ADIS16475-2PCBZ [ADI]

Precision, Miniature MEMs IMU;
ADIS16475-2PCBZ
型号: ADIS16475-2PCBZ
厂家: ADI    ADI
描述:

Precision, Miniature MEMs IMU

文件: 总37页 (文件大小:1266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Miniature MEMs IMU  
Data Sheet  
ADIS16475  
FEATURES  
GENERAL DESCRIPTION  
Triaxial, digital gyroscope  
The ADIS16475 is a precision, miniature MEMS inertial measure-  
ment unit (IMU) that includes a triaxial gyroscope and a triaxial  
accelerometer. Each inertial sensor in the ADIS16475 combines  
with signal conditioning that optimizes dynamic performance.  
The factory calibration characterizes each sensor for sensitivity,  
bias, alignment, linear acceleration (gyroscope bias), and point  
of percussion (accelerometer location). As a result, each sensor  
has dynamic compensation formulas that provide accurate  
sensor measurements over a broad set of conditions.  
125°/sec, 500°/sec, 2000°/sec range models  
2°/hr in-run bias stability (ADIS16475-1)  
0.15°/√hr angle random walk (ADIS16475-1 and  
ADIS16475-2)  
0.1° axis to axis misalignment error  
Triaxial, digital accelerometer, 8 g  
3.6 μg in-run bias stability  
Triaxial, delta angle and delta velocity outputs  
Factory calibrated sensitivity, bias, and axial alignment  
Calibration temperature range: −40°C to +85°C  
SPI compatible data communications  
Programmable operation and control  
Automatic and manual bias correction controls  
Data ready indicator for synchronous data acquisition  
External sync modes: direct, pulse, scaled, and output  
On demand self test of inertial sensors  
On demand self test of flash memory  
The ADIS16475 provides a simple, cost effective method for  
integrating accurate, multiaxis inertial sensing into industrial  
systems, especially when compared with the complexity and  
investment associated with discrete designs. All necessary motion  
testing and calibration are part of the production process at the  
factory, greatly reducing system integration time. Tight orthogonal  
alignment simplifies inertial frame alignment in navigation  
systems. The serial peripheral interface (SPI) and register  
structure provide a simple interface for data collection and  
configuration control.  
Single-supply operation (VDD): 3.0 V to 3.6 V  
2000 g mechanical shock survivability  
Operating temperature range: −40°C to +105°C  
The ADIS16475 is available in a 44-ball, ball grid array (BGA)  
package that is approximately 11 mm × 15 mm × 11 mm.  
APPLICATIONS  
Navigation, stabilization, and instrumentation  
Unmanned and autonomous vehicles  
Smart agriculture and construction machinery  
Factory/industrial automation, robotics  
Virtual/augmented reality  
Internet of Moving Things  
FUNCTIONAL BLOCK DIAGRAM  
DR  
RST  
VDD  
POWER  
MANAGEMENT  
GND  
SELF TEST  
I/O  
OUTPUT  
DATA  
CS  
TRIAXIAL  
GYROSCOPE  
REGISTERS  
SCLK  
DIN  
CALIBRATION  
TRIAXIAL  
ACCELEROMETER  
SPI  
CONTROLLER  
AND  
FILTERS  
USER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
DOUT  
CLOCK  
ADIS16475  
SYNC  
Figure 1.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADIS16475  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Device Configuration ................................................................ 16  
User Register Memory Map.......................................................... 17  
User Register Defintions ............................................................... 19  
Gyroscope Data .......................................................................... 19  
Delta Angles................................................................................ 22  
Delta Velocity ............................................................................. 24  
Calibration .................................................................................. 25  
Applications Information ............................................................. 32  
Assembly and Handling Tips ................................................... 32  
Power Supply Considerations .................................................. 33  
Serial Port Operation................................................................. 33  
Digital Resolution of Gyroscopes and Accelerometers ........ 33  
Evaluation Tools......................................................................... 34  
Tray Drawing.............................................................................. 36  
Packaging and Ordering Information......................................... 37  
Outline Dimensions................................................................... 37  
Ordering Guide .......................................................................... 37  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings....................................................... 7  
Thermal Resistance...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions ............................ 8  
Typical Performance Characteristics........................................... 10  
Theory of Operation ...................................................................... 12  
Introduction................................................................................ 12  
Inertial Sensor Signal Chain ..................................................... 12  
Register Structure....................................................................... 13  
Serial Peripheral Interface (SPI)............................................... 14  
Data Ready (DR) ........................................................................ 14  
Reading Sensor Data.................................................................. 15  
REVISION HISTORY  
4/2020—Rev. C to Rev. D  
Change to Logic Inputs Parameter, Table 1 ................................. 4  
Changes to Endnote 1, Table 3....................................................... 7  
Changes to Figure 5 ..........................................................................6  
Changes to Figure 11 ..................................................................... 10  
Added Figure 12 and Figure 13; Renumbered Sequentially..... 10  
Added Figure 14, Figure 15, Figure 16, and Figure 17.............. 11  
Changes to Figure 18, Figure 19, and Figure 20 ........................ 12  
Changes to Figure 22 and Figure 23............................................ 13  
Added Gyroscope Data Width (Digital Resolution) Section... 19  
Changes to Gyroscope Measurement Range/Scale Factor Section,  
Table 11, Table 12, Table 13, Table 17, Table 21, and Table 25 20  
Added Accelerometer Data Width (Digital Resolution)  
Section.............................................................................................. 21  
Change to Calibration, Accelerometer Bias (XA_BIAS_LOW  
and XA_BIAS_HIGH) Section..................................................... 26  
Change to Filter Control Register (FILT_CTRL) Section........ 27  
Changes to Direct Sync Mode Section and to Pulse Sync Mode  
Section.............................................................................................. 28  
Changes to Sensor Self Test Section ............................................ 30  
4/2019—Rev. B to Rev. C  
Changes to Serial Peripheral Interface (SPI) Section ................ 14  
Changes to Figure 32 ..................................................................... 15  
Changes to Table 10 and Gyroscope Data Section.................... 19  
Changes to Acceleration Data Section ........................................ 20  
Added Accelerometer Data Formatting Section........................ 21  
Deleted Accelerometer Resolution Section ................................ 21  
Added Serial Port Operation Section, Maximum Throughput  
Section, Serial Port SCLK Underrun/Overrun Conditions Section,  
and Digital Resolution of Gyroscopes and Accelerometers Section  
.....................................................................................................................33  
Moved Gyroscope Data Width (Digital Resolution) Section... 33  
Moved Accelerometer Data Width (Digital Resolution) Section. 33  
Moved Figure 52 and Figure 53.................................................... 35  
Added Tray Drawing Section ....................................................... 36  
Added Figure 54 ............................................................................. 36  
11/2017—Rev. 0 to Rev. A  
Changes to Table 1............................................................................3  
Deleted Endnote 1, Table 1; Renumbered Sequentially...............4  
Added Endnote 2, Table 1; Renumbered Sequentially ................4  
1/2019—Rev. A to Rev. B  
Changes to Table 1 ........................................................................... 3  
Changes to Table 2 ........................................................................... 5  
10/2017—Revision 0: Initial Version  
Rev. D | Page 2 of 37  
 
Data Sheet  
ADIS16475  
SPECIFICATIONS  
Case temperature (TC) = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±2000°/sec ± 1 g, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
125  
Typ  
Max  
Unit  
GYROSCOPES  
Dynamic Range  
ADIS16475-1  
°/sec  
ADIS16475-2  
500  
°/sec  
ADIS16475-3  
2000  
°/sec  
Sensitivity  
ADIS16475-1, 16-bit  
ADIS16475-2, 16-bit  
ADIS16475-3, 16-bit  
ADIS16475-1, 32-bit  
ADIS16475-2, 32-bit  
ADIS16475-3, 32-bit  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
Axis to axis, −40°C ≤ TC ≤ +85°C, 1 σ  
ADIS16475-1, full scale (FS) = 125°/sec  
ADIS16475-2, FS = 500°/sec  
ADIS16475-3, FS = 2000°/sec  
160  
40  
10  
10,485,760  
2,621,440  
655,360  
0.3  
0.3  
0.1  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
LSB/°/sec  
%
Error over Temperature  
Repeatability1  
Misalignment Error  
Nonlinearity2  
%
Degrees  
% FS  
% FS  
0.2  
0.2  
0.25  
% FS  
Bias  
Repeatability1  
In-Run Bias Stability  
−40°C ≤ TC ≤ +85°C, 1 σ  
ADIS16475-1, 1 σ  
0.7  
2
°/sec  
°/hr  
ADIS16475-2, 1 σ  
2.5  
°/hr  
ADIS16475-3, 1 σ  
7
°/hr  
Angular Random Walk  
ADIS16475-1, 1 σ  
ADIS16475-2, 1 σ  
ADIS16475-3, 1 σ  
0.15  
0.15  
0.3  
°/√hr  
°/√hr  
°/√hr  
Error over Temperature  
Linear Acceleration Effect  
Vibration Rectified Error (VRE)  
Output Noise  
−40°C ≤ TC ≤ +85°C, 1 σ  
Any direction, 1 σ  
0.2  
°/sec  
0.01  
0.0005  
0.07  
0.08  
0.17  
0.003  
0.003  
0.007  
550  
66  
°/sec/g  
°/sec/g2  
°/sec rms  
°/sec rms  
°/sec rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
°/sec/√Hz rms  
Hz  
Random vibration, 2 grms, 50 Hz to 2 kHz  
ADIS16475-1, 1 σ, no filtering  
ADIS16475-2, 1 σ, no filtering  
ADIS16475-3, 1 σ, no filtering  
ADIS16475-1, f = 10 Hz to 40 Hz  
ADIS16475-2, f = 10 Hz to 40 Hz  
ADIS16475-3, f = 10 Hz to 40 Hz  
Rate Noise Density  
3 dB Bandwidth  
Sensor Resonant Frequency  
ACCELEROMETERS3  
Dynamic Range  
kHz  
Each axis  
8
g
Sensitivity  
Error over temperature  
Repeatability1  
32-bit data format  
−40°C ≤ TC ≤ +85°C, 1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
262,144,000  
0.1  
0.1  
LSB/g  
%
%
Misalignment Error  
Nonlinearity  
Axis to axis, −40°C ≤ TC ≤ +85°C, 1 σ  
Best fit straight line, 2 g  
Best fit straight line, 8 g, x-axis  
Best fit straight line, 8 g, y-axis and z-axis  
0.05  
0.25  
0.5  
Degrees  
% FS  
% FS  
% FS  
1.5  
Bias  
Repeatability1  
−40°C ≤ TC ≤ +85°C, 1 σ  
1 σ  
1 σ  
1.4  
3.6  
0.012  
1
mg  
μg  
m/sec/√hr  
mg  
In-Run Bias Stability  
Velocity Random Walk  
Error over Temperature  
−40°C ≤ TC ≤ +85°C, 1 σ  
Rev. D | Page 3 of 37  
 
 
ADIS16475  
Data Sheet  
Parameter  
Test Conditions/Comments  
No filtering  
f = 10 Hz to 40 Hz, no filtering  
Min  
Typ  
0.6  
23  
600  
2.4  
2.2  
Max  
Unit  
Output Noise  
Noise Density  
3 dB Bandwidth  
Sensor Resonant Frequency  
mg rms  
μg/√Hz rms  
Hz  
kHz  
kHz  
Y-axis and z-axis  
X-axis  
TEMPERATURE SENSOR  
Scale Factor  
Output = 0x0000 at 0°C ( 5°C)  
0.1  
°C/LSB  
LOGIC INPUTS4  
Input Voltage  
High, VIH  
Low, VIL  
RST Pulse Width  
Input Current  
2.0  
1
V
V
µs  
0.8  
Logic 1, IIH  
Logic 0, IIL  
All Pins Except RST  
RST Pin  
VIH = 3.3 V  
VIL = 0 V  
10  
10  
µA  
µA  
mA  
pF  
0.33  
10  
Input Capacitance, CIN  
DIGITAL OUTPUTS  
Output Voltage  
High, VOH  
ISOURCE = 0.5 mA  
ISINK = 2.0 mA  
2.4  
V
V
Low, VOL  
0.4  
FLASH MEMORY  
Data Retention6  
FUNCTIONAL TIMES7  
Power-On Start-Up Time  
Reset Recovery Time8  
Factory Calibration Restore  
Flash Memory Backup  
Flash Memory Test Time  
Self Test Time9  
Endurance5  
TJ = 85°C  
10000  
20  
Cycles  
Years  
Time until data is available  
252  
193  
142  
72  
32  
14  
ms  
ms  
ms  
ms  
ms  
ms  
SPS  
%
GLOB_CMD, Bit 7 = 1 (see Table 113)  
GLOB_CMD, Bit 1 = 1 (see Table 113)  
GLOB_CMD, Bit 3 = 1 (see Table 113)  
GLOB_CMD, Bit 4 = 1 (see Table 113)  
GLOB_CMD, Bit 2 = 1 (see Table 113)  
CONVERSION RATE  
Initial Clock Accuracy  
Sync Input Clock  
POWER SUPPLY, VDD  
Power Supply Current10  
2000  
3
1.9  
3.0  
2.1  
3.6  
55  
kHz  
V
mA  
Operating voltage range  
Normal mode, VDD = 3.3 V  
44  
1 Bias repeatability provides an estimate for long-term drift in the bias, as observed during 500 hours of high temperature operating life (HTOL) at 105°C.  
2 This measurement is based on the deviation from a best fit linear model.  
3 All specifications associated with the accelerometers relate to the full-scale range of 8 g, unless otherwise noted.  
4 The digital input/output signals use a 3.3 V system.  
5 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C.  
6 The data retention specification assumes a junction temperature (TJ) of 85°C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.  
7 These times do not include thermal settling and internal filter response times, which may affect overall accuracy.  
8
RST  
The  
line must be in a low state for at least 10 μs to ensure a proper reset initiation and recovery.  
9 The self test time can extend when using external clock rates lower than 2000 Hz.  
10 Power supply current transients can reach 100 mA during initial startup or reset recovery.  
Rev. D | Page 4 of 37  
Data Sheet  
ADIS16475  
TIMING SPECIFICATIONS  
TA = 25°C, VDD = 3.3 V, unless otherwise noted.  
Table 2.  
Normal Mode  
Burst Read Mode  
Parameter  
fSCLK  
tSTALL  
tREADRATE  
tCS  
Description  
Min  
0.1  
16  
24  
200  
Typ  
Max  
Min1  
Typ  
Max  
Unit  
MHz  
µs  
µs  
ns  
Serial clock  
Stall period between data  
Read rate  
2
0.1  
N/A  
1
Chip select to SCLK edge  
200  
tDAV  
tDSU  
tDHD  
tSCLKR, tSCLKF  
tDR, tDF  
tSFS  
DOUT valid after SCLK edge  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
SCLK rise/fall times  
DOUT rise/fall times  
CS high after SCLK edge  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
25  
50  
25  
50  
5
5
12.5  
12.5  
5
5
12.5  
12.5  
0
5
0
5
t1  
Input sync positive pulse width; pulse sync mode, MSC_CTRL =  
101 (binary, see Table 105)  
tSTDR  
Input sync to data ready valid transition  
Direct sync mode, MSC_CTRL = 001 (binary, see Table 105)  
Pulse sync mode, MSC_CTRL = 101 (binary, see Table 105)  
Data invalid time  
256  
256  
20  
256  
256  
20  
µs  
µs  
µs  
µs  
tNV  
t2  
Input sync period2  
477  
477  
1 N/A means not applicable.  
2 This specification is rounded up from the cycle time that comes from the maximum input clock frequency (2100 Hz).  
Timing Diagrams  
CS  
tSCLKR  
tSCLKF  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
DOUT  
tDAV  
tDR  
MSB  
R/W  
DB14  
tDSU  
DB13  
A5  
DB12  
DB11  
A3  
DB10  
tDF  
DB2  
DB1  
LSB  
LSB  
tDHD  
DIN  
A6  
A4  
A2  
D2  
D1  
Figure 2. SPI Timing and Sequence Diagram  
tREADRATE  
tSTALL  
CS  
SCLK  
Figure 3. Stall Time and Data Rate Timing Diagram  
Rev. D | Page 5 of 37  
 
