ADMV1010AEZ [ADI]

12.6 GHz to 15.4 GHz, GaAs, MMIC, I/Q Downconverter;
ADMV1010AEZ
型号: ADMV1010AEZ
厂家: ADI    ADI
描述:

12.6 GHz to 15.4 GHz, GaAs, MMIC, I/Q Downconverter

射频 微波
文件: 总21页 (文件大小:401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12.6 GHz to 15.4 GHz,  
GaAs, MMIC, I/Q Downconverter  
Data Sheet  
ADMV1010  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VDRF  
28  
RF input frequency range: 12.6 GHz to 15.4 GHz  
IF output frequency range: 2.7 GHz to 3.5 GHz  
LO input frequency range: 9 GHz to 12.6 GHz  
Power conversion gain: 15 dB typical  
Image rejection: 25 dB typical  
RFIN  
3
LOIN 10  
19  
22  
IF1  
IF2  
VDLO 14  
2
4
SSB noise figure: 2 dB typical  
Input IP3: 1 dBm typical  
Input P1dB: −7 dBm typical  
Single-ended, 50 Ω RF and LO input ports  
4.9 mm × 4.9 mm, 32-terminal LCC with exposed pad  
GND  
GND  
GND  
11  
ADMV1010  
Figure 1.  
APPLICATIONS  
Point to point microwave radios  
Radars and electronic warfare systems  
Instrumentation and automatic test equipment  
Satellite communications  
GENERAL DESCRIPTION  
The ADMV1010 is a compact, gallium arsenide (GaAs) design,  
monolithic microwave integrated circuit (MMIC), I/Q down-  
converter in a RoHS compliant package optimized for point to  
point microwave radio designs that operates in the 12.6 GHz to  
15.4 GHz frequency range. The ADMV1010 is optimized to work  
as a low noise, upper sideband (low-side local oscillator (LO)),  
image reject downconverter.  
amplifier drives the LO. IF1 and IF2 mixer outputs are  
provided, and an external 90° hybrid is needed to select the  
required sideband. The I/Q mixer topology reduces the need for  
filtering the unwanted sideband. The ADMV1010 is a much  
smaller alternative to hybrid style SSB downconverter  
assemblies, and it eliminates the need for wire bonding by  
allowing the use of surface-mount manufacturing assemblies.  
The ADMV1010 provides 15 dB of conversion gain with 25 dB  
of image rejection. The ADMV1010 uses a radio frequency  
(RF), low noise amplifier (LNA) followed by an in-phase/  
quadrature (I/Q) double balanced mixer, where a driver  
The ADMV1010 downconverter comes in a compact, thermally  
enhanced, 4.9 mm × 4.9 mm, 32-terminal LCC package. The  
ADMV1010 operates over the −40°C to +85°C temperature range.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017-2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADMV1010  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Leakage Performance................................................................. 13  
Return Loss Performance.......................................................... 14  
Spurious Performance ............................................................... 15  
M × N Spurious Performance................................................... 15  
Theory of Operation ...................................................................... 16  
Mixer............................................................................................ 16  
LNA .............................................................................................. 16  
Applications Information.............................................................. 17  
Typical Application Circuit....................................................... 17  
Evaluation Board........................................................................ 18  
Bill of Materials........................................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
IF Frequency = 2.7 GHz .............................................................. 6  
IF Frequency = 3.1 GHz .............................................................. 8  
IF Frequency = 3.5 GHz ............................................................ 10  
IF Bandwidth .............................................................................. 12  
REVISION HISTORY  
4/2018—Rev. A to Rev. B  
Changes to Thermal Resistance Section........................................ 4  
Changes to Figure 2 and Table 4..................................................... 5  
Changes to Figure 16 through Figure 18........................................8  
Changes to Figure 21 and Figure 22................................................9  
Changes to Figure 26 through Figure 28..................................... 10  
Changes to Figure 31 and Figure 32............................................. 11  
Changes to Figure 35 and Figure 36............................................. 12  
Changes to Figure 37 through Figure 40..................................... 13  
Changes to Figure 44 through Figure 46..................................... 14  
Changes to M × N Spurious Performance Section and Table 5 .... 15  
Changes to Applications Information Section and Figure 47........ 17  
Changes to Ordering Guide.......................................................... 21  
1/2018—Rev. 0 to Rev. A  
Changes to General Description and Figure 1 ............................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Added Thermal Resistance Section and Table 3; Renumbered  
Sequentially ....................................................................................... 4  
Changes to Figure 2 and Table 4..................................................... 5  
Changes to Figure 4.......................................................................... 6  
Changes to Figure 11 and Figure 12............................................... 7  
10/2017—Revision 0: Initial Version  
Rev. B | Page 2 of 21  
 
