ADL5350ACPZ [ADI]

LF to 4 GHz High Linearity Y-Mixer; 低频至4 GHz高线性度Y型混频器
ADL5350ACPZ
型号: ADL5350ACPZ
厂家: ADI    ADI
描述:

LF to 4 GHz High Linearity Y-Mixer
低频至4 GHz高线性度Y型混频器

文件: 总24页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LF to 4 GHz  
High Linearity Y-Mixer  
ADL5350  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Broadband radio frequency (RF), intermediate frequency (IF),  
and local oscillator (LO) ports  
Conversion loss: 6.8 dB  
GND  
RF  
INPUT OR  
OUTPUT  
IF  
OUTPUT OR  
INPUT  
ADL5350  
RF  
IF  
Noise figure: 6.5 dB  
High input IP3: 25 dBm  
High input P1dB: 19 dBm  
Low LO drive level  
3V  
GND  
VPOS  
Single-ended design: no need for baluns  
Single-supply operation: 3 V @ 19 mA  
Miniature, 2 mm × 3 mm, 8-lead LFCSP  
RoHS compliant  
LO  
LO  
INPUT  
Figure 1.  
APPLICATIONS  
Cellular base stations  
Point-to-point radio links  
RF instrumentation  
GENERAL DESCRIPTION  
The ADL5350 is a high linearity, up-and-down converting  
mixer capable of operating over a broad input frequency range.  
It is well suited for demanding cellular base station mixer designs  
that require high sensitivity and effective blocker immunity. Based  
on a GaAs pHEMT, single-ended mixer architecture, the ADL5350  
provides excellent input linearity and low noise figure without  
the need for a high power level LO drive.  
The high input linearity of the ADL5350 makes the device an  
excellent mixer for communications systems that require high  
blocker immunity, such as GSM 850 MHz/900 MHz and  
800 MHz CDMA2000. At 2 GHz, a slightly greater supply  
current is required to obtain similar performance.  
The single-ended broadband RF/IF port allows the device to be  
customized for a desired band of operation using simple external  
filter networks. The LO-to-RF isolation is based on the LO  
rejection of the RF port filter network. Greater isolation can be  
achieved by using higher order filter networks, as described in  
the Applications Information section.  
In 850 MHz/900 MHz receive applications, the ADL5350  
provides a typical conversion loss of only 6.7 dB. The input IP3  
is typically greater than 25 dBm, with an input compression  
point of 19 dBm. The integrated LO amplifier allows a low LO  
drive level, typically only 4 dBm for most applications.  
The ADL5350 is fabricated on a GaAs pHEMT, high performance  
IC process. The ADL5350 is available in a 2 mm × 3 mm, 8-lead  
LFCSP. It operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADL5350  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
850 MHz Characteristics..............................................................7  
1950 MHz Characteristics......................................................... 12  
Functional Description.................................................................. 17  
Circuit Description .................................................................... 17  
Implementation Procedure ....................................................... 17  
Applications Information.............................................................. 19  
Low Frequency Applications .................................................... 19  
High Frequency Applications................................................... 19  
Evaluation Board ............................................................................ 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
850 MHz Receive Performance .................................................. 3  
1950 MHz Receive Performance ................................................ 3  
Spur Tables......................................................................................... 4  
850 MHz Spur Table..................................................................... 4  
1950 MHz Spur Table................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
REVISION HISTORY  
2/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADL5350  
SPECIFICATIONS  
850 MHz RECEIVE PERFORMANCE  
VS = 3 V, TA = 25°C, LO power = 4 dBm, re: 50 Ω, unless otherwise noted.  
Table 1.  
Parameter  
Min  
750  
500  
30  
Typ  
850  
780  
70  
6.7  
6.4  
25  
Max  
975  
945  
250  
Unit  
MHz  
MHz  
MHz  
dB  
Conditions  
RF Frequency Range  
LO Frequency Range  
IF Frequency Range  
Conversion Loss  
SSB Noise Figure  
Input Third-Order Intercept (IP3)  
Low-side LO  
fRF = 850 MHz, fLO = 780 MHz, fIF = 70 MHz  
fRF = 850 MHz, fLO = 780 MHz, fIF = 70 MHz  
fRF1 = 849 MHz, fRF2 = 850 MHz, fLO = 780 MHz, fIF = 70 MHz;  
each RF tone 0 dBm  
dB  
dBm  
Input 1dB Compression Point (P1dB)  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Leakage  
IF/2 Spurious  
Supply Voltage  
19.8  
29  
13  
19.5  
−50  
3
dBm  
dBc  
dBc  
dBc  
dBc  
V
fRF = 820 MHz, fLO = 750 MHz, fIF = 70 MHz  
LO power = 4 dBm, fLO = 780 MHz  
LO power = 4 dBm, fLO = 780 MHz  
RF power = 0 dBm, fRF = 850 MHz, fLO = 780 MHz  
RF power = 0 dBm, fRF = 850 MHz, fLO = 780 MHz  
2.7  
3.5  
Supply Current  
16.5  
mA  
LO power = 4 dBm  
1950 MHz RECEIVE PERFORMANCE  
VS = 3 V, TA = 25°C, LO power = 6 dBm, re: 50 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
RF Frequency Range  
LO Frequency Range  
IF Frequency Range  
Conversion Loss  
SSB Noise Figure  
Input Third-Order Intercept (IP3)  
1800 1950 2050 MHz  
1420 1760 2000 MHz  
Low-side LO  
50  
190  
6.8  
6.5  
25  
380  
MHz  
dB  
fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz  
fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz  
fRF1 = 1949 MHz, fRF2 = 1951 MHz, fLO = 1760 MHz, fIF = 190 MHz;  
each RF tone 0 dBm  
dB  
dBm  
Input 1dB Compression Point (P1dB)  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Leakage  
IF/2 Spurious  
Supply Voltage  
19  
dBm  
dBc  
dBc  
dBc  
dBc  
V
fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz  
LO power = 6 dBm, fLO = 1760 MHz  
LO power = 6 dBm, fLO = 1760 MHz  
RF power = 0 dBm, fRF = 1950 MHz, fLO = 1760 MHz  
RF power = 0 dBm, fRF = 1950 MHz, fLO = 1760 MHz  
13.5  
10.5  
11.5  
−54  
3
2.7  
3.5  
Supply Current  
19  
mA  
LO power = 6 dBm  
Rev. 0 | Page 3 of 24  
 