 
 
ADIS16475  
Data Sheet  
t2  
tSTDR  
t1  
SYNC  
DR  
tNV  
Figure 4. Input Clock Timing Diagram, Pulse Sync Mode, Register MSC_CTRL, Bits[4:2] = 101 (Binary)  
t2  
t1  
SYNC  
DR  
tNV  
tSTDR  
Figure 5. Input Clock Timing Diagram, Direct Sync Mode, Register MSC_CTRL, Bits[4:2] = 001 (Binary)  
Rev. D | Page 6 of 37  
Data Sheet  
ADIS16475  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Mechanical Shock Survivability  
Any Axis, Unpowered  
2000 g  
Any Axis, Powered  
VDD to GND  
2000 g  
The ADIS16475 is a multichip module that includes many  
active components. The values in Table 4 identify the thermal  
response of the hottest component inside of the ADIS16475,  
with respect to the overall power dissipation of the module.  
This approach enables a simple method for predicting the  
temperature of the hottest junction, based on either ambient or  
case temperature.  
−0.3 V to +3.6 V  
−0.3 V to VDD + 0.2 V  
−0.3 V to VDD + 0.2 V  
−40°C to +85°C  
−40°C to +105°C  
−65°C to +150°C  
2 bar  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Calibration Temperature Range  
Operating Temperature Range  
Storage Temperature Range1  
Barometric Pressure  
For example, when the ambient temperature is 70°C, the  
hottest junction temperature (TJ) inside of the ADIS16475 is  
76.7°C.  
1 Extended exposure to temperatures that are lower than −40°C or higher  
than +105°C may adversely affect the accuracy of the factory calibration.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
TJ = θJA × VDD × IDD + 70°C  
TJ = 158.2°C/W × 3.3 V × 0.044 A + 70°C  
TJ = 93°C  
Table 4. Package Characteristics  
1
2
Package Type θJA  
ML-44-13  
158.2°C/W  
θJC  
Device Weight  
106.1°C/W  
1.3 g  
1 θJA is the natural convection junction to ambient thermal resistance  
measured in a one cubic foot sealed enclosure.  
2 θJC is the junction to case thermal resistance.  
3 Thermal impedance values come from direct observation of the hottest  
temperature inside of the ADIS16475 when it is attached to an FR4-08 PCB  
that has two metal layers and has a thickness of 0.063 inches.  
ESD CAUTION  
Rev. D | Page 7 of 37  
 
 
 
 
 
ADIS16475  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADIS16475  
A
B
C
D
E
F
G
H
J
K
1
2
3
4
5
6
7
8
PIN A1  
PIN A8  
PIN K8  
BOTTOM VIEW OF PACKAGE  
Figure 7. Pin Assignments, Package Level View  
Figure 6. Pin Assignments, Bottom View  
Table 5. Pin Function Descriptions  
Pin No.  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
B3  
B4  
B5  
B6  
C2  
C3  
C6  
C7  
D3  
D6  
E2  
Mnemonic  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DNC  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
GND  
RST  
Type  
Description  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Not applicable  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Input  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Do Not Connect  
Power Ground  
Power Supply  
Power Ground  
Power Supply  
Power Ground  
Power Supply  
Power Ground  
Power Ground  
Power Ground  
Reset  
E3  
E6  
E7  
F1  
F3  
F6  
F8  
GND  
GND  
GND  
CS  
Supply  
Supply  
Supply  
Input  
Power Ground  
Power Ground  
Power Ground  
SPI, Chip Select  
SPI, Data Input  
Power Supply  
Power Supply  
SPI, Data Output  
SPI, Serial Clock  
Power Ground  
G2  
G3  
G6  
G7  
H1  
H3  
H6  
H8  
DIN  
Input  
GND  
VDD  
DOUT  
SCLK  
GND  
Supply  
Supply  
Output  
Input  
Supply  
Rev. D | Page 8 of 37  
 
 
Data Sheet  
ADIS16475  
Pin No.  
J2  
J3  
J4  
J5  
J6  
J7  
K1  
K3  
K6  
K8  
Mnemonic  
GND  
SYNC  
VDD  
VDD  
DR  
GND  
GND  
GND  
VDD  
Type  
Description  
Supply  
Input  
Power Ground  
Sync (External Clock)  
Power Supply  
Power Supply  
Data Ready  
Power Ground  
Power Ground  
Power Ground  
Power Supply  
Power Ground  
Supply  
Supply  
Output  
Supply  
Supply  
Supply  
Supply  
Supply  
GND  
Rev. D | Page 9 of 37  
ADIS16475  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1000  
X-AXIS  
X-AXIS  
Y-AXIS  
Z-AXIS  
Y-AXIS  
Z-AXIS  
100  
10  
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
0.001  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
INTEGRATION PERIOD (Seconds)  
INTEGRATION PERIOD (Seconds)  
Figure 8. Gyroscope Allan Deviation, TC = 25°C, ADIS16475-1  
Figure 11. Accelerometer Allan Deviation, TC = 25°C  
1000  
0.5  
0.4  
X-AXIS  
Y-AXIS  
Z-AXIS  
0.3  
100  
10  
1
0.2  
0.1  
µ + 1σ  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
µ
µ – 1σ  
0.1  
0.001 0.01  
0.1  
1
10  
100  
1000 10000 100000  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
INTEGRATION PERIOD (Seconds)  
AMBIENT TEMPERATURE (°C)  
Figure 12. ADIS16475-1 Gyroscope Sensitivity Error vs. Ambient Temperature  
Figure 9. Gyroscope Allan Deviation vs. TC = 25°C, ADIS16475-2  
0.5  
0.4  
0.3  
0.2  
1000  
X-AXIS  
Y-AXIS  
Z-AXIS  
100  
10  
1
µ + 1σ  
µ – 1σ  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
µ
0.1  
0.001  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
0.01  
0.1  
1
10  
100  
1000 10000 100000  
AMBIENT TEMPERATURE (°C)  
INTEGRATION PERIOD (Seconds)  
Figure 13. ADIS16475-2 Gyroscope Sensitivity Error vs. Ambient Temperature  
Figure 10. Gyroscope Allan Deviation, TC = 25°C, ADIS16475-3  
Rev. D | Page 10 of 37  
 
Data Sheet  
ADIS16475  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
µ + 1σ  
0.2  
0.2  
0.1  
0.1  
0
0
µ + 1σ  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
µ
µ – 1σ  
µ
µ – 1σ  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 14. ADIS16475-3 Gyroscope Sensitivity Error vs. Ambient Temperature  
Figure 16. ADIS16475-2 Gyroscope Bias Error vs. Ambient Temperature  
0.5  
0.4  
0.3  
0.2  
0.5  
0.4  
0.3  
0.2  
µ + 1σ  
µ + 1σ  
0.1  
0.1  
0
0
µ
µ
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
µ – 1σ  
µ – 1σ  
–0.2  
–0.3  
–0.4  
–0.5  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 15. ADIS16475-1 Gyroscope Bias Error vs. Ambient Temperature  
Figure 17. ADIS16475-3 Gyroscope Bias Error vs. Ambient Temperature  
Rev. D | Page 11 of 37  
ADIS16475  
Data Sheet  
THEORY OF OPERATION  
External Clock Options  
INTRODUCTION  
The ADIS16475 provides three different modes of operation  
that support the device using an external clock to control the  
internal processing rate (fSM in Figure 19 and Figure 20) through  
the SYNC pin. The MSC_CTRL register (see Table 105) provides  
the configuration options for these external clock modes in  
Bits[4:2].  
When using the factory default configuration for all user  
configurable control registers, the ADIS16475 initializes itself  
and automatically starts a continuous process of sampling,  
processing, and loading calibrated sensor data into its output  
registers at a rate of 2000 SPS.  
INERTIAL SENSOR SIGNAL CHAIN  
Inertial Sensor Calibration  
Figure 18 provides the basic signal chain for the inertial sensors  
in the ADIS16475. This signal chain produces an update rate  
of 2000 SPS in the output data registers when it operates in  
internal clock mode (default, see Register MSC_CTRL, Bits[4:2]  
in Table 105).  
The inertial sensor calibration function for the gyroscopes and the  
accelerometers has two components: factory calibration and  
user calibration (see Figure 21).  
FROM  
TO  
BARTLETT  
WINDOW  
FIR FILTER  
FACTORY  
CALIBRATION  
USER  
CALIBRATION  
AVERAGING  
DECIMATING  
FILTER  
BARTLETT  
AVERAGING  
DECIMATING  
FILTER  
OUTPUT  
DATA  
REGISTERS  
MEMS  
SENSORS  
WINDOW  
FIR  
CALIBRATION  
FILTER  
Figure 21. Inertial Sensor Calibration Processing  
The factory calibration of the gyroscope applies the following  
correction formulas to the data of each gyroscope:  
Figure 18. Signal Processing Diagram, Inertial Sensors  
Gyroscope Data Sampling  
bX  
ω
m11 m12  
m
ω
The three gyroscopes produce angular rate measurements around  
three orthogonal axes (x, y, and z). Figure 19 shows the data  
sampling plan for each gyroscope when the ADIS16475 operates  
in internal clock mode (default, see Register MSC_CTRL,  
Bits[4:2] in Table 105). Each gyroscope has an analog-to-digital  
converter (ADC) and sample clock (fSG) that drives data sampling  
at a rate of 4100 Hz (±5%). The internal processor reads and  
processes this data from each gyroscope at a rate of 2000 Hz (fSM).  
XC   
13   
X   
ωYC = m21 m22 m23  
×
ωY + bY  
+
ωZC  
m31 m32 m33  
ωZ  
bZ  
l
l12  
l
a
11  
13   
XC   
l21 l22 l23 × aYC  
l31 l32 l33  
aZC  
where:  
TO  
INTERNAL  
BARTLETT  
WINDOW  
MEMS  
GYROSCOPE  
ωXC, ωYC, and ωZC are the gyroscope outputs (post calibration).  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 provide scale and  
alignment correction.  
DATA  
ADC  
REGISTER  
FIR FILTER  
fSG = 4100Hz  
fSM = 2000Hz  
ωX, ωY, and ωZ are the gyroscope outputs (precalibration).  
bX, bY, and bZ provide bias correction.  
l11, l12, l13, l21, l22, l23, l31, l32, and l33 provide linear g correction  
aXC, aYC, and aZC are the accelerometer outputs (post calibration).  
Figure 19. Gyroscope Data Sampling  
Accelerometer Data Sampling  
The three accelerometers produce linear acceleration measurements  
along the same orthogonal axes (x, y, and z) as the gyroscopes.  
Figure 20 shows the data sampling plan for each accelerometer  
when the ADIS16475 operates in internal clock mode (default,  
see Register MSC_CTRL, Bits[4:2] in Table 105).  
All of the correction factors in this relationship come from  
direct observation of the response of each gyroscope at multiple  
temperatures over the calibration temperature range (−40°C ≤  
TC ≤ +85°C). These correction factors are stored in the flash  
memory bank, but they are not available for observation or  
configuration. Register MSC_CTRL, Bit 7 (see Table 105)  
provides the only user configuration option for the factory  
calibration of the gyroscopes: an on/off control for the linear g  
compensation. See Figure 44 for more details on the user  
calibration options available for the gyroscopes.  
TO  
2
1
2
MEMS  
BARTLETT  
WINDOW  
a(n)  
ADC  
ACCELEROMETER  
n = 1  
÷2  
FIR FILTER  
2 × fSM = 4000Hz  
Figure 20. Accelerometer Data Sampling  
Rev. D | Page 12 of 37  
 
 
 
 
 
 
 
Data Sheet  
ADIS16475  
The factory calibration of the accelerometer applies the following  
correction formulas to the data of each accelerometer:  
Bartlett Window FIR Filter  
The Bartlett window finite impulse response (FIR) filter  
(see Figure 22) contains two averaging filter stages in a cascade  
configuration. The FILT_CTRL register (see Table 101) provides  
the configuration controls for this filter.  
aXC  
aYC  
aZC  
m11 m12 m13  
m21 m22 m23  
m31 m32 m33  
aX  
aY  
aZ  
bX  
bY  
bZ  
=
×
+
+
FROM  
MEMS  
SENSOR  
N
N
TO  
1
N
1
N
2
ω(n)  
ω(n)  
FACTORY  
CALIBRATION  
ω
0
p21  
p31 p32  
p12 p13  
0
n = 1  
n = 1  
XC   
p23 × ω2  
YC   
Figure 22. Bartlett Window FIR Filter Signal Path  
ω2ZC  
0
Averaging/Decimating Filter  
where:  
The second digital filter averages multiple samples together to  
produce each register update. In this type of filter structure, the  
number of samples in the average is equal to the reduction in  
the update rate for the output data registers. The DEC_RATE  
register (see Table 109) provides the configuration controls for  
this filter.  
aXC, aYC, and aZC are the accelerometer outputs (post calibration).  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 provide scale and  
alignment correction.  
aX, aY, and aZ are the accelerometer outputs (precalibration).  
bX, bY, and bZ provide bias correction.  
p12, p13, p21, p23, p31, and p32 provide a point of percussion  
alignment correction (see Figure 47).  
FROM  
USER  
CALIBRATION  
N
1
N
TO OUTPUT  
REGISTERS  
ω(n)  
Σ
ω2XC, ω2YC, and ω2ZC are the square of the gyroscope outputs  
(post calibration).  
÷N  
n = 1  
Figure 23. Averaging/Decimating Filter Diagram  
All of the correction factors in this relationship come from  
direct observation of the response of each accelerometer at  
multiple temperatures over the calibration temperature range  
(−40°C ≤ TC ≤ +85°C). These correction factors are stored  
in the flash memory bank, but they are not available for  
observation or configuration. MSC_CTRL, Bit 6 (see Table 105)  
provides the only user configuration option for the factory  
calibration of the accelerometers: an on/off control for the point of  
percussion, alignment function. See Figure 45 for more details  
on the user calibration options available for the accelerometers.  
REGISTER STRUCTURE  
All communication between the ADIS16475 and an external  
processor involves either reading the contents of an output  
register or writing configuration/command information to a  
control register. The output data registers include the latest  
sensor data, error flags, and identification information. The  
control registers include sample rate, filtering, calibration, and  
diagnostic options. Each user accessible register has two bytes  
(upper and lower), each of which has its own unique address.  
See Table 8 for a detailed list of all user registers, along with  
their addresses.  
TRIAXIAL  
SENSOR  
OUTPUT  
REGISTERS  
GYROSCOPE  
SIGNAL  
PROCESSING  
TRIAXIAL  
ACCELLEROMETER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
CONTROLLER  
Figure 24. Basic Operation of the ADIS16475  
Rev. D | Page 13 of 37  
 