Data Sheet  
ADMV1010  
SPECIFICATIONS  
Data taken at VDRF = 4 V, VDLO = 4 V, L O = 4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C; data taken using Mini-Circuits QCN-45+  
power splitter as upper sideband (low-side LO), unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INPUT FREQUENCY RANGE  
LO  
12.6  
15.4  
GHz  
Input Frequency Range  
Amplitude  
9
−4  
2.7  
12.6  
+4  
GHz  
dBm  
GHz  
0
IF OUTPUT FREQUENCY RANGE  
RF PERFORMANCE  
Conversion Gain  
SSB Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Image Rejection  
Leakage  
3.5  
With hybrid  
11  
15  
2
+1  
−8  
35  
17  
2.6  
dB  
dB  
dBm  
dBm  
dB  
SSB NF  
IP3  
P1dB  
At −23 dBm/tone  
−0.5  
−10  
20  
LO to RF  
LO to IF  
−35  
−20  
−25  
−15  
dBm  
dBm  
IM3 at Input  
−20 dBm Input Power  
−25 dBm Input Power  
−30 dBm Input Power  
Return Loss  
46  
52  
56  
49  
55  
59  
dBc  
dBc  
dBc  
RF Input  
IF Output  
LO Input  
−12  
−15  
−15  
−10  
−10  
−10  
dB  
dB  
dB  
POWER INTERFACE  
Voltage  
RF  
LO  
VDRF  
VDLO  
4
4
V
V
Current  
RF  
LO  
IDRF  
IDLO  
78  
83  
0.7  
100  
100  
0.8  
mA  
mA  
W
Total Power  
Rev. B | Page 3 of 21  
 
ADMV1010  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Supply Voltage  
VDRF  
5.5 V  
θJA is thermal resistance, junction to ambient (°C/W), and θJC is  
thermal resistance, junction to case (°C/W).  
VDLO  
RF Input Power  
5.5 V  
15 dBm  
LO Input Power  
15 dBm  
175°C  
1.7 W  
>1 million hours  
−40°C to +85°C  
−65°C to +150°C  
260°C  
Table 3.  
Package Type  
Maximum Junction Temperature (TJ)  
Maximum Power Dissipation  
Lifetime at Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
Moisture Sensitivity Level (MSL) Rating  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
1
1
θJA  
33.4  
θJC  
Unit  
E-32-1  
51  
°C/W  
1 See JEDEC standard JESD51-2 for additional information on optimizing the  
thermal impedance (PCB with 3 × 3 vias).  
MSL3  
ESD CAUTION  
250 V  
Field Induced Charged Device Model (FICDM) 500 V  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 4 of 21  
 
 
Data Sheet  
ADMV1010  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NIC  
GND  
RFIN  
GND  
NIC  
NIC  
NIC  
NIC  
1
2
3
4
5
6
7
8
24 NIC  
23  
22 IF2  
21 NIC  
NIC  
ADMV1010  
TOP VIEW  
20  
19  
18  
NIC  
IF1  
NIC  
(Not to Scale)  
17 NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THESE  
PINS ARE NOT INTERNALLY CONNECTED. IT IS  
RECOMMENDED TO GROUND THESE PINS ON THE PCB.  
2. EXPOSED PAD. EXPOSED PAD MUST BE  
CONNECTED TO GND. GOOD RF AND THERMAL  
GROUNDING IS RECOMMENDED.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 5 to 9, 12, 13, 15 to 18, NIC  
20, 21, 23 to 27, 29 to 32  
Not Internally Connected. These pins are not internally connected. It is recommended to ground  
these pins on the PCB.  
2, 4, 11  
GND  
Ground.  
3
10  
14  
RFIN  
LO_IN  
VDLO  
RF Input. This pin is ac-coupled internally and matched to 50 Ω, single-ended.  
LO Input. This pin is ac-coupled internally and matched to 50 Ω single-ended.  
Power Supply Voltage for the LO Amplifier. Refer to the Applications Information section for the  
required external components and biasing.  
19  
22  
28  
IF1  
IF2  
VDRF  
Quadrature IF Output 1. Matched to 50 Ω and ac coupled. No external dc block required.  
Quadrature IF Output 2. Matched to 50 Ω and ac coupled. No external dc block required.  
Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the  
required external components and biasing.  
EPAD  
Exposed Pad. The exposed pad must be connected to GND. Good RF and thermal grounding is  
recommended.  
Rev. B | Page 5 of 21  
 