ADL5350  
SPUR TABLES  
All spur tables are (N × fRF) − (M × fLO) mixer spurious products for 0 dBm input power, unless otherwise noted. N.M. indicates that a  
spur was not measured due to it being at a frequency >6 GHz.  
850 MHz SPUR TABLE  
Table 3.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
–100  
–21.6  
–50.0  
–74.8  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–20.6  
–5.6  
–19.2  
–23.6  
–50.5  
–71.8  
–91.6  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–15.3  
–19.6  
–59.8  
–68.1  
–96.1  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–16.7  
–31.9  
–49.1  
–70.2  
–92.7  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
–38.4  
–28.7  
–57.5  
–67.4  
–98.7  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
–26.6  
–46.1  
–51.0  
–66.9  
–90.2  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
–22.1  
–48.5  
–77.7  
–70.8  
–91.7  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–33.2  
–65.8  
–85.2  
–88.8  
–99.5  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
–69.2  
–66.0  
–92.6  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–60.8  
–87.3  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–72.2  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–91.7  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–88.6  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N
8
9
10  
11  
12  
13  
14  
15  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
1950 MHz SPUR TABLE  
Table 4.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
–100  
–10.8  
–48.2  
–72.3  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–13.1  
–7.0  
–61.2  
–71.4  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–32.8  
–25.3  
–41.2  
–83.6  
–91.4  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–22.4  
–27.7  
–44.6  
–64.5  
–84.2  
–90.8  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–33.9  
–47.0  
–62.4  
–78.3  
–82.3  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–74.6  
–64.3  
–76.5  
–77.1  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–83.7  
–80.0  
–79.5  
–93.4  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–92.0  
–83.8  
–94.5  
–94.0  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–95.2  
–100  
–96.4  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–99.2  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–100  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–100  
–100  
–100  
–100  
–100  
–100  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
N.M.  
–100  
–100  
–100  
–100  
–100  
N
8
9
10  
11  
12  
13  
14  
15  
N.M.  
Rev. 0 | Page 4 of 24  
 
ADL5350  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage, VS  
RF Input Level  
LO Input Level  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
4.0 V  
23 dBm  
20 dBm  
324 mW  
154.3°C/W  
135°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
Rev. 0 | Page 5 of 24  
 
