ADF4355 [ADI]

Microwave Wideband Synthesizer with Integrated VCO;
ADF4355
型号: ADF4355
厂家: ADI    ADI
描述:

Microwave Wideband Synthesizer with Integrated VCO

文件: 总35页 (文件大小:848K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microwave Wideband Synthesizer  
with Integrated VCO  
Data Sheet  
ADF4355  
FEATURES  
GENERAL DESCRIPTION  
RF output frequency range: 54 MHz to 6800 MHz  
Fractional-N synthesizer and integer-N synthesizer  
High resolution 38-bit modulus  
Low phase noise, voltage controlled oscillator (VCO)  
Programmable divide by 1, 2, 4, 8, 16, 32, or 64 output  
Analog and digital power supplies: 3.3 V  
Charge pump and VCO power supplies: 5.0 V typical  
Logic compatibility: 1.8 V  
Programmable dual modulus prescaler of 4/5 or 8/9  
Programmable output power level  
RF output mute function  
3-wire serial interface  
Analog and digital lock detect  
The ADF4355 allows implementation of fractional-N or  
integer-N phase-locked loop (PLL) frequency synthesizers  
when used with an external loop filter and an external reference  
frequency. A series of frequency dividers permits operation  
from 54 MHz to 6800 MHz.  
The ADF4355 has an integrated VCO with a fundamental  
output frequency ranging from 3400 MHz to 6800 MHz. In  
addition, the VCO frequency is connected to divide by 1, 2, 4, 8,  
16, 32, or 64 circuits that allow the user to generate radio frequency  
(RF) output frequencies as low as 54 MHz. For applications that  
require isolation, the RF output stage can be muted. The mute  
function is both pin and software controllable.  
Control of all on-chip registers is through a simple 3-wire interface.  
The ADF4355 operates with analog and digital power supplies  
ranging from 3.15 V to 3.45 V, with charge pump and VCO  
supplies from 4.75 V to 5.25 V. The ADF4355 also contains  
hardware and software power-down modes.  
APPLICATIONS  
Wireless infrastructure (W-CDMA, TD-SCDMA, WiMAX, GSM,  
PCS, DCS, DECT)  
Point to point/point to multipoint microwave links  
Satellites/VSATs  
Test equipment/instrumentation  
Clock generation  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
V
R
V
VCO  
V
AV  
DD  
CE  
DD  
DD  
P
SET  
RF  
MULTIPLEXER  
MUXOUT  
10-BIT R  
COUNTER  
÷2  
DIVIDER  
REF  
REF  
A
B
IN  
×2  
DOUBLER  
LOCK  
DETECT  
C
1
IN  
REG  
REG  
C
2
CLK  
DATA  
LE  
DATA REGISTER  
FUNCTION  
LATCH  
CHARGE  
PUMP  
CP  
OUT  
PHASE  
COMPARATOR  
V
V
TUNE  
REF  
V
VCO  
CORE  
BIAS  
INTEGER  
REGISTER  
FRACTION  
REGISTER  
MODULUS  
REGISTER  
V
REGVCO  
RF  
RF  
A+  
A–  
OUT  
OUT  
1/2/4/8  
16/32/64  
OUTPUT  
STAGE  
THIRD-ORDER  
÷
FRACTIONAL  
INTERPOLATOR  
PDB  
RF  
RF  
B+  
B–  
OUTPUT  
STAGE  
OUT  
N COUNTER  
RF  
OUT  
MULTIPLEXER  
SD  
ADF4355  
A
CP  
A
GNDVCO  
A
GND  
GND  
GND  
GNDRF  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADF4355  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 4 ..................................................................................... 22  
Register 5 ..................................................................................... 23  
Register 6 ..................................................................................... 24  
Register 7 ..................................................................................... 26  
Register 8 ..................................................................................... 27  
Register 9 ..................................................................................... 27  
Register 10................................................................................... 28  
Register 11................................................................................... 28  