ADMV1010  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
IF FREQUENCY = 2.7 GHz  
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+  
power splitter as upper sideband (low-side LO), unless otherwise noted.  
18  
17  
16  
15  
14  
13  
12  
11  
10  
18  
17  
16  
15  
14  
13  
12  
11  
10  
–40°C  
+25°C  
+85°C  
–4dBm  
0dBm  
+4dBm  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 6. Conversion Gain vs. RF Frequency at Various LO Powers  
55  
55  
–40°C  
–4dBm  
0dBm  
+4dBm  
+25°C  
+85°C  
50  
50  
45  
40  
35  
30  
25  
20  
45  
40  
35  
30  
25  
20  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 4. Image Rejection vs. RF Frequency at Various Temperatures  
Figure 7. Image Rejection vs. RF Frequency at Various LO Powers  
10  
10  
–40°C  
–4dBm  
0dBm  
+4dBm  
+25°C  
+85°C  
8
6
8
6
4
4
2
2
0
0
–2  
–4  
–6  
–2  
–4  
–6  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 5. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 8. Input IP3 vs. RF Frequency at Various LO Powers  
Rev. B | Page 6 of 21  
 
 
Data Sheet  
ADMV1010  
0
0
–2  
–40°C  
+25°C  
+85°C  
–4dBm  
0dBm  
+4dBm  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–10  
–12  
12.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Input P1dB vs. RF Frequency at Various Temperatures  
Figure 11. Input P1dB vs. RF Frequency at Various LO Powers  
3.0  
2.5  
2.0  
1.5  
1.0  
3.0  
–4dBm  
0dBm  
+4dBm  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
–40°C  
+25°C  
+85°C  
0
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 10. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 12. Noise Figure vs. RF Frequency at Various LO Powers  
Rev. B | Page 7 of 21  
ADMV1010  
Data Sheet  
IF FREQUENCY = 3.1 GHz  
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+  
power splitter as upper sideband (low-side LO), unless otherwise noted.  
17  
16  
15  
14  
13  
12  
11  
10  
–4dBm  
–40°C  
+25°C  
+85°C  
9
0dBm  
+4dBm  
8
12.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Conversion Gain vs. RF Frequency at Various LO Powers  
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
10  
10  
+4dBm  
–40°C  
5
+0dBm  
–4dBm  
5
0
+25°C  
+85°C  
0
12.0 12.4 12.8 13.2 13.6 14.0 14.4 14.8 15.2 15.6 16.0  
RF FREQUENCY (GHz)  
12.0 12.4 12.8 13.2 13.6 14.0 14.4 14.8 15.2 15.6 16.0  
RF FREQUENCY (GHz)  
Figure 17. Image Rejection vs. RF Frequency at Various LO Powers  
Figure 14. Image Rejection vs. RF Frequency at Various Temperatures  
20  
20  
–40°C  
–4dBm  
+25°C  
0dBm  
18  
18  
16  
+85°C  
+4dBm  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
0
–2  
12.0  
–2  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Input IP3 vs. RF Frequency at Various LO Powers  
Figure 15. Input IP3 vs. RF Frequency at Various Temperatures  
Rev. B | Page 8 of 21  
 
