ADL5903-EVALZ [ADI]

200 MHz to 6 GHz 35 dB TruPwr™ Detector;
ADL5903-EVALZ
型号: ADL5903-EVALZ
厂家: ADI    ADI
描述:

200 MHz to 6 GHz 35 dB TruPwr™ Detector

文件: 总20页 (文件大小:1340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
200 MHz to 6 GHz  
35 dB TruPwr™ Detector  
Data Sheet  
ADL5903  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VPOS  
5
CREG  
4
Accurate rms-to-dc conversion from 200 MHz to 6 GHz  
Measurement dynamic range of 35 dB  
Ripple-free transfer function  
Single-ended input, 50 Ω source compatible  
No external matching required  
Waveform and modulation independent, such as  
GSM/CDMA/W-CDMA/TD-SCDMA/LTE  
ADL5903  
INTERNAL  
FILTERING  
6
1
ENBL  
RFIN  
630pF  
1kΩ  
3
7
CRMS  
VRMS  
4pF  
100Ω  
RMS CORE  
BUFFER  
Linear in decibels output, scaled 35.5 mV/dB at 900 MHz  
Excellent temperature stability  
2
8
GND  
NIC  
EP  
Operates from 3.0 V to 5.0 V from −55°C to +125°C  
Low power consumption: 3 mA at 3.0 V to 5.0 V supply  
8-lead, 2 mm × 2 mm LFCSP package  
Figure 1.  
APPLICATIONS  
Power amplifier linearization/control loops  
Transmitter power controls  
Transmitter signal strength indication (TSSI)  
RF instrumentation  
Wireless repeaters  
GENERAL DESCRIPTION  
The ADL5903 is a true rms responding power detector that has  
a 35 dB measurement range. It features low power consumption  
and an intrinsically ripple-free error transfer function.  
The ADL5903 can be used to determine the true power of a  
high frequency signal with a complex modulation envelope  
including large crest factor signals such as GSM, CDMA,  
W-CDMA, TD-SCDMA, and LTE modulated signals. The  
output is then proportional to the logarithm of the rms value  
of the input. In other words, the reading is presented directly  
in decibels and is scaled about 35.5 mV/dB at 900 MHz.  
The ADL5903 provides a solution in a variety of high frequency  
systems requiring an accurate measurement of signal power.  
Requiring only a single supply of 3.0 V to 5.0 V and a few  
capacitors, it is easy to use and capable of being driven single-  
ended or with a balun for differential input drive. An on-chip  
matching network provides good return loss over the specified  
frequency range of the device. The ADL5903 can operate from  
200 MHz to 6 GHz and can accept inputs from −30 dBm to  
+20 dBm.  
The ADL5903 has low power consumption when operational  
and a disable mode that further reduces the power consumption.  
Power consumption is less than 100 µA when the ADL5903  
enters power-down mode through a logic low at Pin ENBL.  
The ADL5903 is supplied in a 2 mm × 2 mm, 8-lead LFCSP for  
operation over the wide temperature range of −55°C to +125°C.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADL5903  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Measurement Setups ...................................................................... 14  
Theory of Operation ...................................................................... 15  
RF Input Interface ...................................................................... 15  
Basic Connections...................................................................... 15  
Choosing a Value for CRMS......................................................... 16  
Device Calibration and Error Calculation.............................. 17  
Evaluation Board Schematic and Configuration Options ........ 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
5/15—Rev. A to Rev. B  
Changes to Figure 49...................................................................... 19  
2/15—Rev. 0 to Rev. A  
Added ADL5903ACPZN Operating Temperature Range of  
−40°C to +85°C; Table 2 .................................................................. 6  
Changes to Ordering Guide .......................................................... 20  
10/13—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
Data Sheet  
ADL5903  
SPECIFICATIONS  
VPOS = 5.0 V, T A = 25°C, ZO = 50 Ω, Capacitor CRMS = 10 nF, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min Typ  
200 to 6000  
Max  
Unit  
MHz  
Ω
OVERALL FUNCTION  
Frequency Range  
RF INPUT INTERFACE  
Nominal Input Impedance1  
OUTPUT INTERFACE  
DC Output Resistance  
Rise Time  
Pin RFIN  
Single-ended drive  
Pin VRMS  
50  
100  
3.5  
34  
32  
330  
Ω
PIN = off to 0 dBm, 10% to 90%, CRMS = 10 nF  
PIN = off to 0 dBm, 10% to 90%, CRMS = 100 nF  
PIN = 0 dBm to off, 90% to 10%, CRMS = 10 nF  
PIN = 0 dBm to off, 90% to 10%, CRMS = 100 nF  
µs  
µs  
µs  
µs  
Fall Time  
f = 300 MHz  
1.0 dB Dynamic Range  
Continuous wave (CW) input, TA = 25°C, VPOS = 5.0 V  
CW input, TA = 25°C, VPOS = 3.0 V  
37  
34  
dB  
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Three-point calibration at −16 dBm, −4 dBm, and +12 dBm  
Three-point calibration at −16 dBm, −4 dBm, and +12 dBm  
Deviation from output at 25°C  
−40°C < TA < +85°C; PIN = 10 dBm  
−55°C < TA < +125°C; PIN = 10 dBm  
−40°C < TA < +85°C; PIN = −10 dBm  
−55°C < TA < +125°C; PIN = −10 dBm  
Calibration at −16 dBm and +4 dBm  
Calibration at −16 dBm and +4 dBm (X-intercept)  
13  
−24  
dBm  
dBm  
−0.2/+0.032  
−0.25/+0.052  
−0.2/+0.152  
−0.25/+0.22  
36.3  
dB  
dB  
dB  
dB  
mV/dB  
dBm  
Logarithmic Slope  
Logarithmic Intercept  
f = 700 MHz  
−39  
1.0 dB Dynamic Range  
CW input, TA = 25°C, VPOS = 5.0 V  
37  
dB  
CW input, TA = 25°C, VPOS = 3.0 V  
34  
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Three-point calibration at −16 dBm, −3 dBm, and +13 dBm  
Three-point calibration at −16 dBm, −3 dBm, and +13 dBm  
Deviation from output at 25°C  
14  
−23  
dBm  
dBm  
−40°C < TA < +85°C; PIN = 10 dBm  
−0.13  
dB  
−55°C < TA < +125°C; PIN = 10 dBm  
−40°C < TA < +85°C; PIN = −10 dBm  
−55°C < TA < +125°C; PIN = −10 dBm  
Calibration at −16 dBm and +4 dBm  
−0.16  
dB  
dB  
dB  
mV/dB  
dBm  
−0.15/+0.12  
−0.2/+0.22  
36.4  
Logarithmic Slope  
Logarithmic Intercept  
f = 900 MHz  
Calibration at −16 dBm and +4 dBm (X-intercept)  
−38  
1.0 dB Dynamic Range  
CW input, TA = 25°C, VPOS = 5.0 V  
37  
dB  
CW input, TA = 25°C, VPOS = 3.0 V  
33  
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Three-point calibration at −16 dBm, −3 dBm, and +13 dBm  
Three-point calibration at −16 dBm, −3 dBm, and +13 dBm  
Deviation from output at 25°C  
14  
−23  
dBm  
dBm  
−40°C < TA < +85°C; PIN = 10 dBm  
−55°C < TA < +125°C; PIN = 10 dBm  
−40°C < TA < +85°C; PIN = −10 dBm  
−55°C < TA < +125°C; PIN = −10 dBm  
Calibration at −16 dBm and +4 dBm  
Calibration at −16 dBm and +4 dBm (X-intercept)  
−0.12  
dB  
dB  
dB  
dB  
mV/dB  
dBm  
−0.15/+0.022  
−0.1/+0.022  
−0.1/+0.12  
35.5  
Logarithmic Slope  
Logarithmic Intercept  
−38  
Rev. B | Page 3 of 20  
 
 
ADL5903  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
f = 1900 MHz  
1.0 dB Dynamic Range  
CW input, TA = 25°C, VPOS = 5.0 V  
37  
dB  
CW input, TA = 25°C, VPOS = 3.0 V  
33  
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Three-point calibration at −15 dBm, −3 dBm, and +13 dBm  
Three-point calibration at −15 dBm, −3 dBm, and +13 dBm  
Deviation from output at 25°C  
15  
−22  
dBm  
dBm  
−40°C < TA < +85°C; PIN = 10 dBm  
−0.15  
dB  
−55°C < TA < +125°C; PIN = 10 dBm  
−40°C < TA < +85°C; PIN = −10 dBm  
−55°C < TA < +125°C; PIN = −10 dBm  
Calibration at −16 dBm and +4 dBm  
−0.15  
dB  
dB  
dB  
mV/dB  
dBm  
−0.3/+0.22  
−0.35/+0.252  
37.2  
Logarithmic Slope  
Logarithmic Intercept  
f = 2140 MHz  
Calibration at −16 dBm and +4 dBm (X-intercept)  
−35.5  
1.0 dB Dynamic Range  
CW input, TA = 25°C, VPOS = 5.0 V  
35  
dB  
CW input, TA = 25°C, VPOS = 3.0 V  
32  
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Three-point calibration at −15 dBm, −3 dBm, and +13 dBm  
Three-point calibration at −15 dBm, −3 dBm, and +13 dBm  
Deviation from output at 25°C  
15  
−20  
dBm  
dBm  
−40°C < TA < +85°C; PIN = 10 dBm  
−0.2  
dB  
−55°C < TA < +125°C; PIN = 10 dBm  
−40°C < TA < +85°C; PIN = −10 dBm  
−55°C < TA < +125°C; PIN = −10 dBm  
Calibration at −16 dBm and +4 dBm  
−0.2  
dB  
dB  
dB  
mV/dB  
dBm  
−0.4/+0.22  
−0.5/+0.32  
37.4  
Logarithmic Slope  
Logarithmic Intercept  
f = 2600 MHz  
Calibration at −16 dBm and +4 dBm (X-intercept)  
−35  
1.0 dB Dynamic Range  
CW input, TA = 25°C, VPOS = 5.0 V  
34  
dB  
CW input, TA = 25°C, VPOS = 3.0 V  
32  
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Three-point calibration at −14 dBm, −2 dBm, and +14 dBm  
Three-point calibration at −14 dBm, −2 dBm, and +14 dBm  
Deviation from output at 25°C  
15  
−19  
dBm  
dBm  
−40°C < TA < +85°C; PIN = 10 dBm  
−0.2  
dB  
−55°C < TA < +125°C; PIN = 10 dBm  
−40°C < TA < +85°C; PIN = −10 dBm  
−55°C < TA < +125°C; PIN = −10 dBm  
Calibration at −16 dBm and +4 dBm  
−0.25  
dB  
dB  
dB  
mV/dB  
dBm  
−0.5/+0.22  
−0.6/+0.32  
37.7  
Logarithmic Slope  
Logarithmic Intercept  
f = 3500 MHz  
Calibration at −16 dBm and +4 dBm (X-intercept)  
−34  
1.0 dB Dynamic Range  
CW input, TA = 25°C, VPOS = 5.0 V  
33  
dB  
CW input, TA = 25°C, VPOS = 3.0 V  
31  
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Three-point calibration at −12 dBm, 0 dBm, and +14 dBm  
Three-point calibration at −12 dBm, 0 dBm, and +14 dBm  
Deviation from output at 25°C  
16  
−17  
dBm  
dBm  
−40°C < TA < +85°C; PIN = 10 dBm  
−0.2  
dB  
−55°C < TA < +125°C; PIN = 10 dBm  
−40°C < TA < +85°C; PIN = −10 dBm  
−55°C < TA < +125°C; PIN = −10 dBm  
Calibration at −12 dBm and +8 dBm  
Calibration at −12 dBm and +8 dBm (X-intercept)  
−0.25  
dB  
dB  
dB  
mV/dB  
dBm  
−0.6/+0.32  
−0.75/+0.42  
39  
Logarithmic Slope  
Logarithmic Intercept  
−31.5  
Rev. B | Page 4 of 20  
Data Sheet  
ADL5903  
Parameter  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
f = 5800 MHz  
1.0 dB Dynamic Range  
CW input, TA = 25°C, VPOS = 5.0 V  
35  
dB  
CW input, TA = 25°C, VPOS = 3.0 V  
32  
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Three-point calibration at −12 dBm, −2 dBm, and +12 dBm  
Three-point calibration at −12 dBm, −2 dBm, and +12 dBm  
Deviation from output at 25°C  
19  
−16  
dBm  
dBm  
−40°C < TA < +85°C; PIN = 10 dBm  
−0.6/+0.32  
dB  
−55°C < TA < +125°C; PIN = 10 dBm  
−40°C < TA < +85°C; PIN = −10 dBm  
−55°C < TA < +125°C; PIN = −10 dBm  
Calibration at −12 dBm and +8 dBm  
Calibration at −12 dBm and +8 dBm (X-intercept)  
Pin ENBL  
−0.7/+0.42  
−1.1/+0.72  
−1.4/+1.12  
40  
dB  
dB  
dB  
mV/dB  
dBm  
Logarithmic Slope  
Logarithmic Intercept  
POWER-DOWN INTERFACE  
Voltage Level to Enable  
Voltage Level to Disable  
Input Bias Current  
−27  
2
0
VPOS  
0.6  
V
V
nA  
VENBL = 2.2 V  
Pin VPOS  
<20  
POWER SUPPLY INTERFACE  
Supply Voltage  
3.0  
5.25  
V
Quiescent Current  
TA = 25°C, no signal at RFIN, VPOS = 5.0 V  
TA = 125°C, no signal at RFIN, VPOS = 5.0 V  
ENBL input low condition  
3
mA  
mA  
µA  
3.6  
<100  
Power-Down Current  
1 Refer to Figure 12, input return loss, S11 (dB).  
2 The slash indicates a range. For example, −0.2/+0.03 means −0.2 to +0.03.  
Rev. B | Page 5 of 20  
ADL5903  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Supply Voltage, VPOS  
5.5 V  
20 dBm  
Input Average RF Power1, 2  
Equivalent Voltage, Sine Wave Input  
Internal Power Dissipation  
3.16 V peak  
200 mW  
3.95°C/W  
78.5°C/W  
150°C  
3
θJC  
3
θJA  
ESD CAUTION  
Maximum Junction Temperature  
Operating Temperature Range  
(ADL5903ACPZN)  
−40°C to +85°C  
Operating Temperature Range  
(ADL5903SCPZN)  
−55°C to +125°C  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
−65°C to +150°C  
300°C  
1 This is for long durations. Excursions above this level, with durations much  
less than 1 second, are possible without damage.  
2 Driven from a 50 Ω source.  
3 No airflow with the exposed pad soldered to a 4-layer JEDEC board.  
Rev. B | Page 6 of 20  
 
 
Data Sheet  
ADL5903  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
RFIN  
1
2
3
4
8
7
6
5
NIC  
VRMS  
ENBL  
VPOS  
GND  
ADL5903  
TOP VIEW  
(Not to Scale)  
CRMS  
CREG  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
2. THE EXPOSED PAD IS INTERNALLY CONNECTED TO GND  
AND REQUIRES A GOOD THERMAL AND ELECTRICAL  
CONNECTION TO THE GROUND OF THE PRINTED  
CIRCUIT BOARD (PCB).  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
RFIN  
Signal Input. This pin is internally ac-coupled with a broadband matching network. See the RF Input Interface  
section for broadband matching options.  
2
3
GND  
CRMS  
Device Ground. Connect GND to system ground using a low impedance path.  
RMS Averaging Pin. Connect a capacitor between the CREG and CRMS pins for rms averaging. See the  
Choosing a Value for CRMS section for choosing the correct CRMS capacitor value.  
4
CREG  
Bypass Capacitor Connection for On-Chip Regulator. Bypass this pin to ground using a capacitor and a series  
resistor. See Basic Connections section for more information.  
5
6
VPOS  
ENBL  
Supply Voltage. The operational range is 3.0 V to 5.25 V.  
Enable. Connect the ENBL pin to a logic high (2 V to VPOS) to enable the device. Connect the ENBL pin to a  
logic low (0 V to 0.6 V) to disable the device.  
7
VRMS  
Signal Output. The output from the VRMS pin is proportional to the logarithm of the rms value at the input  
level.  
8
0
NIC  
EP  
No Internal Connection. Do not connect to this pin. This pin is not internally connected.  
Exposed Pad. The exposed pad is internally connected to GND and requires a good thermal and electrical  
connection to the ground of the printed circuit board (PCB).  
Rev. B | Page 7 of 20  
 
ADL5903  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VPOS = 5.0 V, CRMS = 10 nF, TA = −55°C (light blue), TA = −40°C (blue), +25°C (green), +85°C (red), +125°C (orange) where appropriate.  
Input levels referred to 50 Ω source. Input RF signal is a sine wave (CW), unless otherwise indicated.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.5  
1.0  
0.5  
0
300MHz  
700MHz  
900MHz  
1.90GHz  
2.14GHz  
2.60GHz  
3.50GHz  
5.80GHz  
10dBm  
0dBm  
–10dBm  
–20dBm  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
100M  
1G  
FREQUENCY (Hz)  
6G  
P
(dBm)  
IN  
Figure 6. Typical VRMS vs. Frequency for Four Input Levels  
Figure 3. Typical VRMS vs. Input Level vs. Frequency  
(300 MHz to 5.80 GHz) at 25°C  
2.4  
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
CW  
CW  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
16 QAM PEP = 6.34dB  
64 QAM PEP = 7.17dB  
QPSK PEP = 3.8dB  
5
16 QAM PEP = 6.34dB  
64 QAM PEP = 7.17dB  
QPSK PEP = 3.8dB  
4
4
CALIBRATION AT –16dBm, –3dBm, AND +8dBm  
CALIBRATION AT –15dBm, –3dBm, AND +8dBm  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 7. Error from CW Linear Reference vs. Input Level and Signal  
Modulation (QPSK, 16 QAM, 64 QAM), Frequency = 2.14 GHz, CRMS = 1 µF  
Figure 4. Error from CW Linear Reference vs. Input Level and Signal  
Modulation (QPSK, 16 QAM, 64 QAM), Frequency = 900 MHz, CRMS = 1 µF  
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
CW  
CW  
5
5
4-CARRIER W-CDMA PEP = 12.08dBm  
1-CARRIER W-CDMA PEP = 10.56dB  
CALIBRATION AT –15dBm, –3dBm, AND +8dBm  
LTE TM1 1-CARRIER 20MHz PEP = 11.58dB  
4
4
CALIBRATION AT –15dBm, –3dBm, AND +8dBm  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–30  
–25  
–20  
–15  
–10  
(dBm)  
–5  
0
5
10  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
P
P
(dBm)  
IN  
IN  
Figure 5. Error from CW Linear Reference vs. Input Level and Signal  
Modulation (One-Carrier W-CDMA, Four-Carrier W-CDMA),  
Frequency = 2.14 GHz, CRMS = 1 µF  
Figure 8. Error from CW Linear Reference vs. Input Level and Signal  
Modulation (LTE TM1 One-Carrier, 20 MHz),  
Frequency = 2.14 GHz, CRMS = 1 µF  
Rev. B | Page 8 of 20  
 