Register 12................................................................................... 29  
Register Initialization Sequence ............................................... 29  
Frequency Update Sequence..................................................... 29  
RF Synthesizer—A Worked Example ...................................... 30  
Reference Doubler and Reference Divider ............................. 30  
Spurious Optimization and Fast Lock..................................... 30  
Optimizing Jitter......................................................................... 31  
Spur Mechanisms ....................................................................... 31  
Lock Time.................................................................................... 31  
Applications Information .............................................................. 32  
Direct Conversion Modulator .................................................. 32  
Power Supplies............................................................................ 33  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
Transistor Count........................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Circuit Description......................................................................... 12  
Reference Input Section............................................................. 12  
RF N Divider............................................................................... 12  
Phase Frequency Detector (PFD) and Charge Pump............ 13  
MUXOUT and Lock Detect...................................................... 13  
Input Shift Registers................................................................... 13  
Program Modes .......................................................................... 13  
VCO.............................................................................................. 14  
Output Stage................................................................................ 14  
Register Maps.................................................................................. 16  
Register 0 ..................................................................................... 18  
Register 1 ..................................................................................... 19  
Register 2 ..................................................................................... 20  
Register 3 ..................................................................................... 21  
Printed Circuit Board (PCB) Design Guidelines for a Chip-  
Scale Package .............................................................................. 33  
Output Matching........................................................................ 34  
Outline Dimensions....................................................................... 35  
Ordering Guide .......................................................................... 35  
REVISION HISTORY  
8/2017—Rev. A to Rev. B  
Changes to Phase Resync Section ................................................ 21  
Changes to Negative Bleed Section.............................................. 24  
Change to Figure 36 ....................................................................... 24  
Change to Reserved Section.......................................................... 25  
Changes to Loss of Lock (LOL) Mode Section........................... 26  
Changes to ADC Clock Divider (ADC_CLK_DIV) Section ... 28  
Changes to Register Initialization Sequence Section and  
Changes to Frequency Update Sequence Section ...................... 29  
Changes to RF Synthesizer—A Worked Example Section........ 30  
Change to Figure 44 ....................................................................... 32  
Changes to Power Supplies Section and Figure 45 .................... 33  
Changes to Frequency Update Sequence Section ...................... 29  
Updated Outline Dimensions....................................................... 35  
Changes to Ordering Guide .......................................................... 35  
3/2016—Rev. 0 to Rev. A  
Added Doubler Enabled Parameter, Table 1................................. 3  
Changes to Table 2............................................................................ 5  
Deleted VP, VVCO to AVDD Parameter, Table 3........................ 6  
Changes to Table 4............................................................................ 7  
Changes to Reference Input Section and INT, FRAC1, FRAC2,  
MOD1, MOD2, and R Counter Relationship Section Title...... 12  
Changes to Figure 28...................................................................... 16  
Changes to Automatic Calibration (Autocalibration) Section  
and Prescaler Section ..................................................................... 18  
4/2015—Revision 0: Initial Version  
Rev. B | Page 2 of 35  
 
Data Sheet  
ADF4355  
SPECIFICATIONS  
AVDD = DVDD = VRF = 3.3 V 5%, 4.75 V ≤ VP = VVCO ≤ 5.25 V, A GND = CPGND = AGNDVCO = SDGND = AGNDRF = 0 V, RSET = 5.1 kΩ,  
dBm referred to 50 Ω, TA = TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFINA/REFINB CHARACTERISTICS  
Input Frequency  
For f < 10 MHz, ensure slew rate > 21V/µs  
Single-Ended Mode  
Differential Mode  
Doubler Enabled  
10  
10  
250  
600  
100  
MHz  
MHz  
MHz  
Doubler is set in Register 4, Bit DB26  
Input Sensitivity  
Single-Ended Mode  
0.4  
0.4  
AVDD  
1.8  
V p-p  
V p-p  
REFINA biased at AVDD/2; ac coupling  
ensures AVDD/2 bias  
LVDS and LVPECL compatible,  
REFINA/REFINB biased at 2.1 V;  
ac coupling ensures 2.1 V bias  
Differential Mode  
Input Capacitance  
Single-Ended Mode  
Differential Mode  
Input Current  
6.9  
1.4  
pF  
pF  
µA  
µA  
MHz  
60  
250  
125  
Single-ended reference programmed  
Differential reference programmed  
Phase Detector Frequency  
CHARGE PUMP (CP)  
Charge Pump Current, Sink/Source  
High Value  
ICP  
RSET = 5.1 kΩ  
4.8  
0.3  
5.1  
3
3
1.5  
mA  
mA  
kΩ  
%
%
%
Low Value  
RSET Range  
Fixed  
Current Matching  
0.5 V ≤ VCP1 ≤ VP − 0.5 V  
0.5 V ≤ VCP1 ≤ VP − 0.5 V  
VCP1 = 2.5 V  
1
ICP vs. VCP  
ICP vs. Temperature  
LOGIC INPUTS  
Input High Voltage  
Input Low Voltage  
Input Current  
Input Capacitance  
LOGIC OUTPUTS  
Output High Voltage  
VINH  
VINL  
IINH/IINL  
CIN  
1.5  
V
V
µA  
pF  
0.6  
1
3.0  
1.8  
VOH  
DVDD − 0.4  
1.5  
V
V
1.8 V output selected  
IOL2 = 500 µA  
Output High Current  
Output Low Voltage  
IOH  
VOL  
500  
0.4  
µA  
V
POWER SUPPLIES  
Analog Power  
AVDD  
3.15  
4.75  
3.45  
V
Digital Power and RF Supply Voltage  
Charge Pump and VCO Voltage  
Charge Pump Supply Power Current  
DVDD, VRF  
VP, VVCO  
IP  
AVDD  
5.0  
8
Voltages must equal AVDD  
VP must equal VVCO  
5.25  
9
V
Digital Power Supply Current +  
Analog Power Supply Curent3  
DIDD, AIDD  
62  
69  
mA  
Output Dividers  
Supply Current  
6 to 36  
70  
mA  
mA  
Each output divide by 2 consumes 6 mA  
IVCO  
85  
RFOUTA /RFOUT  
B
Supply Current  
16/20/ 20/35/ mA  
RF output stage is programmable;  
RFOUTB+/RFOUTB− powered off  
I
RFOUT x±  
42/55  
50/70  
Low Power Sleep Mode  
500  
1000  
µA  
µA  
Hardware power-down  
Software power-down  
Rev. B | Page 3 of 35  
 
ADF4355  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RF OUTPUT CHARACTERISTICS  
VCO Frequency Range  
RF Output Frequency  
VCO Sensitivity  
Frequency Pushing (Open-Loop)  
Frequency Pulling (Open-Loop)  