Data Sheet  
ADMV1010  
0
0
–2  
–4dBm  
0dBm  
+4dBm  
–40°C  
+25°C  
+85°C  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–10  
–12  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 21. Input P1dB vs. RF Frequency at Various LO Powers  
Figure 19. Input P1dB vs. RF Frequency at Various Temperatures  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
–4dBm  
0dBm  
+4dBm  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
–40°C  
+25°C  
+85°C  
0
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 22. Noise Figure vs. RF Frequency at Various LO Powers  
Figure 20. Noise Figure vs. RF Frequency at Various Temperatures  
Rev. B | Page 9 of 21  
ADMV1010  
Data Sheet  
IF FREQUENCY = 3.5 GHz  
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+  
power splitter as upper sideband (low-side LO), unless otherwise noted.  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
–4dBm  
0dBm  
2
–40°C  
+25°C  
+85°C  
2
+4dBm  
0
12.0  
0
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 26. Conversion Gain vs. RF Frequency at Various LO Powers  
Figure 23. Conversion Gain vs. RF Frequency at Various Temperatures  
60  
60  
50  
40  
30  
20  
10  
–4dBm  
0dBm  
+4dBm  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
0
12.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 27. Image Rejection vs. RF Frequency at Various LO Powers  
Figure 24. Image Rejection vs. RF Frequency at Various Temperatures  
16  
16  
–40°C  
–4dBm  
+25°C  
0dBm  
14  
14  
+85°C  
+4dBm  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
0
–2  
–4  
–2  
–4  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Input IP3 vs. RF Frequency at Various Temperatures  
Figure 28. Input IP3 vs. RF Frequency at Various LO Powers  
Rev. B | Page 10 of 21  
 
Data Sheet  
ADMV1010  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
0
–4dBm  
0dBm  
–40°C  
+25°C  
–1  
+4dBm  
+85°C  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 31. Input P1dB vs. RF Frequency at Various LO Powers  
Figure 29. Input P1dB vs. RF Frequency at Various Temperatures  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
–4dBm  
0dBm  
+4dBm  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–40°C  
+25°C  
+85°C  
0
12.5  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 32. Noise Figure vs. RF Frequency at Various LO Powers  
Rev. B | Page 11 of 21  
ADMV1010  
Data Sheet  
IF BANDWIDTH  
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm at 9 GHz, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits  
QCN-45+ power splitter as upper sideband (low-side LO), unless otherwise noted.  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
+4dBm  
+0dBm  
–4dBm  
–40°C  
+25°C  
+85°C  
6
6
4
4
2
2
0
2.0  
0
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.0  
3.4  
3.6  
3.8  
4.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.0  
3.4  
3.6  
3.8  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 33. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 35. Conversion Gain vs. IF Frequency at Various LO Powers  
8
8
–40°C  
+4dBm  
+0dBm  
–4dBm  
+25°C  
+85°C  
6
6
4
4
2
2
0
0
–2  
–4  
–2  
–4  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.0  
3.4  
3.6  
3.8  
4.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.0  
3.4  
3.6  
3.8  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 34. Input IP3 vs. IF Frequency at Various Temperatures  
Figure 36. Input IP3 vs. IF Frequency at Various LO Powers  
Rev. B | Page 12 of 21  
 
Data Sheet  
ADMV1010  
LEAKAGE PERFORMANCE  
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+  
power splitter as upper sideband (low-side LO), unless otherwise noted.  
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
+4dBm  
+0dBm  
–4dBm  
–40°C  
+25°C  
+85°C  
8
9
10  
11  
12  
13  
14  
8
9
10  
11  
12  
13  
14  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 39. LO Leakage at RFIN vs. LO Frequency at Various LO Powers  
Figure 37. LO Leakage at RFIN vs. LO Frequency at Various Temperatures  
0
0
+4dBm  
–40°C  
+0dBm  
+25°C  
–5  
–5  
–4dBm  
+85°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
8
9
10  
11  
12  
13  
14  
8
9
10  
11  
12  
13  
14  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 40. LO Leakage at IF Output vs. LO Frequency at Various LO Powers  
Figure 38. LO Leakage at IF Output vs. LO Frequency at Various Temperatures  
Rev. B | Page 13 of 21  
 