 
ADIS16475  
Data Sheet  
SERIAL PERIPHERAL INTERFACE (SPI)  
DATA READY (DR)  
The SPI provides access to the user registers (see Table 8).  
Figure 25 shows the most common connections between the  
ADIS16475 and a SPI master device, which is often an embedded  
processor that has a SPI-compatible interface. In this example,  
the SPI master uses an interrupt service routine to collect data  
every time the data ready (DR) signal pulses.  
The factory default configuration provides users with a DR  
signal on the DR pin (see Table 5), which pulses when the output  
data registers are updating. Connect the DR pin to a pin on the  
embedded processor, which triggers data collection, on the  
second edge of this pulse. The MSC_CTRL register, Bit 0 (see  
Table 105), controls the polarity of this signal. In Figure 26,  
Register MSC_CTRL, Bit 0 = 1, which means that data  
collection must start on the rising edges of the DR pulses.  
Additional information on the ADIS16475 SPI can be found in  
the Serial Port Operation section of this data sheet.  
I/O LINES ARE COMPATIBLE WITH  
3.3V LOGIC LEVELS  
DR  
INACTIVE  
ACTIVE  
+3.3V  
VDD  
Figure 26. Data Ready When Register MSC_CTRL, Bit 0 = 1 (Default)  
SYSTEM  
ADIS16475  
During the start-up and reset recovery processes, the DR signal  
may exhibit some transient behavior before data production  
begins. Figure 27 shows an example of the DR behavior during  
startup, and Figure 28 and Figure 29 provide examples of the  
DR behavior during recovery from reset commands.  
PROCESSOR  
SS  
SCLK  
MOSI  
MISO  
IRQ  
CS  
SPI MASTER  
SCLK  
DIN  
DOUT  
DR  
TIME THAT VDD > 3V  
VDD  
Figure 25. Electrical Connection Diagram  
PULSING INDICATES  
DATA PRODUCTION  
Table 6. Generic SPI Master Pin Names and Functions  
Mnemonic  
Function  
DR  
SS  
Slave select  
SCLK  
MOSI  
MISO  
IRQ  
Serial clock  
START-UP TIME  
Master output, slave input  
Master input, slave output  
Interrupt request  
Figure 27. Data Ready Response During Startup  
SOFTWARE RESET COMMAND  
GLOB_CMD[7] = 1  
Embedded processors typically use control registers to configure  
their serial ports for communicating with SPI slave devices such  
as the ADIS16475. Table 7 provides a list of settings that describe  
the SPI protocol of the ADIS16475. The initialization routine  
of the master processor typically establishes these settings using  
firmware commands to write them into the control registers.  
DR PULSING  
RESUMES  
DR  
RESET RECOVERY TIME  
Figure 28. Data Ready Response During Reset  
(Register GLOB_CMD, Bit 7 = 1) Recovery  
Table 7. Generic Master Processor SPI Settings  
Processor Setting Description  
RST PIN  
RELEASED  
Master  
ADIS16475 operates as slave  
SCLK ≤ 2 MHz1  
SPI Mode 3  
MSB First Mode  
16-Bit Mode  
Maximum serial clock rate  
RST  
DR PULSING  
RESUMES  
CPOL = 1 (polarity), CPHA = 1 (phase)  
Bit sequence, see Figure 30 for coding  
Shift register and data length  
DR  
1 A burst mode read requires this value to be ≤1 MHz (see Table 2 for more  
information).  
RESET RECOVERY TIME  
RST  
Figure 29. Data Ready Response During Reset (  
= 0) Recovery  
Rev. D | Page 14 of 37  
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16475  
CS  
SCLK  
DIN  
R/W A6  
A5  
R/W A6  
A5  
A4  
A3  
A2  
A1  
A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0  
D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
D15 D14 D13 D12 D11 D10 D9  
D15 D14 D13  
NOTES  
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.  
2. WHEN CS IS HIGH, DOUT IS INA THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE  
FOR OTHER DEVICES.  
Figure 30. SPI Communication Bit Sequence  
1
2
3
11  
CS  
SCLK  
0x6800  
DIN  
DIAG_STAT  
XGYRO_OUT  
CHECKSUM  
DOUT  
Figure 31. Burst Read Sequence  
CS  
SCLK  
DIN  
DIN = 0x7200 = 0111 0010 0000 0000  
HIGH-Z  
HIGH-Z  
DOUT  
DOUT = 0100 0000 0101 1011 = 0x405B = 16475 (PROD_ID)  
Figure 32. SPI Signal Pattern Showing a Read of the PROD_ID Register  
Burst Read Function  
READING SENSOR DATA  
The burst read function provides a way to read a batch of  
Reading a single register requires two 16-bit cycles on the SPI:  
one to request the contents of a register and another to receive  
those contents. The 16-bit command code (see Figure 30) for a  
output data registers, using a continuous stream of bits, at a  
rate of up to 1 MHz (SCLK). This method does not require a  
stall time between each 16-bit segment (see Figure 3). As shown  
in Figure 31, start this mode by setting DIN = 0x6800, and then  
read each of the registers in the sequence out of DOUT while  
R
read request on the SPI has three parts: the read bit ( /W = 0),  
either address of the register, [A6:A0], and eight don’t care bits,  
[DC7:DC0]. Figure 33 shows an example that includes two register  
reads in succession. This example starts with DIN = 0x0C00 to  
request the contents of the Z_GYRO_LOW register, and  
follows with 0x0E00 to request the contents of the Z_GYRO_OUT  
register. The sequence in Figure 33 also shows full duplex mode  
of operation, which means that the ADIS16475 can receive  
requests on DIN while also transmitting data out on DOUT  
within the same 16-bit SPI cycle.  
CS  
keeping  
low for the entire 176-bit sequence.  
The sequence of registers (and checksum value) in the burst read  
response depends on which sample clock mode that the ADIS16475  
is operating in (Register MSC_CTRL, Bits[4:2], see Table 105). In  
all clock modes, except when operating in scaled sync mode  
(Register MSC_CTRL, Bits[4:2] = 010), the burst read response  
includes the following registers and value: DIAG_STAT,  
X_GYRO_OUT, Y_GYRO_OUT, Z_GYRO_OUT, X_ACCL_  
OUT, Y_ACCL_OUT, Z_ACCL_OUT, TEMP_OUT, DATA_  
CNTR, and the checksum value. In these cases, use the following  
formula to verify the checksum value, treating each byte in the  
formula as an independent, unsigned, 8-bit number:  
NEXT  
DIN  
0x0C00  
0x0E00  
ADDRESS  
DOUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
Figure 33. SPI Read Example  
Figure 32 provides an example of the four SPI signals when  
reading the PROD_ID register (see Table 121) in a repeating  
pattern. This pattern can be helpful when troubleshooting the  
SPI interface setup and communications because the signals are  
the same for each 16-bit sequence, except during the first cycle.  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] +  
Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] +  
Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] +  
X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] +  
Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] +  
Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0]  
Rev. D | Page 15 of 37  
 
 
 
 
 
ADIS16475  
Data Sheet  
When operating in scaled sync mode (Register MSC_CTRL,  
Bits[4:2] = 010), the burst read response includes the following  
registers and value: DIAG_STAT, X_GYRO_OUT,  
Memory Structure  
Figure 35 provides a functional diagram for the memory  
structure of the ADIS16475. The flash memory bank contains  
the operational code, unit specific calibration coefficients, and  
user configuration settings. During initialization (power  
application or reset recover), this information loads from the  
flash memory into the static random access memory (SRAM),  
which supports all normal operation, including register access  
through the SPI port. Writing to a configuration register using  
the SPI updates the SRAM location of the register, but does not  
automatically update its settings in the flash memory bank. The  
manual flash memory update command (Register GLOB_CMD,  
Bit 3, see Table 113) provides a convenient method for saving  
all of these settings to the flash memory bank at one time. A yes  
in the flash backup column of Table 8 identifies the registers  
that have storage support in the flash memory bank.  
Y_GYRO_OUT, Z_GYRO_OUT, X_ACCL_OUT,  
Y_ACCL_OUT, Z_ACCL_OUT, TEMP_OUT, TIME_STAMP,  
and the checksum value. In this case, use the following formula  
to verify the checksum value, treating each byte in the formula  
as an independent, unsigned, 8-bit number.  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] +  
Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] +  
Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] +  
X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] +  
Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] +  
Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
TIME_STAMP, Bits[15:8] + TIME_STAMP, Bits[7:0]  
MANUAL  
FLASH  
BACKUP  
DEVICE CONFIGURATION  
Each configuration register contains 16 bits (two bytes). Bits[7:0]  
contain the low byte, and Bits[15:8] contain the high byte of  
each register. Each byte has its own unique address in the user  
register map (see Table 8). Updating the contents of a register  
requires writing to both of its bytes in the following sequence:  
low byte first, high byte second. There are three parts to coding  
a SPI command (see Figure 30) that write a new byte of data to  
NONVOLATILE  
FLASH MEMORY  
VOLATILE  
SRAM  
SPI ACCESS  
(NO SPI ACCESS)  
START-UP  
RESET  
Figure 35. SRAM and Flash Memory Diagram  
R
a register: the write bit ( /W = 1), the address of the byte, [A6:A0],  
and the new data for that location, [DC7:DC0]. Figure 34 shows a  
coding example for writing 0x0004 to the FILT_CTRL register  
(see Table 101). In Figure 34, the 0xDC04 command writes 0x04 to  
Address 0x5C (lower byte) and the 0xDD00 command writes  
0x00 to Address 0x5D (upper byte).  
CS  
SCLK  
DIN  
0xDC04  
0xDD00  
Figure 34. SPI Sequence for Writing 0x0004 to FILT_CTRL  
Rev. D | Page 16 of 37  
 
 
 
Data Sheet  
ADIS16475  
USER REGISTER MEMORY MAP  
Table 8. User Register Memory Map (N/A Means Not Applicable)  
Name  
R/W  
N/A  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N/A  
R
R
R
R
R
R
R
R
R
R
R
R
Flash Backup  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Address  
Default  
Register Description  
Reserved  
DIAG_STAT  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C to 0x3F  
0x40, 0x41  
0x42, 0x43  
0x44, 0x45  
0x46, 0x47  
0x48, 0x49  
0x4A, 0x4B  
0x4C, 0x4D  
0x4E, 0x4F  
0x50, 0x51  
0x52, 0x53  
0x54, 0x55  
0x56, 0x57  
0x58 to 0x5B  
0x5C, 0x5D  
0x5E, 0x5F  
0x60, 0x61  
0x62, 0x63  
N/A  
0x0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
N/A  
Reserved  
Output, system error flags  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TEMP_OUT  
Output, x-axis gyroscope, low word  
Output, x-axis gyroscope, high word  
Output, y-axis gyroscope, low word  
Output, y-axis gyroscope, high word  
Output, z-axis gyroscope, low word  
Output, z-axis gyroscope, high word  
Output, x-axis accelerometer, low word  
Output, x-axis accelerometer, high word  
Output, y-axis accelerometer, low word  
Output, y-axis accelerometer, high word  
Output, z-axis accelerometer, low word  
Output, z-axis accelerometer, high word  
Output, temperature  
TIME_STAMP  
Reserved  
DATA_CNTR  
Output, time stamp  
Reserved  
New data counter  
X_DELTANG_LOW  
X_DELTANG_OUT  
Y_DELTANG_LOW  
Y_DELTANG_OUT  
Z_DELTANG_LOW  
Z_DELTANG_OUT  
X_DELTVEL_LOW  
X_DELTVEL_OUT  
Y_DELTVEL_LOW  
Y_DELTVEL_OUT  
Z_DELTVEL_LOW  
Z_DELTVEL_OUT  
Reserved  
XG_BIAS_LOW  
XG_BIAS_HIGH  
YG_BIAS_LOW  
YG_BIAS_HIGH  
ZG_BIAS_LOW  
ZG_BIAS_HIGH  
XA_BIAS_LOW  
XA_BIAS_HIGH  
YA_BIAS_LOW  
YA_BIAS_HIGH  
ZA_BIAS_LOW  
ZA_BIAS_HIGH  
Reserved  
Output, x-axis delta angle, low word  
Output, x-axis delta angle, high word  
Output, y-axis delta angle, low word  
Output, y-axis delta angle, high word  
Output, z-axis delta angle, low word  
Output, z-axis delta angle, high word  
Output, x-axis delta velocity, low word  
Output, x-axis delta velocity, high word  
Output, y-axis delta velocity, low word  
Output, y-axis delta velocity, high word  
Output, z-axis delta velocity, low word  
Output, z-axis delta velocity, high word  
Reserved  
Calibration, offset, gyroscope, x-axis, low word  
Calibration, offset, gyroscope, x-axis, high word  
Calibration, offset, gyroscope, y-axis, low word  
Calibration, offset, gyroscope, y-axis, high word  
Calibration, offset, gyroscope, z-axis, low word  
Calibration, offset, gyroscope, z-axis, high word  
Calibration, offset, accelerometer, x-axis, low word  
Calibration, offset, accelerometer, x-axis, high word  
Calibration, offset, accelerometer, y-axis, low word  
Calibration, offset, accelerometer, y-axis, high word  
Calibration, offset, accelerometer, z-axis, low word  
Calibration, offset, accelerometer, z-axis, high word  
Reserved  
R
No  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
N/A  
R/W  
R
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
No  
FILT_CTRL  
RANG_MDL  
MSC_CTRL  
UP_SCALE  
0x0000  
N/A1  
0x00C1  
0x07D0  
Control, Bartlett window FIR filter  
Measurement range (model specific) identifier  
Control, input/output and other miscellaneous options  
Control, scale factor for input clock, pulse per second (PPS)  
mode  
R/W  
R/W  
Yes  
Yes  
DEC_RATE  
R/W  
Yes  
0x64, 0x65  
0x0000  
Control, decimation filter (output data rate)  
Rev. D | Page 17 of 37  
 
