ADM691AARU-REEL [ADI]

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, TSS0P-16;
ADM691AARU-REEL
型号: ADM691AARU-REEL
厂家: ADI    ADI
描述:

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, TSS0P-16

光电二极管
文件: 总12页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microprocessor  
a
Supervisory Circuits  
ADM691A/ADM693A/ADM800L/M  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Low Power Consumption:  
Precision Voltage Monitor  
BATT ON  
؎2% Tolerance on ADM800L/M  
Reset Time Delay—200 ms, or Adjustable  
1 A Standby Current  
1
4.65V  
LOW LINE  
V
CC  
Automatic Battery Backup Power Switching  
Fast Onboard Gating of Chip Enable Signals  
Also Available in TSSOP Package (ADM691A)  
V
OUT  
V
BATT  
CHIP ENABLE  
OUTPUT  
CONTROL  
APPLICATIONS  
Microprocessor Systems  
Computers  
CE  
OUT  
CE  
IN  
Controllers  
Intelligent Instruments  
Automotive Systems  
Critical P Power Monitoring  
RESET &  
WATCHDOG  
TIMEBASE  
OSC IN  
RESET &  
GENERATOR  
RESET  
OSC SEL  
RESET  
WATCHDOG  
WATCHDOG  
TRANSITION DETECTOR  
WATCHDOG  
TIMER  
WATCHDOG  
INPUT (WDI)  
OUTPUT (WDO)  
POWER FAIL  
INPUT (PFI)  
GENERAL DESCRIPTION  
POWER FAIL  
1.25V  
OUTPUT (PFO)  
The ADM691A/ADM693A/ADM800L/ADM800M family of  
supervisory circuits offers complete single chip solutions for  
power supply monitoring and battery control functions in  
microprocessor systems. These functions include µP reset,  
backup-battery switchover, watchdog timer, CMOS RAM write  
protection, and power-failure warning. The family of products  
provides an upgrade for the MAX691A/93A/800M family of  
products.  
ADM691A/ADM693A  
ADM800L/ADM800M  
1
VOLTAGE DETECTOR = 4.4V (ADM693A/ADM800M)  
INPUT  
POWER  
+5V  
All parts are available in 16-pin DIP and SO packages. The  
ADM691A is also available in a space-saving TSSOP package.  
The following functionality is provided:  
7805  
0.1µF  
V
CC  
CMOS  
RAM  
V
V
BAT  
ON  
OUT  
1. Power-on reset output during power-up, power-down and  
brownout conditions. The circuitry remains operational with  
CC  
V
BATT  
ADDRESS  
DECODE  
CE  
BATTERY  
OUT  
R1  
R2  
CE  
ADM691A  
ADM693A  
ADM800L  
ADM800M  
IN  
V
CC as low as 1 V.  
A0–A15  
µP  
POWER  
PFI  
GND  
2. Battery backup switching for CMOS RAM, CMOS micro-  
processor or other low power logic.  
WDI  
PFO  
I/O LINE  
NMI  
OSC IN  
µP  
NC  
RESET  
RESET  
OSC SEL  
3. A reset pulse if the optional watchdog timer has not been  
toggled within a specified time.  
WDO  
LOW LINE  
4. A 1.25 V threshold detector for power fail warning, low bat-  
tery detection, or to monitor a power supply other than +5 V.  
SYSTEM  
STATUS  
INDICATORS  
Figure 1. Typical Application  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1996  
ADM691A/ADM693A/ADM800L/M–SPECIFICATIONS  
(VCC = 4.75 V to 5.5 V (ADM691A, ADM800L) 4.5 V to 5.5 V (ADM693A, ADM800M) VBATT = +2.8 V, TA = TMIN to TMAX unless otherwise noted)  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
BATTERY BACKUP SWITCHING  
VCC, VBATT Operating Voltage Range  
VOUT Output Voltage  
0
5.5  
V
V
V
V
VCC – 0.05  
VCC – 0.3  
VCC – 0.02  
VCC – 0.2  
0.8  
IOUT = 25 mA  
IOUT = 250 mA  
VCC = 4.5 V  
VBATT = 4.5 V, IOUT = 20 mA  
VBATT = 2.8 V, IOUT = 10 mA  
VBATT = 2.0 V, IOUT = 5 mA  
VBATT = 4.5 V  
VBATT = 2.8 V  
VBATT = 2.0 V  
VCC > (VBATT – 1 V)  
VCC < (VBATT – 1.2 V), VBATT = 2.8 V  
5.5 V > VCC > VBATT + 0.2 V  
(VBATT +0.2 V) < VCC , TA = +25°C  
(VBATT +0.2 V) < VCC  
Power Up  
VCC to VOUT Output Resistance  
VOUT in Battery Backup Mode  
1.2  
VBATT – 0.3  
VBATT – 0.25  
VBATT – 0.15  
V
V
VBATT to VOUT Output Resistance  
12  
20  
25  
100  
1
µA  
µA  
Supply Current (Excludes IOUT  
)
70  
0.04  
Supply Current in B. Backup (Excludes IOUT  
Battery Standby Current  
(+ = Discharge, – = Charge)  
)
–0.1  
–1.0  
+0.02  
+0.02  
µA  
µA  
V
Battery Switchover Threshold  
VCC–VBATT  
VBATT + 0.03  
VBATT – 0.03  
V
Power Down  
Battery Switchover Hysteresis  
BATT ON Output Voltage Low  
60  
mV  
V
V
mA  
µA  
0.1  
0.7  
60  
0.4  
1.5  
ISINK = 3.2 mA  
ISINK = 25 mA  
Sink Current  
BATT ON Output Short Circuit Current  
1
15  
100  
Source Current  
RESET AND WATCHDOG TIMER  
Reset Voltage Threshold  
ADM691A, ADM800L  
ADM693A, ADM800M  
ADM800L, VCC Falling  
ADM800M, VCC Falling  
4.5  
4.65  
4.40  
4.75  
4.50  
4.70  
4.45  
V
V
V
V
4.25  
4.55  
4.3  
TA = +25°C  
TA = +25°C  
Reset Threshold Hysteresis  
VCC to RESET Delay  
LOW LINE to RESET Delay  
Reset Timeout Period Internal Oscillator  
Reset Timeout Period External Clock  
15  
80  
mV  
µs  
ns  
ms  
Power Down  
800  
200  
2048  
1.6  
100  
4096  
1024  
140  
280  
Power Up  
Cycles Power Up  
s
ms  
Cycles Long Period  