ADMV1010  
Data Sheet  
RETURN LOSS PERFORMANCE  
Data taken at VDRF = 4 V, VDLO = 4 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, data taken with Mini-Circuits QCN-45+  
power splitter as upper sideband (low-side LO), unless otherwise noted. Measurement includes trace loss and RF connector loss.  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
–40°C  
+25°C  
+85°C  
+4dBm  
+0dBm  
–4dBm  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 44. RF Input Return Loss vs. RF Frequency at Various LO Powers  
Figure 41. RF Input Return Loss vs. RF Frequency at Various Temperatures  
–10  
–10  
+4dBm  
+0dBm  
–4dBm  
–40°C  
+25°C  
+85°C  
–15  
–20  
–25  
–30  
–35  
–15  
–20  
–25  
–30  
–35  
8
9
10  
11  
12  
13  
14  
8
9
10  
11  
12  
13  
14  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 45. LO Input Return Loss vs. LO Frequency at Various LO Powers  
Figure 42. LO Input Return Loss vs. LO Frequency at Various Temperatures  
–8  
–8  
+4dBm  
–40°C  
+25°C  
+85°C  
+0dBm  
–4dBm  
–10  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–12  
–14  
–16  
–18  
–20  
–22  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.0  
3.4  
3.6  
3.8  
4.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.0  
3.4  
3.6  
3.8  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 46. IF Output Return Loss vs. IF Frequency at Various LO Powers  
Figure 43. IF Output Return Loss vs. IF Frequency at Various Temperatures  
Rev. B | Page 14 of 21  
 
Data Sheet  
ADMV1010  
IF = 3100 MHz, RF = 13.3 GHz at −20 dBm; all values in dBc  
below the IF power level. N/A means not applicable.  
SPURIOUS PERFORMANCE  
Data taken at VDRF = 4 V, VDLO = 4 V, LO = 0 dBm, −40°C ≤  
TA ≤ +85°C; data taken with Mini-Circuits QCN-45+ power  
splitter as upper sideband (low-side LO), unless otherwise noted.  
N × LO  
−2  
−1  
N/A  
N/A  
0
0
+1  
N/A  
13  
+2  
25  
40  
40  
72  
N/A  
N/A  
N/A  
55  
N/A  
N/A  
24  
−1  
0
Table 5. LO Harmonic Leakage (dBm) at IF Output  
Harmonics  
M × RF  
50  
+1  
+2  
LO Frequency (MHz)1 1.0  
2.0  
3.0  
4.0  
78  
61  
63  
9000  
9500  
−36  
−22  
−20  
−18  
−19  
−28  
−42  
−43  
−48  
−47  
−47  
−48  
−46  
−41  
−47  
−46  
−47  
−45  
−43  
−42  
−41  
−38  
−35  
−32  
−49  
−50  
−60  
−53  
−50  
−65  
−60  
−61  
10,000  
10,500  
11,000  
11,500  
12,000  
12,600  
IF = 3500 MHz, RF = 13.3 GHz at −20 dBm; all values in dBc  
below the IF power level. N/A means not applicable.  
N × LO  
−2  
−1  
N/A  
N/A  
0
0
+1  
N/A  
14  
+2  
24  
38  
44  
70  
N/A  
N/A  
N/A  
54  
N/A  
N/A  
24  
−1  
0
M × RF  
1 LO Input Power = 0 dBm.  
49  
+1  
+2  
M × N SPURIOUS PERFORMANCE  
66  
60  
61  
LO = 4 dBm, Upper Sideband  
IF = 2700 MHz, RF = 13.3 GHz at −20 dBm; all values in dBc  
below the IF power level. N/A means not applicable.  
N × LO  
−2  
−1  
N/A  
N/A  
0
0
+1  
N/A  
13  
+2  
28  
39  
43  
71  
N/A  
N/A  
N/A  
52  
N/A  
N/A  
24  
−1  
0
M × RF  
51  
+1  
+2  
86  
61  
65  
Rev. B | Page 15 of 21  
 
