T
J MAX  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00  
TOTAL POWER DISSIPATION (W)  
Figure 91. Junction Temperature vs. Power Dissipation, TA = 25°C  
Table 10. Typical θJA Values  
140  
Copper Size (mm2)  
01  
θJA (°C/W)  
42.5  
130  
120  
110  
100  
90  
50  
40.0  
100  
300  
500  
38.8  
37.2  
36.2  
1 The device is soldered to minimum size pin traces.  
The junction temperature of the ADP2140 can be calculated  
from the following equation:  
80  
70  
60  
50  
2
500mm  
2
50mm  
TJ = TA + (PD × θJA)  
(2)  
2
0mm  
T
J MAX  
where:  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50  
TOTAL POWER DISSIPATION (W)  
TA is the ambient temperature.  
PD is the total power dissipation in the die, given by  
Figure 92. Junction Temperature vs. Power Dissipation, TA = 50°C  
PD = PLDO + PBUCK  
where:  
P
P
LDO = [(VIN VOUT) × ILOAD] + (VIN × IAGND  
BUCK = PSW + PTRAN + PSW_COND  
)
(3)  
(4)  
Rev. B | Page 28 of 32  
 
 
Data Sheet  
ADP2140  
145  
135  
125  
115  
105  
95  
PCB LAYOUT CONSIDERATIONS  
Improve heat dissipation from the package by increasing  
the amount of copper attached to the pins of the ADP2140.  
However, as listed in Table 10, a point of diminishing returns  
is eventually reached, beyond which an increase in the copper  
size does not yield significant heat dissipation benefits.  
Poor layout can affect the ADP2140 buck performance causing  
electromagnetic interference (EMI) and electromagnetic compa-  
tibility (EMC) performance, ground bounce, and voltage losses;  
thus, regulation and stability can be affected. Implement a good  
layout using the following rules:  
85  
2
500mm  
2
50mm  
75  
2
0mm  
T
J MAX  
65  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies and long, large tracks act like  
antennas.  
TOTAL POWER DISSIPATION (W)  
Figure 93. Junction Temperature vs. Power Dissipation, TA = 65°C  
135  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
Use a ground plane with several vias connected to the  
component-side ground to reduce noise interference on  
sensitive circuit nodes.  
125  
115  
Use of 0402- or 0603-size capacitors achieves the smallest  
possible footprint solution on boards where area is limited.  
105  
2
500mm  
95  
85  
2
50mm  
2
0mm  
T
J MAX  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
TOTAL POWER DISSIPATION (W)  
Figure 94. Junction Temperature vs. Power Dissipation, TA = 85°C  
In cases where the board temperature is known, use the thermal  
characterization parameter, ΨJB, to estimate the junction temper-  
ature rise. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula  
TJ = TB + (PD × ΨJB)  
(5)  
Figure 96. PCB Layout, Top  
The typical ΨJB value for the 10-lead, 3 mm × 3 mm LFCSP is  
16.9°C /W.  
140  
120  
100  
80  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
B
B
B
B
40  
20  
Figure 97. PCB Layout, Bottom  
J MAX  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TOTAL POWER DISSIPATION (W)  
Figure 95. Junction Temperature vs. Power Dissipation  
Rev. B | Page 29 of 32  
 
ADP2140  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
10  
6
PIN 1  
INDICATOR  
AREA  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
0.20 MIN  
PIN 1  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
1
5
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
IONS  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
0.30  
0.25  
0.20  
SEATING  
PLANE  
0.20 REF  
Figure 98. 10-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-10-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Buck Output  
Voltage (V)  
LDO Output  
Voltage (V)  
Temperature  
Range  
Package  
Description  
Package  
Option  
Marking  
Code  
Model1  
LET  
LEQ  
LER  
LES  
LEX  
LEU  
LEY  
LEZ  
LH8  
LGE  
LF0  
LF1  
LF2  
LF4  
LF3  
ADP2140ACPZ1218R7  
ADP2140ACPZ1228R7  
ADP2140ACPZ1233R7  
ADP2140ACPZ1528R7  
ADP2140ACPZ1533R7  
ADP2140ACPZ1812R7  
ADP2140ACPZ1815R7  
ADP2140ACPZ1833R7  
1.2  
1.2  
1.2  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
2.8  
3.3  
2.8  
3.3  
1.2  
1.5  
3.3  
1.2  
1.8  
1.2  
1.5  
1.8  
2.5  
2.8  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
Evaluation Board  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
ADP2140ACPZ18812R7 1.875  
ADP2140ACPZ2518R7  
ADP2140ACPZ3312R7  
ADP2140ACPZ3315R7  
ADP2140ACPZ3318R7  
ADP2140ACPZ3325R7  
ADP2140ACPZ3328R7  
ADP2140CPZ-REDYKIT  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
1 Z = RoHS Compliant Part.  
Rev. B | Page 30 of 32  
 
 
Data Sheet  
NOTES  
ADP2140  
Rev. B | Page 31 of 32  
ADP2140  
NOTES  
Data Sheet  
©2010–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07932-0-10/19(B)  
Rev. B | Page 32 of 32  

相关型号:

ADP2140ACPZ1528R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ1533R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ1812R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ1815R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ1833R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ18812R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ2518R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ3312R7

1.3 A SWITCHING REGULATOR, 3150 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, LFCSP-10
ROCHESTER

ADP2140ACPZ3312R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ3315R7

1.3 A SWITCHING REGULATOR, 3150 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, LFCSP-10
ROCHESTER

ADP2140ACPZ3315R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI

ADP2140ACPZ3318R7

3 MHz, 600 mA, Low Quiescent Current Buck with 300 mA LDO Regulator
ADI