 
ADIS16475  
Data Sheet  
Name  
R/W  
R/W  
W
N/A  
R
R
R
R
R
R/W  
R/W  
R/W  
R
Flash Backup  
Address  
Default  
0x070A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x405B  
N/A  
N/A  
Register Description  
NULL_CNFG  
GLOB_CMD  
Reserved  
FIRM_REV  
FIRM_DM  
Yes  
No  
N/A  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
0x66, 0x67  
0x68, 0x69  
0x6A to 0x6B  
0x6C, 0x6D  
0x6E, 0x6F  
0x70, 0x71  
0x72, 0x73  
0x74, 0x75  
0x76, 0x77  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 0x7E  
Control, bias estimation period  
Control, global commands  
Reserved  
Identification, firmware revision  
Identification, date code, day and month  
Identification, date code, year  
Identification, device number  
Identification, serial number  
User Scratch Register 1  
User Scratch Register 2  
User Scratch Register 3  
Output, flash memory write cycle counter, lower word  
Output, flash memory write cycle counter, upper word  
FIRM_Y  
PROD_ID  
SERIAL_NUM  
USER_SCR_1  
USER_SCR_2  
USER_SCR_3  
FLSHCNT_LOW  
FLSHCNT_HIGH  
N/A  
N/A  
N/A  
N/A  
R
1 See Table 102 for the default value in this register, which is model specific.  
Rev. D | Page 18 of 37  
Data Sheet  
ADIS16475  
USER REGISTER DEFINTIONS  
Status/Error Flag Indicators (DIAG_STAT)  
GYROSCOPE DATA  
The gyroscopes in the ADIS16475 measure the angular rate of  
rotation around three orthogonal axes (x, y, and z). Figure 36  
shows the orientation of each gyroscope axis, along with the  
direction of rotation that produces a positive response in each  
of their measurements.  
Table 9. DIAG_STAT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x02, 0x03  
0x0000  
R
No  
Table 10. DIAG_STAT Bit Assignments  
Bits Description  
[15:8] Reserved.  
Z
ω
Z
7
6
Clock error. A 1 indicates that the internal data sampling  
clock (fSM, see Figure 19 and Figure 20) does not  
synchronize with the external clock, which only applies  
when using scaled sync mode (Register MSC_CTRL,  
Bits[4:2] = 010, see Table 105). When this error occurs,  
adjust the frequency of the clock signal on the SYNC pin  
to operate within the appropriate range.  
X
Y
ω
ω
X
Y
PIN K1  
PIN A8  
Memory failure. A 1 indicates a failure in the flash memory  
test (Register GLOB_CMD, Bit 4, see Table 113), which  
involves a comparison between a cyclic redundancy  
check (CRC) calculation of the present flash memory and  
a CRC calculation from the same memory locations at  
the time of initial programming (during the production  
process). If this error occurs, repeat the same test. If this  
error persists, replace the ADIS16475 device.  
Figure 36. Gyroscope Axis and Polarity Assignments  
Each gyroscope has two output data registers. Figure 37 shows  
how these two registers combine to support a 32-bit, twos  
complement data format for the x-axis gyroscope measurements.  
This format also applies to the y- and z-axes.  
Additional information on the precision and resolution of the  
accelerometers can be found in the Digital Resolution of  
Gyroscopes and Accelerometers section of this data sheet.  
5
Sensor failure. A 1 indicates failure of at least one sensor,  
at the conclusion of the self test (Register GLOB_CMD,  
Bit 2, see Table 113). If this error occurs, repeat the same  
test. If this error persists, replace the ADIS16475. Motion  
during the execution of this test can cause a false failure.  
X_GYRO_OUT  
X_GYRO_LOW  
BIT 15  
BIT 0 BIT 15  
X-AXIS GYROSCOPE DATA  
BIT 0  
4
3
Standby mode. A 1 indicates that the voltage across  
VDD and GND is <2.8 V, which causes data processing to  
stop. When VDD ≥ 2.8 V for 250 ms, the ADIS16475  
reinitializes itself and starts producing data again.  
Figure 37. Gyroscope Output Data Structure  
Gyroscope Measurement Range/Scale Factor  
SPI communication error. A 1 indicates that the total  
number of SCLK cycles is not equal to an integer  
multiple of 16. When this error occurs, repeat the  
previous communication sequence. Persistence in this  
error may indicate a weakness in the SPI service that the  
ADIS16475 is receiving from the system it is supporting.  
Table 11 provides the measurement range (±±MAX) and scale  
factor (KG) for the gyroscope in each ADIS16475 model.  
Table 11. Gyroscope Measurement Range and Scale Factors  
Range, ωMAX  
(°/sec)  
Scale Factor, KG  
(LSB/°/sec)  
Model  
2
1
Flash memory update failure. A 1 indicates that the most  
recent flash memory update (Register GLOB_CMD, Bit 3,  
see Table 113) failed. If this error occurs, ensure that VDD ≥  
3 V and repeat the update attempt. If this error persists,  
replace the ADIS16475.  
ADIS16475-1  
ADIS16475-2  
ADIS16475-3  
125  
500  
2000  
160  
40  
10  
Gyroscope Data Formatting  
Data path overrun. A 1 indicates that one of the data  
paths experienced an overrun condition. If this error  
occurs, initiate a reset using the RST pin (see Table 5,  
Pin F3) or Register GLOB_CMD, Bit 7 (see Table 113). See  
the Serial Port Operation section for more details on  
conditions that may cause this bit to be set to 1.  
Table 12 and Table 13 offer various numerical examples that  
demonstrate the format of the rotation rate data in both 16-bit  
and 32-bit formats.  
Table 12. 16-Bit Gyroscope Data Format Examples  
0
Reserved.  
Rotation Rate  
Decimal Hex  
Binary  
The DIAG_STAT register (see Table 9 and Table 10) provides  
error flags for monitoring the integrity and operation of the  
ADIS16475. Reading this register causes all of its bits to return  
to 0. The error flags in DIAG_STAT are sticky, meaning that,  
when they raise to a 1, they remain there until a read request  
clears them. If an error condition persists, the flag (bit)  
automatically returns to an alarm value of 1.  
MAX  
+2/KG  
+1/KG  
0°/sec  
−1/KG  
−2/KG  
−ωMAX  
+20,000  
+2  
+1  
0
−1  
−2  
−20,000  
0x4E20  
0100 1110 0010 0000  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1011 0001 1110 0000  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0xB1E0  
Rev. D | Page 19 of 37  
 
 
 
 
 
 
 
 
ADIS16475  
Data Sheet  
Table 13. 32-Bit Gyroscope Data Format Examples  
Z-Axis Gyroscope (Z_GYRO_LOW and Z_GYRO_OUT)  
Rotation Rate (°/sec)  
Decimal  
Hex  
Table 22. Z_GYRO_LOW Register Definition  
MAX  
+1,310,720,000 0x4E200000  
Addresses  
Default  
Access  
Flash Backup  
+2/(KG × 216)  
+1/(KG × 216)  
0
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x0000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x0C, 0x0D  
Not applicable  
R
No  
Table 23. Z_GYRO_LOW Bit Definitions  
−1/(KG × 216)  
−2/(KG × 216)  
−ωMAX  
Bits  
Description  
[15:0]  
Z-axis gyroscope data; additional resolution bits  
−1,310,720,000 0xB1E00000  
Table 24. Z_GYRO_OUT Register Definition  
X-Axis Gyroscope (X_GYRO_LOW and X_GYRO_OUT)  
Addresses  
Default  
Access  
Flash Backup  
0x0E, 0x0F  
Not applicable  
R
No  
Table 14. X_GYRO_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 25. Z_GYRO_OUT Bit Definitions  
0x04, 0x05  
Not applicable  
R
No  
Bits  
Description  
[15:0]  
Z-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 1/KG (see Table 11 for KG)  
Table 15. X_GYRO_LOW Bit Definitions  
Bits  
Description  
The Z_GYRO_LOW (see Table 22 and Table 23) and Z_GYRO_  
OUT (see Table 24 and Table 25) registers contain the gyroscope  
data for the z-axis.  
[15:0]  
X-axis gyroscope data; additional resolution bits  
Table 16. X_GYRO_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Acceleration Data  
0x06, 0x07  
Not applicable  
R
No  
The accelerometers in the ADIS16475 measure both dynamic  
and static (response to gravity) acceleration along the same three  
orthogonal axes that define the axes of rotation for the gyroscopes  
(x, y, and z). Figure 38 shows the orientation of each accelerometer  
axis, along with the direction of acceleration that produces a  
positive response in each of their measurements.  
Table 17. X_GYRO_OUT Bit Definitions  
Bits  
Description  
[15:0]  
X-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 1/KG (See Table 11 for KG)  
The X_GYRO_LOW (see Table 14 and Table 15) and X_GYRO_  
OUT (see Table 16 and Table 17) registers contain the gyroscope  
data for the x-axis.  
Z
a
z
Y-Axis Gyroscope (Y_GYRO_LOW and Y_GYRO_OUT)  
Table 18. Y_GYRO_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
PIN K1  
PIN A8  
0x08, 0x09  
Not applicable  
R
No  
Table 19. Y_GYRO_LOW Bit Definitions  
X
a
x
a
y
Y
Bits  
Description  
Figure 38. Accelerometer Axis and Polarity Assignments  
[15:0]  
Y-axis gyroscope data; additional resolution bits  
Each accelerometer has two output data registers. Figure 39  
shows how these two registers combine to support a 32-bit,  
twos complement data format for the x-axis accelerometer  
measurements. This format also applies to the y- and z-axes.  
Table 20. Y_GYRO_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x0A, 0x0B  
Not applicable  
R
No  
Table 21. Y_GYRO_OUT Bit Definitions  
Additional information on the precision and resolution of the  
accelerometers can be found in the Digital Resolution of  
Gyroscopes and Accelerometers section of this data sheet.  
Bits  
Description  
[15:0]  
Y-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 1/KG (see Table 11 for KG)  
X_ACCL_OUT  
X_ACCL_LOW  
The Y_GYRO_LOW (see Table 18 and Table 19) and Y_GYRO_  
OUT (see Table 20 and Table 21) registers contain the gyroscope  
data for the y-axis.  
BIT 15  
BIT 0 BIT 15  
X-AXIS ACCELEROMETER DATA  
BIT 0  
Figure 39. Accelerometer Output Data Structure  
Rev. D | Page 20 of 37  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16475  
Accelerometer Data Formatting  
Y-Axis Accelerometer (Y_ACCL_LOW and Y_ACCL_OUT)  
Table 26 and Table 27 offer various numerical examples that  
demonstrate the format of the linear acceleration data in both  
16-bit and 32-bit formats.  
Table 32. Y_ACCL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x14, 0x15  
Not applicable  
R
No  
Table 26. 16-Bit Accelerometer Data Format Examples  
Table 33. Y_ACCL_LOW Bit Definitions  
Bits Description  
Acceleration  
Decimal  
+32,000  
+2  
+1  
0
−1  
−2  
−32,000  
Hex  
Binary  
+8 g  
0x7D00 0111 1101 0000 0000  
[15:0] Y-axis accelerometer data; additional resolution bits  
+0.5 mg  
+0.25 mg  
0 mg  
−0.25 mg  
−0.5 mg  
−8 g  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0x8300  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1000 0011 0000 0000  
Table 34. Y_ACCL_OUT Register Definition  
Addresses Default  
Access  
Flash Backup  
0x16, 0x17 Not applicable  
R
No  
Table 35. Y_ACCL_OUT Bit Definitions  
Bits Description  
Table 27. 32-Bit Accelerometer Data Format Examples  
[15:0] Y-axis accelerometer data, high word; twos  
Acceleration  
Decimal  
Hex  
complement, 8 g range; 0 g = 0x0000, 1 LSB = 0.25 mg  
+8 g  
+2,097,152,000  
+2  
+1  
0
−1  
−2  
0x7D000000  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x83000000  
The Y_ACCL_LOW (see Table 32 and Table 33) and  
Y_ACCL_ OUT (see Table 34 and Table 35) registers contain  
the accelerometer data for the y-axis.  
+0.25/215 mg  
+0.25/216 mg  
0
−0.25/216 mg  
−0.25/215 mg  
−8 g  
Z-Axis Accelerometer (Z_ACCL_LOW and Z_ACCL_OUT)  
Table 36. Z_ACCL_LOW Register Definition  
−2,097,152,000  
Addresses  
Default  
Access  
Flash Backup  
X-Axis Accelerometer (X_ACCL_LOW and X_ACCL_OUT)  
0x18, 0x19  
Not applicable  
R
No  
Table 28. X_ACCL_LOW Register Definition  
Table 37. Z_ACCL_LOW Bit Definitions  
Bits Description  
Addresses  
Default  
Access  
Flash Backup  
0x10, 0x11  
Not applicable  
R
No  
[15:0] Z-axis accelerometer data; additional resolution bits  
Table 29. X_ACCL_LOW Bit Definitions  
Bits Description  
Table 38. Z_ACCL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
[15:0] X-axis accelerometer data; additional resolution bits  
0x1A, 0x1B  
Not applicable  
R
No  
Table 30. X_ACCL_OUT Register Definition  
Table 39. Z_ACCL_OUT Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer data, high word; twos  
Addresses  
Default  
Access  
Flash Backup  
0x12, 0x13  
Not applicable  
R
No  
complement, 8 g range; 0 g = 0x0000, 1 LSB = 0.25 mg  
Table 31. X_ACCL_OUT Bit Definitions  
Bits Description  
The Z_ACCL_LOW (see Table 36 and Table 37) and Z_ACCL_  
OUT (see Table 38 and Table 39) registers contain the  
accelerometer data for the z-axis.  
[15:0] X-axis accelerometer data, high word; twos  
complement, 8 g range; 0 g = 0x0000, 1 LSB = 0.25 mg  
The X_ACCL_LOW (see Table 28 and Table 29) and X_ACCL_  
OUT (see Table 30 and Table 31) registers contain the  
accelerometer data for the x-axis.  
Rev. D | Page 21 of 37  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16475  
Data Sheet  
Internal Temperature (TEMP_OUT)  
Data Update Counter (DATA_CNTR)  
Table 40. TEMP_OUT Register Definition  
Table 45. DATA_CNTR Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x1C, 0x1D  
Not applicable  
R
No  
0x22, 0x23  
Not applicable  
R
No  
Table 41. TEMP_OUT Bit Definitions  
Table 46. DATA_CNTR Bit Definitions  
Bits  
Description  
Bits  
Description  
[15:0]  
Temperature data; twos complement, 1 LSB = 0.1°C, 0°C  
= 0x0000  
[15:0]  
Data update counter, offset binary format  
When the ADIS16475 goes through its power-on sequence or  
when it recovers from a reset command, DATA_CNTR (see  
Table 45 and Table 46) starts with a value of 0x0000 and  
increments every time new data loads into the output registers.  
When the DATA_CNTR value reaches 0xFFFF, the next data  
update causes it to wrap back around to 0x0000, where it  
continues to increment every time new data loads into the  
output registers.  
The TEMP_OUT register (see Table 40 and Table 41) provides  
a coarse measurement of the temperature inside of the ADIS16475.  
This data is most useful for monitoring relative changes in the  
thermal environment.  
Table 42. TEMP_OUT Data Format Examples  
Temperature (°C)  
Decimal Hex  
Binary  
+105  
+25  
+0.2  
+0.1  
+0  
+0.1  
+0.2  
−40  
+1050  
+250  
+2  
+1  
0
−1  
−2  
−400  
0x041A 0000 0100 0001 1010  
0x00FA 0000 0000 1111 1010  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0xFE70 1111 1110 0111 0000  
DELTA ANGLES  
In addition to the angular rate of rotation (gyroscope)  
measurements around each axis (x, y, and z), the ADIS16475 also  
provides delta angle measurements that represent a calculation  
of angular displacement between each sample update.  
Z
Δθ  
Z
Time Stamp (TIME_STAMP)  
Table 43. TIME_STAMP Register Definition  
X
Addresses  
Default  
Access  
Flash Backup  
Y
0x1E, 0x1F  
Not applicable  
R
No  
Δθ  
Δθ  
X
Y
PIN K1  
PIN A8  
Table 44. TIME_STAMP Bit Definitions  
Figure 40. Delta Angle Axis and Polarity Assignments  
Bits  
Description  
[15:0]  
Time from the last pulse on the SYNC pin; offset binary  
format, 1 LSB = 49.02 µs  
The delta angle outputs represent an integration of the gyroscope  
measurements and use the following formula for all three axes (x-  
axis displayed):  
The TIME_STAMP register (see Table 43 and Table 44) works  
in conjunction with scaled sync mode (Register MSC_CTRL,  
Bits[4:2] = 010, see Table 105). The 16-bit number in TIME_  
STAMP contains the time associated with the last sample in  
each data update relative to the most recent edge of the clock  
signal in the SYNC pin. For example, when the value in the  
UP_SCALE register (see Table 107) represents a scale factor of  
20, DEC_RATE = 0, and the external SYNC rate = 100 Hz, the  
following time stamp sequence results: 0 LSB, 10 LSB, 21 LSB,  
31 LSB, 41 LSB, 51 LSB, 61 LSB, 72 LSB, …, 194 LSB for the 20th  
sample, which translates to 0 µs, 490 µs, …, 9510 µs, the time  
from the first SYNC edge.  
D 1  
1
∆θx, nD  
=
×
(
ωx, nD+d + ωx, nD+d 1  
)
2× fS  
d =0  
where:  
D is the decimation rate (DEC_RATE + 1, see Table 109).  
fS is the sample rate.  
d is the incremental variable in the summation formula.  
ωX is the x-axis rate of rotation (gyroscope).  
n is the sample time, prior to the decimation filter.  
When using the internal sample clock, fS is equal to a nominal  
rate of 2000 SPS. For better precision in this measurement,  
measure the internal sample rate (fS) using the data ready signal  
on the DR pin (DEC_RATE = 0x0000, see Table 108), divide  
each delta angle result (from the delta angle output registers) by  
the data ready frequency, and multiply it by 2000. Each axis of  
the delta angle measurements has two output data registers.  
Figure 41 shows how these two registers combine to support a  
Rev. D | Page 22 of 37  
 