 
ADMV1010  
Data Sheet  
THEORY OF OPERATION  
The ADMV1010 is a compact GaAs, MMIC, single sideband  
(SSB) downconverter in a RoHS compliant package optimized  
for upper sideband point to point microwave radio applications  
operating in the 12.6 GHz to 15.4 GHz input frequency range.  
The ADMV1010 supports LO input frequencies of 9 GHz to  
12.6 GHz and IF output frequencies of 2.7 GHz to 3.5 GHz.  
MIXER  
The mixer is an I/Q double balanced mixer, and this mixer  
topology reduces the need for filtering the unwanted sideband.  
An external 90° hybrid is required to select the upper sideband  
of operation. The ADMV1010 has been optimized to work with  
the Mini-Circuits QCN-45+ RF 90° hybrid.  
The ADMV1010 uses a RF LNA amplifier followed by an I/Q  
double balanced mixer, where a driver amplifier drives the LO  
(see Figure 1). The combination of design, process, and pack-  
aging technology allows the functions of these subsystems to be  
integrated into a single die, using mature packaging and inter-  
connection technologies to provide a high performance, low  
cost design with excellent electrical, mechanical, and thermal  
properties. In addition, the need for external components is  
minimized, optimizing cost and size.  
LNA  
The LNA is self biased, and it requires only a single dc bias  
voltage (VDRF) to operate. The bias current for the LNA is  
60 mA at 4 V typically.  
The application circuit (see Figure 47) provided shows the  
necessary external components on the bias lines to eliminate  
any undesired stability problems for the RF amplifier and the  
LO amplifier.  
The ADMV1010 is a much smaller alternative to hybrid style  
image reject converter assemblies, and it eliminates the need for  
wire bonding by allowing the use of surface-mount manufacturing  
assemblies.  
LO DRIVER AMPLIFIER  
The LO driver amplifier takes a single LO input and amplifies it  
to the desired LO signal level for the mixer to operate optimally.  
The LO driver amplifier is self biased, and it only requires a  
single dc bias voltage (VDLO) to operate. The bias current for  
the LO amplifier is 100 mA at 4 V typically. The LO drive range  
of −4 dBm to +4 dBm makes it compatible with Analog Devices,  
Inc., wideband synthesizer portfolio without the need for an  
external LO driver amplifier.  
The ADMV1010 downconverter comes in a compact, thermally  
enhanced, 4.9 mm × 4.9 mm, 32-terminal ceramic leadless chip  
carrier (LCC) package. The ADMV1010 operates over the  
−40°C to +85°C temperature range.  
Rev. B | Page 16 of 21  
 
 
 
Data Sheet  
ADMV1010  
APPLICATIONS INFORMATION  
The evaluation board and typical application circuit are  
optimized for low-side LO (upper sideband) performance with  
the Mini-Circuit QCN-45+ RF 90° hybrid. Because the I/Q  
mixers are double balanced, the ADMV1010 can support IF  
TYPICAL APPLICATION CIRCUIT  
The typical applications circuit is shown in Figure 47. The  
application circuit shown here has been replicated for the  
evaluation board circuit.  
frequencies from 3.5 GHz to low frequency.  
VDLNA  
1
VDLNA  
C9  
1µF  
C8  
0.01µF  
C7  
100pF  
IF_OUTPUT  
AGND  
IF_OUTPUT  
1
4
3 2  
DUT  
X1  
AGND  
1
4
6
SUM_PORT  
PORT_1  
PORT_2  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
NIC  
NIC  
RF_INPUT  
1
GND  
RFIN  
GND  
NIC  
NIC  
IF2  
RF_INPUT  
3
50_OHM_TERM  
GND GND  
GND  
GND  
IF1  
4
3 2  
ADMV1010AEZ  
13/15 DC  
5
2
QCN-45+  
R3  
NIC  
50Ω  
NIC  
GND  
NIC  
AGND  
NIC  
AGND  
AGND  
C1  
AGND  
AGND  
100pF  
C2  
LO_INPUT  
1
LO_INPUT  
0.01µF  
C3  
4
3 2  
1µF  
AGND  
AGND  
VDLO  
VDLO  
1
Figure 47. Typical Application Circuit  
Rev. B | Page 17 of 21  
 
 
 