Data Sheet  
ADL5903  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
–5  
4.00V TO 5.00V FOLLOW SAME PLOT  
–10  
–15  
–20  
–25  
3.00V  
3.40V  
3.80V  
4.00V  
4.25V  
4.50V  
5.00V  
0
1
2
3
4
5
6
–40  
–30  
–20  
–10  
(dBm)  
0
10  
20  
P
FREQUENCY (GHz)  
IN  
Figure 9. Output Voltage vs. Input Level and Supply Voltage at 900 MHz  
Figure 12. Input Return Loss vs. RF Frequency  
1.8  
1.8  
1.6  
1.4  
1.2  
1
RF BURST PULSE  
1.6  
RF BURST PULSE  
+5dBm  
+5dBm  
1.4  
0dBm  
0dBm  
1.2  
–5dBm  
–5dBm  
1.0  
–15dBm  
–15dBm  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
TIME (ms)  
TIME (ms)  
Figure 10. Output Response to RF Burst Input, Carrier Frequency = 900 MHz,  
RMS = 100 nF (see Figure 36 in the Measurement Setups Section)  
Figure 13. Output Response to RF Burst Input, Carrier Frequency = 900 MHz,  
RMS = 10 nF (see Figure 36 in the Measurement Setups Section)  
C
C
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ENABLE PULSE  
+5 dBm  
SUPPLY VOLTAGE PULSE  
+5dBm  
0dBm  
0 dBm  
–5 dBm  
–5dBm  
–15 dBm  
–15dBm  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
0.4  
1.5  
0.6  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
TIME (ms)  
TIME (ms)  
Figure 11. Output Response to Gating on ENBL Pin for Various RF Input  
Levels, Carrier Frequency = 900 MHz, CRMS = 100 nF (see Figure 38 in the  
Measurement Setups Section)  
Figure 14. Output Response to Gating on Power Supply for Various RF Input  
Levels, Carrier Frequency = 900 MHz, CRMS = 100 nF, 5.0 V Supply  
(see Figure 37, in the Measurement Setups Section))  
Rev. B | Page 9 of 20  
 
ADL5903  
Data Sheet  
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CALIBRATION AT –16dBm, –4dBm, AND +12dBm  
5
5
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
4
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–6  
–6  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
IN  
(dBm)  
IN  
Figure 15. VRMS and Log Conformance Error vs. Input Level and Temperature  
at 300 MHz  
Figure 18. Distribution of Log Conformance Error with Respect to Calibration  
at 25°C vs. Input Level and Temperature at 300 MHz  
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
5
4
3
2
1
0
5
CALIBRATION AT –16dBm, –3dBm, AND +13dBm  
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 16. VRMS and Log Conformance Error vs. Input Level and Temperature  
at 700 MHz  
Figure 19. Distribution of Log Conformance Error with Respect to Calibration  
at 25°C vs. Input Level and Temperature at 700 MHz  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
5
4
3
2
1
0
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CALIBRATION AT –16dBm, –3dBm, AND +13dBm  
5
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
IN  
(dBm)  
IN  
Figure 17. VRMS and Log Conformance Error vs. Input Level and Temperature  
at 900 MHz  
Figure 20. Distribution of Log Conformance Error with Respect to Calibration  
at 25°C vs. Input Level and Temperature at 900 MHz  
Rev. B | Page 10 of 20  
Data Sheet  
ADL5903  
2.4  
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CALIBRATION AT –15dBm, –3dBm, AND +13dBm  
5
5
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
4
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
IN  
(dBm)  
IN  
Figure 21. VRMS and Log Conformance Error vs. Input Level and Temperature  
at 1.9 GHz  
Figure 24. Distribution of Log Conformance Error with Respect to Calibration  
at 25°C vs. Input Level and Temperature at 1.9 GHz  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
CALIBRATION AT –15dBm, –3dBm, AND +13dBm  
5
5
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
4
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
IN  
(dBm)  
IN  
Figure 22. VRMS and Log Conformance Error vs. Input Level and Temperature  
at 2.14 GHz  
Figure 25. Distribution of Log Conformance Error with Respect to Calibration  
at 25°C vs. Input Level and Temperature at 2.14 GHz  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CALIBRATION AT –14dBm, –2dBm, AND +14dBm  
5
5
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
4
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 26. Distribution of Log Conformance Error with Respect to Calibration  
at 25°C vs. Input Level and Temperature at 2.6 GHz  
Figure 23. VRMS and Log Conformance Error vs. Input Level and Temperature  
at 2.6 GHz  
Rev. B | Page 11 of 20  
ADL5903  
Data Sheet  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
CALIBRATION AT –12dBm, 0Bm, AND +14dBm  
5
5
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
4
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 30. Distribution of Log Conformance Error with Respect to Calibration  
at 25°C vs. Input Level and Temperature at 3.5 GHz  
Figure 27. VRMS and Log Conformance Error vs. Input Level and Temperature  
at 3.5 GHz  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
5
5
4
4
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–1  
–2  
–3  
–4  
–5  
–6  
CALIBRATION AT –12dBm, –2dBm, AND +12dBm  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 31. Distribution of Log Conformance Error with Respect to Calibration  
at 25°C vs. Input Level and Temperature at 5.8 GHz  
Figure 28. VRMS and Log Conformance Error vs. Input Level and Temperature  
at 5.8 GHz  
1400  
1400  
REPRESENTS MORE  
THAN 8000 PARTS  
REPRESENTS MORE  
THAN 8000 PARTS  
1200  
1200  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
0.60  
0.65  
0.70  
0.75  
(V)  
0.80  
0.85  
1.50  
1.55  
1.60  
1.65  
(V)  
1.70  
1.75  
V
V
RMS  
RMS  
Figure 32. Distribution of VRMS, PIN = −16 dBm, 900 MHz  
Figure 29. Distribution of VRMS, PIN = 8 dBm, 900 MHz  
Rev. B | Page 12 of 20  
Data Sheet  
ADL5903  
1400  
CALIBRATION BETWEEN  
–16dBm AND –4dBm  
REPRESENTS MORE  
THAN 8000 PARTS  
CALIBRATION BETWEEN  
–16dBm AND –4dBm  
REPRESENTS MORE  
THAN 8000 PARTS  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
30  
32  
34  
36  
38  
40  
–44  
–42  
–40  
–38  
–36  
–34  
–32  
SLOPE (mV/dB)  
INTERCEPT (dBm)  
Figure 35. Distribution of Slope at 900 MHz  
Figure 33. Distribution of Intercept at 900 MHz  
30  
25  
20  
15  
10  
5
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
0
–40  
–30  
–20  
–10  
(dBm)  
0
10  
20  
P
IN  
Figure 34. Supply Current vs. Input Level  
(at −55°C, −40°C, +25°C, +85°C, +125°C)  
Rev. B | Page 13 of 20  
ADL5903  
Data Sheet  
MEASUREMENT SETUPS  
ADL5903  
EVALUATION  
BOARD  
ROHDE & SCHWARZ  
SIGNAL GENERATOR  
SMR 40  
ADL5903  
EVALUATION  
BOARD  
ROHDE & SCHWARZ  
SIGNAL GENERATOR  
RF OUT  
RFIN  
VRMS  
SMR 40  
TEKTRONIX  
DIGITAL PHOSPHOR  
OSCILLOSCOPE  
TDS5104  
RF OUT  
PULSE IN  
RFIN  
VRMS  
ENBL  
PULSE IN  
VPOS  
ENBL  
TEKTRONIX  
DIGITAL PHOSPHOR  
OSCILLOSCOPE  
TDS5104  
VPOS  
1MΩ  
TRIGGER  
HP E3631A  
POWER  
SUPPLY  
1MΩ  
TRIGGER  
AGILENT 33522A  
FUNCTION/ARBITRATRY  
WAVEFORM GENERATOR  
HP E3631A  
AGILENT 33522A  
FUNCTION/ARBITRATRY  
WAVEFORM GENERATOR  
POWER  
SUPPLY  
CH1  
CH2  
CH1  
CH2  
Figure 36. Hardware Configuration for Output Response to RF Burst Input  
Measurements  
Figure 38. Hardware Configuration for Output Response to ENBL Pin Gating  
Measurements  
ADL5903  
EVALUATION  
BOARD  
ROHDE & SCHWARZ  
SIGNAL GENERATOR  
SMR 40  
TEKTRONIX  
DIGITAL PHOSPHOR  
OSCILLOSCOPE  
TDS5104  
RFIN  
VPOS  
VRMS  
ENBL  
RF OUT  
PULSE IN  
1MΩ  
TRIGGER  
AD8019  
EVALUATION  
BOARD  
AGILENT 33522A  
FUNCTION/ARBITRATRY  
WAVEFORM GENERATOR  
+1  
CH1  
CH2  
Figure 37. Hardware Configuration for Output Response to Power Supply  
Gating Measurements  
Rev. B | Page 14 of 20  
 
 
 
 
Data Sheet  
ADL5903  
THEORY OF OPERATION  
The ADL5903 is a true rms detector with a 35 dB measurement  
range at 2.14 GHz with useable range up to 6 GHz. It features  
no error ripple over its range, low temperature drift, and very  
low power consumption. Temperature stability of the rms  
output measurements provides ≤ 0.5 dB error typical over the  
temperature range of −40°C to +85°C up to 3.5 GHz. The  
measurement output voltage scales linearly in decibels with a  
slope of approximately 36 mV/dB.  
200 MHz. Add an external shunt resistance of 127 Ω, if desired,  
when operating at low frequencies to improve input return loss  
over the range of 200 MHz to 1.7 GHz. Figure 41 shows a  
comparison of the input return loss, with and without the  
external shunt resistor.  
VPOS  
MATCHING  
NETWORK  
The ADL5903 operates from a nominal supply voltage of 3.0 V  
to 5.0 V. The rms core is internally regulated to 3.6 V, that is, the  
full measurement range is available for supply voltages between  
3.8 V and 5.0 V. Below 3.8 V, the high end of the measurement  
range degrades gradually whereas the low end shows no noticeable  
change in error characteristics or calibration requirements. At  
2.14 GHz, the measurement range extends to 14 dBm for 3.8 V  
and above, and to 12 dBm at a supply voltage of 3.0 V. The low  
end of the ADL5903 measurement range is limited by internal  
device offsets that vary from device to device but tracks well  
over temperature. See the Device Calibration and Error  
Calculation section for more information.  
4pF  
OPTIONAL  
133  
127Ω  
GND  
Figure 40. Simplified RF Input Interface  
0
EXTERNAL 127SHUNT TERM  
NO SHUNT TERM  
–5  
–10  
–15  
–20  
–25  
The core rms processing of the ADL5903 uses a proprietary  
technique that provides accuracy for complex modulation  
signals irrespective of the crest factor of the input signal. An  
integrating filter capacitor at Pin CRMS performs the square  
domain averaging.  
An RF input matching network allows the device to be driven  
with a 50 Ω source with reasonable input return loss. The  
measurement intercept varies with frequency, as shown in  
Table 1 and the Typical Performance Characteristics section.  
0
1
2
3
4
5
6
FREQUENCY (GHz)  
Figure 41. Return Loss with and Without External Shunt Termination  
VPOS  
CREG  
5
4
BASIC CONNECTIONS  
ADL5903  
INTERNAL  
FILTERING  
The ADL5903 requires a single supply of 3.0 V to 5.0 V. The  
supply is connected to the VPOS supply pin. This pin is  
decoupled using two capacitors with values equal or similar  
to those shown in Figure 44. Place these capacitors as near the  
VPOS pin as possible.  
6
1
ENBL  
RFIN  
630pF  
1k  
3
7
CRMS  
VRMS  
4pF  
100Ω  
RMS CORE  
BUFFER  
The CREG pin provides a bypass capacitor connection for an  
on-chip regulator. The CREG pin is connected to ground with a  
4.02 Ω resistor and a 0.1 μF capacitor. The CRMS pin provides  
an averaging function for the rms computation and is  
referenced to Pin 4 (CREG). A filter capacitor can be placed  
between the CRMS and CREG pins. More information on  
choosing the CRMS capacitor is provided in the Choosing a Value  
for CRMS section. Using smaller values for CRMS allows quicker  
response times to a pulsed waveform. Higher values of CRMS are  
required for correct rms computation as the peak to average  
ratio of modulated signals increases and the bandwidth of the  
modulated signals decreases.  
2
8
GND  
NIC  
EP  
Figure 39. Simplified Architecture  
RF INPUT INTERFACE  
A single-ended input at the RFIN pin drives the ADL5903, and  
a 50 Ω source can drive it directly without any external  
components. Figure 40 shows the simplified RF input interface.  
An on-chip matching network presents 133 ꢀ of shunt  
resistance to ground and ac coupling to the rms core. The ESD  
protection circuitry is designed to allow voltage swings as high  
as 2 V at the input.  
As shown in Figure 12 (input return loss, S11), the device offers  
excellent input return loss over most of the operating range but  
rises to around −9 dB near its minimum operating frequency of  
Rev. B | Page 15 of 20  
 
 
 
 
 
ADL5903  
Data Sheet  
700  
600  
500  
400  
300  
200  
100  
0
1M  
100k  
10k  
1k  
The ENBL pin configures the device enable interface.  
Connecting the ENBL pin to a logic high signal (2 V to 5.0 V)  
enables the device, and connecting the pin to a logic low signal  
(0 V to 0.6 V) disables the device. The exposed pad is internally  
connected to GND and must be soldered to a low impedance  
ground plane.  
OUTPUT NOISE (mV p-p)  
10% TO 90% RISE TIME (µs)  
90% to 10% FALL TIME (µs)  
The output buffer of the ADL5903 features a PMOS common  
source drive transistor and a resistive pull-down load. Under  
typical operating conditions, the internal measurement range of  
the device limits the output signal range to ≤2.2 V. Place a  
100 Ω resistor on chip in series with the output to allow  
additional filtering, if desired.  
100  
10  
1
0.1  
1000  
0.1  
1
10  
100  
CHOOSING A VALUE FOR CRMS  
C
CAPACITANCE (nF)  
RMS  
CRMS provides the averaging function for the internal rms  
computation. Using the minimum value for CRMS allows the  
quickest response time to a pulsed waveform but leaves signifi-  
cant output noise on the output voltage signal. However, a large  
filter capacitor reduces output noise and improves the rms  
measurement accuracy but at the expense of the response time.  
Figure 42. Output Noise, Rise/Fall Times vs. CRMS Capacitance,  
Single Carrier W-CDMA (Test Model TM1-64) at 2.14 GHz with PIN = 0 dBm  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100M  
10M  
1M  
OUTPUT NOISE (mV p-p)  
10% TO 90% RISE TIME (µs)  
90% to 10% FALL TIME (µs)  
100k  
10k  
1k  
In applications where the response time is not critical, place a  
relatively large capacitor on the CRMS pin. In Figure 44, a value  
of 0.1 µF is used. For most signal modulation schemes, this value  
ensures excellent rms measurement compliance and low residual  
100  
10  
output noise. There is no maximum capacitance limit for CRMS  
.
Figure 42 and Figure 43 show how output noise varies with CRMS  
when the ADL5903 is driven by a single carrier W-CDMA  
(Test Model TM1-64, peak envelope power = 10.56 dB, bandwidth  
= 3.84 MHz) and an LTE signal (Test Model TM1-20, peak  
envelope power = 11.58 dB, bandwidth = 20 MHz), respectively.  
1
0
0.1  
0.1  
1000  
1
10  
100  
CFLT4 (nF)  
Figure 43. Output Noise, Rise/Fall Times vs. CRMS Capacitance,  
Single Carrier LTE (Test Model TM1-20) at 2.14 GHz with PIN = 0 dBm  
Figure 42 and Figure 43 also show how the value of CRMS affects  
the response time. This is measured by applying an RF burst at  
2.14 GHz at 0 dBm to the ADL5903. The 10% to 90% rise time  
and 90% to 10% fall time are then measured.  
VPOS  
100pF  
4.02Ω  
0.1μF  
0.1μF  
VPOS  
CREG  
0.1μF  
5
4
INTERNAL  
FILTERING  
ADL5903  
ENBL  
RFIN  
V
6
1
ENBL  
RFIN  
1kΩ  
630pF  
CRMS  
VRMS  
3
7
4pF  
100Ω  
RMS CORE  
VRMS  
BUFFER  
2
8
GND  
NIC  
EP  
Figure 44. Basic Connections  
Rev. B | Page 16 of 20  
 
 
 
 
Data Sheet  
ADL5903  
Table 4. Recommended Minimum CRMS Values for Various Modulation Schemes  
Peak Envelope  
Carrier  
Output Noise Rise/Fall  
Modulation/Standard  
Power Ratio (dB) Bandwidth (MHz) CRMSMIN (nF) (mV p-p)  
Times (μs)  
4.0  
5
10  
140  
80  
60  
50  
50  
80  
96  
76  
3.5/32  
QPSK, 5 MSPS (SQR COS Filter, = 0.35)  
QPSK ,15 MSPS (SQR COS Filter, = 0.35)  
64 QAM, 1 MSPS (SQR COS Filter, = 0.35)  
64 QAM, 5 MSPS (SQR COS Filter, = 0.35)  
64 QAM, 13 MSPS (SQR COS Filter, = 0.35)  
W-CDMA, One-Carrier, TM1-64  
4.1  
15  
1
10  
3.5/32  
7.4  
1000  
100  
100  
100  
100  
100  
280/2600  
34/330  
34/330  
34/330  
34/330  
34/330  
7.4  
5
7.4  
13  
3.84  
18.84  
20  
10.56  
W-CDMA Four-Carrier, TM1-64, TM1-32, TM1-16, TM1-8 12.08  
LTE, TM1, One-Carrier, 20 MHz (2048 QPSK Subcarriers) 11.58  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
Table 4 shows the recommended minimum values of CRMS for  
popular modulation schemes. The output response time and  
noise performance are also shown. Using lower capacitor values  
results in faster response times but can result in degraded rms  
measurement accuracy. If the output noise shown in Table 4 is  
unacceptably high, it can be reduced by increasing CRMS or by  
implementing an averaging algorithm after the output voltage of  
the ADL5903 has been sampled by an analog-to-digital  
converter (ADC).  
CALIBRATION AT –10dBm AND +10dBm  
5
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
The values in Table 4 were experimentally determined to be the  
minimum capacitance that ensures good rms accuracy for that  
particular signal type. This test was initially performed with a  
large capacitance value on the CRMS pin (for example, 10 μF).  
The value of VRMS was noted for a fixed input level (for example,  
−10 dBm). The value of CRMS was then progressively reduced (this  
can be accomplished with press-down capacitors) until the  
value of VRMS started to deviate from its original value (this  
indicates that the accuracy of the rms computation is degrading  
and that CRMS is becoming too small).  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
IN  
Figure 45. 2.14 GHz VRMS and Log Conformance Error at +25°C, −40°C, −55°C,  
+85°C, and +125°C  
Board level calibration must be performed to achieve high  
accuracy because the slope and intercept vary from device to  
device. For a two-point calibration, write the equation for the  
idealized output voltage as  
In general, the minimum CRMS required increases as the peak-to-  
average ratio of the carrier increases. The minimum required CRMS  
also tends to increase as the bandwidth of the carrier decreases.  
With narrow-band carriers, the noise spectrum of the VRMS  
output tends to have a correspondingly narrow profile. The  
relatively narrow spectral profile demands a larger value of CRMS  
that reduces the low-pass corner frequency of the averaging  
function and ensures a valid rms computation.  
V
RMS(IDEAL) = Slope × (PIN Intercept)  
(1)  
where:  
Slope is the change in output voltage divided by the change in  
input level (dBm).  
PIN is the input level.  
Intercept is the calculated input level at which the output voltage  
is equal to 0 V (note that Intercept is an extrapolated theoretical  
value and not a measured value).  
DEVICE CALIBRATION AND ERROR CALCULATION  
In general, calibration is performed during equipment  
manufacture by applying two or more known signal levels to the  
input of the ADL5903 and measuring the corresponding output  
voltages. The calibration points must be within the linear  
operating range of the device.  
The measured transfer function of the ADL5903 at 2.14 GHz is  
shown in Figure 45, which contains plots of both output voltage  
and log conformance error vs. input level for one device. As the  
input level varies from −30 dBm to +14 dBm, the output voltage  
varies from near 0 V to 1.9 V.  
With a two-point calibration, calculate the slope and intercept  
as follows:  
Slope = (VRMS1 VRMS2)/(PIN1 PIN2  
Intercept = PIN1 − (VRMS1/Slope)  
)
(2)  
(3)  
Rev. B | Page 17 of 20  
 
 
 
ADL5903  
Data Sheet  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
After the slope and intercept are calculated (and stored in some  
form) an equation can be used to calculate an unknown input  
level based on the output voltage of the detector.  
CALIBRATION AT –16dBm, –4dBm, AND +12dBm  
5
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
PIN (Unknown) = (VRMS(MEASURED)/Slope) + Intercept  
(4)  
2
The log conformance error is the difference between this  
straight line and the actual performance of the detector.  
1
0
–1  
–2  
–3  
–4  
–5  
–6  
Error (dB) = (VRMS(MEASURED) VRMS(IDEAL))/Slope  
(5)  
Figure 45 shows the log conformance error at five temperatures,  
ranging from −55°C to +125°C, when using a two-point  
calibration (calibration points are +10 dBm and −10 dBm)  
measured at one temperature, 25°C. The error at the two  
calibration points passes through 0 dB for the 25°C curve by  
definition.  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
IN  
Figure 47. 2.14 GHz VRMS and Log Conformance Error for Second Device at  
+25°C, −40°C, −55°C, +85°C, and +125°C  
Multipoint calibration can be used to further extend the  
measurement dynamic range. In this case, the transfer function  
is segmented, with each segment having its own slope and  
intercept. Figure 46 shows the error plot of the same device with  
calibration points at −16 dBm, −4 dBm, and+12 dBm. The  
three-point, dual-slope calibration results in tighter error  
bounds over the high end of the range and extends the lower  
measurement range to better than −20 dBm for 1 dB error.  
For comparison, the three-point calibration of a different device  
is shown in Figure 47 for the same frequency and calibration  
points. For this example, note that the device has greater  
dynamic range, and the temperature dependence of error at  
lower power levels is inverted.  
Finally, Figure 48 shows the log conformance error at 2.14 GHz  
for a collection of four devices at +25°C, −40°C, and +85°C with  
three-point calibration (−16 dBm, −4 dBm, and+12 dBm). The  
error plots at each temperature are calculated with respect to  
the slope and intercept measurements from the 25°C line for  
each device. This is consistent with a typical production  
environment where calibration at one temperature is required.  
Figure 48 illustrates the various error scenarios possible at low  
input levels. The dynamic range of the three-point calibrated  
devices extends to below −20 dBm for 1.0 dB error.  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
CALIBRATION AT –16dBm, –4dBm, AND +12dBm  
5
4
–55°C  
–40°C  
+25°C  
+85°C  
+125°C  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
CALIBRATION AT –16dBm, –4dBm, AND +12dBm  
5
4
–40°C  
+25°C  
+85°C  
3
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
2
P
(dBm)  
IN  
1
Figure 46. 2.14 GHz VRMS and Log Conformance Error at +25°C, −40°C, −55°C,  
+85°C, and +125°C  
0
–1  
–2  
–3  
–4  
–5  
–6  
For the example shown in Figure 46, the error drift with tempera-  
ture is very small over the upper 20 dB of the measurement  
range, varying 0.3 dB, but widens at lower power levels, from  
−20 dBm to −5 dBm to as high as 0.9 dB. This is typical  
performance, although some devices may perform better.  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
IN  
Figure 48. 2.14 GHz VRMS and Log Conformance +25°C, −40°C, and +85°C for  
Multiple Devices  
Rev. B | Page 18 of 20  
 
 
 
Data Sheet  
ADL5903  
EVALUATION BOARD SCHEMATIC AND CONFIGURATION OPTIONS  
P201 (24-PIN TEST HEADER)  
A
B
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10 11 12  
10 11 12  
R209  
DNI  
R208  
DNI  
OUT  
VPOS  
C210  
DNI  
EP  
RFIN  
8
7
6
5
1
2
3
4
RFIN  
NIC  
R206  
100kΩ  
R204  
0Ω  
VOUT  
COMM  
VRMS  
COMM  
3
ADL5903  
S201  
ENBL  
CRMS  
ENBL  
VPOS  
2
1
R205  
100kΩ  
CREG  
VPOS  
DNI  
C209  
R202  
C201  
100pF  
C202  
0.1μF  
C205  
DNI  
C203A  
0.1μF  
C203  
DNI  
4.02Ω  
C205A  
DNI  
0.1μF  
TO P201  
TO P201  
R203  
DNI  
TO P201  
R207  
DNI  
C204A  
DNI  
C204  
DNI  
TO P201  
Figure 49. Evaluation Board Schematic  
Table 5. Evaluation Board Configuration Options  
Component  
Description  
Default Value  
RFIN, R208  
RF input. R208 is a shunt input termination to optimize low frequency input  
return loss.  
RFIN = SMA connector,  
R208 = DNI1  
R205, R206, S201  
Device enable interface. Header S201 configures the enable network. Pin 2  
and Pin 3 of S201 enable the resistive divider network. R205 and R206 form a  
resistive divider network to step down the voltage provided by VPOS for an  
optimal enable setpoint condition.  
R205 = 100 kΩ,  
R206 = 100 kΩ,  
S201 = Jumper Pin 2 and  
Jumper Pin 3  
C201, C202  
C209  
Power supply decoupling. The nominal supply decoupling consists of a  
100 pF and a 0.1 μF capacitor placed near the device.  
C201 = 100 pF,  
C202 = 0.1 µF  
C209 = 0.1 µF  
RMS averaging capacitor. C209 is the capacitor (CRMS) interfacing CREG and  
CRMS for rms averaging. Set the value of the rms averaging capacitor on the  
peak-to-average ratio of the input signal and based on the desired output  
response time and residual output noise. See the Choosing a Value for CRMS  
section for more information.  
R202, C203A  
R204, C210  
Bypass capacitor connection for on-chip regulator. R202 and C203A are  
connected to the CREG pin to provide decoupling for the internal regulator.  
RMS output. R204 and C210 provide options for output filtering and to mimic R204 = 0 Ω, C210 = DNI1  
system load conditions.  
R202 = 4.02 Ω, C203A = 0.1 µF  
C203, C204, C204A, C205,  
C205A, R203, R207, R209  
Test header interface.  
C203, C204, C204A, C205, C205A,  
R203, R207, R208, R209 = DNI1  
EP  
Exposed pad. The exposed pad is soldered to a ground pad, which provides  
both a thermal ground and an electrical ground.  
1 DNI = do not install.  
Rev. B | Page 19 of 20  
 
 
ADL5903  
Data Sheet  
OUTLINE DIMENSIONS  
1.70  
1.60  
1.50  
2.10  
2.00 SQ  
1.90  
0.50 BSC  
8
5
0.15 REF  
PIN 1 INDEX  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
AREA  
0.425  
0.350  
0.275  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 50. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]  
2.00 mm × 2.00 mm Body, Ultra Thin, Dual Lead  
(CP-8-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option Branding Ordering Quantity  
ADL5903ACPZN-R7 −40°C to +85°C  
ADL5903SCPZN-R7 −55°C to +125°C  
ADL5903-EVALZ  
8-Lead LFCSP_UD, 7’Tape and Reel  
8-Lead LFCSP_UD, 7’Tape and Reel  
Evaluation Board  
CP-8-10  
CP-8-10  
BS  
CJ  
3,000  
3,000  
1 Z = RoHS Compliant Part.  
©2013–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11769-0-5/15(B)  
Rev. B | Page 20 of 20  
 
 

相关型号:

ADL5903ACPZN-R2

SPECIALTY ANALOG CIRCUIT
ADI

ADL5903ACPZN-R7

200 MHz to 6 GHz 35 dB TruPwr&trade; Detector
ADI

ADL5903SCPZN-R2

IC,POWER METERING,BICMOS,LLCC,8PIN,PLASTIC
ADI

ADL5903SCPZN-R7

200 MHz to 6 GHz 35 dB TruPwr&trade; Detector
ADI

ADL5904

RMS and envelope threshold detection
ADI

ADL5904-EVALZ

RMS and envelope threshold detection
ADI

ADL5904ACPZN-R7

DC to 6 GHz, 45 dB TruPwr Detector with Envelope Threshold Detection
ADI

ADL5906

10 MHz to 10 GHz 67 dB TruPwr Detector
ADI

ADL5906-EVALZ

10 MHz to 10 GHz 67 dB TruPwr Detector
ADI

ADL5906ACPZN-R2

10 MHz to 10 GHz 67 dB TruPwr Detector
ADI

ADL5906ACPZN-R7

10 MHz to 10 GHz 67 dB TruPwr Detector
ADI

ADL5906SCPZN-R2

10 MHz to 10 GHz 67 dB TruPwr Detector
ADI