 
 
 
 
 
 
Data Sheet  
ADIS16475  
32-bit, twos complement data format for the x-axis delta angle  
measurements. This format also applies to the y- and z-axes.  
Table 55. Y_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] Y-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 47 for ΔθMAX  
X_DELTANG_OUT  
X_DELTANG_LOW  
BIT 0 BIT 15  
X-AXIS DELTA ANGLE DATA  
)
BIT 15  
BIT 0  
The Y_DELTANG_LOW (see Table 52 and Table 53) and  
Y_DELTANG_OUT (see Table 54 and Table 55) registers  
contain the delta angle data for the y-axis.  
Figure 41. Delta Angle Output Data Structure  
Delta Angle Measurement Range  
Z-Axis Delta Angle (Z_DELTANG_LOW and  
Z_DELTANG_OUT)  
Table 47 shows the measurement range and scale factor for  
each ADIS16475 model.  
Table 56. Z_DELTANG_LOW Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
Table 47. Delta Angle Measurement Range and Scale Factor  
0x2C, 0x2D  
Not applicable  
R
No  
Model  
Measurement Range, ΔΘMAX (°)  
ADIS16475-1BMLZ  
ADIS16475-2BMLZ  
ADIS16475-3BMLZ  
360  
720  
2160  
Table 57. Z_DELTANG_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Z-axis delta angle data; low word  
X-Axis Delta Angle (X_DELTANG_LOW and  
X_DELTANG_OUT)  
Table 58. Z_DELTANG_OUT Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
Table 48. X_DELTANG_LOW Register Definitions  
0x2E, 0x2F  
Not applicable  
R
No  
Addresses  
Default  
Access  
Flash Backup  
Table 59. Z_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] Z-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 47 for ΔθMAX  
0x24, 0x25  
Not applicable  
R
No  
Table 49. X_DELTANG_LOW Bit Definitions  
Bits  
Description  
)
[15:0]  
X-axis delta angle data; low word  
The Z_DELTANG_LOW (see Table 56 and Table 57) and  
Z_DELTANG_OUT (see Table 58 and Table 59) registers  
contain the delta angle data for the z-axis.  
Table 50. X_DELTANG_OUT Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
0x26, 0x27  
Not applicable  
R
No  
Delta Angle Resolution  
Table 60 and Table 61 show various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
Table 51. X_DELTANG_OUT Bit Definitions  
Bits Description  
[15:0] X-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = ΔθMAX/215 (see Table 47 for ΔθMAX  
)
Table 60. 16-Bit Delta Angle Data Format Examples  
The X_DELTANG_LOW (see Table 48 and Table 49) and  
X_DELTANG_OUT (see Table 50 and Table 51) registers  
contain the delta angle data for the x-axis.  
Delta Angle (°)  
ΔθMAX × (215−1)/215 +32,767  
Decimal Hex  
Binary  
0x7FFF 0111 1111 1110 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+ΔθMAX/214  
+ΔθMAX/215  
0
−ΔθMAX/215  
−ΔθMAX/214  
−ΔθMAX  
+2  
+1  
0
−1  
−2  
−32,768  
Y-Axis Delta Angle (Y_DELTANG_LOW and  
Y_DELTANG_OUT)  
Table 52. Y_DELTANG_LOW Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
0x28, 0x29  
Not applicable  
R
No  
Table 61. 32-Bit Delta Angle Data Format Examples  
Table 53. Y_DELTANG_LOW Bit Definitions  
Delta Angle (°)  
+ΔθMAX × (231 − 1)/231  
+ΔθMAX/230  
+ΔθMAX/231  
0
−ΔθMAX/231  
−ΔθMAX/230  
−ΔθMAX  
Decimal  
Hex  
Bits  
Description  
+2,147,483,647 0x7FFFFFFF  
[15:0]  
Y-axis delta angle data; low word  
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
Table 54. Y_DELTANG_OUT Register Definitions  
Addresses  
Default  
Access  
Flash Backup  
0x2A, 0x2B  
Not applicable  
R
No  
−2,147,483,648 0x80000000  
Rev. D | Page 23 of 37  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16475  
Data Sheet  
Table 63. X_DELTVEL_LOW Bit Definitions  
DELTA VELOCITY  
Bits  
Description  
In addition to the linear acceleration measurements along each  
axis (x, y, and z), the ADIS16475 also provides delta velocity  
measurements that represent a calculation of linear velocity  
change between each sample update.  
[15:0]  
X-axis delta velocity data; additional resolution bits  
Table 64. X_DELTVEL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Z
0x32, 0x33  
Not applicable  
R
No  
ΔV  
Z
Table 65. X_DELTVEL_OUT Bit Definitions  
Bits  
Description  
[15:0]  
X-axis delta velocity data; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
1 LSB = 100 m/sec ÷ 215 = ~0.003052 m/sec  
PIN K1  
PIN A8  
The X_DELTVEL_LOW (see Table 62 and Table 63) and  
X_DELTVEL_OUT (see Table 64 and Table 65) registers  
contain the delta velocity data for the x-axis.  
ΔV  
ΔV  
Y
X
X
Y
Figure 42. Delta Velocity Axis and Polarity Assignments  
Y-Axis Delta Velocity (Y_DELTVEL_LOW and  
Y_DELTVEL_OUT)  
The delta velocity outputs represent an integration of the  
acceleration measurements and use the following formula for  
all three axes (x-axis displayed):  
Table 66. Y_DELTVEL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
D1  
1
0x34, 0x35  
Not applicable  
R
No  
Vx, nD  
=
×
(
a
x, nD+d +ax, nD+d 1  
)
2× fS  
d =0  
Table 67. Y_DELTVEL_LOW Bit Definitions  
where:  
x is the x-axis.  
Bits  
Description  
[15:0]  
Y-axis delta velocity data; additional resolution bits  
n is the sample time, prior to the decimation filter.  
D is the decimation rate (DEC_RATE + 1, see Table 109).  
fS is the sample rate.  
d is the incremental variable in the summation formula.  
aX is the x-axis acceleration.  
Table 68. Y_DELTVEL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x36, 0x37  
Not applicable  
R
No  
Table 69. Y_DELTVEL_OUT Bit Definitions  
Bits Description  
When using the internal sample clock, fS is equal to a nominal  
rate of 2000 SPS. For better precision in this measurement,  
measure the internal sample rate (fS) using the data ready signal  
on the DR pin (DEC_RATE = 0x0000, see Table 108), divide  
each delta angle result (from the delta angle output registers) by  
the data ready frequency, and multiply it by 2000. Each axis of  
the delta velocity measurements has two output data registers.  
Figure 43 shows how these two registers combine to support  
32-bit, twos complement data format for the delta velocity  
measurements along the x-axis. This format also applies to the  
y- and z-axes.  
[15:0] Y-axis delta velocity data; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
1 LSB = 100 m/sec ÷ 215 = ~0.003052 m/sec  
The Y_DELTVEL_LOW (see Table 66 and Table 67) and  
Y_DELTVEL_OUT (see Table 68 and Table 69) registers  
contain the delta velocity data for the y-axis.  
Z-Axis Delta Velocity (Z_DELTVEL_LOW and  
Z_DELTVEL_OUT)  
Table 70. Z_DELTVEL_LOW Register Definition  
X_ DELTVEL_OUT  
BIT 0 BIT 15  
X-AXIS DELTA VELOCITY DATA  
X_ DELTVEL_LOW  
Addresses  
Default  
Access  
Flash Backup  
BIT 15  
BIT 0  
0x38, 0x39  
Not applicable  
R
No  
Table 71. Z_DELTVEL_LOW Bit Definitions  
Figure 43. Delta Angle Output Data Structure  
Bits  
Description  
X-Axis Delta Velocity (X_DELTVEL_LOW and  
X_DELTVEL_OUT)  
[15:0]  
Z-axis delta velocity data; additional resolution bits  
Table 72. Z_DELTVEL_OUT Register Definition  
Table 62. X_DELTVEL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x3A, 0x3B  
Not applicable  
R
No  
0x30, 0x31  
Not applicable  
R
No  
Rev. D | Page 24 of 37  
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16475  
Table 73. Z_DELTVEL_OUT Bit Definitions  
Table 77. XG_BIAS_LOW Bit Definitions  
Bits  
Description  
Bits  
Description  
[15:0] Z-axis delta velocity data; twos complement,  
100 m/sec range, 0 m/sec = 0x0000;  
[15:0]  
X-axis gyroscope offset correction; lower word  
1 LSB = 100 m/sec ÷ 215 = ~0.003052 m/sec  
Table 78. XG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
The Z_DELTVEL_LOW (see Table 70 and Table 71) and  
Z_DELTVEL_OUT (see Table 72 and Table 73) registers  
contain the delta velocity data for the z-axis.  
0x42, 0x43  
0x0000  
R/W  
Yes  
Table 79. XG_BIAS_HIGH Bit Definitions  
Bits Description  
Delta Velocity Resolution  
[15:0] X-axis gyroscope offset correction factor, upper word  
Table 74 and Table 75 offer various numerical examples that  
demonstrate the format of the delta velocity data in both 16-bit  
and 32-bit formats.  
The XG_BIAS_LOW (see Table 76 and Table 77) and XG_BIAS_  
HIGH (see Table 78 and Table 79) registers combine to allow  
users to adjust the bias of the x-axis gyroscopes. The data format  
examples in Table 12 also apply to the XG_BIAS_HIGH register,  
and the data format examples in Table 13 apply to the 32-bit  
combination of the XG_BIAS_LOW and XG_BIAS_HIGH  
registers. See Figure 44 for an illustration of how these two  
registers combine and influence the x-axis gyroscope  
measurements.  
Table 74. 16-Bit Delta Velocity Data Format Examples  
Velocity (m/sec)  
Decimal Hex  
Binary  
+100 × (215 − 1)/215 +32,767  
0x7FFF 0111 1111 1111 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+100/214  
+100/215  
0
+2  
+1  
0
−100/215  
−100/214  
−100  
−1  
−2  
−32,768  
FACTORY  
X-AXIS  
GYRO  
CALIBRATION  
AND  
X_GYRO_OUT X_GYRO_LOW  
FILTERING  
Table 75. 32-Bit Delta Velocity Data Format Examples  
XG_BIAS_HIGH XG_BIAS_LOW  
Velocity (m/sec)  
+100 × (231 − 1)/231  
+100/230  
+100/231  
0
−100/231  
−100/230  
−100  
Decimal  
Hex  
Figure 44. User Calibration Signal Path, Gyroscopes  
+2,147,483,647  
+2  
+1  
0
−1  
−2  
0x7FFFFFFF  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x80000000  
Calibration, Gyroscope Bias (YG_BIAS_LOW and  
YG_BIAS_HIGH)  
Table 80. YG_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x44, 0x45  
0x0000  
R/W  
Yes  
+2,147,483,648  
Table 81. YG_BIAS_LOW Bit Definitions  
Bits Description  
CALIBRATION  
[15:0] Y-axis gyroscope offset correction; lower word  
The signal chain of each inertial sensor (accelerometers and  
gyroscopes) includes the application of unique correction  
formulas, which are derived from extensive characterization of  
bias, sensitivity, alignment, response to linear acceleration  
(gyroscopes), and point of percussion (accelerometer location)  
over a temperature range of −40°C to +85°C, for each ADIS16475.  
These correction formulas are not accessible, but users do have  
the opportunity to adjust the bias for each sensor individually  
through user accessible registers. These correction factors  
follow immediately after the factory derived correction formulas  
in the signal chain, which processes at a rate of 2000 Hz when  
using the internal sample clock.  
Table 82. YG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x46, 0x47  
0x0000  
R/W  
Yes  
Table 83. YG_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis gyroscope offset correction factor, upper word  
The YG_BIAS_LOW (see Table 80 and Table 81) and YG_BIAS_  
HIGH (see Table 82 and Table 83) registers combine to allow  
users to adjust the bias of the y-axis gyroscopes. The data format  
examples in Table 12 also apply to the YG_BIAS_HIGH register,  
and the data format examples in Table 13 apply to the 32-bit  
combination of the YG_BIAS_LOW and YG_BIAS_HIGH  
registers. These registers influence the y-axis gyroscope  
measurements in the same manner that the XG_BIAS_LOW  
and XG_BIAS_HIGH registers influence the x-axis gyroscope  
measurements (see Figure 44).  
Calibration, Gyroscope Bias (XG_BIAS_LOW and  
XG_BIAS_HIGH)  
Table 76. XG_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x40, 0x41  
0x0000  
R/W  
Yes  
Rev. D | Page 25 of 37  
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16475  
Data Sheet  
Calibration, Gyroscope Bias (ZG_BIAS_LOW and  
ZG_BIAS_HIGH)  
FACTORY  
CALIBRATION  
AND  
X-AXIS  
ACCL  
X_ACCL_OUT X_ACCL_LOW  
FILTERING  
Table 84. ZG_BIAS_LOW Register Definition  
XA_BIAS_HIGH XA_BIAS_LOW  
Addresses  
Default  
Access  
Flash Backup  
0x48, 0x49  
0x0000  
R/W  
Yes  
Figure 45. User Calibration Signal Path, Accelerometers  
Table 85. ZG_BIAS_LOW Bit Definitions  
Bits Description  
Calibration, Accelerometer Bias (YA_BIAS_LOW and  
YA_BIAS_HIGH)  
[15:0] Z-axis gyroscope offset correction; lower word  
Table 92. YA_BIAS_LOW Register Definition  
Table 86. ZG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x50, 0x51  
0x0000  
R/W  
Yes  
0x4A, 0x4B  
0x0000  
R/W  
Yes  
Table 93. YA_BIAS_LOW Bit Definitions  
Table 87. ZG_BIAS_HIGH Bit Definitions  
Bits Description  
Bits  
Description  
[15:0]  
Y-axis accelerometer offset correction; lower word  
[15:0] Z-axis gyroscope offset correction factor, upper word  
Table 94. YA_BIAS_HIGH Register Definition  
The ZG_BIAS_LOW (see Table 84 and Table 85) and ZG_BIAS_  
HIGH (see Table 86 and Table 87) registers combine to allow  
users to adjust the bias of the z-axis gyroscopes. The data  
format examples in Table 12 also apply to the ZG_BIAS_HIGH  
register, and the data format examples in Table 13 apply to the  
32-bit combination of the ZG_BIAS_LOW and ZG_BIAS_HIGH  
registers. These registers influence the z-axis gyroscope  
measurements in the same manner that the XG_BIAS_LOW  
and XG_BIAS_HIGH registers influence the x-axis gyroscope  
measurements (see Figure 44).  
Addresses  
Default  
Access  
Flash Backup  
0x52, 0x53  
0x0000  
R/W  
Yes  
Table 95. YA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis accelerometer offset correction, upper word  
The YA_BIAS_LOW (see Table 92 and Table 93) and  
YA_BIAS_HIGH (see Table 94 and Table 95) registers combine to  
allow users to adjust the bias of the y-axis accelerometers. The data  
format examples in Table 26 also apply to the YA_BIAS_HIGH  
register, and the data format examples in Table 27 apply to the 32-  
bit combination of the YA_BIAS_LOW and YA_BIAS_HIGH  
registers. These registers influence the y-axis accelerometer  
measurements in the same manner that the XA_BIAS_LOW and  
XA_BIAS_HIGH registers influence the x-axis accelerometer  
measurements (see Figure 45).  
Calibration, Accelerometer Bias (XA_BIAS_LOW and  
XA_BIAS_HIGH)  
Table 88. XA_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x4C, 0x4D  
0x0000  
R/W  
Yes  
Table 89. XA_BIAS_LOW Bit Definitions  
Calibration, Accelerometer Bias (ZA_BIAS_LOW and  
ZA_BIAS_HIGH)  
Bits  
Description  
[15:0]  
X-axis accelerometer offset correction; lower word  
Table 96. ZA_BIAS_LOW Register Definition  
Table 90. XA_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x54, 0x55  
0x0000  
R/W  
Yes  
0x4E, 0x4F  
0x0000  
R/W  
Yes  
Table 97. ZA_BIAS_LOW Bit Definitions  
Bits Description  
Table 91. XA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer offset correction; lower word  
[15:0] X-axis accelerometer offset correction, upper word  
Table 98. ZA_BIAS_HIGH Register Definition  
The XA_BIAS_LOW (see Table 88 and Table 89) and XA_BIAS_  
HIGH (see Table 90 and Table 91) registers combine to allow  
users to adjust the bias of the x-axis accelerometers. The data  
format examples in Table 26 also apply to the XA_BIAS_HIGH  
register and the data format examples in Table 27 apply to the  
32-bit combination of the XA_BIAS_LOW and XA_BIAS_HIGH  
registers. See Figure 45 for an illustration of how these two registers  
combine and influence the x-axis accelerometer measurements.  
Addresses  
Default  
Access  
Flash Backup  
0x56, 0x57  
0x0000  
R/W  
Yes  
Table 99. ZA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer offset correction, upper word  
The ZA_BIAS_LOW (see Table 96 and Table 97) and ZA_BIAS_  
HIGH (see Table 98 and Table 99) registers combine to allow  
users to adjust the bias of the z-axis accelerometers. The data  
format examples in Table 26 also apply to the ZA_BIAS_HIGH  
Rev. D | Page 26 of 37  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16475  
register and the data format examples in Table 27 apply to the  
32-bit combination of the ZA_BIAS_LOW and ZA_BIAS_HIGH  
registers. These registers influence the z-axis accelerometer  
measurements in the same manner that the XA_BIAS_LOW  
and XA_BIAS_HIGH registers influence the x-axis accelerometer  
measurements (see Figure 45).  
Miscellaneous Control Register (MSC_CTRL)  
Table 104. MSC_CTRL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x60, 0x61  
0x00C1  
R/W  
Yes  
Table 105. MSC_CTRL Bit Definitions  
Bits Description  
[15:8] Not used  
Filter Control Register (FILT_CTRL)  
Table 100. FILT_CTRL Register Definition  
7
Linear g compensation for gyroscopes (1 = enabled)  
Point of percussion alignment (1 = enabled)  
Not used, always set to zero  
SYNC function setting  
Addresses  
Default  
Access  
Flash Backup  
6
0x5C, 0x5D  
0x0000  
R/W  
Yes  
5
Table 101. FILT_CTRL Bit Definitions  
Bits Description  
[15:3] Not used  
[2:0]  
Filter Size Variable B; number of taps in each stage; N = 2B  
[4:2]  
111 = reserved (do not use)  
110 = reserved (do not use)  
101 = pulse sync mode  
100 = reserved (do not use)  
011 = output sync mode  
The FILT_CTRL register (see Table 100 and Table 101)  
provides user controls for the Bartlett window FIR filter (see  
Figure 22), which contains two cascaded averaging filters. For  
example, use the following sequence to set Register  
FILT_CTRL, Bits[2:0] = 100, which sets each stage to have 16  
taps: 0xCC04 and 0xCD00. Figure 46 provides the frequency  
response for several settings in the FILT_CTRL register.  
0
010 = scaled sync mode  
001 = direct sync mode  
000 = internal clock mode (default)  
SYNC polarity (input or output)  
1 = rising edge triggers sampling  
0 = falling edge triggers sampling  
DR polarity  
1
0
–20  
–40  
–60  
–80  
1 = active high when data is valid  
0 = active low when data is valid  
Point of Percussion  
Register MSC_CTRL, Bit 6 (see Table 105) offers an on/off control  
for the point of percussion alignment function, which maps the  
accelerometer sensors to the corner of the package that is closest to  
Pin A1 (see Figure 47). The factory default setting in the MSC_  
CTRL register activates this function. To turn this function off  
while retaining the rest of the factory default settings in the  
MSC_CTRL register, set Register MSC_CTRL, Bit 6 = 0, using  
the following command sequence on the DIN pin: 0xE081, then  
0xE100.  
–100  
N = 2  
–120  
N = 4  
N = 16  
N = 64  
–140  
0.001  
0.01  
FREQUENCY (f/fS  
0.1  
1
Figure 46. Bartlett Window, FIR Filter Frequency Response  
(Phase Delay = N Samples)  
Range Identifier (RANG_MDL)  
Table 102. RANG_MDL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
PIN A8  
0x5E, 0x5F  
Not applicable  
R
No  
PIN A1  
POINT OF  
PERCUSSION  
Table 103. RANG_MDL Bit Definitions  
Figure 47. Point of Percussion Reference Point  
Bits  
Description  
Linear Acceleration Effect on Gyroscope Bias  
[15:3]  
[3:2]  
Not used  
Register MSC_CTRL, Bit 7 (see Table 105) provides an on/off  
control for the linear g compensation in the signal calibration  
routines of the gyroscope. The factory default contents in the  
MSC_CTRL register enable this compensation. To turn the  
compensation off, set Register MSC_CTRL, Bit 7 = 0, using  
the following sequence on the DIN pin: 0xE041, 0xEF00.  
Gyroscope measurement range  
00 = 125°/sec (ADIS16475-1BMLZ)  
01 = 500°/sec (ADIS16475-2BMLZ)  
10 = reserved  
11 = 2000°/sec (ADIS16475-3BMLZ)  
Reserved, binary value = 11  
[1:0]  
Rev. D | Page 27 of 37  
 
 
 
 
 
 
ADIS16475  
Data Sheet  
when the clock frequency (SYNC pin) is less than 1000 Hz, but  
with risk of performance degradation, especially when tracking  
dynamic inertial conditions (including vibration).  
Internal Clock Mode  
Register MSC_CTRL, Bits[4:2] (see Table 105), provide five  
different configuration options for controlling the clock (fSM  
;
see Figure 19 and Figure 20), which controls data acquisition  
and processing for the inertial sensors. The default setting for  
Register MSC_CTRL, Bits[4:2] is 000 (binary), which places the  
ADIS16475 in the internal clock mode. In this mode, an internal  
clock controls inertial sensor data acquisition and processing at a  
nominal rate of 2000 Hz. In this mode, each accelerometer data  
update comes from an average of two data samples (sample rate =  
4000 Hz).  
Scaled Sync Mode  
When Register MSC_CTRL, Bits[4:2] = 010, the ADIS16475  
operates in scaled sync mode that supports a frequency range of  
1 Hz to 128 Hz for the clock signal on the SYNC pin. This  
mode of operation is particularly useful when synchronizing  
the data processing with a PPS signal from a global positioning  
system (GPS) receiver or with a synchronization signal from a  
video processing system. When operating in scaled sync mode,  
the frequency of the sample clock is equal to the product of the  
external clock scale factor, KECSF (from the UP_SCALE register,  
see Table 106 and Table 107), and the frequency of the clock  
signal on the SYNC pin.  
Output Sync Mode  
When Register MSC_CTRL, Bits[4:2] = 011, the ADIS16475  
operates in output sync mode, which is the same as internal  
clock mode with one exception, the SYNC pin pulses when  
the internal processor collects data from the inertial sensors.  
Figure 48 provides an example of this signal.  
For example, when using a 1 Hz input signal, set UP_SCALE =  
0x07D0 (KECSF = 2000 (decimal)) to establish a sample rate of  
2000 SPS for the inertial sensors and their signal processing.  
Use the following sequence on the DIN pin to configure  
UP_SCALE for this scenario: 0xE2D0, then 0xE307.  
GYROSCOPE AND  
ACCELEROMETER  
DATA ACQUISITION  
ACCELEROMETER  
DATA ACQUISITION  
SYNC  
Table 106. UP_SCALE Register Definition  
250µs  
Addresses  
Default  
Access  
Flash Backup  
500µs  
0x62, 0x63  
0x07D0  
R/W  
Yes  
Figure 48. Sync Output Signal, Register MSC_CTRL, Bits[4:2] = 011  
Table 107. UP_SCALE Bit Definitions  
Direct Sync Mode  
Bits  
Description  
[15:0]  
KECSF; binary format  
When Register MSC_CTRL, Bits[4:2] = 001, the ADIS16475  
operates in direct sync mode. The signal on the SYNC pin  
directly controls the sample clock. In this mode, the internal  
processor collects gyroscope data samples on the rising edge of  
the clock signal (SYNC pin) and it collects accelerometer data  
samples on both rising and falling edges of the clock signal. The  
internal processor averages both accelerometer samples (from  
rising and falling edges of the clock signal) together to produce  
a single data sample. When using this mode, the input clock  
signal requires a 50% duty cycle. Therefore, when operating the  
ADIS16475 in this mode, the clock signal (SYNC pin) must  
have a duty cycle of 50% and a frequency that is within the  
range of 1900 Hz to 2100 Hz. The ADIS16475 is capable of  
operating when the clock frequency (SYNC pin) is less than  
1900 Hz, but with risk of performance degradation, especially  
when tracking dynamic inertial conditions (including vibration).  
Decimation Filter (DEC_RATE)  
Table 108. DEC_RATE Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x64, 0x65  
0x0000  
R/W  
Yes  
Table 109. DEC_RATE Bit Definitions  
Bits  
Description  
[15:11]  
[10:0]  
Don’t care  
Decimation rate, binary format, maximum = 1999  
The DEC_RATE register (see Table 108 and Table 109)  
provides user control for the averaging decimating filter, which  
averages and decimates the gyroscope and accelerometer data; it  
also extends the time that the delta angle and the delta velocity  
track between each update. When the ADIS16475 operates in  
internal clock mode (see Register MSC_CTRL, Bits [4:2], in  
Table 105), the nominal output data rate is equal to 2000/  
(DEC_RATE + 1). For example, set DEC_RATE = 0x0013 to  
reduce the output sample rate to 100 SPS (2000 ÷ 20), using the  
following DIN pin sequence: 0xE413, then 0xE500.  
Pulse Sync Mode  
When operating in pulse sync mode (Register MSC_CTRL,  
Bits[4:2] = 101), the internal processor only collects accelerometer  
samples on the leading edge of the clock signal, which enables  
the use of a narrow pulse width (see Table 2) in the clock signal on  
the SYNC pin. Using pulse sync mode also lowers the bandwidth  
on the inertial sensors to 370 Hz. When operating in pulse sync  
mode, the ADIS16475 provides the best performance when the  
frequency of the clock signal (SYNC pin) is within the range of  
1000 Hz to 2100 Hz. The ADIS16475 is capable of operating  
Rev. D | Page 28 of 37  
 
 
 
 
 
Data Sheet  
ADIS16475  
The GLOB_CMD register (see Table 112 and Table 113)  
Data Update Rate in External Sync Modes  
provides trigger bits for several operations. Write a 1 to the  
appropriate bit in GLOB_CMD to start a particular function.  
During the execution of these commands, data production  
stops, pulsing stops on the DR pin, and the SPI interface does  
not respond to requests. Table 1 provides the execution time  
for each GLOB_CMD command.  
When using the input sync option, in scaled sync mode  
(Register MSC_CTRL, Bits[4:2] = 010, see Table 105), the  
output data rate is equal to  
(fSYNC × KECSF)/(DEC_RATE + 1)  
where:  
f
SYNC is the frequency of the clock signal on the SYNC pin.  
Software Reset  
KESCF is the value from the UP_SCALE register (see Table 107).  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 7 = 1, which triggers a reset: 0xE880, then 0xE900. This reset  
clears all data, and then restarts data sampling and processing.  
This function provides a firmware alternative to toggling the  
When using direct sync mode and pulse sync mode, KESCF = 1.  
Continuous Bias Estimation (NULL_CNFG)  
Table 110. NULL_CNFG Register Definition  
RST  
pin (see Table 5, Pin F3).  
Addresses  
Default  
Access  
Flash Backup  
Flash Memory Test  
0x66, 0x67  
0x070A  
R/W  
Yes  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 4 = 1, which tests the flash memory: 0xE810, then 0xE900.  
The command performs a CRC computation on the flash memory  
(excluding user register locations) and compares it to the original  
CRC value, which comes from the factory configuration process.  
If the current CRC value does not match the original CRC  
value, Register DIAG_STAT, Bit 6 (see Table 10), rises to 1,  
indicating a failing result.  
Table 111. NULL_CNFG Bit Definitions  
Bits Description  
[15:14] Not used  
13  
12  
11  
10  
9
Z-axis accelerometer bias correction enable (1 = enabled)  
Y-axis accelerometer bias correction enable (1 = enabled)  
X-axis accelerometer bias correction enable (1 = enabled)  
Z-axis gyroscope bias correction enable (1 = enabled)  
Y-axis gyroscope bias correction enable (1 = enabled)  
X-axis gyroscope bias correction enable (1 = enabled)  
Not used  
Flash Memory Update  
8
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 3 = 1, which triggers a backup of all user configurable registers  
in the flash memory: 0xE808, then 0xE900. Register DIAG_  
STAT, Bit 2 (see Table 10), identifies success (0) or failure (1) in  
completing this process.  
[7:4]  
[3:0]  
Time base control (TBC), range: 0 to 12 (default = 10);  
tB = 2TBC/2000, time base; tA = 64 × tB, average time  
The NULL_CNFG register (see Table 110 and Table 111) provides  
the configuration controls for the continuous bias estimator (CBE),  
which associates with the bias correction update command in  
Register GLOB_CMD, Bit 0 (see Table 113). Register NULL_  
CNFG, Bits[3:0], establishes the total average time (tA) for the bias  
estimates and Register NULL_CNFG, Bits[13:8], provide the  
on/off controls for each sensor. The factory default configuration  
for the NULL_CNFG register enables the bias null command for  
the gyroscopes, disables the bias null command for the  
Sensor Self Test  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 2 = 1, which triggers the self test routine for the inertial sensors:  
0xE804 and 0xE900. The self test routine uses the following steps  
to validate the integrity of each inertial sensor:  
1. Measure the output on each sensor.  
2. Activate an internal stimulus on the mechanical elements of  
each sensor to move them in a predictable manner and  
create an observable response in the sensors.  
accelerometers, and sets the average time to ~32 sec.  
Global Commands (GLOB_CMD)  
3. Measure the output response on each sensor.  
4. Deactivate the internal stimulus on each sensor.  
5. Calculate the difference between the sensor measurements  
from Step 1 (stimulus is off) and from Step 3 (stimulus is on).  
6. Compare the difference with internal pass and fail criteria.  
7. Report the pass and fail result to Register DIAG_STAT, Bit 5  
(see Table 10).  
Table 112. GLOB_CMD Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x68, 0x69  
Not applicable  
W
No  
Table 113. GLOB_CMD Bit Definitions  
Bits  
Description  
[15:8]  
Not used  
Motion during the execution of this test can indicate a false  
failure.  
7
Software reset  
[6:5]  
4
3
Not used  
Factory Calibration Restore  
Flash memory test  
Flash memory update  
Sensor self test  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 1 = 1, to restore the factory default settings for the MSC_  
CTRL, DEC_RATE, and FILT_CTRL registers and to clear all  
user configurable bias correction settings: 0xE802, then 0xE900.  
2
1
0
Factory calibration restore  
Bias correction update  
Rev. D | Page 29 of 37  
 
 
 
 
ADIS16475  
Data Sheet  
Executing this command results in writing 0x0000 to the  
following registers: XG_BIAS_LOW, XG_BIAS_HIGH,  
YG_BIAS_LOW, YG_BIAS_HIGH, ZG_BIAS_LOW,  
ZG_BIAS_ HIGH, XA_BIAS_LOW, XA_BIAS_HIGH,  
YA_BIAS_LOW, YA_BIAS_HIGH, ZA_BIAS_LOW, and  
ZA_BIAS_HIGH.  
The FIRM_Y register (see Table 118 and Table 119) contains  
the year of the factory configuration date. For example, the  
year, 2017, is represented by FIRM_Y = 0x2017.  
Product Identification (PROD_ID)  
Table 120. PROD_ID Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Bias Correction Update  
0x72, 0x73  
0x405B  
R
No  
Use the following DIN pin sequence to set Register GLOB_CMD,  
Bit 0 = 1, to trigger a bias correction, using the correction  
factors from the CBE (see Table 111): 0xE801, then 0xE900.  
Table 121. PROD_ID Bit Definitions  
Bits  
Description  
Firmware Revision (FIRM_REV)  
[15:0]  
Product identification = 0x405B  
Table 114. FIRM_REV Register Definition  
The PROD_ID register (see Table 120 and Table 121) contains  
the numerical portion of the device number (16,475). See Figure 32  
for an example of how to use a looping read of this register to  
validate the integrity of the communication.  
Addresses  
Default  
Access  
Flash Backup  
0x6C, 0x6D  
Not applicable  
R
No  
Table 115. FIRM_REV Bit Definitions  
Serial Number (SERIAL_NUM)  
Bits  
Description  
[15:0]  
Firmware revision, binary coded decimal (BCD) format  
Table 122. SERIAL_NUM Register Definition  
The FIRM_REV register (see Table 114 and Table 115)  
provides the firmware revision for the internal firmware. This  
register uses a BCD format, where each nibble represents a  
digit. For example, if FIRM_REV = 0x0104, the firmware revision  
is 1.04.  
Addresses  
Default  
Access  
Flash Backup  
0x74, 0x75  
Not applicable  
R
No  
Table 123. SERIAL_NUM Bit Definitions  
Bits Description  
[15:0] Lot specific serial number  
Firmware Revision Day and Month (FIRM_DM)  
Scratch Registers (USER_SCR_1 to USER_SCR_3)  
Table 116. FIRM_DM Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 124. USER_SCR_1 Register Definition  
0x6E, 0x6F  
Not applicable  
R
No  
Addresses  
Default  
Access  
Flash Backup  
0x76, 0x77  
Not applicable  
R/W  
Yes  
Table 117. FIRM_DM Bit Definitions  
Bits  
Description  
Table 125. USER_SCR_1 Bit Definitions  
Bits Description  
[15:8]  
[7:0]  
Factory configuration month, BCD format  
Factory configuration day, BCD format  
[15:0] User defined  
The FIRM_DM register (see Table 116 and Table 117)  
contains the month and day of the factory configuration date.  
Register FIRM_DM, Bits[15:8], contain digits that represent the  
month of the factory configuration. For example, November is  
the 11th month in a year and is represented by Register  
FIRM_DM, Bits[15:8] = 0x11. Register FIRM_DM, Bits[7:0],  
contain the day of factory configuration. For example, the 27th  
day of the month is represented by Register FIRM_DM,  
Bits[7:0] = 0x27.  
Table 126. USER_SCR_2 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x78, 0x79  
Not applicable  
R/W  
Yes  
Table 127. USER_SCR_2 Bit Definitions  
Bits Description  
[15:0] User defined  
Table 128. USER_SCR_3 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Firmware Revision Year (FIRM_Y)  
0x7A, 0x7B  
Not applicable  
R/W  
Yes  
Table 118. FIRM_Y Register Definition  
Table 129. USER_SCR_3 Bit Definitions  
Bits Description  
[15:0] User defined  
Addresses  
Default  
Access  
Flash Backup  
0x70, 0x71  
Not applicable  
R
No  
Table 119. FIRM_Y Bit Definitions  
Bits  
Description  
[15:0]  
Factory configuration year, BCD format  
Rev. D | Page 30 of 37  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16475  
The USER_SCR_1 (see Table 124 and Table 125), USER_SCR_2  
(see Table 126 and Table 127), and USER_SCR_3 (see Table 128  
and Table 129) registers provide three locations for the user to  
store information. For nonvolatile storage, use the manual flash  
memory update command (Register GLOB_CMD, Bit 3, see  
Table 113), after writing information to these registers.  
The FLSHCNT_LOW (see Table 130 and Table 131) and  
FLSHCNT_HIGH (see Table 132 and Table 133) registers  
combine to provide a 32-bit, binary counter that tracks the  
number of flash memory write cycles. In addition to the  
number of write cycles, the flash memory has a finite service  
lifetime, which depends on the junction temperature. Figure 49  
provides guidance for estimating the retention life for the flash  
memory at specific junction temperatures. The junction  
temperature is approximately 7°C above the case temperature.  
Flash Memory Endurance Counter (FLSHCNT_LOW and  
FLSHCNT_HIGH)  
Table 130. FLSHCNT_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
600  
450  
300  
0x7C, 0x7D  
Not applicable  
R
No  
Table 131. FLSHCNT_LOW Bit Definitions  
Bits Description  
[15:0] Flash memory write counter, low word  
Table 132. FLSHCNT_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
150  
0
0x7E, 0x7F  
Not applicable  
R
No  
Table 133. FLSHCNT_HIGH Bit Definitions  
Bits Description  
[15:0] Flash memory write counter, high word  
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
Figure 49. Flash Memory Retention  
Rev. D | Page 31 of 37  
 
 
 
 
 
ADIS16475  
Data Sheet  
APPLICATIONS INFORMATION  
ASSEMBLY AND HANDLING TIPS  
Package Attributes  
PCB Layout Suggestions  
Figure 51 shows an example of the pad design and layout for  
the ADIS16475 on a PCB. This example uses a solder mask  
opening, with a diameter of 0.73 mm, around a metal pad that  
has a diameter of 0.56 mm. When using a material for the system  
PCB, which has similar thermal expansion properties as the  
substrate material of the ADIS16475, the system PCB can also  
use the solder mask to define the pads that support attachment  
to the balls of the ADIS16475. The coefficient of thermal  
expansion (CTE) in the substrate of the ADIS16475 is  
approximately 14 ppm/°C.  
The ADIS16475 is a multichip module package that has a  
44-ball BGA interface. This package has three basic attributes  
that influence its handling and assembly to the PCB of the  
system: the lid, the substrate, and the BGA pattern. The  
material of the lid is a liquid crystal polymer (LCP), and  
its nominal thickness is 0.5 mm. The substrate is a laminate  
composition that has a nominal thickness of 1.57 mm. The  
solder ball material is SAC305, and each ball has a nominal  
diameter of 0.75 mm (±0.15 mm). The BGA pattern follows an  
8 × 10 array, with 36 unpopulated positions, which simplifies  
the escape pattern for the power, ground, and signal traces on  
the system PCB.  
0.73  
(MASK OPENING)  
0.56  
(COPPER PAD)  
Assembly Tips  
When developing a process to attach the ADIS16475 to a PCB,  
consider the following guidelines and insights:  
The ADIS16475 is capable of supporting solder reflow  
attachment processes, which are in accordance with  
J-STD-020E.  
1.27  
1.27  
Limit device exposure to one pass through the solder  
reflow process (no rework).  
The hole in the top of the lid (see Figure 50) provides  
venting and pressure relief during the assembly process of  
the ADIS16475. Keep this hole clear of obstruction while  
attaching the ADIS16475 to a PCB.  
ALL DIMENSIONS IN MILLIMETERS  
Figure 51. Recommend PCB Pattern, Solder Mask Defined Pads  
Underfill  
Underfill can be a useful technique in managing certain threats  
to the integrity of the solder joints of the ADIS16475, including  
peeling stress and extended exposure to vibration. When selecting  
underfill material and developing an application and curing  
process, ensure that the material fills the gap between each surface  
(the ADIS16475 substrate and system PCB) and adheres  
to both surfaces. The ADIS16475 does not require the use of  
underfill materials in applications that do not anticipate exposure  
to these types of mechanical stresses and when the CTE of the  
system PCB is close to the same value as the CTE of the  
substrate of the ADIS16475 (~14 ppm/°C).  
OPENING IN  
PACKAGE LID  
Figure 50. Pressure Relief Hole  
Use no clean flux to avoid exposing the device to cleaning  
solvents, which can penetrate the inside of the ADIS16475  
through the hole in the lid and be difficult to remove.  
When the assembly process requires the use of liquids that  
can reach the hole in the lid, use a temporary seal to  
prevent entrapment of those liquids inside the cavity.  
Manage moisture exposure prior to the solder reflow  
processing, in accordance with J-STD-033, Moisture  
Sensitivity Level 5.  
Avoid exposing the ADIS16475 to mechanical shock  
survivability that exceeds the maximum rating of 2000 g  
(see Table 3). In standard PCB processing, high speed  
handling equipment and panel separation processes often  
present the most risk of introducing harmful levels of  
mechanical shock survivability.  
Process Validation and Control  
These guidelines provide a starting point for developing a process  
for attaching the ADIS16475 to a system PCB. Because each  
system and situation may present unique requirements for this  
attachment process, ensure that the process supports optimal  
solder joint integrity, verify that the final system meets all  
environmental test requirements, and establish observation and  
control strategies for all key process attributes (for example, peak  
temperatures, dwell times, and ramp rates).  
Rev. D | Page 32 of 37  
 
 
 
 
Data Sheet  
ADIS16475  
section and the Accelerometer Data Width (Digital Resolution)  
section for more information.  
POWER SUPPLY CONSIDERATIONS  
The ADIS16475 contains 6 µF of decoupling capacitance across  
the VDD and GND pins. When the VDD voltage rises from 0 V  
to 3.3 V, the charging current for this capacitor bank imposes  
the following current profile (in amperes):  
Serial Port SCLK Underrun/Overrun Conditions  
The serial port operates in 16-bit segments, and it is critical that  
the number of SCLK cycles be equal to an integer multiple of 16  
CS  
when the  
pin is low. Failure to meet this condition causes  
dVDD  
dt  
dVDD  
dt  
t
( )  
IDD  
(
t
)
= C  
= 6×106  
×
the serial port controller inside of the ADIS16465 to be unable  
to correctly receive and respond to new requests.  
where:  
DD(t) is the current demand on the VDD pin during the initial  
power supply ramp, with respect to time.  
C is the internal capacitance across the VDD and GND pins (6 µF).  
VDD(t) is the voltage on the VDD pin, with respect to time.  
CS  
pin is  
I
If too many SCLK cycles are received before the  
deasserted, the user can recover serial port operation by  
CS  
asserting , providing 17 rising edges on the SCLK line,  
CS  
deasserting , and then attempting to correctly read the  
PROD_ID (or other read-only) register on the ADIS16475. The  
user should repeat these steps up to a maximum of 15 times  
until the correct data is read.  
For example, if VDD follows a linear ramp from 0 V to 3.3 V,  
in 66 µs, the charging current is 300 mA for that timeframe.  
The ADIS16475 also contains embedded processing functions  
that present transient current demands during initialization or  
reset recovery operations. During these processes, the peak  
current demand reaches 250 mA and occurs at a time that is  
approximately 40 ms after VDD reaches 3.0 V (or ~40 ms  
after initiating a reset sequence).  
CS  
If  
user must either power cycle or issue a hard reset (using the  
RST  
is deasserted before enough SCLK cycles are received, the  
pin) to regain SPI port access.  
DIGITAL RESOLUTION OF GYROSCOPES AND  
ACCELEROMETERS  
SERIAL PORT OPERATION  
Maximum Throughput  
Gyroscope Data Width (Digital Resolution)  
The decimation filter (DEC_RATE register, see Table 109) and  
Bartlett window filter (FILT_CTRL register, see Table 101)  
have direct influence over the total number of bits in the output  
data registers, which contain relevant information. When using  
the factory default settings (DEC_RATE = 0x0000, FILT_CTRL =  
0x0000) for these filters, the gyroscope data width is 16 bits, which  
means that application processors can acquire all relevant  
information through the X_GYRO_OUT, Y_GYRO_OUT, and  
Z_GYRO_OUT registers.  
When operating with the maximum output data (DEC_RATE =  
0x0000, as described in Table 109), the maximum SCLK rate  
(defined in Table 2), and minimum stall time, the SPI port can  
support up to 12, 16-bit register reads in between each pulse of  
the data ready signal. Attempting to read more than 12 registers  
can result in a datapath overrun error in the DIAG_STAT  
register (see Table 10). The serial port stall time (tSTALL) to meet  
these requirements must be no more than 10% greater than the  
minimum specification for tSTALL in Table 2.  
The X_GYRO_LOW, Y_GYRO_LOW, and Z_GYRO_LOW  
registers capture the bit growth that comes from each  
The number of allowable registers reads between each pulse on  
the data ready line increases proportionally with the decimation  
rate (set by the DEC_RATE register, see Table 109). For example,  
when the decimation rate equals 3 (DEC_RATE = 0x0002), the  
SPI is able to support up to 36 register reads, assuming  
maximum SCLK rate and minimum stall times in the protocol.  
Decreasing the SCLK rate and increasing the stall time lowers  
the total number of register reads supported by the ADIS16465  
before a datapath overrun error occurs.  
accumulation operation in the decimation and Bartlett window  
filters. When using these filters (DEC_RATE ≠ 0x0000 and/or  
FILT_CTRL ≠ 0x0000), the data width increases by one bit  
every time the number of summations (in a filter stage) increases  
by a factor of two. For example, when DEC_RATE = 0x0007, the  
decimation filter adds eight (7 + 1 = 8, see Table 109) successive  
samples together, which causes the data width to increase by 3  
bits (log28 = 3). When FILT_CTRL = 0x0002, both stages in the  
Bartlett window filter use four (22 = 4, see Table 101) summation  
operations, which increases the data width by two bits (log24 =  
2). When using both DEC_RATE = 0x0007 and FILT_CTRL =  
0x0002, the total bit growth is 7 bits, which increases the overall  
data width to 23 bits.  
This limitation of reading 12, 16-bit registers does not impact  
the ability of the user to access the full precision of the  
gyroscopes and accelerometers if the factory default settings of  
DEC_RATE = 0x0000 and FILT_CTRL = 0x0000 are used. In  
this case, the data width for the gyroscope and accelerometer  
data is 16 bits, and application processors can acquire all  
relevant information through the X_GYRO_OUT,  
Accelerometer Data Width (Digital Resolution)  
Y_GYRO_OUT, Z_GYRO_OUT, X_ACCEL_OUT,  
The decimation filter (DEC_RATE register, see Table 109) and  
Bartlett window filter (FILT_CTRL register, see Table 101)  
have direct influence over the total number of bits in the output  
data registers, which contain relevant information. When using  
the factory default settings (DEC_RATE = 0x0000, FILT_CTRL  
Y_ACCEL_OUT, and Z_ACCEL_OUT registers. Thirty-two  
bit reads of the sensor data do not provide additional precision  
in this case. See the Gyroscope Data Width (Digital Resolution)  
Rev. D | Page 33 of 37  
 
 
 
 
 
ADIS16475  
Data Sheet  
= 0x0000) for these filters, the accelerometer data width is 20 bits.  
The X_ACCL_OUT, Y_ACCL_OUT, and Z_ACCL_OUT  
registers contain the most significant 16 bits of this data, while  
the remaining (least significant) bits are in the upper 4 bits of  
the X_ACCL_LOW, Y_ACCL_LOW, and Z_ACCL_LOW  
registers. Since the total noise (0.6 mg rms, see Table 1) in the  
accelerometer data (DEC_RATE = 0x0000, FILT_CTRL =  
0x0000) is greater than the 16-bit quantization noise (0.25 mg ÷  
120.5 = 0.072 mg), application processors can acquire all relevant  
information through the X_ACCL_OUT, Y_ACCL_OUT, and  
Z_ACCL_OUT registers. This enables applications to preserve  
optimal performance, while using the burst read (see Figure 31),  
which only provides 16-bit data for the accelerometers.  
EVALUATION TOOLS  
Breakout Boards  
The ADIS16475 has three difference breakout boards, which  
provide a simple way to connect an ADIS16475 model and an  
existing embedded processor platform. Table 134 provides a list  
of the model numbers for each breakout board, along with the  
ADIS16475 model that is on each breakout board.  
Table 134. Breakout Board Models  
Breakout Board Model  
ADIS16475-1/PCBZ  
ADIS16475-2/PCBZ  
ADIS16475-3/PCBZ  
ADIS16475 Model  
ADIS16475-1BMLZ  
ADIS16475-2BMLZ  
ADIS16475-3BMLZ  
The X_ACCL_LOW, Y_ACCL_LOW, and Z_ACCL_LOW  
registers also capture the bit growth that comes from each  
accumulation operation in the decimation and Bartlett window  
filters. When using these filters (DEC_RATE ≠ 0x0000 and/or  
FILT_CTRL ≠ 0x0000), the data width increases by one bit  
every time the number of summations (in a filter stage) increases  
by a factor of two. For example, when DEC_RATE = 0x0001, the  
decimation filter adds two (1 + 1 = 2, see Table 109) successive  
samples together, which causes the data width to increase by 1 bit  
(log22 = 1). When FILT_CTRL = 0x0001, both stages in the  
Bartlett window filter add two (21 = 2, see Table 101) successive  
samples together, which increases the data width by 1 bit (log22  
= 1) as well. When using both DEC_RATE = 0x0001 and  
FILT_CTRL = 0x0001, the total bit growth is 3 bits, which  
increases the overall data width to 23 bits.  
The electrical interface (J1) on each breakout board comes from  
a dual row, 2 mm pitch, 16-pin interface, which supports standard  
ribbon cabling (1 mm pitch). Table 135 provides the J1 pin assign-  
ments, which support direct connection with an embedded  
processor board using standard ribbon cables. Although each  
case may present its own set of sensitivities (such as electromag-  
netic interference (EMI)), these boards can typically support  
reliable communication over ribbon cables up to 20 cm in length.  
Table 135. J1 Pin Assignments, Breakout Board  
J1 Pin Number  
Signal  
Function  
1
RST  
Reset  
2
3
SCLK  
CS  
SPI  
SPI  
4
5
6
DOUT  
NC  
DIN  
SPI  
No connect  
SPI  
7
8
9
10  
11  
12  
13  
14  
15  
16  
GND  
GND  
GND  
VDD  
VDD  
VDD  
DR  
SYNC  
NC  
NC  
Ground  
Ground  
Ground  
Power, 3.3 V  
Power, 3.3 V  
Power, 3.3 V  
Data ready  
Input clock  
No connect  
No connect  
Figure 52 provides a top level view of the breakout board,  
including dimensional locations for all the key mechanical features,  
such as the mounting holes and the 16-pin header. Figure 53  
provides an electrical schematic for this breakout board. For  
additional information, refer to the ADIS1647x/PCB Wiki  
Guide.  
Rev. D | Page 34 of 37  
 
 
 
Data Sheet  
ADIS16475  
30.07mm  
ADIS1647X/PCB  
BREAKOUT BOARD  
08-045113rA  
5.125mm  
J1  
16.99mm  
*
33.25mm  
16.26mm  
5.125mm  
6.03mm  
3.625mm  
Figure 52. Top Level View of the Breakout Board  
VDD  
DUT1  
C7  
K6  
VDD  
J5  
VDD  
D6  
VDD  
H1  
VDD  
J4  
VDD  
VDD  
D3  
C3  
GND  
GND  
CS  
GND  
NC  
F3  
E3  
RST  
DIN  
RST  
VDD  
VDD  
VDD  
F6  
H6  
H3  
GND  
SCLK  
SCLK  
DR  
J1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
RST  
CS  
G6  
DIN  
DOUT  
DOUT  
SYNC  
SCLK  
DOUT  
G3  
CS  
J6  
J3  
DR  
SYNC  
DIN  
ADIS16475AMLZ  
K8  
K3  
K1  
J7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
A1  
GND  
GND  
A2  
GND  
A3  
J2  
GND  
A4  
H8  
G7  
G2  
F8  
F1  
E7  
E6  
E2  
C6  
C2  
GND  
A5  
DR  
NC  
GND  
A6  
SYNC  
GND  
A7  
GND  
A8  
GND  
B8  
HIROSE  
A3-16-PA-2SV(71)  
GND  
B3  
GND  
GND  
B4  
GND  
B5  
GND  
B6  
GND  
GND  
Figure 53. Breakout Board Schematic  
Rev. D | Page 35 of 37  
 
 
ADIS16475  
Data Sheet  
EVAL-ADIS2 provides a simple, functional test platform that  
allows users to configure and collect data from the ADIS16475  
models.  
PC-Based Evaluation, EVAL-ADIS2  
In addition to supporting quick prototype connections between  
the ADIS16475 and an embedded processing system, J1 on the  
breakout boards also connects directly to J1 on the EVAL-ADIS2  
evaluation system. When used in conjunction with the IMU  
Evaluation Software for the EVAL-ADISX Platforms, the  
TRAY DRAWING  
The ADIS16475 parts are shipped in the tray shown in Figure 54.  
322.60 REF  
315.00  
112.25  
112.00  
111.75  
92.10  
135.90  
16.00  
BSC  
TOP VIEW  
12.70  
DETAIL A  
11.95 BSC  
22.00 BSC  
14.50 BSC  
DETAIL C  
272.05  
271.80  
271.55  
0.76  
R 4.75  
DETAIL C  
21.40  
DETAIL B  
SIDE VIEW  
3.80  
1.30  
2.54  
2.50  
17.90  
34.30  
25.40  
2.00  
255.30  
30°  
±
1°  
3.50  
B
A
DETAIL B  
15.43  
15.35  
15.27  
11.43  
11.35  
11.27  
A
11.10  
NOTES:  
1. MATERIAL IS MPPO.  
2. TOLERANCES ARE x.x = ± 0.25  
7.90  
x.xx = ± 0.13  
UNLESS OTHERWISE SPECITIED.  
3. ESD  
SURFACE RESISTIVITY  
SECTION A-A  
SECTION B-B  
105 TO 1011 Ω/SQ.  
C 3.00 × 0.45°  
DETAIL A  
B
Figure 54. Drawing of Shipping Tray  
Rev. D | Page 36 of 37  
 
 
Data Sheet  
ADIS16475  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
11.25  
11.00  
10.75  
1.055  
BSC  
1.270  
BSC  
A1 BALL  
CORNER INDICATOR  
1.785  
BSC  
1.270  
BSC  
15.25  
15.00  
14.75  
0.900  
Ø 0.750  
0.600  
TOP VIEW  
END VIEW  
BOTTOM VIEW  
11.350  
11.000  
*10.475  
0.90  
MAX  
*Including Lable  
Thickness  
SEATING  
PLANE  
Figure 55. 44-Ball Ball Grid Array Module [BGA]  
(ML-44-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADIS16475-1BMLZ  
ADIS16475-2BMLZ  
ADIS16475-3BMLZ  
ADIS16475-1/PCBZ  
ADIS16475-2/PCBZ  
ADIS16475-3/PCBZ  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
44-Ball Ball Grid Array Module [BGA]  
44-Ball Ball Grid Array Module [BGA]  
44-Ball Ball Grid Array Module [BGA]  
ADIS16475-1 Breakout Board  
ADIS16475-2 Breakout Board  
ADIS16475-3 Breakout Board  
ML-44-1  
ML-44-1  
ML-44-1  
1 Z = RoHS Compliant Part.  
©2017–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15436-4/20(D)  
www.analog.com/ADIS16475  
Rev. D | Page 37 of 37  
 
 
 
 

相关型号:

ADIS16475-3

Precision, Miniature MEMs IMU
ADI

ADIS16475-3BMLZ

Precision, Miniature MEMs IMU
ADI

ADIS16475-3PCBZ

Precision, Miniature MEMs IMU
ADI

ADIS16477

Precision, Miniature MEMs IMU
ADI

ADIS16477-1

Precision, Miniature MEMs IMU
ADI

ADIS16477-1BMLZ

Precision, Miniature MEMs IMU
ADI

ADIS16477-1PCBZ

Precision, Miniature MEMs IMU
ADI

ADIS16477-2

Precision, Miniature MEMs IMU
ADI

ADIS16477-2BMLZ

Precision, Miniature MEMs IMU
ADI

ADIS16477-2PCBZ

Precision, Miniature MEMs IMU
ADI

ADIS16477-3

Precision, Miniature MEMs IMU
ADI

ADIS16477-3BMLZ

Precision, Miniature MEMs IMU
ADI