ADL5350  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
RF/IF 1  
GND2  
LOIN 3  
NC  
8 RF/IF  
7 NC  
2
ADL5350  
TOP VIEW  
6 VPOS  
5 GND1  
(Not to Scale)  
4
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 8  
RF/IF  
RF and IF Input/Output Ports. These nodes are internally tied together. RF and IF port separation is  
achieved using external tuning networks.  
2, 5, Paddle  
GND2, GND1, GND  
Device Common (DC Ground).  
3
4, 7  
6
LOIN  
NC  
VPOS  
LO Input. Needs to be ac-coupled.  
No Connect. Grounding NC pins is recommended.  
Positive Supply Voltage for the Drain of the LO Buffer. A series RF choke is needed on the supply line  
to provide proper ac loading of the LO buffer amplifier.  
Rev. 0 | Page 6 of 24  
 
ADL5350  
TYPICAL PERFORMANCE CHARACTERISTICS  
850 MHz CHARACTERISTICS  
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
–40  
–20  
0
20  
40  
60  
80  
80  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. Supply Current vs. Temperature  
Figure 6. Input P1dB vs. Temperature  
10  
9
8
7
6
5
4
3
2
1
0
22  
20  
18  
16  
14  
12  
10  
+25°C  
–40°C +85°C  
–40  
–20  
0
20  
40  
60  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 4. Conversion Loss vs. Temperature  
Figure 7. Supply Current vs. Supply Voltage  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
+85°C  
+25°C  
–40°C  
–40  
–20  
0
20  
40  
60  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 5. Input IP3 (IIP3) vs. Temperature  
Figure 8. Conversion Loss vs. Supply Voltage  
Rev. 0 | Page 7 of 24  
 
ADL5350  
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.  
28  
27  
26  
25  
24  
23  
22  
22  
20  
18  
16  
14  
12  
10  
–40°C  
+85°C  
–40°C  
+25°C  
+85°C  
+25°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
3.5  
750  
775  
800  
825  
850  
875  
900  
925  
950  
975  
950  
975  
SUPPLY VOLTAGE (V)  
RF FREQUENCY (MHz)  
Figure 9. Input IP3 vs. Supply Voltage  
Figure 12. Supply Current vs. RF Frequency  
23  
22  
21  
20  
19  
18  
17  
16  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
+85°C  
–40°C  
+25°C  
+25°C  
–40°C  
+85°C  
5.8  
750  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
800  
850  
RF FREQUENCY (MHz)  
900  
SUPPLY VOLTAGE (V)  
Figure 10. Input P1dB vs. Supply Voltage  
Figure 13. Conversion Loss vs. RF Frequency  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
+25°C  
–40°C  
+85°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
750  
775  
800  
825  
850  
875  
900  
925  
950  
SUPPLY VOLTAGE (V)  
RF FREQUENCY (MHz)  
Figure 14. Input IP3 vs. RF Frequency  
Figure 11. Noise Figure vs. Supply Voltage  
Rev. 0 | Page 8 of 24  
ADL5350  
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.  
23  
22  
21  
20  
19  
18  
17  
16  
9
8
7
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
–40°C  
+25°C  
+85°C  
750  
775  
800  
825  
850  
875  
900  
925  
950  
975  
975  
250  
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 15. Input P1dB vs. RF Frequency  
Figure 18. Conversion Loss vs. IF Frequency  
8
7
6
5
4
3
2
1
0
28  
27  
26  
25  
24  
23  
22  
–40°C  
+25°C  
+85°C  
750  
775  
800  
825  
850  
875  
900  
925  
950  
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 16. Noise Figure vs. RF Frequency  
Figure 19. Input IP3 vs. IF Frequency  
22  
20  
18  
16  
14  
12  
10  
8
23  
22  
21  
20  
19  
18  
17  
16  
+25°C  
–40°C  
–40°C  
+85°C  
+25°C  
+85°C  
25  
50  
75  
100  
125  
150  
175  
200  
225  
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. Supply Current vs. IF Frequency  
Figure 20. Input P1dB vs. IF Frequency  
Rev. 0 | Page 9 of 24  
ADL5350  
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.  
10  
9
8
7
6
5
4
3
2
1
0
27  
25  
23  
21  
19  
17  
15  
13  
–40°C  
+25°C  
+85°C  
50  
100  
150  
200  
250  
300  
350  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
12  
10  
IF FREQUENCY (MHz)  
LO LEVEL (dBm)  
Figure 21. Noise Figure vs. IF Frequency  
Figure 24. Input IP3 vs. LO Level  
18  
16  
14  
12  
10  
8
22  
21  
20  
19  
18  
17  
16  
15  
–40°C  
+25°C  
+85°C  
+85°C  
–40°C  
6
4
+25°C  
–2  
2
0
–6  
–4  
0
2
4
6
8
10  
12  
–6  
–4  
–2  
0
2
4
6
8
10  
LO LEVEL (dBm)  
LO LEVEL (dBm)  
Figure 22. Supply Current vs. LO Level  
Figure 25. Input P1dB vs. LO Level  
20  
18  
16  
14  
12  
10  
8
12  
11  
10  
–40°C  
+25°C  
9
8
7
6
5
4
+85°C  
–4  
6
–6  
–2  
0
2
4
6
8
10  
12  
–2  
0
2
4
6
8
LO LEVEL (dBm)  
LO LEVEL (dBm)  
Figure 23. Conversion Loss vs. LO Level  
Figure 26. Noise Figure vs. LO Level  
Rev. 0 | Page 10 of 24  
ADL5350  
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.  
–13  
–14  
–15  
–16  
–17  
–18  
–19  
–20  
–21  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–40°C  
+25°C  
+85°C  
750 775  
800  
825  
850  
875  
900  
925  
950  
975  
630  
680  
730  
780  
830  
880  
930  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 27. IF Feedthrough vs. RF Frequency  
Figure 29. RF Leakage vs. LO Frequency  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
+25°C  
+85°C  
–40°C  
680  
705  
730  
755  
780  
805  
830  
855  
880  
905  
LO FREQUENCY (MHz)  
Figure 28. IF Feedthrough vs. LO Frequency  
Rev. 0 | Page 11 of 24  
ADL5350  
1950 MHz CHARACTERISTICS  
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C,  
unless otherwise noted.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
–40  
–20  
0
20  
40  
60  
80  
80  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 30. Supply Current vs. Temperature  
Figure 33. Input P1dB vs. Temperature  
10  
9
8
7
6
5
4
3
2
1
0
22  
20  
18  
16  
14  
12  
10  
+25°C  
+85°C  
–40°C  
–40  
–20  
0
20  
40  
60  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 31. Conversion Loss vs. Temperature  
Figure 34. Supply Current vs. Supply Voltage  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
+85°C  
+25°C  
–40°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
–40  
–20  
0
20  
40  
60  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 35. Conversion Loss vs. Supply Voltage  
Figure 32. Input IP3 vs. Temperature  
Rev. 0 | Page 12 of 24  
 
ADL5350  
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C,  
unless otherwise noted.  
28  
22  
20  
18  
16  
14  
12  
10  
+25°C  
+85°C  
27  
26  
25  
24  
23  
22  
–40°C  
+85°C  
+25°C  
–40°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.4  
3.4  
3.5  
3.5  
3.5  
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050  
SUPPLY VOLTAGE (V)  
RF FREQUENCY (MHz)  
Figure 36. Input IP3 vs. Supply Voltage  
Figure 39. Supply Current vs. RF Frequency  
20  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
5.8  
+25°C  
19  
18  
17  
16  
+85°C  
–40°C  
+85°C  
+25°C  
–40°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050  
SUPPLY VOLTAGE (V)  
RF FREQUENCY (MHz)  
Figure 37. Input P1dB vs. Supply Voltage  
Figure 40. Conversion Loss vs. RF Frequency  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
+85°C  
+25°C  
–40°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050  
SUPPLY VOLTAGE (V)  
RF FREQUENCY (MHz)  
Figure 38. Noise Figure vs. Supply Voltage  
Figure 41. Input IP3 vs. RF Frequency  
Rev. 0 | Page 13 of 24  
ADL5350  
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C,  
unless otherwise noted.  
23  
22  
21  
20  
19  
18  
17  
16  
9
8
7
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
–40°C  
+25°C  
+85°C  
50 75 100 125 150 175 200 225 250 275 300 325 350 375  
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 45. Conversion Loss vs. IF Frequency  
Figure 42. Input P1dB vs. RF Frequency  
28  
10  
9
8
7
6
5
4
3
2
27  
26  
25  
24  
23  
22  
+85°C  
+25°C  
–40°C  
1
50 75 100 125 150 175 200 225 250 275 300 325 350 375  
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 46. Input IP3 vs. IF Frequency  
Figure 43. Noise Figure vs. RF Frequency  
23  
22  
+25°C  
22  
21  
20  
19  
18  
17  
16  
20  
18  
16  
14  
12  
10  
8
+85°C  
–40°C  
–40°C  
+25°C  
+85°C  
50 75 100 125 150 175 200 225 250 275 300 325 350 375  
50 75 100 125 150 175 200 225 250 275 300 325 350 375  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 47. Input P1dB vs. IF Frequency  
Figure 44. Supply Current vs. IF Frequency  
Rev. 0 | Page 14 of 24  
ADL5350  
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C,  
unless otherwise noted.  
12  
27  
25  
23  
21  
19  
17  
15  
13  
+25°C  
10  
8
+85°C  
–40°C  
6
4
2
0
50  
100  
150  
200  
250  
300  
350  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
12  
10  
IF FREQUENCY (MHz)  
LO LEVEL (dBm)  
Figure 48. Noise Figure vs. IF Frequency  
Figure 51. Input IP3 vs. LO Level  
22  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
20  
18  
16  
14  
12  
10  
8
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
6
4
2
0
–6  
–4  
–2  
0
2
4
6
8
10  
12  
–6  
–4  
–2  
0
2
4
6
8
10  
LO LEVEL (dBm)  
LO LEVEL (dBm)  
Figure 49. Supply Current vs. LO Level  
Figure 52. Input P1dB vs. LO Level  
20  
18  
16  
14  
12  
10  
8
12  
11  
10  
9
–40°C  
+25°C  
+85°C  
8
7
6
5
6
–6  
4
–2  
–4  
–2  
0
2
4
6
8
10  
12  
0
2
4
6
8
LO LEVEL (dBm)  
LO LEVEL (dBm)  
Figure 50. Conversion Loss vs. LO Level  
Figure 53. Noise Figure vs. LO Level  
Rev. 0 | Page 15 of 24  
ADL5350  
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C,  
unless otherwise noted.  
–8  
0
–9  
–2  
–10  
–11  
–12  
–13  
–14  
–15  
–4  
–6  
–40°C  
–8  
–10  
–12  
–14  
+25°C  
+85°C  
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050  
1560  
1610  
1660  
1710  
1760  
1810  
1860  
1910  
1960  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 54. IF Feedthrough vs. RF Frequency  
Figure 56. RF Leakage vs. LO Frequency  
–8  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
–40°C  
+85°C  
+25°C  
1610 1635 1660 1685 1710 1735 1760 1785 1810 1835 1860  
LO FREQUENCY (MHz)  
Figure 55. IF Feedthrough vs. LO Frequency  
Rev. 0 | Page 16 of 24  
ADL5350  
FUNCTIONAL DESCRIPTION  
CIRCUIT DESCRIPTION  
IMPLEMENTATION PROCEDURE  
The ADL5350 is a GaAs pHEMT, single-ended, passive  
mixer with an integrated LO buffer amplifier. The device  
relies on the varying drain to source channel conductance  
of a FET junction to modulate an RF signal. A simplified  
schematic is shown in Figure 57.  
The ADL5350 is a simple single-ended mixer that relies  
on off-chip circuitry to achieve effective RF dynamic  
performance. The following steps should be followed  
to achieve optimum performance (see Figure 58 for  
component designations):  
RF  
V
S
V
S
INPUT  
OR OUTPUT  
IF  
C4  
L4  
C6  
C2  
L2  
VPOS  
RF  
IF  
IF  
8
7
6
5
OUTPUT  
OR INPUT  
RF/IF  
NC  
VPOS GND1  
LOIN  
LO  
INPUT  
ADL5350  
RF/IF  
1
GND2  
LOIN  
3
NC  
4
2
GND1  
GND2  
RF  
L3  
C3  
Figure 57. Simplified Schematic  
L1 C1  
The LO signal is applied to the gate contact of a FET-based  
buffer amplifier. The buffer amplifier provides sufficient  
gain of the LO signal to drive the resistive switch. Additionally,  
feedback circuitry provides the necessary bias to the FET  
buffer amplifier and RF/IF ports to achieve optimum  
modulation efficiency for common cellular frequencies.  
LO  
Figure 58. Reference Schematic  
1. Table 7 shows the recommended LO bias inductor  
values for a variety of LO frequencies. To ensure efficient  
commutation of the mixer, the bias inductor needs to  
be properly set. For other frequencies within the range  
shown, the values can be interpolated. For frequencies  
outside this range, see the Applications Information section.  
The mixing of RF and LO signals is achieved by switching  
the channel conductance from the RF/IF port to ground at  
the rate of the LO. The RF signal is passed through an external  
band-pass network to help reject image bands and reduce  
the broadband noise presented to the mixer. The band-  
limited RF signal is presented to the time-varying load of  
the RF/IF port, which causes the envelope of the RF signal  
to be amplitude modulated at the rate of the LO. A filter  
network applied to the IF port is necessary to reject the  
RF signal and pass the wanted mixing product. In a down-  
conversion application, the IF filter network is designed to  
pass the difference frequency and present an open circuit  
to the incident RF frequency. Similarly, for an upconversion  
application, the filter is designed to pass the sum frequency  
and reject the incident RF. As a result, the frequency response  
of the mixer is determined by the response characteristics  
of the external RF/IF filter networks.  
Table 7. Recommended LO Bias Inductor  
Recommended LO Bias  
Desired LO Frequency (MHz) Inductor, L41 (nH)  
380  
750  
1000  
1750  
2000  
68  
24  
18  
3.8  
2.1  
1 The bias inductor should have a self-resonant frequency greater than  
the intended frequency of operation.  
Rev. 0 | Page 17 of 24  
 
 
 
 
ADL5350  
2. Tune the LO port input network for optimum return  
loss. Typically, a band-pass network is used to pass the  
LO signal to the LOIN pin. It is recommended to block  
high frequency harmonics of the LO from the mixer  
core. LO harmonics cause higher RF frequency images  
to be downconverted to the desired IF frequency and  
result in sensitivity degradation. If the intended LO  
source has poor harmonic distortion and spectral purity,  
it may be necessary to employ a higher order band-pass  
filter network. Figure 58 illustrates a simple LC band-  
pass filter used to pass the fundamental frequency of the  
LO source. Capacitor C3 is a simple dc block, while the  
Series Inductor L3, along with the gate-to-source  
If a better than −10 dB return loss is desired, it may be  
necessary to add a shunt resistor to ground before the  
coupling capacitor (C3) to present a lower loading  
impedance to the LO source. In doing so, a slightly  
greater LO drive level may be required.  
3. Design the RF and IF filter networks. Figure 58 depicts  
simple LC tank filter networks for the IF and RF port  
interfaces. The RF port LC network is designed to pass  
the RF input signal. The series LC tank has a resonant  
frequency at 1/(2π√LC). At resonance, the series reactances  
are canceled, which presents a series short to the RF  
signal. A parallel LC tank is used on the IF port to reject  
the RF and LO signals. At resonance, the parallel LC tank  
presents an open circuit.  
capacitance of the buffer amplifier, form a low-pass  
network. The native gate input of the LO buffer (FET)  
alone presents a rather high input impedance. The gate  
bias is generated internally using feedback that can result  
in a positive return loss at the intended LO frequency.  
It is necessary to account for the board parasitics, finite  
Q, and self-resonant frequencies of the LC components  
when designing the RF, IF, and LO filter networks. Table 8  
provides suggested values for initial prototyping.  
Table 8. Suggested RF, IF, and LO Filter Networks for Low-Side LO Injection  
RF Frequency (MHz)  
L1 (nH)1  
8.3  
C1 (pF)  
L2 (nH)  
C2 (pF)  
10  
L3 (nH)  
10  
C3 (pF)  
100  
450  
10  
10  
850  
6.8  
4.7  
4.7  
5.6  
8.2  
100  
1950  
2400  
1.7  
0.67  
1.5  
1
1.7  
1.5  
1.2  
0.7  
3.5  
3.0  
100  
100  
1 The inductor should have a self-resonant frequency greater than the intended frequency of operation. L1 should be a high Q inductor for optimum NF performance.  
Rev. 0 | Page 18 of 24  
 
 
ADL5350  
APPLICATIONS INFORMATION  
LOW FREQUENCY APPLICATIONS  
HIGH FREQUENCY APPLICATIONS  
The ADL5350 can be used at extended frequencies with  
some careful attention to board and component parasitics.  
Figure 61 is an example of a 2560 MHz to 2660 MHz down-  
conversion using a low-side LO. The performance of this circuit  
is depicted in Figure 62. Note that the inductor and capacitor  
values are very small, especially for the RF and IF ports. Above  
2.5 GHz, it is necessary to consider alternate solutions to avoid  
unreasonably small inductor and capacitor values.  
3V  
The ADL5350 can be used in low frequency applications. The  
circuit in Figure 59 is designed for an RF of 136 MHz to 176 MHz  
and an IF of 45 MHz using a high-side LO. The series and  
parallel resonant circuits are tuned for 154 MHz, which is  
the geometric mean of the desired RF frequencies. The  
performance of this circuit is depicted in Figure 60.  
3V  
4.7µF  
100nF  
4.7µF  
IF  
10nF  
100pF  
IF  
100nH  
1nF  
36nH  
27pF  
1.5nH  
0.7pF  
2.1nH  
8
7
6
5
RF/IF  
NC  
VPOS GND1  
ALL INDUCTORS  
ARE 0603CS  
SERIES FROM  
COILCRAFT  
8
7
6
5
ADL5350  
RF/IF  
NC  
VPOS GND1  
ALL INDUCTORS  
ARE 0302CS  
SERIES FROM  
COILCRAFT  
RF/IF  
1
GND2  
2
LOIN  
3
NC  
4
ADL5350  
RF/IF  
1
GND2  
2
LOIN  
3
NC  
4
36nH  
RF  
1nF  
27pF  
0.67nH  
RF  
3.0nH  
LO  
1pF  
100pF  
Figure 59. 136 MHz to 176 MHz RF Downconversion Schematic  
LO  
40  
35  
30  
25  
20  
15  
10  
12  
10  
8
Figure 61. 2560 MHz to 2660 MHz RF Downconversion Schematic  
IIP3  
35  
30  
25  
20  
15  
10  
5
14  
13  
12  
11  
10  
9
IIP3  
6
LOSS  
IP1dB  
IP1dB  
4
2
0
176  
LOSS  
136  
146  
156  
RF FREQUENCY (MHz)  
166  
8
0
2560  
7
2660  
Figure 60. Measured Performance for Circuit in Figure 59  
Using High-Side LO Injection and 45 MHz IF  
2580  
2600  
2620  
2640  
RF FREQUENCY (MHz)  
Figure 62. Measured Performance for Circuit in Figure 61  
Using Low-Side LO Injection and 374 MHz IF  
The typical networks used for cellular applications below  
2.6 GHz use band-select and band-reject networks on the RF  
and IF ports. At higher RF frequencies, these networks are not  
easily realized by using lumped element components. As a result, it  
is necessary to consider alternate filter network topologies to  
allow more reasonable values for inductors and capacitors.  
Rev. 0 | Page 19 of 24  
 
 
 
 
 
 
ADL5350  
Figure 63 depicts a crossover filter network approach to provide  
isolation between the RF and IF ports for a downconverting  
application. The crossover network essentially provides a high-  
pass filter to allow the RF signal to pass to the RF/IF node (Pin 1  
and Pin 8), while presenting a low-pass filter (which is actually  
a band-pass filter when considering the dc blocking capacitor,  
Classic audio crossover filter design techniques can be applied  
to help derive component values. However, some caution must be  
applied when selecting component values. At high RF frequencies,  
the board parasitics can significantly influence the final optimum  
inductor and capacitor component selections. Some empirical  
testing may be necessary to optimize the RF and IF port filter  
networks. The performance of the circuit depicted in Figure 63  
is provided in Figure 64.  
CAC). This allows the difference component (fRF − fLO) to be  
passed to the desired IF load.  
30  
3V  
4.7µF  
14  
IF  
IIP3  
C
100pF  
AC  
25  
20  
15  
10  
5
12  
10  
8
C2  
1.8pF  
100pF  
L2  
1.5nH  
3.8nH  
IP1dB  
8
7
6
5
ALL  
RF/IF  
NC  
VPOS GND1  
INDUCTORS  
ARE 0302CS  
SERIES FROM  
COILCRAFT  
LOSS  
ADL5350  
6
RF/IF  
1
GND2  
2
LOIN  
3
NC  
4
4
RF  
2.2nH  
100pF  
C1  
1.2pF  
0
3300  
2
3800  
L1  
3.5nH  
3400  
3500  
3600  
3700  
RF FREQUENCY (MHz)  
LO  
Figure 64. Measured Performance for Circuit in Figure 63  
Using Low-Side LO Injection and 800 MHz IF  
Figure 63. 3.3 GHz to 3.8 GHz RF Downconversion Schematic  
When designing the RF port and IF port networks, it is  
important to remember that the networks share a common  
node (the RF/IF pins). In addition, the opposing network presents  
some loading impedance to the target network being designed.  
Rev. 0 | Page 20 of 24  
 
