ADIS16495 [ADI]

Tactical Grade, Six Degrees of Freedom Inertial Sensor;
ADIS16495
型号: ADIS16495
厂家: ADI    ADI
描述:

Tactical Grade, Six Degrees of Freedom Inertial Sensor

文件: 总42页 (文件大小:986K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Tactical Grade, Six Degrees of Freedom  
Inertial Sensor  
Data Sheet  
ADIS16495  
FEATURES  
GENERAL DESCRIPTION  
Triaxial, digital gyroscope  
The ADIS16495 is a complete inertial system that includes a  
triaxis gyroscope and a triaxis accelerometer. Each inertial sensor  
in the ADIS16495 combines industry leading iMEMS® technology  
125°/sec, 450°/sec, 2000°/sec range options  
0.05° axis to axis misalignment error  
0.25° (maximum) axis to package misalignment error  
0.8°/hr in-run bias stability (ADIS16495-1)  
0.09°/√hr angular random walk (ADIS16495-1)  
Triaxial, digital accelerometer, 8 g  
with signal conditioning that optimizes dynamic performance.  
The factory calibration characterizes each sensor for sensitivity,  
bias, alignment, and linear acceleration (gyroscope bias). As a  
result, each sensor has its own dynamic compensation formulas that  
provide accurate sensor measurements.  
3.2 μg in run bias stability  
Triaxial, delta angle and delta velocity outputs  
Factory calibrated sensitivity, bias, and axial alignment  
Calibration temperature range: −40°C to +85°C  
SPI compatible  
Programmable operation and control  
Automatic and manual bias correction controls  
Configurable FIR filters  
Digital I/O: data ready, external clock  
Sample clock options: internal, external, or scaled  
On demand self test of inertial sensors  
Single-supply operation: 3.0 V to 3.6 V  
1500 g mechanical shock survivability  
Operating temperature range: −40°C to +105°C  
The ADIS16495 provides a simple, cost effective method for  
integrating accurate, multiaxis inertial sensing into industrial  
systems, especially when compared with the complexity and  
investment associated with discrete designs. All necessary motion  
testing and calibration are part of the production process at  
the factory, greatly reducing system integration time. Tight  
orthogonal alignment simplifies inertial frame alignment in  
navigation systems. The serial peripheral interface (SPI) and  
register structure provide a simple interface for data collection  
and configuration control.  
The footprint and connector system of the ADIS16495 enable a  
simple upgrade from the ADIS16375, ADIS16480, ADIS16485,  
ADIS16488A, and ADIS16490. The ADIS16495 is available in an  
aluminum package that is approximately 47 mm × 44 mm ×  
14 mm and includes a standard connector interface.  
APPLICATIONS  
Precision instrumentation, stabilization  
Guidance, navigation, control  
Avionics, unmanned vehicles  
Precision autonomous machines, robotics  
FUNCTIONAL BLOCK DIAGRAM  
DIO1 DIO2 DIO3 DIO4 RST  
VDD  
POWER  
MANAGEMENT  
GND  
SELF TEST  
I/O  
OUTPUT  
DATA  
CS  
TRIAXIAL  
GYROSCOPE  
REGISTERS  
SCLK  
DIN  
CALIBRATION  
AND  
FILTERS  
TRIAXIAL  
ACCELEROMETER  
SPI  
CONTROLLER  
USER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
DOUT  
CLOCK  
ADIS16495  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2017-2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADIS16495  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Time Stamp................................................................................. 24  
Cyclical Redundancy Check (CRC-32)................................... 24  
Delta Angles................................................................................ 25  
Delta Velocity ............................................................................. 26  
User Bias/Scale Adjustment...................................................... 29  
Scratch Registers, USER_SCR_x.............................................. 31  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 4  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings ........................................................... 8  
Thermal Resistance...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions ............................ 9  
Typical Performance Characteristics........................................... 10  
Theory of Operation ...................................................................... 12  
Binertial Sensor Signal Chain................................................... 12  
Register Structure....................................................................... 13  
Serial Peripheral Interface......................................................... 14  
Data Ready .................................................................................. 14  
Reading Sensor Data.................................................................. 15  
Device Configuration ................................................................ 16  
User Register Memory Map.......................................................... 17  
User Register Defintions ............................................................... 20  
Page Number (PAGE_ID) ........................................................ 20  
Data/Sample Counter (DATA_CNT)..................................... 20  
Status/Error Flag Indicators (SYS_E_FLAG)......................... 20  
Self Test Error Flags (DIAG_STS) ........................................... 21  
Internal Temperature (TEMP_OUT) ..................................... 21  
Gyroscope Data .......................................................................... 21  
Acceleration Data....................................................................... 23  
Flash Memory Endurance Counter, FLSHCNT_LOW,  
FLSHCNT_HIGH...................................................................... 32  
Global Commands, GLOB_CMD ........................................... 32  
Auxiliary I/O Line Configuration, FNCTIO_CTRL............. 33  
General-Purpose I/O Control, GPIO_CTRL......................... 34  
Miscellaneous Configuration, CONFIG................................. 34  
Linear Acceleration on Effect on Gyroscope Bias ................. 35  
Decimation Filter, DEC_RATE ............................................... 35  
Continuous Bias Estimation (CBE), NULL_CNFG.............. 35  
Scaling the Input Clock (PPS Mode), SYNC_SCALE........... 36  
FIR Filters.................................................................................... 36  
Firmware Revision, FIRM_REV .............................................. 38  
Applications Information ............................................................. 40  
Mounting Best Practices ........................................................... 40  
Preventing Misinsertion............................................................ 40  
Evaluation Tools......................................................................... 40  
Power Supply Considerations .................................................. 40  
CRC32 Coding Example ........................................................... 41  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 42  
REVISION HISTORY  
7/2019—Rev. B to Rev. C  
Changes to Figure 5 and Figure 6 ...................................................7  
Changes to Table 6............................................................................9  
Changes to Figure 12 ..................................................................... 10  
Added Figure 13 and Figure 14; Renumbered Sequentially..... 10  
Added Figure 15 and Figure 16.................................................... 11  
Changes to Burst Read Function Section, Table 10, and  
Table 11............................................................................................ 15  
Changes to Table 12....................................................................... 17  
Changes to Model Column, Table 24.......................................... 21  
Changes to Cyclical Redundancy Check (CRC-32) Section .... 24  
Changes to Delta Angle Measurement Range and Model  
Changes to Table 1 ........................................................................... 5  
Changes to tSTALL Parameter and Endnote 2, Table 2 .................. 6  
Changes to Flash Memory Update Section and On Demand Self  
Test (ODST) Section...................................................................... 33  
Changes to Data Ready Indicator Section .................................. 34  
Changes to Scaling the Input Clock (PPS Mode),  
SYNC_SCALE Section................................................................... 36  
5/2019—Rev. A to Rev. B  
Changes to Features Section ........................................................... 1  
Changes to Specifications Section and Table 1 ............................ 4  
Column, Table 60........................................................................... 25  
Rev. C | Page 2 of 42  
 
Data Sheet  
ADIS16495  
Changes to Delta Velocity Section................................................26  
Changes to Accelerometer Scale Adjustment, X_ACCL_SCALE  
Section...............................................................................................29  
Changes to Table 150 and Continuous Bias Estimation (CBE),  
NULL_CNFG Section ....................................................................35  
Changes to Description Column, Table 156 ...............................36  
Added CRC32 Coding Example Section .....................................41  
Updated Outline Dimensions .......................................................42  
11/2017—Rev. 0 to Rev. A  
Changes to Table 1............................................................................3  
Added Endnote 2, Table 1; Renumbered Sequentially................4  
Changes to t2 Parameter, Table 2 ...................................................5  
Changes to Table 3............................................................................5  
10/2017—Revision 0: Initial Version  
Rev. C | Page 3 of 42  
ADIS16495  
Data Sheet  
SPECIFICATIONS  
TC = 25°C, VDD = 3.3 V, angular rate = 0°/sec, ADIS16495-1 model, 1 g, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
125  
Typ  
Max  
Unit  
GYROSCOPES  
Dynamic Range  
ADIS16495-1  
°/sec  
ADIS16495-2  
450  
480  
°/sec  
ADIS16495-3  
2000  
°/sec  
Sensitivity  
ADIS16495-1, 32-bit  
ADIS16495-2, 32-bit  
ADIS16495-3, 32-bit  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
Axis to axis, −40°C ≤ TC ≤+85°C, 1 σ  
Axis to package, −40°C ≤ TC ≤+85°C  
1 σ, ADIS16495-1, FS = 125°/sec  
1 σ, ADIS16495-2, FS = 450°/sec  
1 σ, ADIS16495-3, FS = 2000°/sec  
10485760  
2621440  
655360  
0.2  
0.2  
0.05  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
%
Error Over Temperature  
Repeatability1  
Misalignment  
%
Degrees  
Degrees  
% FS  
% FS  
% FS  
0.25  
Nonlinearity2  
0.2  
0.2  
0.25  
Bias  
Repeatability3  
In Run Bas Stability  
−40°C ≤ TC ≤+85°C, 1 σ  
1 σ, ADIS16495-1  
0.07  
0.8  
°/sec  
°/hr  
1 σ, ADIS16495-2  
1.6  
°/hr  
1 σ, ADIS16495-3  
3.3  
°/hr  
Angular Random Walk  
1 σ, ADIS16495-1  
1 σ, ADIS16495-2  
1 σ, ADIS16495-3  
−40°C ≤ TC ≤ +85°C, 1 σ  
Any axis, 1 σ (CONFIG register, Bit 7 = 1)  
Any axis, 1 σ (CONFIG register, Bit 7 = 0)  
1 σ, ADIS16495-1  
0.09  
0.1  
0.18  
0.1  
0.006  
0.015  
0.0003  
°/√hr  
°/√hr  
°/√hr  
°/sec  
°/sec/g  
°/sec/g  
°/sec/g2  
Error over Temperature  
Linear Acceleration Effect  
Vibration Rectification Error  
Noise  
Output Noise  
No filtering, ADIS16495-1  
No filtering, ADIS16495-2  
No filtering, ADIS16495-3  
1 σ, ADIS16495-1  
1 σ, ADIS16495-2  
1 σ, ADIS16495-3  
0.051  
0.058  
0.112  
0.002  
0.0022  
0.0042  
480  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
Hz  
Rate Noise Density4  
−3 dB Bandwidth  
ADIS16495-1  
ADIS16495-2, ADIS16495-3  
550  
Hz  
Sensor Resonant Frequency  
ACCELEROMETERS5  
Dynamic Range  
65  
kHz  
Each axis  
8
g
Sensitivity  
Error Over Temperature  
Repeatability  
x_ACCL_OUT and x_ACCL_LOW (32-bit)  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
262144000  
0.01  
0.05  
LSB/g  
%
%
Misalignment  
Axis to axis, −40°C ≤ TC ≤+85°C, 1 σ  
Axis to package, −40°C ≤ TC ≤+85°C  
Best fit straight line, 2 g, FS = 8 g  
Best fit straight line, 4 g, FS = 8 g  
Best fit straight line, 8 g, FS = 8 g  
0.035  
Degrees  
Degrees  
% FS  
% FS  
% FS  
0.25  
Nonlinearity  
0.25  
0.5  
1.5  
Bias  
In Run Stability  
Velocity Random Walk  
1 σ  
1 σ  
3.2  
0.008  
μg  
m/sec/√hr  
Rev. C | Page 4 of 42  
 
Data Sheet  
ADIS16495  
Parameter  
Test Conditions/Comments  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
Min  
Typ  
0.5  
1
Max  
Unit  
mg  
mg  
Error over Temperature  
Repeatability  
Noise  
Output Noise  
Noise Density  
−3 dB Bandwidth  
Sensor Resonant Frequency  
TEMPERATURE SENSOR  
Scale Factor  
No filtering  
10 Hz to 40 Hz, no filtering  
0.5  
17  
750  
2.5  
mg rms  
μg/√Hz rms  
Hz  
kHz  
Output = 0x0000 at 25°C ( 5°C)  
0.0125  
°C/LSB  
LOGIC INPUTS6  
Input Voltage  
High, VIH  
2.0  
V
Low, VIL  
0.8  
V
RST Pulse Width  
CS Wake-Up Pulse Width  
Input Current  
1
µs  
µs  
20  
Logic 1, IIH  
Logic 0, IIL  
All Pins Except RST, CS  
RST, CS Pins7  
VIH = 3.3 V  
VIL = 0 V  
10  
10  
µA  
µA  
mA  
pF  
0.33  
10  
Input Capacitance, CIN  
DIGITAL OUTPUTS6  
Output Voltage  
High, VOH  
ISOURCE = 0.5 mA  
2.4  
V
Low, VOL  
ISINK = 2.0 mA  
Endurance8  
TJ = 85°C  
0.4  
V
FLASH MEMORY  
Data Retention9  
FUNCTIONAL TIMES10  
Power-On Start-Up Time  
Reset Recovery Time11  
100,000  
20  
Cycles  
Years  
Time until data is available, −40°C ≤ TC ≤ +85°C, 1 σ  
265  
225  
265  
ms  
ms  
ms  
GLOB_CMD register, Bit 7 = 1 (see Table 142)  
RST pulled low, then restored to high  
Flash Memory  
Update Time  
Clear User Calibration  
Self Test Time12  
GLOB_CMD register, Bit 3 = 1 (see Table 142)  
GLOB_CMD register, Bit 6 = 1 (see Table 142)  
GLOB_CMD register, Bit 1 = 1 (see Table 142)  
1300  
350  
30  
ms  
µs  
ms  
CONVERSION RATE  
Initial Clock Accuracy  
Temperature Coefficient  
Sync Input Clock  
Pulse Per Second (PPS) Mode  
POWER SUPPLY, VDD  
Power Supply Current13  
4.25  
0.02  
40  
kSPS  
%
ppm/°C  
kHz  
Hz  
3.0  
1
4.5  
128  
3.6  
Operating voltage range  
Normal mode, VDD = 3.3 V, µ + σ  
3.0  
V
mA  
89  
1 Bias repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of High-Temperature Operating Life (HTOL) at +105°C.  
2 FS means full scale, FS = 125°/sec (ADIS16495-1), FS = 450°/sec (ADIS16495-2), FS = 2000°/sec (ADIS16495-3).  
3 Bias repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of High-Temperature Operating Life (HTOL) at +105°C.  
4 Magnitude between 10 Hz and 40 Hz, sample rate is 4250 SPS (nominal), no digital filtering.  
5 All specifications associated with the accelerometers relate to the full-scale range of 8 g.  
6 The digital I/O signals use a 3.3 V system.  
7 RST  
CS  
and  
pins are connected to the VDD pin through 10kΩ pull-up resistors.  
8 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C.  
9 The data retention specification assumes a junction temperature (TJ) of 85°C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.  
10 These times do not include thermal settling and internal filter response times, which can affect overall accuracy.  
11  
RST  
The  
line must be in a low state for at least 10 μs to ensure a proper reset initiation and recovery.  
12 Self test time can extend when using external clock rates that are lower than 4000 Hz.  
13 Supply current transients can reach 250 mA during initial startup or reset recovery.  
Rev. C | Page 5 of 42  
ADIS16495  
Data Sheet  
TIMING SPECIFICATIONS  
TC = 25°C, VDD = 3.3 V, unless otherwise noted.  
Table 2.  
Normal Mode  
Burst Read Function  
Parameter  
Description  
Min1  
0.01  
5
Typ  
Max1  
Min  
Typ  
Max1  
Unit  
MHz  
µs  
ns  
ns  
fSCLK  
tSTALL  
SCLK frequency  
15  
6.5  
2
Stall period between data  
SCLK low period  
SCLK high period  
CS to SCLK edge  
N/A  
tCLS  
tCHS  
tCS  
31  
31  
32  
31  
31  
32  
ns  
tDAV  
tDSU  
tDHD  
tDR, tDF  
tDSOE  
tHD  
tSFS  
tDSHI  
tNV  
DOUT valid after SCLK edge  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
DOUT rise/fall times, ≤100 pF loading  
CS assertion to DOUT active  
SCLK edge to DOUT invalid  
Last SCLK edge to CS deassertion  
CS deassertion to DOUT high impedance  
Data invalid time  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
2
2
2
2
3
8
11  
3
8
11  
0
0
0
32  
0
0
32  
0
9
9
20  
20  
t1  
t2  
t3  
Input sync pulse width  
Input sync to data invalid  
Input sync period3  
5
5
306  
306  
222.2  
222.2  
1 Guaranteed by design and characterization, but not tested in production.  
2 See Table 3 for exceptions to the stall time rating. An insufficient stall time results in reading all 0s for the register attempting to be read.  
3 This measurement represents the inverse of the maximum frequency for the input sample clock: 4500 Hz.  
Register Specific Stall Times  
Table 3.  
Parameter  
Description  
Min1  
Typ  
Max  
Unit  
STALL TIME  
FNCTIO_CTRL  
FILTR_BNK_0  
FILTR_BNK_1  
NULL_CNFG  
SYNC_SCALE  
DEC_RATE  
GPIO_CTRL  
CONFIG  
GLOB_CMD, Bit 1  
GLOB_CMD, Bit 3  
GLOB_CMD, Bit 6  
GLOB_CMD, Bit 7  
Configure the DIOx functions  
Enable/select finite impulse response (FIR) filter banks  
Enable/select FIR filter banks  
Configure autonull bias function  
Configure input clock scale factor  
Configure decimation rate  
Configure general-purpose input/output (I/O) lines  
Configure miscellaneous functions  
On demand self test  
340  
65  
65  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ms  
ms  
μs  
ms  
71  
340  
340  
45  
45  
20  
1120  
350  
210  
Flash memory update  
Factory calibration restore  
Software reset  
1 Monitoring the data ready signal (see Table 144 for FNCTIO_CTRL configuration) for the return of regular pulsing can help minimize system wait times.  
Rev. C | Page 6 of 42  
 
 
Data Sheet  
ADIS16495  
Timing Diagrams  
CS  
tCHS  
tCLS  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
DOUT  
tDSOE  
tDAV  
tHD  
tDR  
tDSHI  
MSB  
DB14  
tDSU  
DB13  
DB12  
DB11  
DB10  
DB2  
DB1  
tDF  
LSB  
LSB  
tDHD  
DIN  
R/W  
A6  
A5  
A4  
A3  
A2  
D2  
D1  
Figure 2. SPI Timing and Sequence  
tSTALL  
CS  
SCLK  
Figure 3. Stall Time and Data Rate  
t3  
t2  
DIO4  
(SYNC CLOCK)  
t1  
DATA  
READY  
tNV  
OUTPUT  
REGISTERS  
DATA VALID  
DATA VALID  
Figure 4. Input Clock Timing Diagram, FNCTIO_CTRL, Bits[7:4] = 0xFD  
CS  
SCLK  
DIN  
7C00  
DOUT  
0000  
1
BURST_ID  
2
X_GYRO_LOW  
3
CRC_UPR  
19  
0
Figure 5. Burst Read Function Sequence Diagram, 19 Segments  
CS  
SCLK  
DIN  
7C00  
CRC_UPR  
20  
0000  
1
BURST_ID  
2
BURST_ID  
3
X_GYRO_LOW  
4
DOUT  
Figure 6. Burst Read Function Sequence Diagram, 20 Segments  
Rev. C | Page 7 of 42  
 
 
ADIS16495  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Pay careful attention  
to PCB thermal design.  
Parameter  
Rating  
Mechanical Shock Survivability  
Any Axis, Unpowered  
Any Axis, Powered  
1500 g  
1500 g  
θ
JA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
JC is the junction to case thermal resistance.  
VDD to GND  
−0.3 V to +3.6 V  
−0.3 V to VDD + 0.2 V  
−0.3 V to VDD + 0.2 V  
−40°C to +105°C  
−55°C to +150°C  
2 bar  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Operating Temperature Range  
Storage Temperature Range1  
Barometric Pressure  
θ
The ADIS16495 is a multichip module, which includes many  
active components. The values in Table 5 identify the thermal  
response of the hottest component inside of the ADIS16495,  
with respect to the overall power dissipation of the module.  
This approach enables a simple method for predicting the  
temperature of the hottest junction, based on either ambient or  
case temperature.  
1 Extended exposure to temperatures that are lower than −40°C or higher  
than +105°C can adversely affect the accuracy of the factory calibration.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
For example, when the TA = 70°C, the hottest junction inside of  
the ADIS16495 is 76.7°C.  
TJ = θJA × VDD × IDD + 70°C  
TJ = 22.8°C/W × 3.3 V × 0.089 A + 70°C  
TJ = 76.7°C  
Table 5. Package Characteristics  
Package Type  
θJA  
θJC  
Device Weight  
ML-24-91  
30.7°C/W  
20.9°C/W  
42 g  
1 Thermal impedance simulated values come from a case when 4 M2 × 0.4 mm  
machine screws (torque = 20 inch ounces) secure the ADIS16495 to the PCB.  
ESD CAUTION  
Rev. C | Page 8 of 42  
 
 
 
 
Data Sheet  
ADIS16495  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADIS16495  
TOP VIEW  
(Not to Scale)  
24 22 20 18 16 14 12 10  
8
7
6
5
4
3
2
1
PIN 23  
PIN 1  
23 21 19 17 15 13 11  
9
NOTES  
1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT  
FOR THE MATING SOCKET CONNECTOR.  
2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM  
THE TOP VIEW.  
3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT.  
4. DNC = DO NOT CONNECT.  
5. PIN 12 AND PIN 15 ARE NOT PHYSICALLY PRESENT.  
PIN 1 PIN 2  
Figure 8. Axial Orientation (Top Side Facing Up)  
Figure 7. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
DIO3  
DIO4  
SCLK  
DOUT  
DIN  
Type  
Description  
1
2
3
4
5
6
Input/output  
Input/output  
Input  
Output  
Input  
Configurable Digital Input/Output 3.  
Configurable Digital Input/Output 4.  
SPI Serial Clock.  
SPI Data Output. Clocks output on the SCLK falling edge.  
SPI Data Input. Clocks input on the SCLK rising edge.  
SPI Chip Select.  
CS  
Input  
7
8
DIO1  
RST  
Input/output  
Input  
Configurable Digital Input/Output 1.  
Reset.  
9
DIO2  
VDD  
NO PIN  
GND  
DNC  
DNC  
Input/output  
Supply  
Not applicable  
Supply  
Not applicable  
Not applicable  
Configurable Digital Input/Output 2.  
Power Supply.  
No Pin. These pins are not physically present.  
Power Ground.  
Do Not Connect. Do not connect to these pins.  
Do Not Connect. Do not connect to this pin. This pin can tolerate connection to 3.3 V.  
10, 11  
12, 15  
13, 14  
16 to 22, 24  
23  
Rev. C | Page 9 of 42  
 
 
 
 
ADIS16495  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1000  
X-AXIS  
X-AXIS  
Y-AXIS  
Z-AXIS  
Y-AXIS  
Z-AXIS  
100  
10  
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
10000  
100000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
INTEGRATION PERIOD (Seconds)  
INTEGRATION PERIOD (Seconds)  
Figure 9. Gyroscope Allan Deviation, ADIS16495-1  
Figure 12. Accelerometer Allan Deviation  
1000  
0
X-AXIS  
Y-AXIS  
Z-AXIS  
MEAN + 1σ  
–0.02  
MEAN  
100  
10  
1
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
MEAN – 1σ  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
–40  
–20  
20  
40  
0
60  
80  
INTEGRATION PERIOD (Seconds)  
TEMPERATURE (°C)  
Figure 10. Gyroscope Allan Deviation, ADIS16495-2  
Figure 13. Gyroscope Sensitivity Error vs. Temperature, Cold to Hot,  
ADIS16495-1  
1000  
100  
10  
0
X-AXIS  
Y-AXIS  
Z-AXIS  
–0.02  
MEAN + 1σ  
–0.04  
MEAN  
–0.06  
MEAN – 1σ  
–0.08  
1
–0.10  
0.1  
0.001  
–0.12  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
–40  
–20  
20  
40  
0
60  
80  
INTEGRATION PERIOD (Seconds)  
TEMPERATURE (°C)  
Figure 11. Gyroscope Allan Deviation, ADIS16495-3  
Figure 14. Gyroscope Sensitivity Error vs. Temperature, Hot to Cold,  
ADIS16495-1  
Rev. C | Page 10 of 42  
 
Data Sheet  
ADIS16495  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.010  
0.008  
0.006  
0.004  
0.002  
0
MEAN + 1σ  
MEAN + 1σ  
MEAN  
MEAN  
MEAN – 1σ  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
MEAN – 1σ  
–40  
–20  
20  
40  
0
60  
80  
–40  
–20  
20  
40  
0
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Accelerometer Sensitivity Error vs. Temperature, Cold to Hot,  
ADIS16495-1  
Figure 16. Accelerometer Sensitivity Error vs. Temperature, Hot to Cold,  
ADIS16495-1  
Rev. C | Page 11 of 42  
ADIS16495  
Data Sheet  
THEORY OF OPERATION  
The ADIS16495 is an autonomous sensor system that starts up  
on its own when it has a valid power supply. After running  
through its initialization process, it begins sampling, processing,  
and loading calibrated sensor data into the output registers,  
which are accessible using the SPI port.  
External Clock Options  
The ADIS16495 offers two modes of operation to control data  
production with an external clock: sync mode and PPS mode.  
In sync mode, the external clock directly controls the data  
sampling and production clock (fSM in Figure 18 and Figure 19).  
In PPS mode the user can provide a lower input clock rate (1 Hz  
to 128 Hz) and use a scale factor (SYNC_SCALE register, see  
Table 154) to establish a data collection and processing rate that  
is between 3000 Hz and 4250 Hz for best performance.  
BINERTIAL SENSOR SIGNAL CHAIN  
Figure 17 shows the basic signal chain for the inertial sensors in  
the ADIS16495, which processes data at a rate of 4250 SPS  
when using the internal sample clock. Using one of the external  
clock options in FNCTIO_CTRL, Bits[7:4] (see Table 144) can  
provide some flexibility in selecting this rate.  
Inertial Sensor Calibration  
The calibration function for the gyroscopes and the  
accelerometers has two components: factory calibration and  
user calibration (see Figure 20).  
OUTPUT  
MEMS  
SENSORS  
CALIBRATION  
FILTERING  
DATA  
REGISTERS  
FROM  
SENSORS  
FACTORY  
CALIBRATION  
USER  
CALIBRATION  
TO  
FILTERING  
Figure 17. Signal Processing Diagram, Inertial Sensors  
Figure 20. Gyroscope Calibration Processing  
Gyroscope Data Sampling  
The ADIS16495 produces angular rate measurements around  
three orthogonal axes (x, y, and z). Figure 18 shows the basic  
signal flow for the production of x-axis gyroscope data (same as  
y-axis and z-axis). This signal chain contains two digital MEMS  
gyroscopes (XG1 and XG2), which have their own ADC and sample  
clocks (fSGX1 and fSGX2 = 4100 Hz) that produce data independently  
from each other. The sensor to sensor tolerance on this sample rate  
is 200 samples per second (SPS). Processing this data starts with  
combining (summation and rescale) the most recent sample from  
each gyroscope together by using an independent sample master  
frequency (fSM) clock (fSM = 4250 Hz, see Figure 18), which drives  
the rest of the digital signal processing (calibration, alignment, and  
filtering) for the gyroscopes and accelerometers.  
Gyroscope Factory Calibration  
Gyroscope factory calibration applies the following correction  
formula to the data of each gyroscope:  
XC   
X   
b
m
m11 m12  
ω
ω
ω
ω
X   
13   
=
m21 m22 m23  
m31 m32 m33  
×
+
bY  
+
YC   
Y   
ω ZC  
ω Z  
bZ  
(1)  
a'  
g11 g12  
g
X   
13   
g21 g22 g23 × a'Y  
g31 g32 g33  
a'Z  
where:  
MEMS  
X-AXIS  
ωXC, ωYC, and ωZC are the postcalibration gyroscope data.  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 are the scale and  
alignment correction factors.  
ωX, ωY, and ωZ are the precalibration gyroscope data.  
bX, bY, and bZ are the bias correction factors.  
GYROSCOPE  
RATE DATA  
SAMPLE 1  
ADC  
X
G1  
X-AXIS  
ANGULAR RATE  
DATA PROCESSING  
fSGX1 = 4100Hz  
X-AXIS  
RATE DATA  
SAMPLE 2  
MEMS  
GYROSCOPE  
ADC  
X
G2  
g11, g12, g13, g21, g22, g23, g31, g32, and g33 are the linear g correction  
factors.  
fSGX2 = 4100Hz  
fSM = 4250Hz  
a'X, a'Y, and a'Z are the postcalibration accelerometer data.  
Figure 18. Gyroscope Data Sampling  
All the correction factors in each matrix/array are derived from  
direct observation of the response of each gyroscope to a variety  
of rotation rates at multiple temperatures across the calibration  
temperature range (−40°C ≤ TC ≤ +85°C). These correction  
factors are stored in the flash memory bank, but they are not  
available for observation. Bit 7 in the CONFIG register provides an  
on/off control for the linear g compensation (see Table 148). See  
Figure 41 for more details on the user calibration options that  
are available for the gyroscopes.  
Accelerometer Data Sampling  
The ADIS16495 produces linear acceleration measurements  
along the same orthogonal axes (x, y, and z) as the gyroscopes,  
using the same clock (fSM, see Figure 18 and Figure 19) that  
triggers data acquisition and subsequent processing of the  
gyroscope data.  
X-AXIS  
X-AXIS  
MEMS  
ACCELEROMETER  
ADC  
ACCELERATION  
DATA PROCESSING  
fSM = 4250SPS  
Figure 19. Accelerometer Data Sampling  
Rev. C | Page 12 of 42  
 
 
 
 
 
 
Data Sheet  
ADIS16495  
The decimation filter averages multiple samples together to  
Accelerometer Factory Calibration  
produce each register update. In this type of filter structure, the  
number of samples in the average is equal to the reduction in the  
update rate for the output data registers. See the DEC_RATE  
register for the user controls for this filter (see Table 150).  
The accelerometer factory calibration applies the following  
correction formulas to the data of each accelerometer:  
b
a'  
m11 m12  
m
a
X   
13   
X   
X   
a'Y = m21 m22 m23 × aY + bY  
+
REGISTER STRUCTURE  
a'Z  
m31 m32 m33  
aZ  
bZ  
All communication with the ADIS16495 involves accessing its  
user registers. The register structure contains both output data  
and control registers. The output data registers include the  
latest sensor data, error flags, and identification data. The  
control registers include sample rate, filtering, I/O, calibration,  
and diagnostic configuration options. All com-munication  
between the ADIS16495 and an external processor involves  
either reading or writing to one of the user registers.  
(2)  
2
0
p21  
p12  
0
p
ω
13   
XC   
p23 × ωY2C  
2
p31 p32  
0
ωZC  
where:  
a'X, a'Y, and a'Z are the postcalibration accelerometer data.  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 are the scale and  
alignment correction factors.  
aX, aY, and aZ are the precalibration accelerometer data.  
bX, bY, and bZ are the bias correction factors.  
0, p12, p13, p21, p23, p31, and p32 are the point of percussion  
correction factors  
TRIAXIAL  
OUTPUT  
GYROSCOPE  
ADC  
DSP  
REGISTERS  
TRIAXIAL  
ACCELEROMETER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
CONTROLLER  
ω2XC, ω2YC, and ω2ZC are the postcalibration gyroscope data  
(squared).  
Figure 22. Basic Operation  
All the correction factors in each matrix/array are derived from  
direct observation of the response of each accelerometer to a  
variety of inertial test conditions at multiple temperatures  
across the calibration temperature range (−40°C ≤ TC ≤ +85°C).  
These correction factors are stored in the flash memory bank,  
but they are not available for observation. Bit 6 in the CONFIG  
register provides an on/off control for the point of percussion  
alignment (see Table 148). See Figure 42 for more details on the  
user calibration options that are available for the  
The register structure uses a paged addressing scheme that  
contains 13 pages, with each page containing 64 register  
locations. Each register is 16 bits wide, with each byte having its  
own unique address within the memory map of that page. The SPI  
port has access to one page at a time, using the bit sequence in  
Figure 23. Select the page to activate for SPI access by writing its  
code to the PAGE_ID register. Read the PAGE_ID register to  
determine which page is currently active. Table 7 displays the  
PAGE_ID contents for each page and their basic functions. The  
PAGE_ID register is located at Address 0x00 on every page.  
accelerometers.  
Filtering  
After calibration, the data of each inertial sensor passes through  
two digital filters, both of which have user configurable  
attributes: FIR and decimation (see Figure 21).  
Table 7. User Register Page Assignments  
Page PAGE_ID Function  
0
1
2
3
4
0x00  
0x01  
0x02  
0x03  
0x04  
Output data, clock, identification  
Reserved  
Calibration  
Control: sample rate, filtering, I/O  
Serial number, cyclic redundancy check (CRC)  
values  
TO  
FROM  
CALIBRATION  
FIR  
FILTER  
DECIMATION  
FILTER  
DATA  
REGISTERS  
Figure 21. Inertial Sensor Filtering  
The FIR filter includes four banks of coefficients that have  
120 taps each. Register FILTR_BNK_0 (see Table 158) and  
Register FILTR_BNK_1 (see Table 160) provide the  
configuration options for the use of the FIR filters of each inertial  
sensor. Each FIR filter bank includes a preconfigured filter, but  
the user can design their own filters and write over these values  
using the register of each coefficient. For example, Table 163  
provides the details for the FIR_COEF_A071 register, which  
contains Coefficient 71 in FIR Bank A. Refer to Figure 45 for  
the frequency response of the factory default filters. These  
filters do not represent any specific application environment;  
they are only examples.  
5
6
7
8
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
FIR Filter Bank A, Coefficient 0 to Coefficient 59  
FIR Filter Bank A, Coefficient 60 to Coefficient 119  
FIR Filter Bank B, Coefficient 0 to Coefficient 59  
FIR Filter Bank B, Coefficient 60 to Coefficient 119  
FIR Filter Bank C, Coefficient 0 to Coefficient 59  
FIR Filter Bank C, Coefficient 60 to Coefficient 119  
FIR Filter Bank D, Coefficient 0 to Coefficient 59  
FIR Filter Bank D, Coefficient 60 to Coefficient 119  
9
10  
11  
12  
Rev. C | Page 13 of 42  
 
 
 