 
ADMV1010  
Data Sheet  
Layout  
EVALUATION BOARD  
Solder the exposed pad on the underside of the ADMV1010 to  
a low thermal and electrical impedance ground plane. This pad  
is typically soldered to an exposed opening in the solder mask  
on the evaluation board. Connect these ground vias to all other  
ground layers on the evaluation board to maximize heat dissi-  
pation from the device package. Figure 48 shows the printed  
circuit board (PCB) land pattern footprint for the ADMV1010-  
EVALZ, and Figure 49 shows the solder paste stencil for the  
ADMV1010-EVALZ.  
The circuit board used in the application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance, and  
the package ground leads and exposed pad must be connected  
directly to the ground plane similarly to that shown in Figure 48  
and Figure 49. Use a sufficient number of via holes to connect  
the top and bottom ground planes. The evaluation circuit board  
shown in Figure 50 is available from Analog Devices upon  
request.  
0.217" SQUARE  
0.004" MASK/METAL OVERLAP  
0.010" MINIMUM MASK WIDTH  
SOLDER MASK  
GROUND PAD  
PAD SIZE  
0.026" × 0.010"  
PIN 1  
0.197"  
[0.50]  
0.156"  
MASK  
OPENING  
ø.034"  
TYPICAL  
VIA SPACING  
ø.010"  
TYPICAL VIA  
0.010" REF  
0.138" SQUARE MASK OPENING  
0.02 × 45° CHAMFER FOR PIN 1  
0.030"  
MASK OPENING  
0.146" SQUARE  
GROUND PAD  
Figure 48. PCB Land Pattern Footprint of the ADMV1010-EVALZ  
Rev. B | Page 18 of 21  
 
Data Sheet  
ADMV1010  
0.017  
0.0197  
TYP  
0.219  
SQUARE  
0.132  
SQUARE  
0.017  
0.027  
TYP  
R0.0040 TYP  
132 PLCS  
0.010  
TYP  
Figure 49. Solder Paste Stencil of the ADMV1010-EVALZ  
Figure 50. ADMV1010-EVALZ Evaluation Board, Top Layer  
Rev. B | Page 19 of 21  
 
 
ADMV1010  
Data Sheet  
BILL OF MATERIALS  
Table 6.  
Qty. Reference Designator  
Description  
Manufacturer/Part No.  
1
2
Not applicable  
C1, C7  
PCB  
Analog Devices/042361  
Murata/GRM1555C1H101JA01D  
100 pF multilayer ceramic capacitors, high  
temperature, 0402  
2
2
C2, C8  
C3, C9  
0.01 µF ceramic capacitors, X7R, 0402  
1 µF monolithic ceramic capacitors, SMD, X5R,  
0402  
Murata/GRM155R71E103KA01D  
Taiyo Yuden/UMK107AB7105KA-T  
4
3
GND, GND1, VDLO, VDLNA  
LO_INPUT, RF_INPUT, IF_OUTPUT  
Connection PCB SMT test points, CNKEY5016TP  
Connection PCB SMA, K_SRI-NS,  
CNSMAL460W295H156  
Keystone Electronics Corporation/5016  
SRI Connector Gage Co./25-146-1000-92  
1
1
R3  
X1  
50 Ω, high frequency chip resistor, 0402  
XFMR power splitter/combiner, 2500 MHz to  
4500 MHz, TSML126W63H42  
Vishay Precision Group/FC0402E50R0FST1  
Mini-Circuits/QCN-45+  
1
1
Device Under Test (DUT)  
Heatsink  
GaAs, MMIC, I/Q downconverter  
Heatsink  
Analog Devices/ADMV1010AEZ  
Analog Devices/111332  
Rev. B | Page 20 of 21  
 
Data Sheet  
ADMV1010  
OUTLINE DIMENSIONS  
5.05  
4.90 SQ  
4.75  
0.36  
0.30  
0.24  
PIN 1  
0.08  
REF  
INDICATOR  
PIN 1  
32  
25  
24  
1
0.50  
BSC  
3.60  
3.50 SQ  
3.40  
EXPOSED  
PAD  
17  
8
16  
9
0.38  
0.32  
0.26  
0.20 MIN  
BOTTOM VIEW  
3.50 REF  
TOP VIEW  
SIDE VIEW  
1.10  
1.00  
0.90  
4.10 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 51. 32-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Body Material Lead Finish  
Package Description  
Package Option  
ADMV1010AEZ  
ADMV1010AEZ-R7 −40°C to +85°C  
ADMV1010-EVALZ  
−40°C to +85°C  
Alumina Ceramic  
Alumina Ceramic  
Gold Over Nickel 32-Terminal Ceramic LCC E-32-1  
Gold Over Nickel 32-Terminal Ceramic LCC E-32-1  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2017-2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15788-0-4/18(B)  
Rev. B | Page 21 of 21  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY