ADL5521_08 [ADI]

400 MHz - 4000 MHz Low Noise Amplifier; 400兆赫 - 4000 MHz低噪声放大器
ADL5521_08
型号: ADL5521_08
厂家: ADI    ADI
描述:

400 MHz - 4000 MHz Low Noise Amplifier
400兆赫 - 4000 MHz低噪声放大器

放大器
文件: 总45页 (文件大小:2874K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
400 MHz – 4000 MHz  
Low Noise Amplifier  
ADL5521  
Preliminary Technical Data  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Operation from 400 MHz to 4000 MHz  
Noise figure of 0.8 dB at 900 MHz  
Including external input match  
Gain of 20.0 dB at 900 MHz  
ACTIVE  
BIAS  
VBIAS 1  
8 VPOS  
OIP3 of 37.7 dBm at 900 MHz  
RFIN 2  
NC 3  
7 RFOUT  
6 NC  
P1dB of 22.0 dBm at 900 MHz  
Integrated bias control circuit  
Single supply operation from 3 V to 5 V  
Operating current of 26 mA at 3 V  
Small footprint LFCSP package  
Pin compatible with 17.5 dB gain ADL5523  
ADL5521  
NC 4  
5 NC  
Figure 1.  
GENERAL DESCRIPTION  
The ADL5521 is a high performance GaAs pHEMT low-noise  
amplifier. It provides high gain and low noise figure for single down-  
conversion IF sampling receiver architectures as well as direct down  
conversion receivers. The ADL5521 also has low power  
consumption at 3 V.  
The ADL5521 allows optimal noise matching without sacrificing  
significant gain matching. S11 of better then 6 dB can typically be  
achieved when matching for optimal noise.  
The ADL5521 amplifier comes in a compact, thermally enhanced,  
3mm x 3mm LFCSP package and operates over the temperature  
range of −40°C to +85°C.  
The ADL5523 is a companion part that offers a gain of 17.5 dB in a  
pin compatible package. A fully populated evaluation board is also  
available.  
Rev. PrC  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2008 Analog Devices, Inc. All rights reserved.  
ADL5521  
Preliminary Technical Data  
AC Specifications................................................................................................................................................................................................................4  
AC Specifications................................................................................................................................................................................................................5  
AC Specifications (cont.)...................................................................................................................................................................................................6  
AC Specifications (cont.)...................................................................................................................................................................................................7  
De-Embedded S-Parameters, VPOS = 5V .........................................................................................................................................................................8  
De-Embedded S-Parameters, VPOS = 5V (Cont.) ...........................................................................................................................................................9  
De-Embedded S-Parameters, VPOS = 3V ...................................................................................................................................................................... 10  
De-Embedded S-Parameters, VPOS = 3V (Cont.) ........................................................................................................................................................ 11  
Absolute Maximum Ratings........................................................................................................................................................................................... 12  
ESD Caution................................................................................................................................................................................................................. 12  
Pin Configuration And Functional Descriptions........................................................................................................................................................ 13  
Typical Performance Characteristics, 500MHz, VPOS = 5V .................................................................................................................................... 14  
Typical Performance Characteristics, 900MHz, VPOS = 5V .................................................................................................................................... 15  
Typical Performance Characteristics, 1300MHz, VPOS = 5V.................................................................................................................................. 16  
Typical Performance Characteristics, 1950MHz, VPOS = 5V.................................................................................................................................. 17  
Typical Performance Characteristics, 2140MHz, VPOS = 5V.................................................................................................................................. 18  
Typical Performance Characteristics, 2600MHz, VPOS = 5V.................................................................................................................................. 19  
Typical Performance Characteristics, 3500MHz, VPOS = 5V.................................................................................................................................. 20  
Typical Performance Characteristics, 500MHz, VPOS = 3V .................................................................................................................................... 21  
Typical Performance Characteristics, 900MHz, VPOS = 3V .................................................................................................................................... 22  
Typical Performance Characteristics, 1300MHz, VPOS = 3V.................................................................................................................................. 23  
Typical Performance Characteristics, 1950MHz, VPOS = 3V.................................................................................................................................. 24  
Typical Performance Characteristics, 2140MHz, VPOS = 3V.................................................................................................................................. 25  
Typical Performance Characteristics, 2600MHz, VPOS = 3V.................................................................................................................................. 26  
Typical Performance Characteristics, 3500MHz, VPOS = 3V.................................................................................................................................. 27  
Typical DC Performance Characteristics..................................................................................................................................................................... 28  
Source Pull Circles, Gain and Noise Figure, VPOS = 5V.............................................................................................................................................. 30  
LOAD Pull Circles, Gain and IP3, VPOS = 5V .............................................................................................................................................................. 31  
Source Pull Circles, Noise Figure, VPOS = 3V............................................................................................................................................................... 32  
LOAD Pull Circles, Gain and IP3, VPOS = 3V .............................................................................................................................................................. 33  
Tuning the ADL5521/23 Eval Board for Optimal Noise Figure................................................................................................................................ 34  
Tuning S22................................................................................................................................................................................................................ 34  
Rev. PrC| Page 2 of 45  
Preliminary Technical Data  
ADL5521  
Tuning the LNA Input for Optimal Gain............................................................................................................................................................. 37  
Tuning the LNA Input for Optimal Noise Figure............................................................................................................................................... 37  
S11 Parameters of ADL5521,23 with S22 Matched ............................................................................................................................................ 38  
Example of Optimal Noise Matching at 850MHz............................................................................................................................................... 41  
Outline Dimensions ........................................................................................................................................................................................................ 45  
Ordering Guide............................................................................................................................................................................................................ 45  
Rev. PrC| Page 3 of 45  
ADL5521  
Preliminary Technical Data  
AC SPECIFICATIONS  
T = 25°C, RBIAS = 3.3KΩ, parameters include matching circuit, matched for optimal noise, unless otherwise noted  
Table 1.  
Parameter  
Conditions  
3V  
5V  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Frequency = 500MHz  
Gain (S21)  
21.6  
TBD  
22.5  
TBD  
dB  
Gain Flatness  
In the [450 – 550]  
frequency band  
dB/MHz  
Gain vs. Temperature  
-40° to +85 C°  
TBD  
TBD  
dB/degC  
dB  
Noise Figure  
1.0  
1.0  
RBIAS = 3.3KΩ  
RBIAS = 5.2KΩ  
0.9  
0.9  
Output IP3  
Two tones, each 0dBm  
out  
29.0  
37.8  
dBm  
dBm  
Output 1 dB Compression  
Point  
16.8  
22.0  
Input return loss (S11)  
Output return loss (S22)  
-7.5  
-8.6  
dB  
dB  
dB  
-16.9  
-26.9  
-16.4  
-27.9  
Isolation (S12)  
Frequency = 900MHz  
Gain (S21)  
19.7  
TBD  
20  
dB  
Gain Flatness  
In the [850 – 950]  
frequency band  
TBD  
dB/MHz  
Gain vs. Temperature  
-40° to +85 C°  
TBD  
TBD  
dB/degC  
dB  
Noise Figure  
0.9  
0.9  
RBIAS = 3.3KΩ  
RBIAS = 5.2KΩ  
0.9  
0.8  
Output IP3  
Two tones, each 0dBm  
out  
27.8  
37.7  
dBm  
dBm  
Output 1 dB Compression  
Point  
16.8  
22.0  
Input return loss (S11)  
Output return loss (S22)  
-7.6  
-8.5  
dB  
dB  
-16.3  
17.1  
Isolation (S12)  
-24.4  
25.5  
dB  
Rev. PrC| Page 4 of 45  
Preliminary Technical Data  
ADL5521  
AC SPECIFICATIONS  
T = 25°C, RBIAS = 3.3KΩ, parameters include matching circuit, matched for optimal noise, unless otherwise noted  
Table 2.  
Parameter  
Conditions  
3V  
5V  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Frequency = 1300MHz  
Gain (S21)  
18.1  
TBD  
18.4  
TBD  
dB  
Gain Flatness  
In the [1200 – 1300]  
frequency band  
dB/MHz  
Gain vs. Temperature  
40° to +85 C°  
-
TBD  
TBD  
dB/degC  
dB  
Noise Figure  
0.9  
0.9  
RBIAS = 3.3KΩ  
RBIAS = 5.2KΩ  
0.8  
0.8  
Output IP3  
Two tones, each 0dBm  
out  
29.7  
35.6  
dBm  
dBm  
Output 1 dB Compression  
Point  
16.2  
21.9  
Input return loss (S11)  
Output return loss (S22)  
Isolation (S12)  
-6.3  
-7.9  
dB  
dB  
dB  
-16.8  
-22.3  
-16.2  
-23.3  
Frequency = 1950MHz  
Gain (S21)  
14.9  
TBD  
15.4  
dB  
Gain Flatness  
In the [1920 – 1980]  
frequency band  
0.015  
dB/MHz  
Gain vs. Temperature  
40° to +85 C°  
-
TBD  
0.018  
dB/degC  
dB  
Noise Figure  
0.9  
0.9  
RBIAS = 3.3KΩ  
RBIAS = 5.2KΩ  
0.8  
0.8  
Output IP3  
Two tones, each 0dBm  
out  
29.4  
35.5  
dBm  
dBm  
21.6  
Output 1 dB Compression  
Point  
16.0  
Input return loss (S11)  
Output return loss (S22)  
-8.1  
-8.9  
dB  
dB  
-25.7  
-29.9  
Isolation (S12)  
-21.2  
-21.7  
dB  
Rev. PrC| Page 5 of 45  
ADL5521  
Preliminary Technical Data  
AC SPECIFICATIONS (CONT.)  
T = 25°C, RBIAS = 3.3KΩ, parameters include matching circuit, matched for optimal noise, unless otherwise noted  
Table 3.  
Parameter  
Conditions  
3V  
5V  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Frequency = 2140MHz  
Gain (S21)  
14.4  
TBD  
14.8  
TBD  
dB  
Gain Flatness  
In the [2110 – 2170]  
frequency band  
dB/MHz  
Gain vs. Temperature  
40° to +85 C°  
-
TBD  
TBD  
dB/degC  
dB  
Noise Figure  
0.9  
0.9  
RBIAS = 3.3KΩ  
RBIAS = 5.2KΩ  
0.8  
0.8  
Output IP3  
Two tones, each 0dBm  
out  
31.1  
35.8  
dB  
dBm  
Output 1 dB Compression  
Point  
16.1  
21.5  
Input return loss (S11)  
Output return loss (S22)  
-7.8  
-8.5  
dB  
dB  
-32.1  
-35.6  
Isolation (S12)  
Frequency = 2600MHz  
Gain (S21)  
-20.6  
-21.1  
dB  
12.1  
TBD  
12.5  
TBD  
dB  
Gain Flatness  
In the [2500 – 2700]  
frequency band  
dB/MHz  
Gain vs. Temperature  
40° to +85 C°  
-
TBD  
TBD  
dB/degC  
dB  
Noise Figure  
0.9  
0.9  
RBIAS = 3.3KΩ  
RBIAS = 5.2KΩ  
0.8  
0.8  
Output IP3  
Two tones, each 0dBm  
out  
31.0  
35.5  
dBm  
dBm  
Output 1 dB Compression  
Point  
16.0  
21.1  
Input return loss (S11)  
Output return loss (S22)  
-6.1  
-6.4  
dB  
dB  
-15.7  
-15.8  
Isolation (S12)  
-20.2  
-20.6  
dB  
Rev. PrC| Page 6 of 45  
Preliminary Technical Data  
ADL5521  
AC SPECIFICATIONS (CONT.)  
T = 25°C, RBIAS = 3.3KΩ, parameters include matching circuit, matched for optimal noise, unless otherwise noted  
Table 4.  
Parameter  
Conditions  
3V  
5V  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Frequency = 3500MHz  
Gain (S21)  
10.0  
TBD  
10.5  
TBD  
dB  
Gain Flatness  
In the [3400 – 3600]  
frequency band  
dB/MHz  
Gain vs. Temperature  
40° to +85 C°  
-
TBD  
TBD  
dB/degC  
dB  
Noise Figure  
1.1  
1.1  
1.1  
33  
RBIAS = 3.3KΩ  
RBIAS = 5.2KΩ  
1.1  
Output IP3  
Two tones, each 0dBm  
out  
28.1  
dBm  
dBm  
Output 1 dB Compression  
Point  
15.0  
20.2  
Input return loss (S11)  
Output return loss (S22)  
Isolation (S12)  
-8.6  
-9.1  
dB  
dB  
dB  
-17.1  
-18.0  
-17.1  
-18.3  
DC Specifications  
Parameter  
Conditions  
3V  
5V  
Typ  
Min  
Typ  
Max  
Min  
Max  
Unit  
Current Consumption  
36  
65  
48  
ma  
RBIAS = 3.3KΩ  
RBIAS = 5.2KΩ  
TBD  
Rev. PrC| Page 7 of 45  
ADL5521  
Preliminary Technical Data  
DE-EMBEDDED S-PARAMETERS, VPOS = 5V  
Frequency (GHz)  
S11  
S11  
S12  
S12  
S21  
S21  
S22  
S22  
K
(Mag) (Angle) (Mag) (Angle) (Mag) (Angle) (Mag) (Angle)  
0.05  
0.125  
0.25  
0.375  
0.5  
0.625  
0.75  
0.875  
1.0  
1.125  
1.25  
1.375  
1.5  
1.625  
1.75  
1.875  
2.0  
2.125  
2.25  
2.375  
2.5  
2.625  
2.75  
2.875  
3.0  
3.125  
Rev. PrC| Page 8 of 45  
Preliminary Technical Data  
ADL5521  
DE-EMBEDDED S-PARAMETERS, VPOS = 5V (CONT.)  
Frequency (GHz)  
S11  
S11  
S12  
S12  
S21  
S21  
S22  
S22  
K
(Mag) (Angle) (Mag) (Angle) (Mag) (Angle) (Mag) (Angle)  
3.125  
3.25  
3.375  
3.5  
3.625  
3.75  
3.875  
4.0  
Rev. PrC| Page 9 of 45  
ADL5521  
Preliminary Technical Data  
DE-EMBEDDED S-PARAMETERS, VPOS = 3V  
Frequency (GHz)  
S11  
S11  
S12  
S12  
S21  
S21  
S22  
S22  
K
(Mag) (Angle) (Mag) (Angle) (Mag) (Angle) (Mag) (Angle)  
0.05  
0.125  
0.25  
0.375  
0.5  
0.625  
0.75  
0.875  
1.0  
1.125  
1.25  
1.375  
1.5  
1.625  
1.75  
1.875  
2.0  
2.125  
2.25  
2.375  
2.5  
2.625  
2.75  
2.875  
3.0  
3.125  
Rev. PrC| Page 10 of 45  
Preliminary Technical Data  
ADL5521  
DE-EMBEDDED S-PARAMETERS, VPOS = 3V (CONT.)  
Frequency (GHz)  
S11  
S11  
S12  
S12  
S21  
S21  
S22  
S22  
K
(Mag) (Angle) (Mag) (Angle) (Mag) (Angle) (Mag) (Angle)  
3.125  
3.25  
3.375  
3.5  
3.625  
3.75  
3.875  
4.0  
Rev. PrC| Page 11 of 45  
ADL5521  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Table 5  
Parameter  
Rating  
5.5 V  
Stresses above those listed under Absolute Maximum  
Ratings may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those  
listed in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
Supply Voltage, VPOS  
Max RF Input Level  
+20dBm  
TBD mW  
TBD mW  
Internal Power Dissipation  
θJA (Exposed paddle soldered down)  
θJA (Exposed paddle not soldered down) TBD°C/W  
θJC (At exposed paddle)  
TBD°C/W  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
TBD°C/W  
TBD°C  
–40°C to +85°C  
–65°C to +150°C  
Lead Temperature Range  
(Soldering 60 sec)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrC| Page 12 of 45  
Preliminary Technical Data  
ADL5521  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
Top View  
(not to scale)  
VBIAS 1  
8 VPOS  
RFIN 2  
NC 3  
7 RFOUT  
6 NC  
Exposed Pad  
NC 4  
5 NC  
ADL5521  
Figure 2. 8-Lead LFCSP  
Table 3. Pin Function Descriptions- 8Lead CSP  
Pin No.  
Mnemonic  
Description  
1
VBIAS  
Bias: Internal DC bias. This pin should be connected to VPOS  
through a 3.3KΩ resistor for optimum performance  
2
RFIN  
NC  
RF Input: Input to LNA  
3,4,5,6  
NC: No internal connection  
7
8
RFOUT  
VPOS  
RF Output: Must be AC-coupled.  
Supply: VDD bias needs to be bypassed to ground using  
low-inductance capacitors. The recommended  
configuration is for the output matching to be done on this  
pin. See schematics in applications section.  
Exposed pad  
EP  
Exposed Paddle: Connect to a low impedance ground plane  
Rev. PrC| Page 13 of 45  
ADL5521  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS, 500MHZ, VPOS = 5V  
Matched for optimal noise figure, external matching circuit included.  
Figure 3. Typical S Parameters, Log magnitude  
Figure 5.Gain, P1dB, OIP3 vs. Frequency  
Figure 4. S11 and S22, Smith Chart  
Figure 6. Distribution of Noise Figure for Five Parts  
Figure 7. Output Power and Gain vs. Temperature  
Figure 8. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 14 of 45  
Preliminary Technical Data  
ADL5521  
TYPICAL PERFORMANCE CHARACTERISTICS, 900MHZ, VPOS = 5V  
Matched for optimal noise figure, external matching circuit included.  
Figure 9. Typical S Parameters, Log magnitude  
Figure 11.Gain, P1dB, OIP3 vs. Frequency  
Figure 10. S11 and S22, Smith Chart  
Figure 12. Distribution of Noise Figure for Five Parts  
Figure 13. Output Power and Gain vs. Temperature  
Figure 14. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 15 of 45  
ADL5521  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS, 1300MHZ, VPOS = 5V  
Matched for optimal noise figure, external matching circuit included.  
Figure 15. Typical S Parameters, Log magnitude  
Figure 17.Gain, P1dB, OIP3 vs. Frequency  
Figure 16. S11 and S22, Smith Chart  
Figure 18. Distribution of Noise Figure for Five Parts  
Figure 19. Output Power and Gain vs. Temperature  
Figure 20. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 16 of 45  
Preliminary Technical Data  
ADL5521  
TYPICAL PERFORMANCE CHARACTERISTICS, 1950MHZ, VPOS = 5V  
Matched for optimal noise figure, external matching circuit included.  
Figure 21. Typical S Parameters, Log magnitude  
Figure 22. S11 and S22, Smith Chart  
3.5  
3
30  
28  
26  
24  
22  
20  
18  
16  
14  
40  
35  
30  
25  
20  
15  
10  
5
OIP3 (-40°C  
+25°C  
+85°C)  
2.5  
2
P1dB (-40°C  
+25°C  
+85°C)  
1.5  
1
Gain (-40°C  
+25°C  
0.5  
+85°C)  
0
0
1920  
1930  
1940  
1950  
1960  
1970  
1980  
1920  
1930  
1940  
1950  
1960  
1970  
1980  
Frequency (MHz)  
Freq - MHz  
Figure 23.Gain, P1dB, OIP3 vs. Frequency  
Figure 24. Distribution of Noise Figure for Five Parts  
30  
38  
-40°C (1920MHz  
1950MHz  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
25  
20  
15  
10  
5
1980MHz)  
+85°C (1920MHz  
Gain (-40°C  
1950MHz  
1980MHz)  
+25°C (1920MHz  
1950MHz  
+25°C  
+85°C)  
Output Power (-40°C  
+25°C  
1980MHz)  
+85°C)  
0
-5  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
-10  
-25  
-20  
-15  
-10  
Pin - dBm  
-5  
0
5
10  
Pout - dBm  
Figure 25. Output Power and Gain vs. Temperature  
Figure 26. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 17 of 45  
ADL5521  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS, 2140MHZ, VPOS = 5V  
Matched for optimal noise figure, external matching circuit included.  
Figure 27. Typical S Parameters, Log magnitude  
Figure 29.Gain, P1dB, OIP3 vs. Frequency  
Figure 28. S11 and S22, Smith Chart  
Figure 30. Distribution of Noise Figure for Five Parts  
Figure 31. Output Power and Gain vs. Temperature  
Figure 32. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 18 of 45  
Preliminary Technical Data  
ADL5521  
TYPICAL PERFORMANCE CHARACTERISTICS, 2600MHZ, VPOS = 5V  
Matched for optimal noise figure, external matching circuit included.  
Figure 33. Typical S Parameters, Log magnitude  
Figure 35.Gain, P1dB, OIP3 vs. Frequency  
Figure 34. S11 and S22, Smith Chart  
Figure 36. Distribution of Noise Figure for Five Parts  
Figure 37. Output Power and Gain vs. Temperature  
Figure 38. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 19 of 45  
ADL5521  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS, 3500MHZ, VPOS = 5V  
Matched for optimal noise figure, external matching circuit included.  
Figure 39. Typical S Parameters, Log magnitude  
Figure 41.Gain, P1dB, OIP3 vs. Frequency  
Figure 40. S11 and S22, Smith Chart  
Figure 42. Distribution of Noise Figure for Five Parts  
Figure 43. Output Power and Gain vs. Temperature  
Figure 44. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 20 of 45  
Preliminary Technical Data  
ADL5521  
TYPICAL PERFORMANCE CHARACTERISTICS, 500MHZ, VPOS = 3V  
Matched for optimal noise figure, external matching circuit included.  
Figure 45. Typical S Parameters, Log magnitude  
Figure 47.Gain, P1dB, OIP3 vs. Frequency  
Figure 46. S11 and S22, Smith Chart  
Figure 48. Distribution of Noise Figure for Five Parts  
Figure 49. Output Power and Gain vs. Temperature  
Figure 50. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 21 of 45  
ADL5521  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS, 900MHZ, VPOS = 3V  
Matched for optimal noise figure, external matching circuit included.  
Figure 51. Typical S Parameters, Log magnitude  
Figure 53.Gain, P1dB, OIP3 vs. Frequency  
Figure 52. S11 and S22, Smith Chart  
Figure 54. Distribution of Noise Figure for Five Parts  
Figure 55. Output Power and Gain vs. Temperature  
Figure 56. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 22 of 45  
Preliminary Technical Data  
ADL5521  
TYPICAL PERFORMANCE CHARACTERISTICS, 1300MHZ, VPOS = 3V  
Matched for optimal noise figure, external matching circuit included.  
Figure 57. Typical S Parameters, Log magnitude  
Figure 59.Gain, P1dB, OIP3 vs. Frequency  
Figure 58. S11 and S22, Smith Chart  
Figure 60. Distribution of Noise Figure for Five Parts  
Figure 61. Output Power and Gain vs. Temperature  
Figure 62. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 23 of 45  
ADL5521  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS, 1950MHZ, VPOS = 3V  
Matched for optimal noise figure, external matching circuit included.  
Figure 63. Typical S Parameters, Log magnitude  
Figure 65.Gain, P1dB, OIP3 vs. Frequency  
Figure 64. S11 and S22, Smith Chart  
Figure 66. Distribution of Noise Figure for Five Parts  
Figure 67. Output Power and Gain vs. Temperature  
Figure 68. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 24 of 45  
Preliminary Technical Data  
ADL5521  
TYPICAL PERFORMANCE CHARACTERISTICS, 2140MHZ, VPOS = 3V  
Matched for optimal noise figure, external matching circuit included.  
Figure 69. Typical S Parameters, Log magnitude  
Figure 71.Gain, P1dB, OIP3 vs. Frequency  
Figure 70. S11 and S22, Smith Chart  
Figure 72. Distribution of Noise Figure for Five Parts  
Figure 73. Output Power and Gain vs. Temperature  
Figure 74. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 25 of 45  
ADL5521  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS, 2600MHZ, VPOS = 3V  
Matched for optimal noise figure, external matching circuit included.  
Figure 75. Typical S Parameters, Log magnitude  
Figure 77.Gain, P1dB, OIP3 vs. Frequency  
Figure 76. S11 and S22, Smith Chart  
Figure 78. Distribution of Noise Figure for Five Parts  
Figure 79. Output Power and Gain vs. Temperature  
Figure 80. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 26 of 45  
Preliminary Technical Data  
ADL5521  
TYPICAL PERFORMANCE CHARACTERISTICS, 3500MHZ, VPOS = 3V  
Matched for optimal noise figure, external matching circuit included.  
Figure 81. Typical S Parameters, Log magnitude  
Figure 83.Gain, P1dB, OIP3 vs. Frequency  
Figure 82. S11 and S22, Smith Chart  
Figure 84. Distribution of Noise Figure for Five Parts  
Figure 85. Output Power and Gain vs. Temperature  
Figure 86. O IP3 vs. Output Power, Temperature and Frequency  
Rev. PrC| Page 27 of 45  
ADL5521  
Preliminary Technical Data  
TYPICAL DC PERFORMANCE CHARACTERISTICS  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature - degC  
Figure 87. ADL5521 Current vs. Temperature, VPOS = 5V  
Rev. PrC| Page 28 of 45  
Preliminary Technical Data  
ADL5521  
VPOS  
C5 (1nF)  
a
L2  
C3 (1nF)  
R1 (3.3KΩ)  
VBIAS  
VDD  
1
8
L1**  
C2 (82pF)  
2
7
6
5
Input  
RFIN  
RFOUT  
3
4
C1*  
NC  
NC  
NC  
NC  
note - ground is through thermal pad  
*Murata-Erie multilayer ceramic cap  
**Coilcraft High Q Surface Mount Inductor  
Figure 88. LNA Eval Board Schematic.  
Table 6. Recommended Components and Positions of Matching Components for Basic Connections, Tuned for Optimal Noise  
Frequency  
500MHz  
900 MHz  
1300 MHz  
C1  
C2  
C3  
C4  
C5  
L1  
9nH  
8.2nH 3.4nH  
3.4nH  
L2  
12nH  
TR1(mm) TR2(mm)  
R1  
open  
2.4pF  
2.7pF  
0
0
0
0
0
open  
150pf  
7.5 x 0.5  
0Ω  
1950 MHz  
2140 MHz  
2600 MHz  
3500 MHz  
1.3pF  
1.3pf  
1.3pf  
0.5pf  
1.1nH  
4 x 0.5  
4.5 x 0.5  
5 x 0.5  
3.5 x 0.5  
3.0 x 0.5  
2.5 x 0.5  
1x 0.5  
0Ω  
10nF 220pF 82pF  
3.3KΩ  
1.1nH  
1nF  
0Ω  
1.3nH  
0Ω  
1.2nf 2.4pf*  
6.5 x 0.5  
0Ω  
*Capacitor, not inductor, used to match at 3500MHz  
Rev. PrC| Page 29 of 45  
ADL5521  
Preliminary Technical Data  
SOURCE PULL CIRCLES, GAIN AND NOISE FIGURE, VPOS = 5V  
Figure 89. Noise Contours for  
500MHz Matching Components  
Figure 90. Noise Contours for  
2140MHz Matching Components  
Figure 91. Noise Contours for  
900MHz Matching Components  
Figure 92. Noise Contours for  
2600MHz Matching Components  
Figure 93. Noise Contours for  
Figure 94. Noise Contours for  
1300MHz Matching Components  
3500MHz Matching Components  
Figure 95. Noise Contours for  
1950MHz Matching Components  
Rev. PrC| Page 30 of 45  
Preliminary Technical Data  
ADL5521  
LOAD PULL CIRCLES, GAIN AND IP3, VPOS = 5V  
Figure 96. IP3 and Gain Contours for  
500MHz Matching Components  
Figure 97. IP3 and Gain Contours  
for 2140MHz Matching Components  
Figure 98. IP3 and Gain Contours for  
900MHz Matching Components  
Figure 99. IP3 and Gain Contours for  
2600MHz Matching Components  
Figure 100. IP3 and Gain Contours  
Figure 101. IP3 and Gain Contours  
for 1300MHz Matching Components for 3500MHz Matching Components  
Figure 102. IP3 and Gain Contours  
for 1950MHz Matching Components  
Rev. PrC| Page 31 of 45  
ADL5521  
Preliminary Technical Data  
SOURCE PULL CIRCLES, NOISE FIGURE, VPOS = 3V  
Figure 103. Noise Contours for  
500MHz Matching Components  
Figure 104. Noise Contours for  
2140MHz Matching Components  
Figure 105. Noise Contours for  
900MHz Matching Components  
Figure 106. Noise Contours for  
2600MHz Matching Components  
Figure 107. Noise Contours for  
Figure 108. Noise Contours for  
1300MHz Matching Components  
3500MHz Matching Components  
Figure 109. Noise Contours for  
1950MHz Matching Components  
Rev. PrC| Page 32 of 45  
Preliminary Technical Data  
ADL5521  
LOAD PULL CIRCLES, GAIN AND IP3, VPOS = 3V  
Figure 110. IP3 and Gain Contours  
for 500MHz Matching Components  
Figure 111. IP3 and Gain Contours  
for 2140MHz Matching Components  
Figure 112. IP3 and Gain Contours  
for 900MHz Matching Components  
Figure 113. IP3 and Gain Contours  
for 2600MHz Matching Components  
Figure 114. IP3 and Gain Contours  
Figure 115. IP3 and Gain Contours  
for 1300MHz Matching Components for 3500MHz Matching Components  
Figure 116. IP3 and Gain Contours  
for 1950MHz Matching Components  
Rev. PrC| Page 33 of 45  
ADL5521  
Preliminary Technical Data  
TUNING THE ADL5521/23 EVAL BOARD FOR OPTIMAL NOISE FIGURE  
The ADL5521 and ADL5523 are monolithic LNAs in a 3x3mm  
LFCSP package. The eval board, as shipped from the factory,  
should give a noise figure of 0.9dB over a bandwidth of several  
hundred MHz. The specific frequency where optimal noise is  
reached depends on the tuning.  
The slider can be seen in the LNA PCB layout in Figure 117 as the  
red area to the right of the bias line. With a 0 Ω jumper in place of  
L2, moving a 1nF capacitor from the top to the bottom effectively  
tunes S22 from 1400 MHz to 3500MHz. Table 7 shows the  
component values and placement required for S22 tuning from  
800MHz to 3200MHz. For lower frequencies, higher values of L2  
can be used to tune S22, and for frequencies from 3.2GHx to  
4.0GHz, smaller values of capacitors can be used on the slider.  
The bandwidth of the ADL5521 is 400MHz to 4GHz, although  
noise figure will degrade above 2.5GHz as the gain begins to roll  
off.  
The results for S22 tuned for different frequencies are shown in  
Figure 118 to Figure 123.  
Note – The factory eval board has a bias resistor on the LNA of  
3.3K Ω. If this bias resistor is increased to 5.2K Ω, the optimal  
noise figure will drop to 0.8dB, but the tradeoff is that the OIP3  
will typically drop from 35 to 33dB. The change in S parameters  
will be insignificant when changing bias resistors, so this section  
will only take into account measurements done with 3.3K Ω bias  
resistor.  
Frequency  
(MHz)  
L2 (nH)  
C3 (nF)  
C3  
Placement  
800  
3.4  
0 Ω  
0 Ω  
0 Ω  
0 Ω  
0 Ω  
Open  
Open  
1nF  
Contents of this note are based completely on lab measurements.  
Although there are plots in which the Agilent ADS environment is  
used, the data in these plots comes completely from lab  
measurements.  
1400  
2000  
2400  
2800  
3200  
A
B
1nF  
1nf  
Tuning S22  
Tuning of the LNA begins with S22 (output tuning). Tuning of the  
LNA output is done by placing reactive components on the bias  
line, referred to in the schematics in Figure 88 as VPOS.  
C
D
1nf  
Table 7. Capacitor and Inductor Tuning and Placement for LNA S22 Tuning  
On the LNA eval board, S22 tuning is achieved by either the use of  
an inductor (L2) on the bias line, or a shunt cap C3) on the bias  
line to ground. Typically, either L2 is required, or C3, but not  
both.  
The evaluation board uses a ‘slider’ on the bias line in order to  
make tuning for S22 as easy as possible. The slider is an area of  
ground etch adjacent to the bias line that is clear of solder mask.  
The bias line in this area is also free of solder mask. This allows a  
capacitor (C3) to be placed anywhere on the bias line to ground  
and so provides easy, very accurate tuning for S22.  
Note that the PCB layout shows two capacitors, C3 and C4.  
Typically only one of these is needed for good S22 tuning.  
Rev. PrC| Page 34 of 45  
Preliminary Technical Data  
ADL5521  
Figure 117. PCB Layout for LNA Eval Board, Note 'Slider' on Bias Line  
Rev. PrC| Page 35 of 45  
ADL5521  
Preliminary Technical Data  
Figure 118. S22 tuned for 800MHz  
Figure 119. S22 tuned for 2.4GHz  
Figure 120. S22 tuned for 1400MHz  
Figure 121. S22 tuned for 2.8GHz  
Figure 122. S22 tuned for 2.0GHz  
Figure 123. S22 tuned for 3.2GHz  
Rev. PrC| Page 36 of 45  
Preliminary Technical Data  
ADL5521  
Tuning the LNA Input for Optimal Gain  
LNAs are generally tuned for either gain or noise optimization, or  
some tradeoff between the two. One figure of merit of an LNA is  
how much tradeoff must be made for one of these parameters to  
optimize the other. With the ADL5521 and ADL5523, S11 of 6 to  
8dB at the input to the matching network can still be typically  
achieved when optimizing for noise.  
S11*  
For optimal gain matching, the goal is to use a matching network  
that converts the input impedance of the LNA to the characteristic  
impedance of the system, typically 50 Ω. Correct tuning for gain  
matching results in a conjugate match. That is, the impedance of  
the matching network at the LNA input, looking back toward the  
generator, will always be the complex conjugate of the LNA input  
impedance when matched for gain.  
S11  
Once the conjugate of S11 is known, a matching circuit must be  
found which transforms the 50 Ω system impedance into the  
conjugate S11 impedance. To do this, the designer starts at the  
origin of the circle and finds components that move the 50  
Ω match to S11*.  
Figure 125. Smith Chart Representation of Conjugate Match  
Tuning the LNA Input for Optimal Noise Figure  
The related impedances for gain matching are shown in Figure  
124. A Smith Chart representation of the conjugate match is  
shown in Figure 125.  
The point in the Smith Chart at which matching for optimal noise  
occurs is typically referred to as Gamma Optimal, or ΓOPT. It’s  
often different than the gain matching point. Finding ΓOPT is not  
as obvious as the gain match. ΓOPT is a function of the  
semiconductor structure and characteristics of the LNA. Typically,  
the fabrication facility that produces the LNA will have this  
information. ΓOPT can also be determined by doing source pull  
testing in the lab.  
50 Ω  
S11  
Matching  
LNA  
Network  
50 Ω  
S11*  
Noise matching for the ADL5521 and 23 is actually very easy, as  
the area of the Smith Chart where the noise figure is optimal or  
near optimal is not confined to a narrow area around ΓOPT. This is  
very advantageous as it means that component variations will play  
a smaller part in board to board variation of noise figure.  
Figure 124. Matching LNA Input for Gain  
The matching area for optimal noise for the ADL5523 and  
ADL5521 is shown in Figure 126. Note that textbooks usually  
define noise circles as a conjugate match. However, for the  
purpose of this note this circle is a direct match, we will do things  
slightly differently. In our case to find the correct matching circuit,  
the designer must start with the S11 of the LNA, then select  
components which move the S11 to within this circle.  
One important aspect of the overall ADL5521 and 23 ease of  
tuning is that as long as S22 is matched for a particular frequency,  
this noise matching area remains very consistent in its placement  
for that frequency. Said another way, if S22 is matched, we simply  
have to take the measured S11 and move it into the black circle for  
optimal noise matching.  
Rev. PrC| Page 37 of 45  
ADL5521  
Preliminary Technical Data  
Frequency  
500MHz  
750MHz  
900 MHz  
1400 MHz  
1950 MHz  
2150 MHz  
2400 MHz  
C1  
na  
C2  
C3  
C5  
L1  
9nH  
L2  
12nH  
3.4nH  
3.4nH  
0 Ω  
2.0pf  
2.4pF  
2.4pF  
1.3pF  
1.3pf  
1.3pf  
11nH  
8.2nH  
5.1nH  
1.1nH  
1.1nH  
1.3nH  
na  
82pf  
1nf  
0 Ω  
1nF  
0 Ω  
0 Ω  
Table 8. L and C Values for ADL5521 Matching Circuits at Various Frequencies  
Figure 126. Area of Optimal Noise Matching for ADL5521, 23  
S11 Parameters of ADL5521,23 with S22 Matched  
To determine the correct matching circuit for optimal noise, the  
next step is to look at the results of S11 for the various frequencies  
at which S22 was tuned earlier in this note. Once the S11 is  
determined for a particular frequency, all that needs to be done is  
to find the matching components that provide that match.  
Figure 127 to Figure 132 show S11 for the various frequencies.  
Again, these measurements are all based on S22 being matched at  
that particular frequency.  
Note that the S11 for every example shown in Figure 127 to Figure  
132 is either in the lower left quadrant of the Smith Chart or  
slightly into the upper left. To move this impedance in the given  
noise circle first requires a series L component at the LNA input.  
The values for L in all of the examples will differ, but a correct  
value of L will move the match along the constant R circle up into  
upper left quadrant of the Smith Chart.  
A shunt capacitor can then be added to move the match along a  
constant admittance line, down and to the right, hopefully right  
into the center of the noise circle given in Figure 126.  
The solution for the structure of the match for all of the examples  
in Figure 127 to Figure 132 is a series L to the input of the LNA,  
and a shunt capacitor at the generator end of this inductor.  
An example of the effect of the series L, shunt C match, based on  
the 800MHz example, is given in Figure 133. This example uses  
the output from the Agilent ADS Smith Chart tool.  
Rev. PrC| Page 38 of 45  
Preliminary Technical Data  
ADL5521  
Figure 127. S11 of ADL5521 with S22 Matched at 800MHz  
Figure 128. S11 of ADL5521 with S22 Matched at 1.4 GHz  
Figure 129. S11 of ADL5521 with S22 Matched at 2.0 GHz  
Rev. PrC| Page 39 of 45  
ADL5521  
Preliminary Technical Data  
Figure 130. S11 of ADL5521 with S22 Matched at 2.4 GHz  
Figure 131. S11 of ADL5521 with S22 Matched at 2.8 GHz  
Figure 132. S11 of ADL5521 with S22 Matched at 3.2 GHz  
Rev. PrC| Page 40 of 45  
Preliminary Technical Data  
ADL5521  
Figure 133. Example of Series L, Shunt C Matching Network for ΓOPT (800MHz Example)  
Example of Optimal Noise Matching at 2.4GHz  
Example of Optimal Noise Matching at 850MHz  
Based on the S11 information given in Figure 127, a value of L of  
9.0nH and a value of C of 2.2pf were experimentally determined  
in the lab. The measured results of Noise Figure and S parameters  
are given in Figure 134, Figure 135, and Figure 136  
Based on the S11 information given in Figure 1275, a value of L of  
1.3nH and a value of C of 1.3pf were experimentally determined  
in the lab. The measured results of Noise Figure and S parameters  
are given in Figure 137, Figure 138, and Figure 139.  
Optimal matching component values for several other frequencies  
are given in Table 8.  
Rev. PrC| Page 41 of 45  
ADL5521  
Preliminary Technical Data  
25  
20  
15  
10  
5
Noise Figure  
Gain  
0
5E+08 7E+08 9E+08 1.1E+09 1.3E+09 1.5E+09 1.7E+09 1.9E+09  
Figure 134. Noise Figure of ADL5521 When Tuned for 850MHz  
Figure 135. S22 and S11 Matching for ADL5521, 850MHz Example  
Rev. PrC| Page 42 of 45  
Preliminary Technical Data  
ADL5521  
Figure 136. Log-Log Plot of S Parameters, ADL5521 850MHz Example  
18  
16  
14  
12  
10  
8
noise figure  
gain  
6
4
2
0
1.50E+09 1.70E+09 1.90E+09 2.10E+09 2.30E+09 2.50E+09  
Figure 137. Noise Figure of ADL5521 When Tuned for 2.4GHz  
Rev. PrC| Page 43 of 45  
ADL5521  
Preliminary Technical Data  
Figure 138. S22 and S11 Matching for ADL5521, 2.4GHz Example  
Figure 139. Log-Log Plot of S Parameters, ADL5521 2.4GHz Example  
Rev. PrC| Page 44 of 45  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
ADL5521  
3.25  
3.00 SQ  
2.75  
0.60 MAX  
5
0.50  
BSC  
0.60 MAX  
8
2.95  
2.75 SQ  
2.55  
1.60  
1.45  
1.30  
EXPOSED  
PAD  
TOP  
VIEW  
PIN 1  
INDICATOR  
(BOTTOM VIEW)  
4
1
PIN 1  
INDICATOR  
0.50  
0.40  
0.30  
1.89  
1.74  
1.59  
12° MAX  
0.90 MAX  
0.85 NOM  
0.70 MAX  
0.65TYP  
0.05 MAX  
0.01 NOM  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
Figure 140. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3mm × 3 mm Body, Very Thin, Dual Lead CP-8-2  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5521ACPZ-R71  
ADL5521ACPZ-WP1  
ADL5521-EVALZ  
Temperature Range  
Package Description  
7” Tape and Reel  
Waffle Pack  
Package Option  
–40°C to +85°C  
–40°C to +85°C  
CP-8-2  
CP-8-2  
Evaluation Board  
ADL5521 is qualified to the reflow profile in JEDEC standard J-STD-020 at a peak temp of 260C. Moisture sensitivity level  
per JEDEC standard J-STD-20 is MSL3.  
1 Z = Pb free part  
Rev. PrC| Page 45 of 45  
PR06828-0-2/08(PrC)  

相关型号:

ADL5523

400 MHz - 4 GHz Low Noise Amplifier
ADI

ADL5523-EVALZ

400 MHz - 4 GHz Low Noise Amplifier
ADI

ADL5523ACPZ

400 MHz to 4000 MHz Low Noise Amplifier
ADI

ADL5523ACPZ-R7

400 MHz - 4 GHz Low Noise Amplifier
ADI

ADL5523ACPZ-WP

400 MHz - 4 GHz Low Noise Amplifier
ADI

ADL5523_09

400 MHz to 4000 MHz Low Noise Amplifier
ADI

ADL5530

DC to 1000 MHz IF Gain Block
ADI

ADL5530-EVAL

DC to 1000 MHz IF Gain Block
ADI

ADL5530-EVALZ

DC to 1000 MHz IF Gain Block
ADI

ADL5530ACPZ-R2

DC to 1000 MHz IF Gain Block; Package: LFCSP (2x3x.85mm); No of Pins: 8; Temperature Range: Industrial
ADI

ADL5530ACPZ-R7

DC to 1000 MHz IF Gain Block
ADI

ADL5530ACPZ-WP

DC to 1000 MHz IF Gain Block
ADI