ADIS16495  
Data Sheet  
CS  
SCLK  
DIN  
R/W A6  
A5  
R/W A6  
A5  
A4  
A3  
A2  
A1  
D9  
A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0  
D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
D15 D14 D13 D12 D11 D10  
D15 D14 D13  
NOTES  
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.  
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE  
FOR OTHER DEVICES.  
Figure 23. SPI Communication Bit Sequence  
SERIAL PERIPHERAL INTERFACE  
DATA READY  
The SPI provides access to all of the user accessible registers  
(see Table 8) and typically connects to a compatible port on an  
embedded processor platform. See Figure 24 for a diagram that  
provides the most common connections between the  
ADIS16495 and an embedded processor.  
The factory default configuration provides users with a data ready  
(DR) signal on the DIO2 pin, which pulses low when the output  
data registers are updating (see Figure 25). In this configuration,  
connect DIO2 to an interrupt service pin on the embedded  
processor, which triggers data collection, when this signal pulses  
high. Register FNCTIO_CTRL, Bits[3:0] (see Table 144) provide  
some user configuration options for this function.  
I/O LINES ARE COMPATIBLE WITH  
3.3V LOGIC LEVELS  
3.3V  
VDD  
10  
11  
DIO2  
INACTIVE  
ACTIVE  
SYSTEM  
PROCESSOR  
SPI MASTER  
6
3
SS  
CS  
ADIS16495  
Figure 25. Data Ready, when FNCTIO_CTRL, Bits[3:0] = 1101 (Default)  
SCLK  
DIN  
SCLK  
MOSI  
During the start-up and reset recovery processes, the DR signal  
can exhibit some transient behavior before data production  
begins. Figure 26 provides an example of the DR behavior  
during startup, and Figure 27 and Figure 28 provide examples  
of the DR behavior during recovery from reset commands.  
5
4
9
MISO  
IRQ  
DOUT  
DIO2  
13  
14  
TIME THAT VDD > 3V  
Figure 24. Electrical Connection Diagram  
VDD  
Table 8. Generic Master Processor Pin Names and Functions  
PULSING INDICATES  
DATA PRODUCTION  
Mnemonic  
Function  
SS  
Slave select  
DR  
IRQ  
Interrupt request  
Master output, slave input  
Master input, slave output  
Serial clock  
MOSI  
MISO  
SCLK  
START-UP TIME  
Figure 26. Data Ready Response During Startup  
SOFTWARE RESET COMMAND  
GLOB_CMD[7] = 1  
Embedded processors typically use control registers to  
configure their serial ports for communicating with SPI slave  
devices such as the ADIS16495. Table 9 provides a list of settings  
that describe the SPI protocol of the ADIS16495. The  
initialization routine of the master processor typically  
establishes these settings using firmware commands to write  
them into its serial control registers.  
DR PULSING  
RESUMES  
DR  
RESET RECOVERY TIME  
Figure 27. Data Ready Response During Reset  
(Register GLOB_CMD, Bit 7 = 1) Recovery  
Table 9. Generic Master Processor SPI Settings  
Processor Setting Description  
RST PIN  
RELEASED  
Master  
ADIS16495 operates as slave  
Maximum serial clock rate  
CPOL = 1 (polarity), CPHA = 1 (phase)  
Bit sequence, see Figure 23 for coding  
Shift register/data length  
RST  
SCLK ≤ 15 MHz  
SPI Mode 3  
MSB First Mode  
16-Bit Mode  
DR PULSING  
RESUMES  
DR  
RESET RECOVERY TIME  
RST  
Figure 28. Data Ready Response During Reset (  
= 0) Recovery  
Rev. C | Page 14 of 42  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
SYS_E_FLAG register, which will not be equal to 0xA5A5, as  
an identifier for when the ADIS16495 BRF response is starting.  
READING SENSOR DATA  
Reading a single register requires two 16-bit cycles on the SPI:  
one to request the contents of a register and another to receive  
those contents. The 16-bit command code (see Figure 23) for a  
Table 10. BRF Data Format (fSCLK < 3 MHz)1  
Segment DIN  
DOUT  
R
read request on the SPI has three parts: the read bit ( /W = 0),  
0
0x7C00 N/A  
the 7-bit address code for either address (upper or lower) of the  
register, Bits[A6:A0], and eight don’t care bits, Bits[DC7:DC0].  
Figure 29 provides an example that includes two register reads  
in succession. This example starts with DIN = 0x1A00, to  
request the contents of the Z_GYRO_OUT register, and follows  
with 0x1800, to request the contents of the Z_GYRO_LOW  
register (assuming PAGE_ID already equals 0x0000). The  
sequence in Figure 29 also shows full duplex mode of  
operation, which means that the ADIS16495 can receive  
requests on DIN while also transmitting data out on DOUT  
within the same 16-bit SPI cycle.  
1
2
3
4
5
6
7
8
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x0000  
0xA5A5 (BURST_ID)  
SYS_E_FLAG  
TEMP_OUT  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
DATA_CNT (FNCTIO_CTRL, Bits[8:7] ≠ 11)  
TIME_STAMP (FNCTIO_CTRL, Bits[8:7] = 11)  
CRC_LWR  
9
10  
11  
12  
13  
14  
15  
16  
17  
NEXT  
ADDRESS  
DIN  
0x1A00  
0x1800  
DOUT  
Z_GYRO_OUT  
Z_GYRO_LOW  
Figure 29. SPI Read Example  
Figure 30 provides an example of the four SPI signals when  
reading the PROD_ID register (see Table 92) in a repeating  
pattern. This pattern can be helpful when troubleshooting the  
SPI interface setup and communications.  
18  
19  
N/A  
N/A  
CRC_UPR  
CS  
1 N/A means not applicable.  
SCLK  
Table 11. BRF Data Format (fSCLK > 3.6 MHz)1  
DIN  
DIN = 0111 1110 0000 0000 = 0x7E00  
Segment DIN  
DOUT  
0
0x7C00  
N/A  
DOUT  
1
2
3
4
5
6
7
8
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x0000  
DOUT = 0100 0000 0110 1111 = 0x406F = 16495 (PROD_ID)  
0xA5A5 (BURST_ID)  
0xA5A5 (BURST_ID)  
SYS_E_FLAG  
Figure 30. SPI Read Example, Second 16-Bit Sequence  
Burst Read Function  
TEMP_OUT  
The burst read function (BRF) provides a method for reading a  
batch of data (status, temperature, gyroscopes, accelerometers,  
time stamp/data counter, and CRC code), which does not require a  
stall time between each 16-bit segment and only requires one  
command on the DIN line to initiate. System processors can  
execute the BRF by reading the BURST_CMD register (DIN =  
0x7C00) and then reading each segment of data in the response,  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
CS  
while holding the  
line in a low state, until after reading the  
CS  
last 16-bit segment of data. If the  
line goes high before the  
completion of all data acquisition, the data from that read request  
is lost.  
The BRF response on the DOUT line contains either 19 or 20 data  
segments (16-bits each) after the BRF request (DIN = 0x7C00),  
depending on the SCLK rate. Figure 5 and Table 10 illustrate  
the 19-segment case, while Figure 6 and Table 11 illustrate the  
20-segment case.  
DATA_CNT (FNCTIO_CTRL, Bits[8:7] ≠ 11)  
TIME_STAMP (FNCTIO_CTRL, Bits[8:7] = 11)  
CRC_LWR  
19  
20  
N/A  
N/A  
CRC_UPR  
To manage that variation, use the transition from the  
BURST_ID code (0xA5A5 in Table 10 and Table 11) to the  
1 N/A means not applicable.  
Rev. C | Page 15 of 42  
 
 
 
 
 
ADIS16495  
Data Sheet  
This portion of the flash memory bank has two independent banks  
that operate in a ping pong manner, alternating with every flash  
update. During power-on or reset recovery, the ADIS16495  
performs a CRC on the SRAM and compares it to a CRC  
computation from the same memory locations in flash memory.  
If this memory test fails, the ADIS16495 resets and boots up  
from the other flash memory location. SYS_E_FLAG, Bit 2 (see  
Table 18) provides an error flag for detecting when the backup  
flash memory supported the last power-on or reset recovery.  
Table 12 provides a memory map for the user registers in the  
ADIS16495, which includes flash backup support (indicated by  
yes or no in the flash column).  
DEVICE CONFIGURATION  
Each register contains 16 bits (two bytes); Bits[7:0] contain the  
low byte and Bits[15:8] contain the high byte. Each byte has its  
own unique address in the user register map (see Table 12).  
Updating the contents of a register requires writing to its low  
byte first and its high byte second. There are three parts to coding  
a SPI command (see Figure 23), which writes a new byte of data  
R
to a register: the write bit ( /W = 1), the 7-bit address code for  
the byte that this command is updating, and the new data for  
that location, Bits[DC7:DC0]. Figure 31 provides a coding  
example for writing 0xFEDC to the XG_BIAS_LOW register  
(see Table 106), assuming that PAGE_ID already equals 0x0002.  
MANUAL  
FLASH  
BACKUP  
CS  
SCLK  
NONVOLATILE  
FLASH MEMORY  
VOLATILE  
SRAM  
DIN  
0x90DC  
0x91FE  
SPI ACCESS  
(NO SPI ACCESS)  
Figure 31. SPI Sequence for Writing 0xFEDC to XG_BIAS_LOW  
START-UP  
RESET  
Dual Memory Structure  
The ADIS16495 uses a dual memory structure (see Figure 32),  
with static random access memory (SRAM) supporting real-  
time operation and flash memory storing operational code,  
calibration coefficients, and user configurable register settings.  
The manual flash update command (GLOB_CMD, Bit 3, see  
Table 142) provides a single-command method for storing user  
configuration settings into flash memory, for automatic recall  
during the next power-on or reset recovery process.  
Figure 32. SRAM and Flash Memory Diagram  
Rev. C | Page 16 of 42  
 
 
 
Data Sheet  
ADIS16495  
USER REGISTER MEMORY MAP  
Table 12. User Register Memory Map1  
Flash  
Register Name  
PAGE_ID  
Reserved  
DATA_CNT  
Reserved  
SYS_E_FLAG  
DIAG_STS  
Reserved  
R/W Backup  
PAGE_ID  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
Address  
Default Register Description  
R/W No  
N/A N/A  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E to 0x3F  
0x40, 0x41  
0x42, 0x43  
0x44, 0x45  
0x46, 0x47  
0x48, 0x49  
0x4A, 0x4B  
0x4C, 0x4D  
0x4E, 0x4F  
0x50, 0x51  
0x52, 0x53  
0x54, 0x55  
0x56, 0x57  
0x58 to 0x7B  
0x7C, 0x7D  
0x7E, 0x7F  
0x00 to 0x7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x0000  
N/A  
Page identifier  
Reserved  
R
No  
N/A  
N/A  
Data counter  
Reserved  
N/A N/A  
R
R
No  
No  
N/A  
N/A  
N/A  
Output, system error flags (0x0000 if no errors)  
Output, self test error flags (0x0000 if no errors)  
Reserved  
N/A N/A  
TEMP_OUT  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
Output, temperature  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TIME_STAMP  
CRC_LWR  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Output, x-axis gyroscope, low word  
Output, x-axis gyroscope, high word  
Output, y-axis gyroscope, low word  
Output, y-axis gyroscope, high word  
Output, z-axis gyroscope, low word  
Output, z-axis gyroscope, high word  
Output, x-axis accelerometer, low word  
Output, x-axis accelerometer, high word  
Output, y-axis accelerometer, low word  
Output, y-axis accelerometer, high word  
Output, z-axis accelerometer, low word  
Output, z-axis accelerometer, high word  
Output, time stamp  
N/A  
N/A  
N/A  
Output, CRC-32 (32 bits), lower word  
Output, CRC-32, upper word  
CRC_UPR  
Reserved  
N/A N/A  
N/A  
Reserved  
X_DELTANG_LOW  
X_DELTANG_OUT  
Y_DELTANG_LOW  
Y_DELTANG_OUT  
Z_DELTANG_LOW  
Z_DELTANG_OUT  
X_DELTVEL_LOW  
X_DELTVEL_OUT  
Y_DELTVEL_LOW  
Y_DELTVEL_OUT  
Z_DELTVEL_LOW  
Z_DELTVEL_OUT  
Reserved  
BURST_CMD  
PROD_ID  
Reserved  
PAGE_ID  
Reserved  
X_GYRO_SCALE  
Y_GYRO_SCALE  
Z_GYRO_SCALE  
X_ACCL_SCALE  
Y_ACCL_SCALE  
Z_ACCL_SCALE  
XG_BIAS_LOW  
R
R
R
R
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Output, x-axis delta angle, low word  
Output, x-axis delta angle, high word  
Output, y-axis delta angle, low word  
Output, y-axis delta angle, high word  
Output, z-axis delta angle, low word  
Output, z-axis delta angle, high word  
Output, x-axis delta velocity, low word  
Output, x-axis delta velocity, high word  
Output, y-axis delta velocity, low word  
Output, y-axis delta velocity, high word  
Output, z-axis delta velocity, low word  
Output, z-axis delta velocity, high word  
Reserved  
N/A N/A  
N/A  
R
R
No  
Yes  
N/A  
Burst read command  
0x4071  
N/A  
Output, product identification (16495d)  
Reserved  
N/A N/A  
R/W No  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
0x0000  
N/A  
Page identifier  
Reserved  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Calibration, scale, x-axis gyroscope  
Calibration, scale, y-axis gyroscope  
Calibration, scale, z-axis gyroscope  
Calibration, scale, x-axis accelerometer  
Calibration, scale, y-axis accelerometer  
Calibration, scale, z-axis accelerometer  
Calibration, bias, gyroscope, x-axis, low word  
Rev. C | Page 17 of 42  
 
 
ADIS16495  
Data Sheet  
Flash  
R/W Backup  
Register Name  
XG_BIAS_HIGH  
YG_BIAS_LOW  
YG_BIAS_HIGH  
ZG_BIAS_LOW  
ZG_BIAS_HIGH  
XA_BIAS_LOW  
XA_BIAS_HIGH  
YA_BIAS_LOW  
YA_BIAS_HIGH  
ZA_BIAS_LOW  
ZA_BIAS_HIGH  
Reserved  
USER_SCR_1  
USER_SCR_2  
USER_SCR_3  
USER_SCR_4  
FLSHCNT_LOW  
FLSHCNT_HIGH  
PAGE_ID  
PAGE_ID  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x05  
0x05  
0x05  
Address  
Default Register Description  
Calibration, bias, gyroscope, x-axis, high word  
Calibration, bias, gyroscope, y-axis, low word  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
Yes  
Yes  
R/W No  
No  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28 to 0x73  
0x74, 0x75  
0x76, 0x77  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 07F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A to 0x77  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 0x7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x1C to 0x1F  
0x20, 0x21  
0x22 to 0x7F  
0x00, 0x01  
0x02 to 0x07  
0x08 to 0x7F  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
N/A  
Calibration, bias, gyroscope, y-axis, high word  
Calibration, bias, gyroscope, z-axis, low word  
Calibration, bias, gyroscope, z-axis, high word  
Calibration, bias, accelerometer, x-axis, low word  
Calibration, bias, accelerometer, x-axis, high word  
Calibration, bias, accelerometer, y-axis, low word  
Calibration, bias, accelerometer, y-axis, high word  
Calibration, bias, accelerometer, z-axis, low word  
Calibration, bias, accelerometer, z-axis, high word  
Reserved  
User Scratch Register 1  
User Scratch Register 2  
User Scratch Register 3  
User Scratch Register 4  
R
R
Diagnostic, flash memory count, low word  
Diagnostic, flash memory count, high word  
Page identifier  
N/A  
0x0000  
N/A  
GLOB_CMD  
Reserved  
FNCTIO_CTRL  
GPIO_CTRL  
CONFIG  
W
Control, global commands  
N/A  
Reserved  
0x000D Control, I/O pins, functional definitions  
0x00X02 Control, I/O pins, general-purpose  
0x00C0  
0x0000  
0x070A  
0x109A  
N/A  
Control, clock, and miscellaneous correction  
Control, output sample rate decimation  
Control, automatic bias correction configuration  
Control, input clock scaling (PPS mode)  
Measurement range (model-specific) Identifier  
Reserved  
DEC_RATE  
NULL_CNFG  
SYNC_SCALE  
RANG_MDL  
R
N/A  
Reserved  
N/A N/A  
R/W Yes  
R/W Yes  
N/A N/A  
N/A  
FILTR_BNK_0  
FILTR_BNK_1  
Reserved  
FIRM_REV  
FIRM_DM  
FIRM_Y  
BOOT_REV  
PAGE_ID  
Reserved  
CAL_SIGTR_LWR  
CAL_SIGTR_UPR  
CAL_DRVTN_LWR  
CAL_DRVTN_UPR  
CODE_SIGTR_LWR  
CODE_SIGTR_UPR  
CODE_DRVTN_LWR  
CODE_DRVTN_UPR  
Reserved  
SERIAL_NUM  
Reserved  
PAGE_ID  
Reserved  
FIR_COEF_Axxx3  
0x0000  
0x0000  
N/A  
Filter selection  
Filter selection  
Reserved  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
N/A  
Firmware revision  
N/A  
N/A  
N/A  
Firmware programming date (day/month)  
Firmware programming date (year)  
Boot loader revision  
R/W No  
N/A N/A  
0x0000  
N/A  
Page identifier  
Reserved  
R
R
R
R
R
R
R
R
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Signature CRC, calibration coefficients, low word  
Signature CRC, calibration coefficients, high word  
Real-time CRC, calibration coefficients, low word  
Real-time CRC, calibration coefficients, high word  
Signature CRC, program code, low word  
Signature CRC, program code, high word  
Real-time CRC, program code, low word  
Real-time CRC, program code, high word  
Reserved  
N/A N/A  
Yes  
N/A N/A  
R/W No  
N/A N/A  
R/W Yes  
N/A  
R
N/A  
Serial number  
N/A  
Reserved  
0x0000  
N/A  
Page identifier  
Reserved  
N/A  
FIR Filter Bank A: Coefficient 0 through Coefficient 59  
Rev. C | Page 18 of 42  
Data Sheet  
ADIS16495  
Flash  
R/W Backup  
Register Name  
PAGE_ID  
Reserved  
FIR_COEF_Axxx3  
PAGE_ID  
Reserved  
FIR_COEF_Bxxx4  
PAGE_ID  
Reserved  
FIR_COEF_Bxxx4  
PAGE_ID  
Reserved  
FIR_COEF_Cxxx5  
PAGE_ID  
Reserved  
FIR_COEF_Cxxx5  
PAGE_ID  
0x06  
0x06  
0x06  
0x07  
0x07  
0x07  
0x08  
0x08  
0x08  
0x09  
0x09  
0x09  
0x0A  
0x0A  
0x0A  
0x0B  
0x0B  
0x0B  
0x0C  
0x0C  
0x0C  
Address  
Default Register Description  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
0x00, 0x01  
0x0000  
N/A  
Page identifier  
Reserved  
0x02 to 0x07  
0x08 to 0x7F  
0x00, 0x01  
0x02 to 0x07  
0x08 to 0x7F  
0x00, 0x01  
0x02 to 0x07  
0x08 to 0x7F  
0x00, 0x01  
0x02 to 0x07  
0x08 to 0x7F  
0x00, 0x01  
0x02 to 0x07  
0x08 to 0x7F  
0x00, 0x01  
0x02 to 0x07  
0x08 to 0x7F  
0x00, 0x01  
N/A  
FIR Filter Bank A: Coefficient 60 through Coefficient 119  
0x0000  
N/A  
Page identifier  
Reserved  
N/A  
FIR Filter Bank B: Coefficient 0 through Coefficient 59  
0x0000  
N/A  
Page identifier  
Reserved  
N/A  
FIR Filter Bank B: Coefficient 60 through Coefficient 119  
0x0000  
N/A  
Page identifier  
Reserved  
N/A  
FIR Filter Bank C: Coefficient 0 through Coefficient 59  
0x0000  
N/A  
Page identifier  
Reserved  
N/A  
FIR Filter Bank C: Coefficient 60 through Coefficient 119  
PAGE_ID  
Reserved  
FIR_COEF_Dxxx6  
PAGE_ID  
Reserved  
FIR_COEF_Dxxx6  
0x0000  
N/A  
Page identifier  
Reserved  
N/A  
0x0000  
N/A  
FIR Filter Bank D: Coefficient 0 through Coefficient 59  
Page identifier  
Reserved  
0x02 to 0x07  
0x08 to 0x7F  
N/A  
FIR Filter Bank D: Coefficient 60 through Coefficient 119  
1 N/A means not applicable.  
2 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting.  
3 See the FIR Filter Bank A, FIR_COEF_A000 to FIR_COEF_A119 section for additional information.  
4 See the FIR Filter Bank B, FIR_COEF_B000 to FIR_COEF_B119 section for additional information.  
5 See the FIR Filter Bank C, FIR_COEF_C000 to FIR_COEF_C119 section for additional information.  
6 See the FIR Filter Bank D, FIR_COEF_D000 to FIR_COEF_D119 section for additional information.  
Rev. C | Page 19 of 42  
ADIS16495  
Data Sheet  
USER REGISTER DEFINTIONS  
PAGE NUMBER (PAGE_ID)  
Table 18. SYS_E_FLAG Bit Descriptions  
The contents in the PAGE_ID register (see Table 13 and Table 14)  
contain the current page setting, and provide a control for selecting  
another page for SPI access. For example, set DIN = 0x8002 to  
select Page 2 for SPI-based user access. See Table 12 for the  
page assignments associated with each user accessible register.  
Bits  
Description  
15  
Watchdog timer flag. A 1 indicates the ADIS16495  
automatically resets itself to clear an issue.  
[14:9] Not used.  
8
Sync error. A 1 indicates the sample timing is not scaling  
correctly, when operating in PPS mode (FNCTIO_CTRL,  
Bit 8 = 1, see Table 144). When this error occurs, verify  
that the input sync frequency is correct and that  
SYNC_SCALE (see Table 154) has the correct value.  
Table 13. PAGE_ID Register Definition  
Page  
Addresses Default Access Flash Backup  
0x00  
0x00, 0x01 0x0000 R/W No  
7
6
Processing overrun. A 1 indicates the occurrence of a  
processing overrun. Initiate a reset to recover. Replace  
the ADIS16495 if this error persists.  
Table 14. PAGE_ID Bit Descriptions  
Flash memory update failure. A 1 indicates that the most  
recent flash memory update failed (GLOB_CMD, Bit 3, see  
Table 142). Repeat the test and replace the ADIS16495 if  
this error persists.  
Bits  
Description  
[15:0]  
Page number, binary numerical format  
DATA/SAMPLE COUNTER (DATA_CNT)  
5
Sensor failure. A 1 indicates failure in at least one of the  
inertial sensors. Read the DIAG_STS register (see Table 20)  
to determine which sensor is failing. Replace the  
ADIS16495 if the error persists, when it is operating in  
static inertial conditions.  
The DATA_CNT register (see Table 15 and Table 16) is a  
continuous, real-time, sample counter. It starts at 0x0000,  
increments every time the output data registers update, and  
wraps around from 0xFFFF (65,535 decimal) to 0x0000  
(0 decimal).  
4
3
Not used.  
SPI communication error. A 1 indicates that the total  
number of SCLK cycles is not equal to an integer multiple  
of 16. Repeat the previous communication sequence to  
recover. Persistence in this error can indicate a weakness in  
the SPI service from the master processor.  
Table 15. DATA_CNT Register Definition  
Page Addresses Default  
Access Flash Backup  
0x00 0x04, 0x05 Not applicable  
R No  
2
SRAM error condition. A 1 indicates a failure in the CRC  
(period = 20 ms) between the SRAM and flash memory.  
Initiate a reset to recover. Replace the ADIS16495 if this  
error persists.  
Table 16. DATA_CNT Bit Descriptions  
Bits Description  
[15:0] Data counter, binary format  
1
0
Boot memory failure. A 1 indicates that the device  
booted up using code from the backup memory bank.  
Replace the ADIS16495 if this error occurs.  
STATUS/ERROR FLAG INDICATORS (SYS_E_FLAG)  
Not used.  
The SYS_E_FLAG register (see Table 17 and Table 18) provides  
various error flags. Reading this register causes all of its bits to  
return to 0, with the exception of Bit 7. If an error condition  
persists, its flag (bit) automatically returns to an alarm value of 1.  
Table 17. SYS_E_FLAG Register Definition  
Page  
Addresses Default Access Flash Backup  
0x00  
0x08, 0x09 0x0000 No  
R
Rev. C | Page 20 of 42  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
Table 23. TEMP_OUT Data Format Examples  
Temperature (°C) Decimal Hex Binary  
SELF TEST ERROR FLAGS (DIAG_STS)  
SYS_E_FLAG, Bit 5 (see Table 18) contains the pass/fail result  
(0 = pass) for the on demand self test (ODST) operations,  
whereas the DIAG_STS register (see Table 19 and Table 20)  
contains pass/fail flags (0 = pass) for each inertial sensor. Reading  
the DIAG_STS register causes all of its bits to restore to 0. The  
bits in DIAG_STS return to 1 if the error conditions persists.  
+85  
+4800  
+2  
0x12C0 0001 0010 1100 0000  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0xEBB0 1110 1011 1011 0000  
+25 + 2/80  
+25 + 1/80  
+25  
+1  
0
+25 – 1/80  
+25 – 2/80  
−40  
−1  
−2  
−5200  
Table 19. DIAG_STS Register Definition  
Page  
Addresses  
Default Access Flash Backup  
GYROSCOPE DATA  
0x00  
0x0A, 0x0B  
0x0000 No  
R
The gyroscopes in the ADIS16495 measure the angular rate of  
rotation around three orthogonal axes (x, y, and z). Figure 34  
shows the orientation of each gyroscope axis, which defines the  
direction of rotation that produces a positive response in each  
of the angular rate measurements.  
Table 20. DIAG_STS Bit Descriptions  
Bits Description (Default = 0x0000)  
[15:6] Not used  
5
4
3
2
1
0
Self test failure, z-axis accelerometer (1 means failure)  
Self test failure, y-axis accelerometer (1 means failure)  
Self test failure, x-axis accelerometer (1 means failure)  
Self test failure, z-axis gyroscope (1 means failure)  
Self test failure, y-axis gyroscope (1 means failure)  
Self test failure, x-axis gyroscope (1 means failure)  
Each gyroscope has two output data registers. Figure 33 shows  
how these two registers combine to support a 32-bit, twos  
complement data format for the x-axis gyroscope measurements.  
This format also applies to the y-axis and z-axis as well.  
X_GYRO_OUT  
X_GYRO_LOW  
INTERNAL TEMPERATURE (TEMP_OUT)  
BIT 15  
BIT 0 BIT 15  
X-AXIS GYROSCOPE DATA  
BIT 0  
The TEMP_OUT register (see Table 21 and Table 22) provides  
a coarse measurement of the temperature inside of the ADIS16495.  
This data is useful for monitoring relative changes in the  
thermal environment. Table 23 provides several examples of  
the data format for the TEMP_OUT register.  
Figure 33. Gyroscope Output Data Structure  
Gyroscope Measurement Range/Scale Factor  
Table 24 provides the range and scale factor (KG) for the  
angular rate (gyroscope) measurements in each ADIS16495  
model.  
Table 21. TEMP_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
Table 24. Gyroscope Measurement Range and Scale Factors  
0x00 0x0E, 0x0F Not applicable  
R
No  
Model  
Range  
Scale Factor, KG  
0.00625°/sec/LSB  
0.025°/sec/LSB  
0.1°/sec/LSB  
ADIS16495-1  
ADIS16495-2  
ADIS16495-3  
125°/sec  
450°/sec  
2000°/sec  
Table 22. TEMP_OUT Bit Descriptions  
Bits  
Description  
[15:0]  
Temperature data; twos complement, 1°C per 80 LSB,  
25°C = 0x0000  
Z-AXIS  
ω
Z
X-AXIS  
Y-AXIS  
ω
X
ω
Y
PIN 23  
PIN 1  
Figure 34. Gyroscope Axis and Polarity Assignments  
Rev. C | Page 21 of 42  
 
 
 
 
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
Gyroscope Data Formatting  
Y-Axis Gyroscope (Y_GYRO_LOW, Y_GYRO_OUT)  
Table 25 and Table 26 offer various numerical examples that  
demonstrate the format of the rotation rate data in both 16-bit  
and 32-bit formats. See Table 24 for the scale factor (KG)  
associated with each ADIS16495 model.  
The Y_GYRO_LOW (see Table 31 and Table 32) and  
Y_GRYO_OUT (see Table 33 and Table 34) registers contain  
the gyroscope data for the y-axis.  
Table 31. Y_GYRO_LOW Register Definition  
Table 25. 16-Bit Gyroscope Data Format Examples  
Page Addresses Default  
Access Flash Backup  
Rotation Rate  
0x00 0x14, 0x15 Not applicable  
R
No  
(°/sec)  
+10000 KG  
+2 KG  
+KG  
0°/sec  
−KG  
Decimal Hex  
Binary  
+10,000  
+2  
+1  
0
0x2710 0010 0111 0001 0000  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
Table 32. Y_GYRO_LOW Bit Descriptions  
Bits  
Description  
[15:0]  
Y-axis gyroscope data; low word  
−1  
−2  
0xFFFF  
0xFFFE  
1111 1111 1111 1111  
1111 1111 1111 1110  
−2 KG  
Table 33. Y_GYRO_OUT Register Definition  
−10000 KG  
−10,000  
0xD8F0 1101 1000 1111 0000  
Page Addresses Default  
Access Flash Backup  
0x00 0x16, 0x17 Not applicable  
R
No  
Table 26. 32-Bit Gyroscope Data Format Examples  
Rotation Rate (°/sec)  
+10000 KG  
+KG/215  
Decimal  
Hexadecimal  
0x27100000  
0x00000002  
0x00000001  
0x0000000  
0xFFFFFFFF  
0xFFFFFFFE  
0xD8F00000  
Table 34. Y_GYRO_OUT Bit Descriptions  
+655,360,000  
+2  
+1  
0
−1  
−2  
Bits  
Description  
[15:0]  
Y-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, see Table 24 for scale factor  
+KG/216  
0
−KG /216  
Z-Axis Gyroscope (Z_GYRO_LOW, Z_GYRO_OUT)  
−KG /215  
The Z_GYRO_LOW (see Table 35 and Table 36) and  
Z_GRYO_  
−10000 KG  
−655,360,000  
OUT (see Table 37 and Table 38) registers contain the gyroscope  
data for the z-axis.  
X-Axis Gyroscope (X_GYRO_LOW, X_GRYO_OUT)  
The X_GYRO_LOW (see Table 27 and Table 28) and X_GRYO_  
OUT (see Table 29 and Table 30) registers contain the gyroscope  
data for the x-axis.  
Table 35. Z_GYRO_LOW Register Definition  
Page Addresses Default  
Access Flash Backup  
0x00 0x18, 0x19 Not applicable  
R
No  
Table 27. X_GYRO_LOW Register Definition  
Page Addresses Default  
Access Flash Backup  
Table 36. Z_GYRO_LOW Bit Descriptions  
0x00 0x10, 0x11 Not applicable  
R No  
Bits  
Description  
[15:0]  
Z-axis gyroscope data; additional resolution bits  
Table 28. X_GYRO_LOW Bit Descriptions  
Bits  
Description  
Table 37. Z_GYRO_OUT Register Definition  
[15:0]  
X-axis gyroscope data; low word  
Page Addresses Default  
Access Flash Backup  
0x00 0x1A, 0x1B Not applicable  
R No  
Table 29. X_GYRO_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
Table 38. Z_GYRO_OUT Bit Descriptions  
0x00 0x12, 0x13 Not applicable  
R No  
Bits  
Description  
[15:0]  
Z-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, see Table 24 for scale factor  
Table 30. X_GYRO_OUT Bit Descriptions  
Bits  
Description  
[15:0]  
X-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, see Table 24 for scale factor  
Rev. C | Page 22 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
Z-AXIS  
aZ  
X-AXIS  
Y-AXIS  
aX  
aY  
PIN 23  
PIN 1  
Figure 35. Accelerometer Axis and Polarity Assignments  
Y-Axis Accelerometer (Y_ACCL_LOW, Y_ACCL_OUT)  
ACCELERATION DATA  
The Y_ACCL_LOW (see Table 43 and Table 44) and  
Y_ACCL_OUT (see Table 45 and Table 46) registers contain  
the accelerometer data for the y-axis.  
The accelerometers in the ADIS16495 measure both dynamic  
and static (response to gravity) acceleration along three orthogonal  
axes (x, y, and z). Figure 35 shows the orientation of each  
accelerometer axis, which defines the direction of linear  
acceleration that produces a positive response in each of the  
angular rate measurements.  
Table 43. Y_ACCL_LOW Register Definition  
Page Addresses Default  
Access Flash Backup  
0x00 0x20, 0x21 Not applicable  
R
No  
Each accelerometer has two output data registers. Figure 36  
shows how these two registers combine to support a 32-bit,  
twos complement data format for the x-axis accelerometer  
measurements. This format also applies to the y-axis and z-axis.  
Table 44. Y_ACCL_LOW Bit Descriptions  
Bits Description  
[15:0] Y-axis accelerometer data; low word  
X_ACCL_OUT  
X_ACCL_LOW  
BIT 15  
BIT 0 BIT 15  
X-AXIS ACCELEROMETER DATA  
BIT 0  
Table 45. Y_ACCL_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
Figure 36. Accelerometer Output Data Structure  
0x00 0x22, 0x23 Not applicable  
R
No  
X-Axis Accelerometer (X_ACCL_LOW, X_ACCL_OUT)  
The X_ACCL_LOW (see Table 39 and Table 40) and  
X_ACCL_  
OUT (see Table 41 and Table 42) registers contain the  
Table 46. Y_ACCL_OUT Bit Descriptions  
Bits Description  
[15:0] Y-axis accelerometer data, high word; twos  
accelerometer data for the x-axis.  
complement, 8 g range, 0 g = 0x0000, 1 LSB = 0.25 mg  
Table 39. X_ACCL_LOW Register Definition  
Z-Axis Accelerometer (Z_ACCL_LOW, Z_ACCL_OUT)  
Page Addresses Default  
Access Flash Backup  
The Z_ACCL_LOW (see Table 47 and Table 48) and Z_ACCL_  
OUT (see Table 49 and Table 50) registers contain the accelerome-  
ter data for the z-axis.  
0x00 0x1C, 0x1D Not applicable  
R No  
Table 40. X_ACCL_LOW Bit Descriptions  
Bits Description  
Table 47. Z_ACCL_LOW Register Definition  
Page Addresses Default  
Access Flash Backup  
[15:0] X-axis accelerometer data; low word  
0x00 0x24, 0x25 Not applicable  
R
No  
Table 41. X_ACCL_OUT Register Definition  
Table 48. Z_ACCL_LOW Bit Descriptions  
Bits Description  
Page Addresses Default  
Access Flash Backup  
0x00 0x1E, 0x1F Not applicable  
R
No  
[15:0] Z-axis accelerometer data; low word  
Table 42. X_ACCL_OUT Descriptions  
Bits Description  
Table 49. Z_ACCL_OUT Register Definition  
Page Addresses Default  
Access Flash Backup  
[15:0] X-axis accelerometer data, high word; twos  
complement, 8 g range; 0 g = 0x0000, 1 LSB = 0.25 mg  
0x00 0x26, 0x27 Not applicable  
R No  
Rev. C | Page 23 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
Table 50. Z_ACCL_OUT Bit Descriptions  
to 5 on the second update, 9 on the third update, for example,  
until the next clock signal pulse.  
Bits  
Description  
[15:0] Z-axis accelerometer data, high word; twos  
CYCLICAL REDUNDANCY CHECK (CRC-32)  
complement, 8 g range, 0 g = 0x0000, 1 LSB = 0.25 mg  
The ADIS16495 performs a CRC-32 computation, using the  
output data registers (see Table 55).  
Accelerometer Resolution  
Table 51 and Table 52 offer various numerical examples that  
demonstrate the format of the linear acceleration data in both  
16-bit and 32-bit formats.  
Table 55. CRC-32 Source Data and Example Values  
Register  
Example Value  
0x0000  
0x083A  
0x0000  
0xFFF7  
SYS_E_FLAG  
TEMP_OUT  
Table 51. 16-Bit Accelerometer Data Format Examples  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TIME_STAMP  
Acceleration  
Decimal  
+32,000  
+2  
+1  
0
−1  
−2  
−32,000  
Hex  
Binary  
+8 g  
0x7D00 0111 1101 0000 0000  
0x0000  
0xFFFE  
+0.5 mg  
+0.25 mg  
0 mg  
−0.25 mg  
−0.5 mg  
−8 g  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0x8300  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1000 0011 0000 0000  
0x0000  
0x0001  
0x5001  
0x0003  
0xE00A  
0x0015  
0xC009  
0x0320  
0x8A54  
Table 52. 32-Bit Accelerometer Data Format Examples  
Acceleration  
Decimal  
Hexadecimal  
0x7D000000  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x83000000  
+8 g  
+2,097,152,000  
+2  
+1  
0
−1  
−2  
+0.25/215 mg  
+0.25/216 mg  
0 mg  
The CRC_LWR (see Table 56 and Table 57) and CRC_UPR  
(see Table 58 and Table 59) registers contain the result of the  
CRC-32 computation. For the example, the register values from  
Table 55 are,  
−0.25/216 mg  
−0.25/215 mg  
−8 g  
−2,097,152,000  
CRC_LWR = 0x15B4  
CRC_UPR = 0xB6C8  
TIME STAMP  
When using PPS mode (FNCTIO_CTRL, Bits[8:7] = 11 (binary),  
see Table 144), the TIME_STAMP register (see Table 53 and  
Table 54) provides the time between the most recent pulse on  
the input clock signal and the most recent data update.  
Table 56. CRC_LWR Register Definition  
Page Addresses Default  
Access Flash Backup  
0x00 0x2A, 0x2B Not applicable  
R No  
Table 53. TIME_STAMP Register Definition  
Table 57. CRC_LWR Bit Definitions  
Page Addresses Default  
Access Flash Backup  
Bits  
Description  
0x00 0x28, 0x29 Not applicable  
R
No  
[15:0] CRC-32 code from most recent BRF, lower word  
Table 54. TIME_STAMP Bit Descriptions  
Bits Description  
[15:0] Time stamp, binary format.  
Table 58. CRC_UPR Register Definition  
Page Addresses Default  
Access Flash Backup  
1 LSB = 1/fSM (see Figure 18, Figure 19, and Table 154).  
The leading edge of the input clock pulse resets the  
value in this register to 0x0000.  
0x00 0x2C, 0x2D Not applicable  
R
No  
Table 59. CRC_UPR Bit Definitions  
Bits Description  
[15:0] CRC-32 code from most recent BRF, upper word  
When using the decimation filter (DEC_RATE > 0x0000), the  
value in the TIME_STAMP register represents the time of the first  
sample (taken at the rate of fSM, per Figure 18 and Figure 19).  
For example, when DEC_RATE = 0x0003, the decimation filter  
reduces the update by a factor of four and the TIME_STAMP  
register updates to 1 (decimal) during the first data update, then  
Rev. C | Page 24 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
Z-AXIS  
Δθ  
Z
X-AXIS  
Y-AXIS  
Δθ  
X
Δθ  
Y
PIN 23  
PIN 1  
Figure 37. Delta Angle Axis and Polarity Assignments  
Delta Angle Measurement Range  
DELTA ANGLES  
Table 60 offers the measurement range and scale factor for each  
ADIS16495 model.  
In addition to the angular rate of rotation (gyroscope) measure-  
ments around each axis (x, y, and z), the ADIS16495 also provides  
delta angle measurements that represent a computation of angular  
displacement between each sample update. Figure 37 shows the  
orientation of each delta angle output, which defines the  
direction of rotation that produces a positive response in each  
of the angular displacement (delta angle) measurements.  
Table 60. Delta Angle Measurement Range and Scale Factor  
Model  
Measurement Range, ΔθMAX  
ADIS16495-1  
ADIS16495-2  
ADIS16495-3  
360°  
720°  
2160°  
The delta angle outputs represent an integration of the gyro-  
scope measurements and use the following formula for all three  
axes (x-axis displayed):  
X-Axis Delta Angle (X_DELTANG_LOW,  
X_DELTANG_OUT)  
D 1  
1
The X_DELTANG_LOW (see Table 61 and Table 62) and  
X_DELTANG_OUT (see Table 63 and Table 64) registers  
contain the delta angle data for the x-axis.  
θx,n D  
=
×
ω
+ωx,n D +d 1  
x,n D + d  
(
)
2 fS  
d =0  
where:  
Δθx is the delta angle measurement for the x-axis.  
D is the decimation rate = DEC_RATE + 1 (see Table 150).  
fS is the sample rate.  
Table 61. X_DELTANG_LOW Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x00 0x40, 0x41 Not applicable  
R
No  
d is the incremental variable in the summation formula.  
ωx is the x-axis rate of rotation (gyroscope).  
n is the sample time, prior to the decimation filter.  
Table 62. X_DELTANG_LOW Bit Descriptions  
Bits  
Description  
When using the internal sample clock, fS is equal to 4250 SPS.  
When using the external clock option, fS is equal to the frequency  
of the external clock. The range in the delta angle registers  
accommodates the maximum rate of rotation (100°/sec), the  
nominal sample rate (4250 SPS), and an update rate of 1 Hz  
(DEC_RATE = 0x1099; divide by 4249 plus 1, see Table 150),  
all at the same time. When using an external clock that is higher  
than 4250 SPS, reduce the DEC_RATE setting to avoid over-  
ranging the delta angle registers.  
[15:0]  
X-axis delta angle data; low word  
Table 63. X_DELTANG_OUT Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x00 0x42, 0x43 Not applicable  
R
No  
Table 64. X_DELTANG_OUT Bit Descriptions  
Bits Description  
[15:0] X-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 60 for ΔθMAX  
Each axis of the delta angle measurements has two output data  
registers. Figure 38 shows how these two registers combine to  
support a 32-bit, twos complement data format for the x-axis  
delta angle measurements. This format also applies to the y-axis  
and z-axis.  
)
X_DELTANG_OUT  
BIT 0 BIT 15  
X-AXIS DELTA ANGLE DATA  
X_DELTANG_LOW  
BIT 15  
BIT 0  
Figure 38. Delta Angle Output Data Structure  
Rev. C | Page 25 of 42  
 
 
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
Delta Angle Resolution  
Y-Axis Delta Angle (Y_DELTANG_LOW, Y_DELTANG_OUT)  
Table 73 and Table 74 shows various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
The Y_DELTANG_LOW (see Table 65 and Table 66) and  
Y_DELTANG_OUT (see Table 67 and Table 68) registers  
contain the delta angle data for the y-axis.  
Table 73. 16-Bit Delta Angle Data Format Examples  
Table 65. Y_DELTANG_LOW Register Definitions  
Delta Angle (°)  
ΔθMAX × (215−1)/215 +32,767  
Decimal Hex  
Binary  
Page Addresses Default  
Access Flash Backup  
0x7FFF 0111 1111 1110 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
0x00 0x44, 0x45 Not applicable  
R No  
+ΔθMAX/214  
+ΔθMAX/215  
0
+2  
+1  
0
Table 66. Y_DELTANG_LOW Bit Descriptions  
Bits  
Description  
−ΔθMAX/215  
−ΔθMAX/214  
−ΔθMAX  
−1  
−2  
−32,768  
[15:0]  
Y-axis delta angle data; low word  
Table 67. Y_DELTANG_OUT Register Definitions  
Page Addresses Default  
Access Flash Backup  
Table 74. 32-Bit Delta Angle Data Format Examples  
0x00 0x46, 0x47 Not applicable  
R No  
Delta Angle (°)  
+ΔθMAX × (231 − 1)/231  
+ΔθMAX/230  
+ΔθMAX2000/231  
0
−ΔθMAX/231  
−ΔθMAX/230  
−ΔθMAX  
Decimal  
Hex  
+2,147,483,647 0x7FFFFFFF  
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
Table 68. Y_DELTANG_OUT Bit Descriptions  
Bits Description  
[15:0] Y-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 60 for ΔθMAX  
)
−2,147,483,648 0x80000000  
Z-Axis Delta Angle (Z_DELTANG_LOW,  
Z_DELTANG_OUT)  
DELTA VELOCITY  
The Z_DELTANG_LOW (see Table 69 and Table 70) and  
Z_DELTANG_OUT (see Table 71 and Table 72) registers  
contain the delta angle data for the z-axis.  
In addition to the linear acceleration measurements along each  
axis (x, y, and z), the ADIS16495 also provides delta velocity  
measurements that represent a computation of linear velocity  
change between each sample update. Figure 40 shows the  
orientation of each delta-velocity measurement, which defines  
the direction of linear velocity increase that produces a positive  
response in each of the delta velocity rate measurements.  
Table 69. Z_DELTANG_LOW Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x00 0x48, 0x49 Not applicable  
R No  
Table 70. Z_DELTANG_LOW Bit Descriptions  
The delta velocity outputs represent an integration of the accelera-  
tion measurements and use the following formula for all three  
axes (x-axis displayed):  
Bits  
Description  
[15:0]  
Z-axis delta angle data; low word  
D1  
1
2 fS  
Vx,nD  
=
×
(
a
+ ax,nD+d1  
)
x,nD+d  
Table 71. Z_DELTANG_OUT Register Definitions  
d=0  
Page Addresses Default  
Access Flash Backup  
where:  
0x00 0x4A, 0x4B Not applicable  
R No  
ΔVX is the delta velocity measurement for the x-axis.  
D is the decimation rate = DEC_RATE + 1 (see Table 150).  
fS is the sample rate.  
d is the incremental variable in the summation formula.  
ax is the x-axis rate of acceleration (accelerometer).  
n is the sample time, prior to the decimation filter.  
Table 72. Z_DELTANG_OUT Bit Descriptions  
Bits Description  
[15:0] Z-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 60 for ΔθMAX  
)
Rev. C | Page 26 of 42  
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
When using the internal sample clock, fS is equal to 4250 SPS.  
When using the external clock option, fS is equal to the frequency  
of the external clock. The range in the delta velocity registers  
accommodates the maximum linear acceleration (8 g), the  
nominal sample rate (4250 SPS), and an update rate of 1 Hz  
(DEC_RATE = 0x1099; divide by 4249 plus 1, see Table 150),  
all at the same time. When using an external clock that is higher  
than 4250 SPS, reduce the DEC_RATE setting to avoid  
overranging the delta velocity registers.  
Y-Axis Delta Velocity (Y_DELTVEL_LOW,  
Y_DELTVEL_OUT)  
The Y_DELTVEL_LOW (see Table 79 and Table 80) and  
Y_DELTVEL_OUT (see Table 81 and Table 82) registers contain  
the delta velocity data for the y-axis.  
Table 79. Y_DELTVEL_LOW Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x00 0x50, 0x51 Not applicable  
R
No  
Each axis of the delta velocity measurements has two output  
data registers. Figure 39 shows how these two registers combine  
to support 32-bit, twos complement data format for the delta  
velocity measurements along the x-axis. This format also  
applies to the y-axis and x-axis.  
Table 80. Y_DELTVEL_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Y-axis delta angle data; low word  
X_DELTVEL_OUT  
BIT 0 BIT 15  
X-AXIS DELTA ANGLE DATA  
X_DELTVEL_LOW  
Table 81. Y_DELTVEL_OUT Register Definitions  
BIT 15  
BIT 0  
Page Addresses Default  
Access Flash Backup  
0x00 0x52, 0x53 Not applicable  
R
No  
Figure 39. Delta Angle Output Data Structure  
Table 82. Y_DELTVEL_OUT Bit Definitions  
Bits Description  
X-Axis Delta Velocity (X_DELTVEL_LOW,  
X_DELTVEL_OUT)  
[15:0] Y-axis delta velocity data, high word; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
The X_DELTVEL_LOW (see Table 75 and Table 76) and  
X_DELTVEL_OUT (see Table 77 and Table 78) registers  
contain the delta velocity data for the x-axis.  
1 LSB = 100 m/sec ÷ 215 = ~3.052 mm/sec  
Z-Axis Delta Velocity (Z_DELTVEL_LOW,  
Z_DELTVEL_OUT)  
Table 75. X_DELTVEL_LOW Register Definitions  
Page Addresses Default  
Access Flash Backup  
The Z_DELTVEL_LOW (see Table 83 and Table 84) and  
Z_DELTVEL_OUT (see Table 85 and Table 86) registers  
contain the delta velocity data for the z-axis.  
0x00 0x4C, 0x4D Not applicable  
R No  
Table 76. X_DELTVEL_LOW Bit Definitions  
Bits  
Description  
Table 83. Z_DELTVEL_LOW Register Definitions  
[15:0]  
X-axis delta angle data; low word  
Page Addresses Default  
Access Flash Backup  
0x00 0x54, 0x55 Not applicable  
R
No  
Table 77. X_DELTVEL_OUT Register Definitions  
Page Addresses Default Access Flash Backup  
0x00 0x4E, 0x4F Not applicable No  
Table 84. Z_DELTVEL_LOW Bit Definitions  
R
Bits  
Description  
[15:0]  
Z-axis delta angle data; low word  
Table 78. X_DELTVEL_OUT Bit Definitions  
Bits Description  
Table 85. Z_DELTVEL_OUT Register Definitions  
[15:0] X-axis delta velocity data, high word; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
Page Addresses Default  
Access Flash Backup  
0x00 0x56, 0x57 Not applicable  
R
No  
1 LSB = 100 m/sec ÷ 215 = ~3.052 mm/sec  
Table 86. Z_DELTVEL_OUT Bit Definitions  
Bits Description  
[15:0] Z-axis delta velocity data, high word; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
1 LSB = 100 m/sec ÷ 215 = ~3.052 mm/sec  
Rev. C | Page 27 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
Z-AXIS  
ΔV  
Z
X-AXIS  
Y-AXIS  
ΔV  
X
ΔV  
Y
PIN 23  
PIN 1  
Figure 40. Delta Velocity Axis and Polarity Assignments  
Burst Read Command, BURST_CMD  
Delta Velocity Resolution  
Reading the BURST_CMD register (see Table 89 and Table 90)  
starts the BRF. See Table 10, Table 11, Figure 5, and Figure 6  
for more information on the BRF function.  
Table 87 and Table 88 offer various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
Table 89. BURST_CMD Register Definitions  
Table 87. 16-Bit Delta Velocity Data Format Examples  
Page Addresses Default  
Access Flash Backup  
Velocity (m/sec)  
Decimal Hex  
Binary  
0x00 0x7C, 0x7D Not Applicable  
R
No  
+100 × (215 − 1)/215 +32,767  
0x7FFF 0111 1111 1110 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+100/214  
+100/215  
0
+2  
+1  
0
Table 90. BURST_CMD Bit Definitions  
Bits  
Description  
−100/215  
−100/214  
−100  
−1  
−2  
−32,768  
[15:0]  
Burst read command register  
Product Identification, PROD_ID  
The PROD_ID register (see Table 91 and Table 92) contains  
the numerical portion of the device number (16,495). See  
Figure 30 for an example of how to use a looping read of this  
register to validate the integrity of the communication.  
Table 88. 32-Bit Delta Angle Data Format Examples  
Velocity (m/sec)  
+100 × (231 − 1)/231  
+100/230  
+100/231  
0
Decimal  
Hex  
+2,147,483,647  
+2  
+1  
0
0x7FFFFFFF  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x80000000  
Table 91. PROD_ID Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x00  
0x7E, 0x7F  
0x406F Yes  
R
−100/231  
−100/230  
−100  
−1  
−2  
−2,147,483,648  
Table 92. PROD_ID Bit Definitions  
Bits  
Description  
[15:0]  
Product identification = 0x406F  
Rev. C | Page 28 of 42  
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
USER BIAS/SCALE ADJUSTMENT  
Gyroscope Scale Adjustment, Z_GYRO_SCALE  
The signal chain of each inertial sensor (accelerometers, gyro-  
scopes) includes application of unique correction formulas that  
come from extensive characterization of bias, sensitivity, align-  
ment, and response to linear acceleration (gyroscopes) over a  
temperature range of −40°C to +85°C for the ADIS16495. These  
correction formulas are not accessible, but the user does have the  
opportunity to adjust the bias and the scale factor, for each sensor  
individually, through user accessible registers. These correction  
factors follow immediately after the factory derived correction  
formulas in the signal chain, which processes at a rate of 4250  
Hz when using the internal sample clock (see fSM in Figure 18  
and Figure 19).  
The Z_GYRO_SCALE register (see Table 97 and Table 98)  
allows the user to adjust the scale factor for the z-axis  
gyroscopes. This register influences the z-axis gyroscope  
measurements in the same manner that X_GYRO_SCALE  
influences the x-axis gyroscope measurements (see Figure 41).  
Table 97. Z_GYRO_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x08, 0x09  
0x0000 R/W Yes  
Table 98. Z_GYRO_SCALE Bit Definitions  
Bits Description  
Gyroscope Scale Adjustment, X_GYRO_SCALE  
[15:0] Z-axis gyroscope scale correction; twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
The X_GYRO_SCALE register (see Table 93 and Table 94)  
provides the user with the opportunity to adjust the scale factor  
for the x-axis gyroscopes. See Figure 41 for an illustration of  
how this scale factor influences the x-axis gyroscope data.  
Accelerometer Scale Adjustment, X_ACCL_SCALE  
The X_ACCL_SCALE register (see Table 99 and Table 100)  
allows users to adjust the scale factor for the x-axis  
accelerometers. See Figure 42 for an illustration of how this  
scale factor influences the x-axis accelerometer data.  
Table 93. X_GYRO_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x04, 0x05  
0x0000 R/W Yes  
Table 99. X_ACCL_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Table 94. X_GYRO_SCALE Bit Definitions  
Bits Description  
0x02  
0x0A, 0x0B  
0x0000 R/W Yes  
[15:0] X-axis gyroscope scale correction; twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Table 100. X_ACCL_SCALE Bit Definitions  
Bits Description  
1 + X_GYRO_SCALE  
[15:0] X-axis accelerometer scale correction; twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
FACTORY  
X-AXIS  
GYRO  
CALIBRATION  
AND  
X_GYRO_OUT X_GYRO_LOW  
FILTERING  
1 + X_ACCL_SCALE  
XG_BIAS_HIGH XG_BIAS_LOW  
FACTORY  
X-AXIS  
ACCL  
CALIBRATION  
AND  
X_ACCL_OUT X_ACCL_LOW  
Figure 41. User Bias/Scale Adjustment Registers in Gyroscope Signal Path  
FILTERING  
Gyroscope Scale Adjustment, Y_GYRO_SCALE  
XA_BIAS_HIGH  
XA_BIAS_LOW  
The Y_GYRO_SCALE register (see Table 95 and Table 96) allows  
the user to adjust the scale factor for the y-axis gyroscopes. This  
register influences the y-axis gyroscope measurements in the  
same manner that X_GYRO_SCALE influences the x-axis  
gyroscope measurements (see Figure 41).  
Figure 42. User Bias/Scale Adjustment Registers in Accelerometer Signal Path  
Accelerometer Scale Adjustment, Y_ACCL_SCALE  
The Y_ACCL_SCALE register (see Table 101 and Table 102)  
allows the user to adjust the scale factor for the y-axis  
accelerometers. This register influences the y-axis accelerometer  
measurements in the same manner that X_ACCL_SCALE  
influences the x-axis accelerometer measurements (see Figure 42).  
Table 95. Y_GYRO_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x06, 0x07  
0x0000 R/W Yes  
Table 101. Y_ACCL_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Table 96. Y_GYRO_SCALE Bit Definitions  
Bits Description  
0x02  
0x0C, 0x0D  
0x0000 R/W Yes  
[15:0] Y-axis gyroscope scale correction; twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Table 102. Y_ACCL_SCALE Bit Definitions  
Bits Description  
[15:0] Y-axis accelerometer scale correction; twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Rev. C | Page 29 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
YG_BIAS_HIGH register, and the digital format examples in  
Accelerometer Scale Adjustment, Z_ACCL_SCALE  
Table 26 apply to the number that comes from combining the  
YG_BIAS_LOW and YG_BIAS_HIGH registers. These registers  
influence the y-axis gyroscope measurements in the same manner  
that the XG_BIAS_ LOW and XG_BIAS_HIGH registers  
influence the x-axis gyroscope measurements (see Figure 41).  
The Z_ACCL_SCALE register (see Table 103 and Table 104)  
allows the user to adjust the scale factor for the z-axis  
accelerometers. This register influences the z-axis accelerometer  
measurements in the same manner that X_ACCL_SCALE  
influences the x-axis accelerometer measurements (see Figure 42).  
Table 109. YG_BIAS_LOW Register Definitions  
Table 103. Z_ACCL_SCALE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x14, 0x15  
0x0000 R/W Yes  
0x02  
0x0E, 0x0F  
0x0000 R/W Yes  
Table 110. YG_BIAS_LOW Bit Definitions  
Bits Description  
Table 104. Z_ACCL_SCALE Bit Definitions  
Bits Description  
[15:0] Y-axis gyroscope offset correction, low word; twos comp-  
lement, 0°/sec = 0x0000, 1 LSB = KG ÷ 216 (see Table 24)  
[15:0] Z-axis accelerometer scale correction; twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Table 111. YG_BIAS_HIGH Register Definitions  
Gyroscope Bias Adjustment, XG_BIAS_LOW,  
XG_BIAS_HIGH  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x16, 0x17  
0x0000 R/W Yes  
The XG_BIAS_LOW (see Table 105 and Table 106) and XG_  
BIAS_HIGH (see Table 107 and Table 108) registers combine  
to allow the user to adjust the bias of the x-axis gyroscopes. The  
digital format examples in Table 25 also apply to the XG_BIAS_  
HIGH register, and the digital format examples in Table 26 apply  
to the number that comes from combining the XG_BIAS_LOW  
and XG_BIAS_HIGH registers. See Figure 41 for an illustration  
of how these two registers combine and influence the x-axis  
gyroscope measurements.  
Table 112. YG_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis gyroscope offset correction, high word twos  
complement, 0°/sec = 0x0000, 1 LSB = KG (See Table 24)  
Gyroscope Bias Adjustment, ZG_BIAS_LOW,  
ZG_BIAS_HIGH  
The ZG_BIAS_LOW (see Table 113 and Table 114) and ZG_  
BIAS_HIGH (see Table 115 and Table 116) registers combine  
to allow users to adjust the bias of the z-axis gyroscopes. The  
digital format examples in Table 25 also apply to the ZG_BIAS_  
HIGH register, and the digital format examples in Table 26 apply  
to the number that comes from combining the ZG_BIAS_LOW  
and ZG_BIAS_HIGH registers. These registers influence the  
z-axis gyroscope measurements in the same manner that the  
XG_BIAS_ LOW and XG_BIAS_HIGH registers influence the x-  
axis gyroscope measurements (see Figure 41).  
Table 105. XG_BIAS_LOW Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x10, 0x11  
0x0000 R/W Yes  
Table 106. XG_BIAS_LOW Bit Definitions  
Bits  
Description  
[15:0]  
X-axis gyroscope offset correction, low word;  
twos complement, 0°/sec = 0x0000, 1 LSB = KG ÷ 216  
(see Table 24)  
Table 113. ZG_BIAS_LOW Register Definitions  
Table 107. XG_BIAS_HIGH Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x18, 0x19  
0x0000 R/W Yes  
0x02  
0x12, 0x13  
0x0000 R/W Yes  
Table 114. ZG_BIAS_LOW Bit Definitions  
Bits Description  
[15:0] Z-axis gyroscope offset correction, low word; twos comp-  
lement, 0°/sec = 0x0000, 1 LSB = KG ÷ 216 (see Table 24)  
Table 108. XG_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] X-axis gyroscope offset correction, high word twos  
complement, 0°/sec = 0x0000, 1 LSB = KG (see Table 24)  
Table 115. ZG_BIAS_HIGH Register Definitions  
Gyroscope Bias Adjustment, YG_BIAS_LOW,  
YG_BIAS_HIGH  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x1A, 0x1B  
0x0000 R/W Yes  
The YG_BIAS_LOW (see Table 109 and Table 110) and YG_  
BIAS_HIGH (see Table 111 and Table 112) registers combine  
to allow users to adjust the bias of the y-axis gyroscopes. The  
digital format examples in Table 25 also apply to the  
Rev. C | Page 30 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
Table 116. ZG_BIAS_HIGH Bit Definitions  
Table 122. YA_BIAS_LOW Bit Definitions  
Bits  
Description  
Bits  
Description  
[15:0] Z-axis gyroscope offset correction, high word twos  
complement, 0°/sec = 0x0000, 1 LSB = KG (See Table 24)  
[15:0]  
Y-axis accelerometer offset correction, low word, twos  
complement, 0 g = 0x0000, 1 LSB = 0.25 mg ÷ 216  
Accelerometer Bias Adjustment, XA_BIAS_LOW,  
XA_BIAS_HIGH  
Table 123. YA_BIAS_HIGH Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
The XA_BIAS_LOW (see Table 117 and Table 118) and XA_  
BIAS_HIGH (see Table 119 and Table 120) registers combine  
to allow the user to adjust the bias of the x-axis accelerometers.  
The digital format examples in Table 51 also apply to the  
XA_BIAS_ HIGH register and the digital format examples in  
Table 52 apply to the number that comes from combining the  
XA_BIAS_LOW and XA_BIAS_HIGH registers. See Figure 42  
for an illustration of how these two registers combine and  
influence the x-axis gyroscope measurements.  
0x02  
0x22, 0x23  
0x0000 R/W Yes  
Table 124. YA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis accelerometer offset correction, high word, twos  
complement, 0 g = 0x0000, 1 LSB = 0.25 mg  
Accelerometer Bias Adjustment, ZA_BIAS_LOW,  
ZA_BIAS_HIGH  
Table 117. XA_BIAS_LOW Register Definitions  
The ZA_BIAS_LOW (see Table 125 and Table 126) and ZA_  
BIAS_HIGH (see Table 127 and Table 128) registers combine  
to allow users to adjust the bias of the z-axis accelerometers.  
The digital format examples in Table 51 also apply to the  
ZA_BIAS_HIGH register and the digital format examples in  
Table 52 apply to the number that comes from combining the  
ZA_BIAS_LOW and ZA_BIAS_HIGH registers. These registers  
influence the z-axis accelerometer measurements in the same  
manner that the XA_BIAS_LOW and XA_BIAS_HIGH  
registers influence the x-axis accelerometer measurements (see  
Figure 42).  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x1C, 0x1D  
0x0000 R/W Yes  
Table 118. XA_BIAS_LOW Bit Definitions  
Bits  
Description  
[15:0]  
X-axis accelerometer offset correction, low word, twos  
complement, 0 g = 0x0000, 1 LSB = 0.25 mg ÷ 216  
Table 119. XA_BIAS_HIGH Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
Table 125. ZA_BIAS_LOW Register Definitions  
0x02  
0x1E, 0x1F  
0x0000 R/W Yes  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x24, 0x25  
0x0000 R/W Yes  
Table 120. XA_BIAS_HIGH Bit Definitions  
Bits Description  
Table 126. ZA_BIAS_LOW Bit Definitions  
Bits Description  
[15:0] X-axis accelerometer offset correction, high word,  
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg  
[15:0] Z-axis accelerometer offset correction, low word,  
Accelerometer Bias Adjustment, YA_BIAS_LOW,  
YA_BIAS_HIGH  
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg ÷ 216  
The YA_BIAS_LOW (see Table 121 and Table 122) and YA_  
BIAS_HIGH (see Table 123 and Table 124) registers combine  
to allow the user to adjust the bias of the y-axis accelerometers.  
The digital format examples in Table 51 also apply to the  
YA_BIAS_ HIGH register, and the digital format examples in  
Table 52 apply to the number that comes from combining the  
YA_BIAS_LOW and YA_BIAS_HIGH registers. These registers  
influence the y-axis accelerometer measurements in the same  
manner that the XA_BIAS_LOW and XA_BIAS_HIGH registers  
influence the x-axis accelerometer measurements (see Figure 42).  
Table 127. ZA_BIAS_HIGH Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x26, 0x27  
0x0000 R/W Yes  
Table 128. ZA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer offset correction, high word,  
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg  
SCRATCH REGISTERS, USER_SCR_X  
Table 121. YA_BIAS_LOW Register Definitions  
The USER_SCR_1 (see Table 129 and Table 130), USER_SCR_2  
(see Table 131 and Table 132), USER_SCR_3 (see Table 133  
and Table 134), and USER_SCR_4 (see Table 135 and Table 136)  
registers provide four locations for the user to store information.  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x20, 0x21  
0x0000 R/W Yes  
Rev. C | Page 31 of 42  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
Table 129. USER_SCR_1 Register Definitions  
Table 138. FLSHCNT_LOW Bit Definitions  
Bits Description  
[15:0] Flash memory write counter, low word  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x74, 0x75  
0x0000 R/W Yes  
Table 130. USER_SCR_1 Bit Definitions  
Bits Description  
[15:0] User defined  
Table 139. FLSHCNT_HIGH Register Definitions  
Page Addresses Default Access Flash Backup  
0x02 0x7E, 0x7F Not applicable  
R
Yes  
Table 131. USER_SCR_2 Register Definitions  
Table 140. FLSHCNT_HIGH Bit Definitions  
Bits Description  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x76, 0x77  
0x0000 R/W Yes  
[15:0] Flash memory write counter, high word  
Table 132. USER_SCR_2 Bit Definitions  
Bits Description  
[15:0] User defined  
600  
450  
300  
Table 133. USER_SCR_3 Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x02  
0x78, 0x79  
0x0000 R/W Yes  
150  
0
Table 134. USER_SCR_3 Bit Definitions  
Bits Description  
[15:0] User defined  
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
Figure 43. Flash Memory Retention  
Table 135. USER_SCR_4 Register Definitions  
GLOBAL COMMANDS, GLOB_CMD  
Page  
Addresses  
Default Access Flash Backup  
The GLOB_CMD register (see Table 141 and Table 142) provides  
trigger bits for several operations. Write a 1 to the appropriate bit  
in GLOB_CMD to start a particular function.  
0x02  
0x7A, 0x7B  
0x0000 R/W Yes  
Table 136. USER_SCR_4 Bit Definitions  
Bits Description  
[15:0] User defined  
Table 141. GLOB_CMD Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x03 0x02, 0x03 Not applicable  
W
No  
FLASH MEMORY ENDURANCE COUNTER,  
FLSHCNT_LOW, FLSHCNT_HIGH  
Table 142. GLOB_CMD Bit Definitions  
The FLSHCNT_LOW (see Table 137 and Table 138) and  
FLSHCNT_HIGH (see Table 139 and Table 140) registers  
combine to provide a 32-bit, binary counter that tracks the  
number of flash memory write cycles. In addition to the  
number of write cycles, the flash memory has a finite service  
lifetime, which depends on the junction temperature. Figure 43  
provides guidance for estimating the retention life for the flash  
memory at specific junction temperatures. The junction  
temperature is approximately 7°C above the case temperature.  
Bits  
Description  
[15:8]  
7
6
[5:4]  
3
2
1
0
Not used  
Software reset  
Clear user calibration  
Not used  
Flash memory update  
Not used  
Self test  
Bias correction update  
Table 137. FLSHCNT_LOW Register Definitions  
Software Reset  
Page Addresses Default  
Access Flash Backup  
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 7 =  
1 (DIN = 0x8280, then DIN = 0x8300) to initiate a reset in the  
operation of the ADIS16495. This reset removes all data, initializes  
all registers from their flash settings, and restarts data sampling  
and processing. This function provides a firmware alternative  
0x02 0x7C, 0x7D Not applicable  
R
Yes  
RST  
to providing a low pulse on the  
Rev. C | Page 32 of 42  
pin (see Table 6, Pin 8).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
Clear User Calibration  
AUXILIARY I/O LINE CONFIGURATION,  
FNCTIO_CTRL  
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 6 =  
1 (DIN = 0x8240, then DIN = 0x8300) to clear all user bias/scale  
adjustments for each accelerometer and gyroscope. This command  
writes 0x0000 to the following registers: X_GYRO_SCALE,  
Y_GYRO_ SCALE, Z_GYRO_SCALE, X_ACCL_SCALE, Y_  
ACCL_SCALE, Z_ACCL_SCALE, XG_BIAS_LOW,  
XG_BIAS_HIGH, YG_BIAS_ LOW, YG_BIAS_HIGH,  
ZG_BIAS_LOW, ZG_BIAS_HIGH, XA_BIAS_LOW,  
XA_BIAS_HIGH, YA_BIAS_LOW, YA_BIAS_ HIGH,  
ZA_BIAS_LOW, and ZA_BIAS_HIGH.  
The FNCTIO_CTRL register (see Table 143 and Table 144)  
provides configuration control for each I/O pin (DIO1, DIO2,  
DIO3, and DIO4). Each DIOx pin supports only one function at  
a time. When a single pin has two assignments, the enable bit for  
the lower priority function automatically resets to zero (disabling  
the lower priority function). The order of priority is as follows,  
from highest priority to lowest priority: data ready, sync clock  
input, and general-purpose. The ADIS16495 can take up to 20 ms  
to execute a write command to the FNCTIO_CTRL register.  
During this time, the operational state and the contents of the  
register remain unchanged, but the SPI interface supports normal  
communication (for accessing other registers).  
Flash Memory Update  
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 3 =  
1 (DIN = 0x8208, then DIN = 0x8300) to initiate a manual flash  
update. SYS_E_FLAG, Bit 6 (see Table 18) identifies success (0)  
or failure (1) in completing this process.  
Table 143. FNCTIO_CTRL Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
The user must not poll the status registers while waiting for the  
update to complete because the serial port is disabled during  
the update. Rather, the user must either wait the prescribed  
amount of time found in Table 3 or wait for the data ready  
indicator pin to begin toggling.  
0x03  
0x06, 0x07  
0x000D R/W Yes  
Table 144. FNCTIO_CTRL Bit Definitions  
Bits  
[15:9]  
8
Description  
Not used  
On Demand Self Test (ODST)  
Sync clock mode:  
1 = PPS  
0 = sync  
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD, Bit 1 =  
1 (DIN = 0x8202, then DIN = 0x8300) to run the ODST  
routine, which executes the following steps:  
7
Sync clock input enable  
1 = enabled  
0 = disabled  
1. Measure the output on each sensor.  
2. Activate an internal force on the mechanical elements of  
each sensor, which simulates the force associated with  
actual inertial motion.  
3. Measure the output response on each sensor.  
4. Deactivate the internal force on each sensor.  
5. Calculate the difference between the force on and normal  
operating conditions (force off).  
6. Compare the difference with internal pass/fail criteria.  
7. Report the pass/fail results for each sensor in DIAG_STS  
(see Table 20) and the overall pass/fail flag in SYS_E_FLAG,  
Bit 5 (see Table 18).  
6
Sync clock input polarity  
1 = rising edge  
0 = falling edge  
Sync clock input line selection  
00 = DIO1  
01 = DIO2  
10 = DIO3  
11 = DIO4  
[5:4]  
3
Data ready enable  
1 = enabled  
0 = disabled  
False positive results are possible when the executing the ODST  
while the device is in motion. The user must not poll the status  
registers while waiting for the test to complete. Rather, the user  
must either wait the prescribed amount of time found in Table 3 or  
wait for the data ready indicator pin to begin toggling.  
2
Data ready polarity  
1 = positive  
0 = negative  
[1:0]  
Data ready line selection  
00 = DIO1  
Bias Correction Update  
01 = DIO2  
10 = DIO3  
11 = DIO4  
Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD, Bit 0 = 1  
(DIN = 0x8201, then DIN = 0x8300) to update the user offset  
registers with the correction factors of the continuous bias  
estimation (CBE) (see Table 152). Ensure that the inertial platform  
is stable during the entire average time for optimal bias estimates.  
Rev. C | Page 33 of 42  
 
 
 
ADIS16495  
Data Sheet  
For example, use the following sequence to set DIO1 and DIO3  
as high and low output lines, respectively, and set DIO2 and DIO4  
as input lines:  
Data Ready Indicator  
The FNCTIO_CTRL, Bits[3:0] provide three configuration  
options for the data ready function: on/off, polarity, and DIOx line.  
The primary purpose this signal is to drive the interrupt control  
line of an embedded processor, which can synchronize data  
collection and minimize latency. The data ready indicator is useful  
to determine if the controller inside the ADIS16495 is busy with a  
task (for example, a flash memory update) because data ready stops  
togging while these tasks are performed and resumes upon  
completion. The factory default assigns DIO2 as a positive  
polarity, data ready signal, which means the data in the output  
registers is valid when the DIO2 line is high (see Figure 25).  
This configuration works well when DIO2 drives an interrupt  
service pin that activates on a low to high pulse.  
1. Turn to Page 3 (DIN = 0x8003).  
2. Set GPIO_CTRL, Bits[7:0] = 0x15 (DIN = 0x8815, then  
DIN = 0x8900).  
Table 145. GPIO_CTRL Register Definitions1  
Page  
Addresses  
Default Access Flash Backup  
0x03  
0x08, 0x09  
0x00X0 R/W Yes  
1 GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx lines and do not  
have a default setting.  
Table 146. GPIO_CTRL Bit Definitions1  
Bits  
Description  
Use the following sequence to change this assignment to DIO3  
with negative polarity:  
[15:8]  
Don’t care  
7
6
5
4
3
General-Purpose I/O Line 4 (DIO4) data level  
General-Purpose I/O Line 3 (DIO3) data level  
General-Purpose I/O Line 2 (DIO2) data level  
General-Purpose I/O Line 1 (DIO1) data level  
General-Purpose I/O Line 4 (DIO4) direction control  
(1 = output, 0 = input)  
1. Turn to Page 3 (DIN = 0x8003).  
2. Set FNCTIO_CTRL, Bits[3:0] = 1000 (DIN = 0x860A, then  
DIN = 0x8700).  
The timing jitter on the data ready signal is typically within  
1.4 µs. When using DIO1 to support the data ready function,  
this signal can experience some premature pulses, which do not  
indicate the start of data production, during its start-up process. If  
it is necessary to use DIO1 for this function, use it in conjunction  
with a delay or other control mechanism to prevent premature  
data acquisition activity during the start-up process.  
2
1
0
General-Purpose I/O Line 3 (DIO3) direction control  
(1 = output, 0 = input)  
General-Purpose I/O Line 2 (DIO2) direction control  
(1 = output, 0 = input)  
General-Purpose I/O Line 1 (DIO1) direction control  
(1 = output, 0 = input)  
1 GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx lines and do not  
have a default setting.  
Input Sync/Clock Control  
The FNCTIO_CTRL, Bits[8:4] provide several configuration  
options for using one of the DIOx lines as an external clock signal  
and for controlling inertial sensor data collection and processing.  
For example, use the following sequence to establish DIO4 as a  
positive polarity, input clock pin that operates in sync mode and  
preserves the factory default setting for the data ready function:  
MISCELLANEOUS CONFIGURATION, CONFIG  
The CONFIG register (see Table 147 and Table 148) provides  
configuration options for the linear g compensation in the  
gyroscopes (on/off) and the point of percussion alignment for  
the accelerometers (on/off).  
1. Turn to Page 3 (DIN = 0x8003).  
2. Set FNCTIO_CTRL, Bits[7:0] = 0xFD (DIN = 0x86FD).  
3. Set FNCTIO_CTRL, Bits[15:8] = 0x00 (DIN = 0x8700).  
Table 147. CONFIG Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x03  
0x0A, 0x0B  
0x00C0 R/W Yes  
In sync mode, the ADIS16495 disables its internal sample clock,  
and the frequency of the external clock signal establishes the rate of  
data collection and processing (fSM in Figure 18 and Figure 19).  
When using the PPS mode (FNCTIO_CTRL, Bit 8 = 1), the rate of  
data collection and production (fSM) is equal to the product of the  
external clock frequency and scale factor (KECSF) in the  
SYNC_SCALE register (see Table 154).  
Table 148. CONFIG Bit Definitions  
Bits Description  
[15:8] Not used  
7
Linear g compensation for gyroscopes (1 = enabled)  
Point of percussion alignment (1 = enabled)  
Not used  
6
[5:0]  
GENERAL-PURPOSE I/O CONTROL, GPIO_CTRL  
When FNCTIO_CTRL does not configure a DIOx pin, the  
GPIO_CTRL register (see Table 145 and Table 146) provides  
user controls for general-purpose use of the DIOx pins.  
GPIO_CTRL, Bits[3:0] provide I/O assignment controls for  
each line. When the DIOx lines are inputs, monitor their level  
by reading GPIO_CTRL, Bits[7:4]. When the DIOx lines are  
used as outputs, set their level by writing to GPIO_CTRL, Bits[7:4].  
Point of Percussion  
CONFIG, Bit 6 offers a point of percussion alignment function  
that maps the accelerometer sensors to the corner of the  
package identified in Figure 44. To activate this feature, turn to  
Rev. C | Page 34 of 42  
 
 
 
 
 
 
Data Sheet  
ADIS16495  
Page 3 (DIN = 0x8003), then set CONFIG, Bit 6 = 1 (DIN =  
0x8A40, then DIN = 0x8B00).  
CONTINUOUS BIAS ESTIMATION (CBE),  
NULL_CNFG  
The NULL_CNFG register (see Table 151 and Table 152) provides  
the configuration controls for the CBE, which associates with the  
bias correction update command in GLOB_CMD, Bit 0 (see  
Table 142). NULL_CNFG, Bits[3:0] establishes the total average  
time (tA) for the bias estimates and NULL_CNFG, Bits[13:8]  
provide on/off controls for each sensor. The factory default  
configuration for NULL_CNFG enables the bias null command  
for the gyroscopes, disables the bias null command for the  
accelerometers, and sets the average time to ~15.42 seconds.  
PIN 23  
PIN 1  
POINT OF PERCUSSION  
ALIGNMENT REFERENCE POINT.  
SEE CONFIG[6].  
tB = 2TBC/4250 = 210/4250 = ~0.241 seconds  
Figure 44. Point of Percussion Reference Point  
LINEAR ACCELERATION ON EFFECT ON  
GYROSCOPE BIAS  
tA = 64 × tB = 64 × 0.241 = 15.42 seconds  
where:  
tB is the time base.  
tA is the averaging time.  
The ADIS16495 includes first-order compensation for the linear g  
effect in the gyroscopes, which uses the following model:  
When a sensor bit in NULL_CNFG is active (equal to 1),  
setting GLOB_CMD, Bit 0 = 1 (DIN sequence: 0x8003, 0x8201,  
0x8300) causes its bias correction register to automatically  
update with a value that corrects for its present bias error (from  
the CBE).  
XC   
XPC   
LG11 LG12 LG13  
A
ω
ω
ω
ω
ω
ω
X   
= LG  
LG22 LG23 × AY  
+
21  
YC   
YPC   
LG31 LG32 LG33  
AZ  
ZC   
ZPC   
The linear g correction factors, LGXY, apply correction for linear  
acceleration in all three directions to the data path of each gyro-  
scope (ωXPC, ωYPC, and ωZPC) at the rate of the data samples  
(4250 SPS when using the internal clock). CONFIG, Bit 7 provides  
an on/off control for this compensation. The factory default value  
for this bit activates this compensation. To turn it off, turn to Page  
3 (DIN = 0x8003) and set CONFIG, Bit 7 = 0 (DIN = 0x8A40, then  
DIN = 0x8B00). This command sequence also preserves the  
default setting for the point of percussion alignment function (on).  
For example, setting NULL_CNFG, Bit 8 equal to 1 causes an  
update in the XG_BIAS_LOW (see Table 106) and  
XG_BIAS_HIGH (see Table 108) registers.  
Table 151. NULL_CNFG Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x03  
0x0E, 0x0F  
0x070A R/W Yes  
Table 152. NULL_CNFG Bit Definitions  
Bits Description  
[15:14] Not used  
DECIMATION FILTER, DEC_RATE  
The DEC_RATE register (see Table 149 and Table 150)  
provides user control for the final filter stage (see Figure 21),  
which averages and decimates the accelerometers and  
gyroscopes data, and extends the time that the delta angle and  
delta velocity track between each update. The output sample  
rate is equal to 4250/(DEC_RATE + 1). For example, turn to  
Page 3 (DIN = 0x8003), and set DEC_RATE = 0x2A (DIN =  
0x8C2A, then DIN = 0x8D00) to reduce the output sample rate to  
~98.8 SPS (4250 ÷ 43).  
13  
12  
11  
10  
9
8
[7:4]  
[3:0]  
Z-axis acceleration bias correction enable (1 = enabled)  
Y-axis acceleration bias correction enable (1 = enabled)  
X-axis acceleration bias correction enable (1 = enabled)  
Z-axis gyroscope bias correction enable (1 = enabled)  
Y-axis gyroscope bias correction enable (1 = enabled)  
X-axis gyroscope bias correction enable (1 = enabled)  
Not used  
Time base control (TBC), range: 0 to 13 (default = 10);  
tB = 2TBC/4250, time base; tA = 64 × tB, average time  
Table 149. DEC_RATE Register Definitions  
Page  
Addresses  
Default Access Flash Backup  
0x03  
0x0C, 0x0D  
0x0000 R/W Yes  
Table 150. DEC_RATE Bit Definitions  
Bits  
Description  
[15:0]  
Decimation rate, binary format  
Rev. C | Page 35 of 42  
 
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
chain of each sensor (see Figure 21). These registers provide  
on/off control for the FIR bank for each inertial sensor, along  
with the FIR bank (A, B, C, or D) that each sensor uses.  
Table 157. FILTR_BNK_0 Register Definitions  
SCALING THE INPUT CLOCK (PPS MODE),  
SYNC_SCALE  
The PPS mode (FNCTIO_CTRL, Bit 8 = 1, see Table 144) supports  
the use of an input sync frequency that is slower than the data  
sample rates of the inertial sensors. This mode supports a  
frequency range of 1 Hz to 128 Hz for the input sync mode. In  
this mode, the data sample rate is equal to the product of the  
value in the SYNC_SCALE register (see Table 153 and Table 154)  
and the input sync frequency.  
Page  
0x03  
Addresses  
0x16, 0x17  
Default Access Flash Backup  
0x0000 R/W Yes  
Table 158. FILTR_BNK_0 Bit Definitions  
Bits  
15  
Description (Default = 0x0000)  
Don’t care  
For example, the following command sequence sets the data  
collection and processing rate (fSM in Figure 18 and Figure 19)  
to 4000 Hz (SYNC_SCALE = 0x0FA0) when using a 1 Hz  
signal on the DIO3 line as the external clock input, and  
preserves the factory default configuration for the data ready  
signal:  
14  
[13:12]  
Y-axis accelerometer filter enable (1 = enabled)  
Y-axis accelerometer filter bank selection  
00 = Bank A  
01 = Bank B  
10 = Bank C  
11 = Bank D  
X-axis accelerometer filter enable (1 = enabled)  
X-axis accelerometer filter bank selection:  
00 = Bank A  
11  
[10:9]  
1. Turn to Page 3 (DIN = 0x8003).  
2. Set SYNC_SCALE, Bits[7:0] = 0xA0 (DIN = 0x90A0).  
3. Set SYNC_SCALE, Bits[15:8] = 0x0F (DIN = 0x910F).  
4. Set FNCTIO_CTRL, Bits[7:0] = 0xFD (DIN = 0x86ED).  
5. Set FNCTIO_CTRL, Bits[15:8] = 0x00 (DIN = 0x8701).  
01 = Bank B  
10 = Bank C  
11 = Bank D  
8
[7:6]  
Z-axis gyroscope filter enable (1 = enabled)  
Z-axis gyroscope filter bank selection:  
00 = Bank A  
The data ready indicator pin does not begin to toggle until at  
least two external clock edges (with valid time period between  
them) are detected by the ADIS16495.  
01 = Bank B  
10 = Bank C  
11 = Bank D  
Y-axis gyroscope filter enable (1 = enabled)  
Table 153. SYNC_SCALE Register Definitions  
Page  
Addresses  
Default  
Access  
Flash Backup  
5
0x03  
0x10, 0x11  
0x109A  
R/W  
Yes  
[4:3]  
Y-axis gyroscope filter bank selection:  
00 = Bank A  
01 = Bank B  
10 = Bank C  
11 = Bank D  
Table 154. SYNC_SCALE Bit Definitions  
Bits  
Description  
[15:0]  
External clock scale factor (KECSF), binary format  
2
X-axis gyroscope filter enable (1 = enabled)  
X-axis gyroscope filter bank selection:  
00 = Bank A  
01 = Bank B  
10 = Bank C  
Measurement Range Identifier, RANG_MDL  
[1:0]  
The RANG_MDL register (see Table 155 and Table 156)  
provides a convenient method for identifying the model (and  
gyroscope measurement range) of the ADIS16495.  
Table 155. RANG_MDL Register Definitions1  
11 = Bank D  
Page  
Addresses  
Default  
Access  
Flash Backup  
0x03  
0x12, 0x13  
N/A  
R
N/A  
Table 159. FILTR_BNK_1 Register Definitions  
1 N/A means not applicable.  
Page  
Addresses  
Default Access Flash Backup  
Table 156. RANG_MDL Bit Definitions  
Bits  
0x03  
0x18, 0x19  
0x0000 R/W Yes  
Description  
[15:3]  
[3:0]  
Not used  
Table 160. FILTR_BNK_1 Bit Definitions  
0011 = ADIS16495-1 ( 125°/sec)  
0111 = ADIS16495-2 ( 450°/sec)  
1111 = ADIS16495-3 ( 2000°/sec)  
Bits  
[15:3]  
2
Description  
Don’t care  
Z-axis accelerometer filter enable (1 = enabled)  
[1:0]  
Z-axis accelerometer filter bank selection:  
FIR FILTERS  
00 = Bank A  
01 = Bank B  
10 = Bank C  
11 = Bank D  
FIR Filters Control, FILTR_BNK_0, FILTR_BNK_1  
The FILTR_BNK_0 (see Table 157 and Table 158) and  
FILTR_BNK_1 (see Table 159 and Table 160) registers provide  
the configuration controls for the FIR filter bank in the signal  
Rev. C | Page 36 of 42  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
FIR Filter Bank Memory Maps  
FIR Filter Bank B, FIR_COEF_B000 to FIR_COEF_B119  
Table 165. Filter Bank B Memory Map  
The ADIS16495 provides four FIR filter banks to configure and  
select for each individual inertial sensor using the FILTR_BNK_0  
(see Table 158) and FILTR_BNK_1 (see Table 160) registers.  
Each FIR filter bank (A, B, C, and D) has 120 taps that consume  
two pages of memory. The coefficient associated with each tap,  
in each filter bank, has its own dedicated register that uses a 16-  
bit, twos complement format. The FIR filter has unity gain when  
the sum of all of the coefficients is equal to 32,768. For filter  
designs that require less than 120 taps, write 0x0000 to all unused  
registers to eliminate the latency associated with that particular tap.  
Page PAGE_ID Addresses  
Register  
7
7
7
7
7
0x07  
0x07  
0x07  
0x07  
0x07  
0x00, 0x01  
0x02 to 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C to 0x7D FIR_COEF_B002 to  
FIR_COEF_B058  
PAGE_ID  
Not used  
FIR_COEF_B000  
FIR_COEF_B001  
7
8
8
8
8
8
0x07  
0x08  
0x08  
0x08  
0x08  
0x08  
0x7E, 0x07F  
0x00, 0x01  
0x02 to 0x07  
0x08, 0x09  
0x0A, 0x0B  
FIR_COEF_B059  
PAGE_ID  
Not used  
FIR_COEF_B060  
FIR_COEF_B061  
FIR Filter Bank A, FIR_COEF_A000 to FIR_COEF_A119  
Table 161. FIR Filter Bank A Memory Map  
Page PAGE_ID Addresses  
0x0C to 0x7D FIR_COEF_B062 to  
FIR_COEF_B118  
Register  
5
5
5
5
5
0x05  
0x05  
0x05  
0x05  
0x05  
0x00, 0x01  
0x02 to 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C to 0x7D  
PAGE_ID  
Not used  
FIR_COEF_A000  
FIR_COEF_A001  
FIR_COEF_A002 to  
FIR_COEF_A058  
8
0x08  
0x7E, 0x7F  
FIR_COEF_B119  
FIR Filter Bank C, FIR_COEF_C000 to FIR_COEF_C119  
Table 166. Filter Bank C Memory Map  
Page PAGE_ID Addresses  
Register  
5
6
6
6
6
6
0x05  
0x06  
0x06  
0x06  
0x06  
0x06  
0x7E, 0x07F  
0x00, 0x01  
0x02 to 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C to 0x7D  
FIR_COEF_A059  
PAGE_ID  
Not used  
FIR_COEF_A060  
FIR_COEF_A061  
FIR_COEF_A062 to  
FIR_COEF_A118  
9
9
9
9
9
0x09  
0x09  
0x09  
0x09  
0x09  
0x00, 0x01  
0x02 to 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C to 0x7D FIR_COEF_C002 to  
FIR_COEF_C058  
0x7E, 0x07F  
0x00, 0x01  
0x02 to 0x07  
0x08, 0x09  
0x0A, 0x0B  
PAGE_ID  
Not used  
FIR_COEF_C000  
FIR_COEF_C001  
9
0x09  
0x0A  
0x0A  
0x0A  
0x0A  
0x0A  
FIR_COEF_C059  
PAGE_ID  
Not used  
FIR_COEF_C060  
FIR_COEF_C061  
6
0x06  
0x7E, 0x7F  
FIR_COEF_A119  
10  
10  
10  
10  
10  
Table 162 and Table 163 provide detailed register and bit  
definitions for one of the FIR coefficient registers in Bank A,  
FIR_COEF_A071. Table 164 provides a configuration example,  
which sets this register to a decimal value of −169 (0xFF57).  
0x0C to 0x7D FIR_COEF_C062 to  
FIR_COEF_C118  
10  
0x0A  
0x7E, 0x7F  
FIR_COEF_C119  
Table 162. FIR_COEF_A071 Register Definitions  
Page Addresses Default  
Access Flash Backup  
FIR Filter Bank D, FIR_COEF_D000 to FIR_COEF_D119  
Table 167. Filter Bank D Memory Map  
0x06 0x1E, 0x1F  
Not applicable R/W  
Yes  
Table 163. FIR_COEF_A071 Bit Definitions  
Page PAGE_ID Addresses  
Register  
Bits  
Description  
11  
11  
11  
11  
11  
0x0B  
0x0B  
0x0B  
0x0B  
0x0B  
0x00, 0x01  
0x02 to 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C to 0x7D FIR_COEF_D002 to  
FIR_COEF_D058  
PAGE_ID  
Not used  
FIR_COEF_D000  
FIR_COEF_D001  
[15:0]  
FIR Bank A, Coefficient 71, twos complement  
Table 164. Configuration Example, FIR Coefficient  
DIN Command  
Description  
0x8006  
Turn to Page 6  
0x9E57  
0x9FFF  
FIR_COEF_A071, Bits[7:0] = 0x57  
FIR_COEF_A071, Bits[15:8] = 0xFF  
11  
12  
12  
12  
12  
12  
0x0B  
0x0C  
0x0C  
0x0C  
0x0C  
0x0C  
0x7E, 0x07F  
0x00, 0x01  
0x02 to 0x07  
0x08, 0x09  
0x0A, 0x0B  
FIR_COEF_D059  
PAGE_ID  
Not used  
FIR_COEF_D060  
FIR_COEF_D061  
0x0C to 0x7D FIR_COEF_D062 to  
FIR_COEF_D118  
12  
0x0C  
0x7E, 0x7F  
FIR_COEF_D119  
Rev. C | Page 37 of 42  
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
Table 171. FIRM_DM Register Definitions  
Default Filter Performance  
Page Addresses Default  
Access Flash Backup  
The FIR filter banks have factory programmed filter designs that  
are all low-pass filters that have unity dc gain. Table 168 provides a  
summary of each filter design, and Figure 45 shows the frequency  
response characteristics. The phase delay is equal to ½ of the total  
number of taps.  
0x03 0x7A, 0x7B Not applicable  
R Yes  
Table 172. FIRM_DM Bit Definitions  
Bits  
Description  
[15:12]  
Factory configuration month BCD code, tens digit,  
numerical format = 4-bit binary, range = 0 to 2  
Table 168. FIR Filter Descriptions, Default Configuration  
[11:8]  
[7:4]  
[3:0]  
Factory configuration month BCD code, ones digit,  
numerical format = 4-bit binary, range = 0 to 9  
FIR Filter Bank  
Taps  
120  
120  
32  
−3 dB Frequency (Hz)  
A
B
C
D
300  
100  
300  
100  
Factory configuration day BCD code, tens digit,  
numerical format = 4-bit binary, range = 0 to 3  
Factory configuration day BCD code, ones digit,  
numerical format = 4-bit binary, range = 0 to 9  
32  
0
Firmware Revision Year, FIRM_Y  
–10  
NO FIR  
FILTERING  
The FIRM_Y register (see Table 173 and Table 174) contains  
the year of the factory configuration date. For example, the year  
2013 is represented by FIRM_Y = 0x2013.  
–20  
B
D
A
C
–30  
–40  
–50  
–60  
–70  
–80  
–90  
Table 173. FIRM_Y Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x03 0x7C, 0x7D Not applicable  
R Yes  
Table 174. FIRM_Y Bit Definitions  
–100  
0
Bits  
Description  
200  
400  
600  
800  
1000  
1200  
[15:12]  
Factory configuration year BCD code, thousands digit,  
numerical format = 4-bit binary, range = 0 to 9  
Factory configuration year BCD code, hundreds digit,  
numerical format = 4-bit binary, range = 0 to 9  
Factory configuration year BCD code, tens digit,  
numerical format = 4-bit binary, range = 0 to 3  
Factory configuration year BCD code, ones digit,  
numerical format = 4-bit binary, range = 0 to 9  
FREQUENCY (Hz)  
Figure 45. FIR Filter Frequency Response Curves  
[11:8]  
[7:4]  
[3:0]  
FIRMWARE REVISION, FIRM_REV  
The FIRM_DM register (see Table 169 and Table 170) contains  
the month and day of the factory configuration date. FIRM_DM,  
Bits[15:12] and FIRM_DM, Bits[11:8] contain digits that represent  
the month of the factory configuration in a binary coded decimal  
(BCD) format. For example, November is the 11th month in a year  
and is represented by FIRM_DM, Bits[15:8] = 0x11. FIRM_DM,  
Bits[7:4], and FIRM_DM, Bits[3:0], contain digits that represent  
the day of factory configuration in a BCD format. For example,  
the 27th day of the month is represented by FIRM_DM, Bits[7:0] =  
0x27.  
Boot Revision Number, BOOT_REV  
The BOOT_REV register (see Table 175 and Table 176) contains  
the revision of the boot code in the ADIS16495 processor core.  
Table 175. BOOT_REV Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x03 0x7E, 0x7F Not applicable  
R
Yes  
Table 169. FIRM_REV Register Definitions  
Page Addresses Default  
Access Flash Backup  
Table 176. BOOT_REV Bit Definitions  
0x03 0x78, 0x79 Not applicable  
R Yes  
Bits  
Description  
[15:8]  
[7:0]  
Binary, major revision number  
Binary, minor revision number  
Table 170. FIRM_REV Bit Definitions  
Bits Description  
[15:12] Firmware revision BCD code, tens digit, numerical  
format = 4-bit binary, range = 0 to 9  
Continuous SRAM Testing  
This device employs a CRC function on the SRAM memory blocks  
that contain the program code (CODE_SIGTR_xxx) and the  
calibration coefficients (CAL_DRVTN_xxx). This process operates  
in the background and generates real-time, 32-bit CRC values  
for the program code and calibration coefficients, respectively. At  
the conclusion of each cycle, the processor writes these calculated  
[11:8]  
[7:4]  
[3:0]  
Firmware revision BCD code, ones digit, numerical  
format = 4-bit binary, range = 0 to 9  
Firmware revision BCD code, tenths digit, numerical  
format = 4-bit binary, range = 0 to 9  
Firmware revision BCD code, hundredths digit,  
numerical format = 4-bit binary, range = 0 to 9  
Rev. C | Page 38 of 42  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
values in the CAL_DRVTN_xxx and CODE_DRVTN_xxx  
registers (see Table 182, Table 184, Table 190, and Table 192) and  
compares them with the signature values, which reflect the state  
of these memory locations at the time of factory configuration.  
When the calculation results do not match the signature values,  
SYS_E_FLAG, Bit 2 increases to a 1. The respective signature  
values are available for user access through the CAL_SIGTR_xxx  
and CODE_SIGTR_xxx registers (see Table 178, Table 180,  
Table 186, and Table 188). The following conditions must be  
met for SYS_E_FLAG, Bit 2 to remain at the zero level:  
Signature CRC, Program Code, CODE_SIGTR_LWR  
Table 185. CODE_SIGTR_LWR Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x04 0x0C, 0x0D Not applicable  
R Yes  
Table 186. CODE_SIGTR_LWR Bit Definitions  
Bits Description  
[15:0] Factory programmed CRC value for the calibration  
coefficients, low word  
Signature CRC, Program Code, CODE_SIGTR_UPR  
Table 187. CODE_SIGTR_UPR Register Definitions  
CAL_SIGTR_LWR = CAL_DRVTN_LWR  
CAL_SIGTR_UPR = CAL_DRVTN_UPR  
CODE_SIGTR_LWR = CODE_DRVTN_LWR  
CODE_SIGTR_UPR = CODE_DRVTN_UPR  
Page Addresses Default  
Access Flash Backup  
0x04 0x0E, 0x0F Not applicable  
R
Yes  
Table 188. CODE_SIGTR_UPR Bit Definitions  
Bits Description  
Signature CRC, Calibration Values, CAL_SIGTR_LWR  
Table 177. CAL_SIGTR_LWR Register Definitions  
[15:0] Factory programmed CRC value for the calibration  
coefficients, high word  
Page Addresses Default  
Access Flash Backup  
0x04 0x04, 0x05 Not applicable  
R Yes  
Derived CRC, Program Code, CODE_DRVTN_LWR  
Table 189. CODE_DRVTN_LWR Register Definitions  
Table 178. CAL_SIGTR_LWR Bit Definitions  
Bits Description  
Page Addresses Default  
Access Flash Backup  
[15:0] Factory programmed CRC value for the program code,  
low word  
0x04 0x10, 0x11 Not applicable  
R No  
Table 190. CODE_DRVTN_LWR Bit Definitions  
Bits Description  
[15:0] Calculated CRC value for the calibration coefficients, low  
word  
Signature CRC, Calibration Values, CAL_SIGTR_UPR  
Table 179. CAL_SIGTR_UPR Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x04 0x06, 0x07 Not applicable  
R Yes  
Derived CRC, Program Code, CODE_DRVTN_UPR  
Table 191. CODE_DRVTN_LWR Register Definitions  
Table 180. CAL_SIGTR_UPR Bit Definitions  
Bits Description  
Page Addresses Default  
Access Flash Backup  
[15:0] Factory programmed CRC value for the program code,  
high word  
0x04 0x12, 0x13 Not applicable  
R No  
Table 192. CODE_DRVTN_UPR Bit Definitions  
Bits Description  
Derived CRC, Calibration Values, CAL_DRVTN_LWR  
Table 181. CAL_DRVTN_LWR Register Definitions  
[15:0] Calculated CRC value for the calibration coefficients,  
high word  
Page Addresses Default  
Access Flash Backup  
0x04 0x08, 0x09 Not applicable  
R No  
Lot Specific Serial Number, SERIAL_NUM  
Table 193. SERIAL_NUM Register Definitions  
Table 182. CAL_DRVTN_LWR Bit Definitions  
Bits Description  
[15:0] Calculated CRC value for the program code, low word  
Derived CRC, Calibration Values, CAL_DRVTN_UPR  
Table 183. CAL_DRVTN_UPR Register Definitions  
Page Addresses Default  
Access Flash Backup  
0x04 0x20, 0x21 Not applicable  
R Yes  
Table 194. SERIAL_NUM Bit Definitions  
Page Addresses Default  
Access Flash Backup  
Bits  
Description  
0x04 0x0A, 0x0B Not applicable  
R No  
[15:0]  
Lot specific serial number  
Table 184. CAL_DRVTN_UPR Bit Definitions  
Bits Description  
[15:0] Calculated CRC value for the program code, high word  
Rev. C | Page 39 of 42  
 
 
 
 
 
 
 
 
ADIS16495  
Data Sheet  
APPLICATIONS INFORMATION  
MOUNTING BEST PRACTICES  
PREVENTING MISINSERTION  
For the best performance, follow these guidelines when  
installing the ADIS16495 into a system:  
The ADIS16495 connector uses the same pattern as the  
ADIS16485, but with Pin 12 and Pin 15 missing. This pin  
configuration enables a mating connector to plug these holes,  
which helps prevent misconnection of the ADIS16495. Samtec  
has a custom part number that provides this type of mating  
socket: ASP-193371-04.  
Eliminate opportunity for translational force (x- and y-axis  
direction, per Figure 35) application on the electrical  
connector.  
Use uniform mounting forces on all four corners. The  
suggested torque setting is 40 inch ounces (0.285 Nm).  
When the ADIS16495 rests on the PCB, which contains  
the mating connector (see Figure 46), use a diameter of at  
least 2.85 mm for the passthrough holes.  
EVALUATION TOOLS  
Breakout Board, ADIS16IMU1/PCBZ  
The ADIS16IMU1/PCBZ (sold separately) provides a breakout  
board function for the ADIS16495, which means that it provides  
access to the ADIS16495 through larger connectors that support  
standard 1 mm ribbon cabling. It also provides four mounting  
holes for attachment of the ADIS16495 to the breakout board.  
These guidelines help prevent irregular force profiles, which  
can warp the package and introduce bias errors in the sensors.  
Figure 46 and Figure 47 provide details for mounting hole and  
connector alignment pin drill locations.  
39.600 BSC  
PC-Based Evaluation, EVAL-ADIS2  
Use the EVAL-ADIS2 and ADIS16IMU1/PCBZ to evaluate the  
ADIS16495 on a PC-based platform.  
19.800 BSC  
PASSTHROUGH HOLE  
FOR MOUNTING SCREWS  
POWER SUPPLY CONSIDERATIONS  
DIAMETER OF THE HOLE  
MUST ACCOMODATE  
DIMENSIONAL TOLERANCE  
BETWEEN THE CONNECTOR  
AND HOLES  
The VDD power supply must charge 46 µF of capacitance (inside  
of the ADIS16495, across the VDD and GND pins) during its  
initial ramp and settling process. When VDD reaches 2.85 V,  
the ADIS16495 begins its internal start-up process, which gener-  
ates additional transient current demand. See Figure 48 for a  
typical current profile during the start-up process. The first  
peak in Figure 48 relates to charging the 46 µF capacitor bank,  
whereas the other transient activity relates to numerous  
functions turning on during the initialization process of the  
ADIS16495.  
DEVICE  
OUTLINE  
0.560 BSC 2×  
ALIGNMENT HOLES  
FOR MATING SOCKET  
5 BSC  
5 BSC  
NOTES  
a
b
T
a
b
1.608ms  
159.8ms  
Δ158.2ms Δ60.00mA  
92.00mA  
152.0mA  
1. ALL DIMENSIONS IN UNITS OF MILLIMETERS (mm).  
2. IN THIS CONFIGURATION, THE CONNECTOR IS FACING DOWN AND  
ITS PINSARE NOT VISIBLE.  
Figure 46. Suggested PCB Layout Pattern, Connector Down  
0.4334 [11.0]  
0.019685  
[0.5000]  
(TYP)  
0.0240 [0.610]  
VDD  
3
0.054 [1.37]  
DR  
2
4
0.1800  
[4.57]  
0.0394 [1.00]  
0.0394 [1.00]  
CURRENT  
0.022±  
DIA (TYP)  
B
CH2 2.0V  
M40.0ms  
20.10%  
A
CH3  
3.00V  
W
NONPLATED  
THROUGH HOLE 2×  
0.022 DIA THROUGH HOLE (TYP)  
NONPLATED THROUGH HOLE  
B
B
CH4 100mA  
CH3 2.0V  
T
12.5MS/s 5M pts  
W
W
Figure 48. Transient Current Demand, Startup (DR Means Data Ready)  
Figure 47. Suggested Layout and Mechanical Design when Using Samtec  
CLM-112-02-G-D-A for the Mating Connector  
Rev. C | Page 40 of 42  
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16495  
unsigned long crc32_block( unsigned long crc,  
const unsigned short data[], int n )  
CRC32 CODING EXAMPLE  
This section contains sample code and values for computing  
the cyclic redundancy check (CRC) for the ADIS16495 register  
readback values.  
{
unsigned long long_c;  
int i;  
In this coding example, the 32-bit CRC is first initialized with  
0xFFFFFFFF. Next, each 16-bit word passes through the CRC  
computation in ascending order. Finally, the CRC is XOR’ed  
with 0xFFFFFFFF.  
/* cycle through memory */  
for ( i=0; i<n; i++ )  
{
/* Get lower byte */  
long_c = 0x000000ff &  
(unsigned long)data[i];  
/* Process with CRC */  
crc = ((crc>>8) & 0x00ffffff) ^  
crc_tab32[(crc^long_c)&0xff];  
/* Get upper byte */  
long_c = (0x000000ff &  
((unsigned long)data[i]>>8);  
/* Process with CRC */  
crc = ((crc>>8) & 0x00ffffff) ^  
crc_tab32[(crc^long_c)&0xff];  
}
The ADIS16495 updates the CRC value for each data ready  
cycle. The registers listed in Table 195 are used as inputs for  
computing the CRC32 checksum. The registers can either be  
read individually in normal SPI mode or in burst mode,  
provided that all registers are all read during the same data  
ready cycle.  
Table 195. Sample Input Data for CRC Computation1  
Register Number  
Register  
Input Value  
0x0000  
0x083A  
0x0000  
0xFFF7  
0x0000  
0xFFFE  
0x0000  
0x0001  
0x5001  
0x0003  
0xE00A  
0x0015  
0xC009  
0x0320  
0x8A54  
1
2
3
4
5
6
7
8
STATUS  
TEMP_OUT  
return crc;  
}
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TIME_STAMP  
The CRC table (crc_tab32) is computed with the following  
function:  
void init_crc32_table( void )  
{
9
unsigned long P_32;  
int i, j;  
unsigned long crc;  
10  
11  
12  
13  
14  
15  
/* CRC32 polynomial defined by IEEE-802.3 */  
P_32 = 0xEDB88320  
/* 8 bits require 256 entries in Table */  
for (i=0; i<256; i++)  
1 This information is contained in the array data in the coding example.  
{
Table 196. Output Results for CRC Sample Computation1  
/* start with table entry number */  
crc = (unsigned long) i;  
Register Number  
Register  
CRC_LWR  
CRC_UPR  
Output Value  
1
2
0x15B4  
0xB6C8  
/* cycle through all bits in entry number */  
for (j=0; j<8; j++)  
{
1 Based on the input shown in Table 195.  
/* LSBit set? */  
if ((crc&(unsigned  
The following is the CRC initialization code:  
long)0x00000001)!=(unsigned long)0)  
{
/* Initialize CRC */  
crc = 0xFFFFFFFFU;  
/* process for bit set */  
crc = (crc>>1) ^ P_32;  
/* Compute CRC in the order of bytes low-high  
starting at 0-14, BurstID, STATUS - TIME_STAMP */  
crc = crc32_block(crc, DATA, 15);  
}
else  
{
/* Final operation per IEEE-802.3 */  
crc ^= 0xFFFFFFFFU;  
/* process for bit clear */  
crc = (crc>>1);  
}
}
The crc32_block function accepts an array of 16-bit numbers  
and computes the CRC byte-by-byte:  
/* Store calculated value into table */  
crc_tab32[i] = crc;  
}
}
Rev. C | Page 41 of 42  
 
 
ADIS16495  
Data Sheet  
OUTLINE DIMENSIONS  
44.254  
44.000  
43.746  
39.800  
34.600  
34.575  
34.550  
39.600  
39.400  
7.350  
7.225  
7.100  
20.00  
19.80  
19.60  
2.20 BSC  
2.20 BSC  
2.065  
Ø 2.040  
2.015  
2.325  
2.200  
2.075  
1.142 BSC  
42.800  
42.600  
42.400  
37.598  
37.573  
37.548  
47.254  
47.000  
46.746  
3.70  
3.50  
3.30  
Ø 2.40  
BSC  
2.065  
2.040  
2.015  
BOTTOM VIEW  
TOP VIEW  
°
47.479  
47.379  
47.279  
DETAIL A  
13.750 REF  
0.250 BSC  
DETAIL A  
FRONT VIEW  
14.200  
14.000  
13.800  
2.84 BSC  
3.454  
3.200  
2.946  
0.250 BSC  
5.50  
BSC  
5.50  
BSC  
1.00 BSC  
PITCH  
0.30 SQ BSC  
Figure 49. 24-Lead Module with Connector Interface [MODULE]  
(ML-24-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Description  
Package Option  
ML-24-9  
ML-24-9  
ADIS16495-1BMLZ  
ADIS16495-2BMLZ  
ADIS16495-3BMLZ  
24-Lead Module with Connector Interface [MODULE]  
24-Lead Module with Connector Interface [MODULE]  
24-Lead Module with Connector Interface [MODULE]  
ML-24-9  
1 Z = RoHS Compliant Part.  
©2017-2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15062-7/20(C)  
Rev. C | Page 42 of 42  
 
 

相关型号:

ADIS16495-1BMLZ

Tactical Grade, Six Degrees of Freedom Inertial Sensor
ADI

ADIS16495-2BMLZ

Tactical Grade, Six Degrees of Freedom Inertial Sensor
ADI

ADIS16495-3BMLZ

Tactical Grade, Six Degrees of Freedom Inertial Sensor
ADI

ADIS16497

Tactical Grade, Six Degrees of Freedom Inertial Sensor
ADI

ADIS16497-1BMLZ

Tactical Grade, Six Degrees of Freedom Inertial Sensor
ADI

ADIS16497-2BMLZ

Tactical Grade, Six Degrees of Freedom Inertial Sensor
ADI

ADIS16497-3BMLZ

Tactical Grade, Six Degrees of Freedom Inertial Sensor
ADI

ADIS16500

Precision, Miniature MEMS IMU
ADI

ADIS16500AMLZ

Precision, Miniature MEMS IMU
ADI

ADIS16500PCBZ

Precision, Miniature MEMS IMU
ADI

ADIS16505

Precision, Miniature MEMS IMU
ADI

ADIS16505-1

Precision, Miniature MEMS IMU
ADI