Cycles Short Period  
Watchdog Timeout Period, Internal Oscillator  
1.0  
70  
2.25  
140  
Long Period  
Short Period  
Watchdog Timeout Period, External Clock  
Minimum WDI Input Pulse Width  
RESET Output Voltage  
100  
ns  
V
V
V
mA  
V
V
V
µA  
V
V
VIL = 0.4, VIH = 0.75 × VCC  
0.004  
0.1  
0.3  
0.4  
ISINK = 50 µA, VCC = 1 V, VBATT = 0 V  
ISINK = 3.2 mA, VCC = 4.25 V  
ISOURCE = 1.6 mA, VCC = 5 V  
3.5  
0.1  
RESET Output Short Circuit Current  
RESET Output Voltage Low  
LOW LINE Output Voltage  
7
0.4  
20  
ISINK = 3.2 mA  
ISINK = 3.2 mA, VCC = 4.25 V  
ISOURCE = 1 µA, VCC = 5 V  
0.4  
3.5  
1
LOW LINE Short Circuit Source Current  
WDO Output Voltage  
15  
3
100  
0.4  
ISINK = 3.2 mA, VCC = 4.25 V  
ISOURCE = 500 µA, VCC = 5 V  
3.5  
WDO Short Circuit Source Current  
WDI Input Threshold  
Logic Low  
10  
mA  
0.8  
V
Logic High  
0.75 × VCC  
V
WDI Input Current  
–50  
–10  
20  
µA  
µA  
WDI = 0 V  
WDI = VOUT  
50  
POWER FAIL DETECTOR  
PFI Input Threshold ADM69xA  
PFI Input Threshold ADM800L/M  
PFI Input Current  
1.2  
1.225  
1.25  
1.25  
±0.01  
1.3  
V
V
nA  
V
VCC = 5 V  
VCC = 5 V  
1.275  
±25  
0.4  
PFO Output Voltage  
ISINK = 3.2 mA  
3.5  
1
ISOURCE = 1 µA  
PFO Short Circuit Source Current  
PFI to PFO Delay  
15  
25  
60  
100  
µA  
µs  
µs  
VIN = –20 mV  
VIN = 20 mV  
REV. 0  
–2–  
ADM691A/ADM693A/ADM800L/M  
Parameter  
Min  
Typ  
Max  
Units  
Test Conditions/Comments  
CHIP ENABLE GATING  
CEIN Leakage Current  
CEIN to CEOUT Resistance  
CEIN to CEOUT Propagation Delay  
CEOUT Short-Circuit Current  
CEOUT Output Voltage  
±0.005  
40  
6
±1  
150  
10  
µA  
ns  
mA  
V
Disable Mode  
Enable Mode  
RIN = 50 , CLOAD = 50 pF  
Disable Mode, CEOUT = 0 V  
VCC = 5 V, IOUT = –100 µA  
VCC = 0 V, VBATT = 2.8 V, IOUT = 1 µA  
Power Down  
0.1  
3.5  
2.7  
0.75  
2.0  
V
µs  
RESET to CEOUT Propagation Delay  
12  
OSCILLATOR  
OSC IN Input Current  
0.1  
10  
10  
500  
VOUT – 0.6  
3.65  
100  
±5  
100  
100  
µA  
µA  
µA  
kHz  
V
OSC SEL = 0 V  
OSC SEL = VOUT or Floating  
OSC SEL = 0 V  
OSC SEL = 0 V  
VIH  
OSC In Input Pullup Current  
OSC SEL Input Pullup Current  
OSC IN Frequency Range  
OSC IN Threshold Voltage  
VOUT – 0.4  
2.00  
V
kHz  
VIL  
OSC IN Frequency with Ext Capacitor  
OSC SEL = 0 V, COSC = 47 pF  
NOTES  
1Either VCC or VBATT can be 0 V if the other > +2.0 V.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C unless otherwise noted)  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
VBATT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
All Other Inputs . . . . . . . . . . . . . . . . . –0.3 V to VOUT + 0.5 V  
Input Current  
Model  
ADM691AAN  
ADM691AARN  
ADM691AARW  
ADM691AARU  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-16  
R-16N  
R-16W  
RU-16  
V
V
V
V
CC (Peak) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 mA  
CC (Continuous) . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 mA  
BATT (Peak) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 mA  
BATT (Continuous) . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA  
ADM693AAN  
ADM693AARN  
ADM693AARW  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-16  
R-16N  
R-16W  
GND, BATT ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA  
Power Dissipation, N-16 DIP . . . . . . . . . . . . . . . . . . 842 mW  
ADM800LAN  
ADM800LARN  
ADM800LARW  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-16  
R-16N  
R-16W  
θ
ϑA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 135°C/W  
Power Dissipation, R-16 Narrow SOIC . . . . . . . . . . . 700 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . .110°W  
Power Dissipation, R-16 Wide SOIC . . . . . . . . . . . . . 762 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 110°C/W  
Power Dissipation, RU-16 TSSOP . . . . . . . . . . . . . . 500 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 158°C/W  
Operating Temperature Range  
ADM800MAN  
ADM800MARN  
ADM800MARW  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-16  
R-16N  
R-16W  
Industrial (A Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
*Stresses above those listed under “Absolute Maximum Ratings” may cause perma-  
nent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods of time may affect device reliability.  
Table I. Product Selection Table  
Watchdog  
Power On  
Reset Time  
Low VCC  
Threshold  
Battery Backup  
Base Drive  
Ext PNP  
Chip Enable  
Signals  
Part No.  
Timeout  
Switching  
ADM691A  
ADM693A  
ADM800M  
ADM800L  
200 ms or Adj.  
200 ms or Adj.  
200 ms or Adj.  
200 ms or Adj.  
4.65 V ± 3%  
4.4 V ± 3%  
4.4 V ± 2%  
4.65 V ± 2%  
100 ms, 1.6 s, Adj.  
100 ms, 1.6 s, Adj.  
100 ms, 1.6 s, Adj.  
100 ms, 1.6 s, Adj.  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
REV. 0  
–3–  
ADM691A/ADM693A/ADM800L/M  
PIN DESCRIPTIONS  
Pin  
Mnemonic  
Function  
1
VBATT  
Backup Battery Input. Connect to external battery or capacitor. Connect to ground if a backup battery is  
not used.  
2
VOUT  
Output Voltage, VCC or VBATT is internally switched to VOUT depending on which is at the highest poten-  
tial. When VCC is higher than VBATT and is also higher than the reset threshold, VCC is switched to VOUT  
When VCC is lower than VBATT and below the reset threshold, VBATT is switched to VOUT. Connect VOUT to  
CC if a backup battery is not being used.  
.
V
3
4
5
VCC  
Power Supply Input; +5 V.  
GND  
0 V. Ground reference for all signals.  
BATT ON  
Logic Output. BATT ON goes high when VOUT is internally switched to the VBATT input. It goes low when  
V
OUT is internally switched to VCC. The output may also be used to drive the base (via a resistor) of an ex-  
ternal PNP transistor to increase the output current above the 250 mA rating of VOUT  
Logic Output. LOW LINE goes low when VCC falls below the reset threshold. It returns high as soon as  
CC rises above the reset threshold.  
.
6
7
LOW LINE  
V
OSC IN  
Oscillator Logic Input. With OSC SEL high or floating, the internal oscillator is enabled and sets the reset  
delay and the watchdog timeout period. Connecting OSCIN low selects 100 ms while leaving it floating  
selects 1.6 sec. With OSC SEL low, OSC IN can be driven by an external clock signal or an external ca-  
pacitor can be connected between OSC IN and GND. This sets both the reset active pulse timing and the  
watchdog timeout period. (See Table II and Figure 4.)  
8
OSC SEL  
Logic Oscillator Select Input. When OSC SEL is unconnected (floating) or driven high, the internal oscil-  
lator sets the reset active time and watchdog timeout period. When OSC SEL is low, the external oscillator  
input, OSC IN, is enabled. OSC SEL has a 10 µA internal pullup.  
9
PFI  
Power Fail Input. PFI is the noninverting input to the Power Fail Comparator. When PFI is less than  
1.25 V, PFO goes low. Connect PFI to GND or VOUT when not used.  
10  
11  
PFO  
WDI  
Power Fail Output. PFO is the output of the Power Fail Comparator. It goes low when PFI is less than  
1.25 V.  
Watchdog Input. WDI is a three level input. If WDI remains either high or low for longer than the watch-  
dog timeout period, RESET pulses low and WDO goes low. The timer resets with each transition on the  
WDI line. The Watchdog Timer may be disabled if WDI is left floating or is driven to midsupply.  
12  
CEOUT  
Output. CEOUT goes low only when CEIN is low and VCC is above the reset threshold. If CEIN is low when  
reset is asserted, CEOUT will remain low for 15 µs or until CEIN goes high, whichever occurs first.  
13  
14  
CEIN  
Chip Enable Input. The input to the CE gating circuit. Connect to GND or VOUT if not used.  
WDO  
Logic Output. The Watchdog Output, WDO, goes low if WDI remains either high or low for longer than  
the Watchdog timeout period. WDO is set high by the next transition at WDI. WDO remains high if WDI  
is unconnected.  
15  
16  
RESET  
Logic Output. RESET goes low if VCC falls below the Reset Threshold. It remains low for 200 ms typ after  
V
CC goes above the reset threshold.  
RESET  
Logic Output. RESET is an open-drain output. It is the inverse of RESET.  
PIN CONFIGURATIONS  
V
1
2
3
4
5
6
7
8
16 RESET  
15  
BATT  
V
RESET  
14 WDO  
OUT  
V
CC  
ADM691A  
ADM693A  
ADM800L  
ADM800M  
CE  
CE  
GND  
13  
12  
IN  
BATT ON  
LOW LINE  
OSC IN  
OUT  
11 WDI  
TOP VIEW  
(Not to Scale)  
PFO  
10  
9
PFI  
OSC SEL  
REV. 0  
–4–  
Typical Performance Curves–ADM691A/ADM693A/ADM800L/M  
1.2  
100  
90  
1.1  
80  
1.0  
0.9  
0.8  
70  
60  
50  
40  
30  
20  
0.7  
0.6  
–50  
–30  
–10  
10  
30  
50  
70  
90  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 5. VCC to VOUT ON-Resistance vs. Temperature  
Figure 2. ICC vs. Temperature: Normal Operation  
80  
70  
60  
60  
55  
R
= 0.67Ω  
OUT  
50  
45  
40  
35  
30  
50  
40  
30  
20  
10  
0
–50  
–30  
–10  
10  
30  
50  
70  
90  
40  
60  
80  
100  
120  
I
– mA  
TEMPERATURE – °C  
OUT  
Figure 6. VCC to VOUT Voltage Drop vs. Current  
Figure 3. IBATT vs. Temperature: Battery Backup Mode  
70  
60  
80  
70  
R
= 7Ω  
OUT  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
4
6
8
10  
–50  
–25  
0
25  
50  
75  
100  
125  
I
– mA  
TEMPERATURE – °C  
OUT  
Figure 7. VBATT to VOUT Voltage Drop vs. Current  
Figure 4. Chip Enable ON-Resistance vs. Temperature  
REV. 0  
–5–  
ADM691A/ADM693A/ADM800L/M  
16  
14  
12  
10  
V
BATT  
= 2.8V  
9
8
7
6
5
4
3
2
1
0
10  
8
6
4
2
0
0
50  
100  
150  
200  
250  
300  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
3.5  
4.0  
4.5  
5.0  
V
LOAD CAPACITANCE – pF  
CC  
Figure 11. Chip Enable Propagation Delay vs.  
Load Capacitance  
Figure 8. Battery Current vs. Input Supply Voltage  
100  
230  
220  
210  
200  
190  
180  
170  
LONG WATCHDOG TIMEOUT PERIOD  
10  
RESET ACTIVE  
TIMEOUT PERIOD = >  
1
SHORT WATCHDOG  
TIMEOUT PERIOD  
0.1  
10  
–50  
–30  
–10  
10  
30  
50  
70  
90  
100  
– pF  
1k  
C
TEMPERATURE – °C  
OSC  
Figure 12. Reset Timeout Relay vs. Temperature  
Figure 9. Watchdog and Reset Timeout Period vs.  
OSC IN Capacitor  
1200  
1000  
7.0  
6.5  
V
= 5V, V  
= 2.8V  
CC  
BATT  
800  
600  
400  
200  
0
6.0  
5.5  
5.0  
SOURCING CURRENT  
V
CC  
= 0V, V  
= 2.8V  
SINKING CURRENT  
BATT  
4.5  
4.0  
–50  
–20  
40  
70  
100  
130  
10  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 10. Chip Enable Propagation Delay vs.  
Temperature  
Figure 13. RESET Output Resistance vs. Temperature  
REV. 0  
–6–  
ADM691A/ADM693A/ADM800L/M  
100  
90  
100  
90  
10  
10  
0%  
0%  
1V  
400ms  
1V  
10µs  
Figure 14. RESET Output Voltage vs. Supply  
Figure 15. RESET Response Time  
POWER FAIL RESET OUTPUT  
The normal (short) timeout period becomes effective following  
the first transition of WDI after reset has gone inactive. The  
watchdog timeout period restarts with each transition on the  
WDI pin. To ensure that the watchdog timer does not time out,  
either a high-to-low or low-to high transition on the WDI pin  
must occur at or less than the minimum timeout period. If WDI  
remains permanently either high or low, reset pulses will be is-  
sued after each timeout period (1.6 seconds). The watchdog  
monitor can be deactivated by floating the Watchdog Input  
(WDI). If floating, an internal resistor network biases WDI to  
around 1.6 V.  
RESET is an active low output that provides a reset signal to the  
Microprocessor whenever VCC is at an invalid level. When VCC  
falls below the reset threshold, the RESET output is forced  
low. The reset voltage threshold is 4.65 V (ADM691A/  
ADM800L) or 4.4 V (ADM693A/ADM800M).  
On power-up RESET will remain low for 200 milliseconds after  
V
CC rises above the appropriate reset threshold. This allows time  
for the power supply and microprocessor to stabilize. On power-  
down, the RESET output remains low with VCC as low as 1 V.  
This ensures that the microprocessor is held in a stable shut-  
down condition. If RESET is required to be low for voltages be-  
low 1 V, this may be achieved by connecting a pull-down resistor  
on the RESET line. The resistor will help maintain RESET low  
down to VCC = 0 V. Note that this is only necessary if VBATT is  
below 2 V. With battery voltages 2 V RESET will function cor-  
rectly with VCC from 0 V to +5.5 V.  
BATT ON  
1
4.65V  
LOW LINE  
V
CC  
V
OUT  
This reset active time is adjustable by using an external oscillator  
or by connecting an external capacitor to the OSC IN pin. Refer  
to Table II.  
V
BATT  
CHIP ENABLE  
OUTPUT  
CONTROL  
The guaranteed minimum and maximum thresholds of the  
ADM691A/ADM800L are 4.5 V and 4.75 V, while the guaran-  
teed thresholds of the ADM693A/ADM800M are 4.25 V and  
4.5 V. The ADM691A/ADM800L is therefore compatible with  
5 V supplies with a +10%, –5% tolerance while the ADM693A/  
ADM800M is compatible with 5 V ± 10% supplies.  
CE  
OUT  
CE  
IN  
RESET &  
WATCHDOG  
TIMEBASE  
OSC IN  
RESET &  
RESET  
GENERATOR  
OSC SEL  
RESET  
WATCHDOG  
WATCHDOG  
TRANSITION DETECTOR  
WATCHDOG  
TIMER  
WATCHDOG  
INPUT (WDI)  
OUTPUT (WDO)  
In addition to RESET an active high RESET output is provided.  
This is the complement of RESET and is useful for processors  
requiring an active high RESET signal.  
POWER FAIL  
INPUT (PFI)  
POWER FAIL  
1.25V  
OUTPUT (PFO)  
ADM691A/ADM693A  
ADM800L/ADM800M  
Watchdog Timer Reset  
The watchdog timer circuit monitors the activity of the micro-  
processor in order to check that it is not stalled in an indefinite  
loop. An output line on the processor is used to toggle the  
Watchdog Input (WDI) line. If this line is not toggled within the  
selected timeout period, a reset pulse is generated. The watch-  
dog timeout period may be configured for either a fixed “short”  
100 ms or a “long” 1.6 second timeout period or for an adjust-  
able timeout period. Note that even if the short timeout period  
is selected, the first time out immediately following a reset is  
1.6 sec. This is to allow additional time for the microprocessor  
to regain control following a reset.  
1
VOLTAGE DETECTOR = 4.4V (ADM693A/ADM800M)  
Figure 16. Functional Block Diagram  
Watchdog Output (WDO)  
The Watchdog Output WDO provides a status output that goes  
low if the watchdog timer “times out” and remains low until set  
high by the next transition on the watchdog input. WDO is also  
set high when VCC goes below the reset threshold. If WDI re-  
mains high or low indefinitely, RESET and RESET will gener-  
ate 200 ms pulses every 1.6 sec.  
The watchdog timer is restarted at the end of reset, whether the  
reset was caused by lack of activity on WDI or by VCC falling be-  
low the reset threshold.  
REV. 0  
–7–  
ADM691A/ADM693A/ADM800L/M  
Changing the Watchdog and Reset Timeout  
When VCC is below the reset threshold, the watchdog function is  
disabled and WDI goes high impedance as it is disconnected  
from its internal resistor network.  
The watchdog and reset timeout periods may be controlled us-  
ing OSC SEL and OSC IN. Please refer to Table II. With both  
these inputs floating (or connected to VOUT) as in Figure 16, the  
reset timeout is fixed at 200 ms and the watchdog timeout is  
fixed at 1.6 sec.. If OSC IN is connected to GND as in Figure  
16, the reset timeout period remains at 200 ms but a short  
(100 ms) watchdog timeout period is selected (except immedi-  
ately following a reset where it reverts to 1.6 sec). By connecting  
OSC SEL to GND it is possible to select alternative timeout pe-  
riods by either connecting a capacitor from OSC IN to GND or  
by overdriving OSC IN with an external clock. With an external  
capacitor, the watchdog timeout period is  
The internal oscillator is enabled when OSC SEL is high or  
floating. In this mode, OSC IN selects between the 1.6 second  
and 100 ms watchdog timeout periods.  
OSC SEL  
tRS  
V
CC  
tRS  
RESET  
THRESHOLD  
80µs  
80µs  
RESET  
Twd (ms) = 600 (C/47 pF)  
and the reset active period is  
RESET  
Treset (ms) = 1200 (C/47 pF)  
CE  
IN  
With an external clock connected to OSC IN, the timeout  
periods become  
12µs  
CE  
OUT  
Twd = 1024 (1/fCLK  
Treset = 2048 (1/fCLK  
Battery-Switchover Section  
)
)
Figure 17. RESET and Chip Enable Timing  
During normal operation with VCC higher than the reset thresh-  
old and higher than VBATT, VCC is internally switched to VOUT  
via an internal PMOS transistor switch. This switch has a typi-  
cal on-resistance of 0.75 and can supply up to 250 mA at the  
8
OSC SEL  
ADM69_A  
ADM800_  
7
CLOCK  
0 TO 250kHz  
V
OUT terminal. VOUT is normally used to drive a RAM memory  
OSC IN  
bank which may require instantaneous currents of greater than  
250 mA. If this is the case then a bypass capacitor should be  
connected to VOUT. The capacitor will provide the peak current  
transients to the RAM. A capacitance value of 0.1 µF or greater  
may be used.  
Figure 18a. External Clock Source  
8
If the continuous output current requirement at VOUT exceeds  
250 mA or if a lower VCC–VOUT voltage differential is desired,  
an external PNP pass transistor may be connected in parallel  
with the internal transistor. The BATT ON output can drive  
the base of the external transistor.  
NC  
OSC SEL  
ADM69_A  
ADM800_  
7
OSC IN  
NC  
If VCC drops below VBATT and below the reset threshold, battery  
backup is selected. A 7 MOSFET switch connects the VBATT  
input to VOUT. This MOSFET has very low input-to-output  
differential (dropout voltage) at the low current levels required for  
battery backup of CMOS RAM or other low power CMOS cir-  
cuitry. The supply current in battery backup is typically 0.04 µA.  
Figure 18b. Internal Oscillator (1.6 s Watchdog)  
8
OSC SEL  
ADM69_A  
ADM800_  
7
High value capacitors, either standard electrolytic or the farad-  
size double layer capacitors, can also be used for short-term  
memory backup.  
OSC IN  
C
OSC  
If the battery-switchover section is not used, VBATT should be  
Figure 18c. External Capacitor  
connected to GND and VOUT should be connected to VCC  
.
Table II. Reset Pulse Width and Watchdog Timeout Selections  
Watchdog Timeout Period  
OSC SEL  
OSC IN  
Normal  
Immediately After Reset  
Reset Active Period  
Low  
Low  
Floating  
Floating  
External Clock Input  
External Capacitor  
Low  
1024 clks  
600 ms × C/47 pF  
100 ms  
4096 clks  
2.4 s × C/47 pF  
1.6 s  
2048 clks  
1200 ms × C/47 pF  
200 ms  
Floating or VOUT  
1.6 s  
1.6 s  
200 ms  
REV. 0  
–8–  
ADM691A/ADM693A/ADM800L/M  
INPUT  
8
7
OSC SEL  
OSC IN  
POWER  
POWER  
R1  
POWER  
FAIL  
OUTPUT  
PFO  
1.25V  
FAIL  
ADM69_A  
ADM800_  
INPUT  
R2  
C
OSC  
Figure 20. Power Fail Comparator  
Figure 18d. Internal Oscillator (100 ms Watchdog)  
Table III. Input and Output Status in Battery Backup Mode  
WDI  
Signal  
Status  
VBATT  
VOUT  
Supply Current is <1 µA.  
VOUT is connected to VBATT via an internal  
PMOS switch.  
WDO  
VCC  
Switchover comparator monitors VCC for  
active switchover.  
t2  
t3  
GND  
0 V.  
BATT ON  
Logic High. The open circuit voltage is equal  
RESET  
to VOUT  
.
LOW LINE  
OSC IN  
OSC SEL  
PFI  
Logic Low.  
t1  
t1  
t1  
OSC IN is ignored.  
OSC SEL is ignored.  
t1 = RESET TIME.  
t2 = NORMAL (SHORT) WATCHDOG TIMEOUT PERIOD.  
The Power Fail Comparator remains active in  
the battery-backup mode for VCC VBATT  
–1.2 V. With VCC lower than this, PFO is  
forced low.  
t3 = WATCHDOG TIMEOUT PERIOD IMMEDIATELY FOLLOWING A RESET.  
Figure 19. Watchdog Timing  
CE Gating and RAM Write Protection  
PFO  
The Power Fail Comparator remains active in  
the battery-backup mode for VCC VBATT  
–1.2 V. With VCC lower than this, PFO is  
forced low.  
All products include memory protection circuitry which ensures  
the integrity of data in memory by preventing write operations  
when VCC is at an invalid level. There are two additional pins,  
CEIN and CEOUT, that control the Chip Enable or Write inputs  
of CMOS RAM. When VCC is present, CEOUT is a buffered rep-  
lica of CEIN, with a 5 ns propagation delay. When VCC falls be-  
low the reset voltage threshold, an internal gate forces CEOUT  
high, independent of CEIN.  
WDI  
WDI is ignored.  
CEOUT  
Logic High. The open circuit voltage is equal  
to VOUT  
.
CEIN  
High Impedance.  
WDO  
Logic High. The open circuit voltage is equal  
CEOUT typically drives the CE, CS, or Write input of battery  
backed up CMOS RAM. This ensures the integrity of the data  
in memory by preventing write operations when VCC is at an in-  
valid level. Similar protection of EEPROMs can be achieved by  
using the CEOUT to drive the Store or Write inputs of an  
EEPROM, EAROM, or NOVRAM.  
to VOUT  
.
RESET  
Logic Low.  
RESET  
High Impedance.  
Power Fail Warning Comparator  
An additional comparator is provided for early warning of fail-  
ure in the microprocessor’s power supply. The Power Fail Input  
(PFI) is compared to an internal +1.25 V reference. The Power  
Fail Output (PFO) goes low when the voltage at PFI is less than  
1.3 V. Typically PFI is driven by an external voltage divider that  
senses either the unregulated dc input to the system’s 5 V regu-  
lator or the regulated 5 V output. The voltage divider ratio can  
be chosen such that the voltage at PFI falls below 1.25 V several  
milliseconds before the +5 V power supply falls below the reset  
threshold. PFO is normally used to interrupt the microprocessor  
so that data can be stored in RAM and the shut- down proce-  
dure executed before power is lost.  
REV. 0  
–9–  
ADM691A/ADM693A/ADM800L/M  
APPLICATIONS INFORMATION  
INPUT  
POWER  
INCREASING THE DRIVE CURRENT  
TO  
µP NMI  
R1  
R2  
(PFO)  
1.25V  
If the continuous output current requirements at VOUT exceeds  
250 mA or if a lower VCC–VOUT voltage differential is desired, an  
external PNP pass transistor may be connected in parallel with  
the internal transistor. The BATT ON output can drive the  
base of the external transistor via a current limiting transistor.  
PFI  
R3  
R2+R3  
V
H
= 1.25 1+  
R1  
PNP  
TRANSISTOR  
R2 × R3  
+5V  
INPUT  
POWER  
1.25  
V
1.25  
CC  
5V  
V
= 1.25+R1  
0.1µF  
0.1µF  
L
R2  
R3  
R1+R2  
R2  
V
= 1.25  
PFO  
0V  
MID  
V
V
OUT  
BATT  
ON  
CC  
V
BATT  
BATTERY  
0V  
V
V
M
L
V
IN  
Figure23. AddingHysteresistothePowerFailComparator  
Figure 21. Increasing the Drive Current  
Typical Operating Circuit  
Using a Rechargeable Battery for Backup  
A typical operating circuit is shown in Figure 24. The circuit  
features power supply monitoring, battery backup switching  
and watchdog timing.  
If a capacitor or a rechargeable battery is used for backup, then  
the charging resistor should be connected to VOUT since this  
eliminates the discharge path that would exist during power  
down if the resistor were connected to VCC.  
CMOS RAM is powered from VOUT . When 5 V power is  
present, this is routed to VOUT. If VCC fails, then VBATT is  
routed to VOUT. VOUT can supply up to 250 mA from VCC, but  
if more current is required, an external PNP transistor can be  
added. When VCC is higher than VBATT and the reset threshold,  
BATT ON goes low, providing base drive for the external tran-  
sistor. When VCC is lower than VBATT and the reset threshold,  
an internal 7 . MOSFET connects the backup battery to  
+5V  
INPUT  
POWER  
V
– V  
R
OUT  
BATT  
I =  
0.1µF  
R
0.1µF  
V
V
OUT  
CC  
V
BATT  
ADM69_A  
ADM800_  
RECHARGEABLE  
BATTERY  
VOUT  
.
Reset Output  
The internal voltage detector monitors VCC and generates a  
RESET output to hold the microprocessor’s RESET line low  
when VCC is below the reset threshold. An internal timer holds  
RESET low for 200 ms after VCC rises above the threshold.  
This prevents repeated toggling of RESET even if the 5 V  
power drops out and recovers with each power line cycle.  
Figure 22. Rechargeable Battery  
Adding Hysteresis to the Power Fail Comparator  
For increased noise immunity, hysteresis may be added to the  
power fail comparator. Since the comparator circuit is noninverting,  
hysteresis can be added simply by connecting a resistor between  
the PFO output and the PFI input as shown in Figure 23. When  
PFO is low, resistor R3 sinks current from the summing junction  
at the PFI pin. When PFO is high, R3 sources current into the  
PFI summing junction. This results in differing trip levels for the  
comparator. Resistors R1 and R2 therefore set the trip point  
while R3 adds hysteresis. R3 should be larger than 10 kso that  
it does not cause excessive loading on the PFO output. Addi-  
tional noise rejection and filtering may be achieved by adding a  
capacitor from PFI to GND.  
Early Power Fail Detector  
The input power line is monitored via a resistive potential di-  
vider connected to the Power Fail Input (PFI). When the volt-  
age at PFI falls below 1.25 V, the Power Fail Output (PFO)  
drives the processor’s NMI input low. If a Power Fail threshold  
of 7 V is set with resistors R1 and R2, the microprocessor will  
have the time when VCC drops below 7 V to save data into  
RAM. Power supply capacitance will extend the time available.  
This will allow more time for microprocessor housekeeping  
tasks to be completed before power is lost.  
REV. 0  
–10–  
ADM691A/ADM693A/ADM800L/M  
RESET also goes low if the Watchdog Timer is enabled and  
WDI remains either high or low for longer than the watchdog  
timeout period.  
RAM Write Protection  
The CEOUT line drives the Chip Select inputs of the CMOS  
RAM. CEOUT follows CEIN as long as VCC is above the reset  
threshold. If VCC falls below the reset threshold, CEOUT goes  
high, independent of the logic level at CEIN. This prevents the  
microprocessor from writing erroneous data into RAM during  
power-up, power-down, brownouts and momentary power in-  
terruptions. The LOW LINE output goes low when VCC falls  
below the reset threshold.  
The RESET output has an internal 1.6 mA pullup, and can ei-  
ther connect to an open collector RESET bus or directly drive a  
CMOS gate without an external pullup resistor.  
INPUT POWER  
+5V  
0.1µF  
0.1µF  
Watchdog Timer  
The microprocessor drives the WATCHDOG INPUT (WDI)  
with an I/O line. When OSC IN and OSC SEL are uncon-  
nected, the microprocessor must toggle the WDI pin once every  
1.6 seconds to verify proper software execution. If a hardware or  
software failure occurs such that WDI not toggled a 200 ms  
RESET pulse will be generated after 1.6 seconds. This typi-  
cally restarts the microprocessor’s power-up routine. A new  
RESET pulse is issued every 1.6 seconds until WDI is again  
strobed.  
V
V
BATT  
ON  
OUT  
CC  
CMOS  
RAM  
3V  
CE  
V
OUT  
BATT  
BATTERY  
ADM691A  
ADM693A  
ADM800L  
ADM800M  
ADDRESS  
DECODE  
R1  
R2  
CE  
IN  
PFI  
GND  
A0–A15  
I/O LINE  
WDI  
PFO  
NC  
OSC IN  
µP  
NMI  
OSC SEL  
LOW LINE  
RESET  
RESET  
WDO  
0.1µF  
RESET  
The WATCHDOG OUTPUT (WDO) goes low if the watch-  
dog timer is not serviced within its timeout period. Once WDO  
goes low it remains low until a transition occurs at WDI. The  
watchdog timer feature can be disabled by leaving WDI uncon-  
nected. OSC IN and OSC SEL also allow other watchdog tim-  
ing options.  
SYSTEM STATUS  
INDICATORS  
Figure 24. Typical Application Circuit  
REV. 0  
–11–  
ADM691A/ADM693A/ADM800L/M  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead TSSOP  
(RU-16)  
16-Lead Plastic DIP  
(N-16)  
0.201 (5.10)  
0.193 (4.90)  
0.840 (21.33)  
0.745 (18.93)  
16  
9
16  
1
9
8
0.280 (7.11)  
0.240 (6.10)  
0.325 (8.25)  
0.195 (4.95)  
0.115 (2.93)  
0.300 (7.62)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
1
8
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
PIN 1  
0.015 (0.381)  
0.008 (0.204)  
0.006 (0.15)  
0.002 (0.05)  
0.070 (1.77) SEATING  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.0433  
(1.10)  
MAX  
PLANE  
0.045 (1.15)  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
16-Lead Wide SOIC  
(R-16W)  
16-Lead Narrow SOIC  
(R-16N)  
0.4133 (10.50)  
0.3977 (10.00)  
0.3937 (10.00)  
0.3859 (9.80)  
16  
9
16  
1
9
0.1574 (4.00)  
0.1497 (5.80)  
0.2550 (6.20)  
8
0.2284 (5.80)  
1
8
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0099 (0.25)  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
PIN 1  
x 45°  
0.0118 (0.30)  
0.0040 (0.10)  
0.0098 (0.25)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
–12–  
REV. 0  

相关型号:

ADM691AARUZ

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, TSS0P-16
ROCHESTER

ADM691AARW

Microprocessor Supervisory Circuits
ADI

ADM691AARW

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, SOIC-16
ROCHESTER

ADM691AARW-REEL

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, SOIC-16
ROCHESTER

ADM691AARWZ

Microprocessor Supervisor with Backup Battery Switchover, Adjustable Reset and Watchdog Periods, Chip Enable Signals, 4.65V Threshold Voltage, Watchdog, Battery Backup and Low VCC Status O/Ps and 250mA Output Current
ADI

ADM691AARWZ

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, SOIC-16
ROCHESTER

ADM691AARWZ-REEL

Microprocessor Supervisor with Backup Battery Switchover, Adjustable Reset and Watchdog Periods, Chip Enable Signals, 4.65V Threshold Voltage, Watchdog, Battery Backup and Low VCC Status O/Ps and 250mA Output Current
ADI

ADM691AN

Microprocessor Supervisory Circuits
ADI

ADM691ANZ

Microprocessor Supervisory Circuits
ADI

ADM691AQ

Microprocessor Supervisory Circuits
ADI

ADM691AR

Microprocessor Supervisory Circuits
ADI

ADM691AR-REEL

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, SOIC-16
ROCHESTER