 
ADL5350  
EVALUATION BOARD  
An evaluation board is available for the ADL5350. The evaluation board has two halves: a low band board designated as Board A  
and a high band board designated as Board B. The schematic for the evaluation board is shown in Figure 65.  
VPOS-A  
VPOS-B  
C5-A  
C5-B  
IF-A  
IF-B  
C4-A  
L4-A  
C4-B  
L4-B  
C6-A  
C2-A  
C6-B  
C2-B  
L2-A  
L2-B  
8
7
6
5
8
7
6
5
RF/IF  
NC  
VPOS GND1  
RF/IF  
NC  
VPOS GND1  
U1-A  
U1-B  
ADL5350  
ADL5350  
RF/IF  
1
GND2  
2
LOIN  
3
NC  
4
RF/IF  
1
GND2  
2
LOIN  
3
NC  
4
RF-A  
RF-B  
L3-A  
C3-A  
L3-B  
C3-B  
L1-A C1-A  
L1-B C1-B  
LO-A  
LO-B  
Figure 65. Evaluation Board  
Table 9. Evaluation Board Configuration Options  
Component Function  
Default Conditions  
C4-A, C4-B,  
C5-A, C5-B  
Supply Decoupling. C4-A and C4-B provide local bypassing of the supply.  
C5-A and C5-B are used to filter the ripple of a noisy supply line. These are not  
always necessary.  
C4-A = C4-B = 100 pF,  
C5-A = C5-B = 4.7 μF  
L1-A, L1-B,  
C1-A, C1-B  
RF Input Network. Designed to provide series resonance at the intended  
RF frequency.  
L1-A = 6.8 nH (0603CS from Coilcraft),  
L1-B = 1.7 nH (0302CS from Coilcraft),  
C1-A = 4.7 pF, C1-B = 1.5 pF  
L2-A, L2-B,  
C2-A, C2-B,  
C6-A, C6-B  
IF Output Network. Designed to provide parallel resonance at the geometric mean  
of the RF and LO frequencies.  
L2-A = 4.7 nH (0603CS from Coilcraft),  
L2-B = 1.7 nH (0302CS from Coilcraft),  
C2-A = 5.6 pF, C2-B = 1.2 pF,  
C6-A = C6-B = 1 nF  
L3-A, L3-B,  
C3-A, C3-B  
LO Input Network. Designed to block dc and optimize LO voltage swing at LOIN.  
L3-A = 8.2 nH (0603CS from Coilcraft),  
L3-B = 3.5 nH (0302CS from Coilcraft),  
C3-A = C3-B = 100 pF  
L4-A, L4-B  
LO Buffer Amplifier Choke. Provides bias and ac loading impedance to LO buffer  
amplifier.  
L4-A = 24 nH (0603CS from Coilcraft),  
L4-B = 3.8 nH (0302CS from Coilcraft)  
Rev. 0 | Page 21 of 24  
 
 
ADL5350  
OUTLINE DIMENSIONS  
1.89  
1.74  
1.59  
3.25  
3.00  
2.75  
0.55  
0.40  
0.30  
0.60  
0.45  
0.30  
5
4
8
*
2.25  
2.00  
1.75  
BOTTOM VIEW  
1.95  
1.75  
1.55  
TOP VIEW  
EXPOSED PAD  
0.15  
0.10  
0.05  
1
2.95  
2.75  
2.55  
PIN 1  
INDICATOR  
0.25  
0.20  
0.15  
0.50 BSC  
12° MAX  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
Figure 66. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
2 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Ordering  
Branding Quantity  
Model  
ADL5350ACPZ-R71  
Temperature Range Package Description  
−40°C to +85°C  
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
Evaluation Board  
CP-8-1  
CP-8-1  
08  
08  
3000, Reel  
50, Waffle Pack  
ADL5350ACPZ-WP1 −40°C to +85°C  
ADL5350-EVALZ1  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 22 of 24  
 
 
ADL5350  
NOTES  
Rev. 0 | Page 23 of 24  
ADL5350  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05615-0-2/08(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADL5350ACPZ-R2

LF to 4 GHz High Linearity Y-Mixer
ADI

ADL5350ACPZ-R7

LF to 4 GHz High Linearity Y-Mixer
ADI

ADL5350ACPZ-WP

LF to 4 GHz High Linearity Y-Mixer
ADI

ADL5350_08

LF to 4 GHz High Linearity Y-Mixer
ADI

ADL5353

2300 MHz to 2900 MHz Balanced Mixer
ADI

ADL5353ACPZ-R7

2200 MHz To 2700 MHz Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
ADI

ADL5353ACPZ-WP

SPECIALTY TELECOM CIRCUIT, QCC20, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHC, LFCSP_VQ-20
ADI

ADL5353XCPZ-R7

IC,RF MIXER,BICMOS,LLCC,20PIN,PLASTIC
ADI

ADL5353XCPZ-R71

IC SPECIALTY TELECOM CIRCUIT, QCC20, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHC, LFCSP-20, Telecom IC:Other
ADI

ADL5353XCPZ-WP

IC,RF MIXER,BICMOS,LLCC,20PIN,PLASTIC
ADI

ADL5353XCPZ-WP1

IC SPECIALTY TELECOM CIRCUIT, QCC20, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHC, LFCSP-20, Telecom IC:Other
ADI

ADL5354

2300 MHz to 2900 MHz Balanced Mixer
ADI