Harmonic Content  
3400  
53.125  
6800  
6800  
MHz  
MHz  
MHz/V  
MHz/V  
MHz  
Fundamental VCO range  
KV  
15  
15  
0.5  
Voltage standing wave ratio (VSWR) = 2:1  
Second  
−27  
−22  
−20  
−12  
+8  
+3  
1
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dB  
Fundamental VCO output (RFOUTA+)  
Divided VCO output (RFOUTA+)  
Fundamental VCO output (RFOUTA+)  
Divided VCO output (RFOUTA+)  
RFOUTA+ = 1 GHz  
RFOUTA+/RFOUTA− = 4.4 GHz  
RFOUTA+/RFOUTA− = 4.4 GHz  
RFOUTA+/RFOUTA− = 1 GHz to 4.4 GHz  
Third  
RF Output Power4  
RF Output Power Variation  
RF Output Power Variation (over  
Frequency)  
3
dB  
Level of Signal with RF Output  
Disabled  
−60  
−30  
dBm  
dBm  
RFOUTA+/RFOUTA− = 1 GHz, VCO = 4 GHz  
RFOUTA+/RFOUTA− = 4.4 GHz, VCO = 4.4 GHz  
NOISE CHARACTERISTICS  
Fundamental VCO Phase Noise  
Performance  
VCO noise in open-loop conditions  
−116  
−136  
−138  
−155  
−113  
−133  
−135  
−153  
−110  
−130  
−132  
−150  
dBc/Hz 100 kHz offset from 3.4 GHz carrier  
dBc/Hz 800 kHz offset from 3.4 GHz carrier  
dBc/Hz 1 MHz offset from 3.4 GHz carrier  
dBc/Hz 10 MHz offset from 3.4 GHz carrier  
dBc/Hz 100 kHz offset from 5.0 GHz carrier  
dBc/Hz 800 kHz offset from 5.0 GHz carrier  
dBc/Hz 1 MHz offset from 5.0 GHz carrier  
dBc/Hz 10 MHz offset from 5.0 GHz carrier  
dBc/Hz 100 kHz offset from 6.8 GHz carrier  
dBc/Hz 800 kHz offset from 6.8 GHz carrier  
dBc/Hz 1 MHz offset from 6.8 GHz carrier  
dBc/Hz 10 MHz offset from 6.8 GHz carrier  
Normalized In-Band Phase Noise Floor  
Fractional Channel5  
−221  
−223  
−116  
150  
dBc/Hz  
dBc/Hz  
Integer Channel6  
7
Normalized 1/f Noise, PN1_f  
dBc/Hz 10 kHz offset; normalized to 1 GHz  
fs  
Integrated RMS Jitter  
Spurious Signals due to Phase  
−80  
dBc  
Frequency Detector (PFD) Frequency  
1 VCP is the voltage at the CPOUT pin.  
2 IOL is the output low current.  
3 TA = 25°C; AVDD = DVDD = VRF = 3.3 V; VVCO = VP = 5.0 V; prescaler = 4/5; fREF = 122.88 MHz; fPFD = 61.44 MHz; and fRF = 1650 MHz.  
IN  
4 RF output power using the EV-ADF4355SD1Z evaluation board measured into a spectrum analyzer, with board and cable losses de-embedded. The EV-ADF4355SD1Z  
RF outputs are pulled up externally using a 4.7 nH inductor. Unused RF output pins are terminated in 50 Ω.  
5 Use this figure to calculate the phase noise for any application. To calculate in-band phase noise performance as seen at the VCO output, use the following formula:  
−221 + 10log(fPFD) + 20logN. The value given is the lowest noise mode for the fractional channel.  
6 Use this figure to calculate the phase noise for any application. To calculate in-band phase noise performance as seen at the VCO output, use the following formula:  
−223 + 10log(fPFD) + 20logN. The value given is the lowest noise mode for the integer channel.  
7 The PLL phase noise is composed of 1/f (flicker) noise plus the normalized PLL noise floor. The formula for calculating the 1/f noise contribution at an RF frequency (fRF)  
and at a frequency offset (f) is given by PN = P1_f + 10log(10 kHz/f) + 20log(fRF/1 GHz). Both the normalized phase noise floor and flicker noise are modeled in the  
ADIsimPLL design tool.  
Rev. B | Page 4 of 35  
 
Data Sheet  
ADF4355  
TIMING CHARACTERISTICS  
AVDD = DVDD =VRF = 3.3 V ꢀ%, 4.7ꢀ V ≤ VP = VVCO ≤ ꢀ.2ꢀ V, AGND = CPGND = AGNDVCO = SDGND = AGNDRF = 0 V, RSET = ꢀ.1 kΩ,  
dBm referred to ꢀ0 Ω, TA = TMIN to TMAX, unless otherwise noted.  
Table 2. Write Timing  
Parameter  
Limit  
50  
10  
5
Unit  
Description  
fCLK  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Serial peripheral interface CLK frequency  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
5
10  
10  
5
20 or (2/fPFD), whichever is longer ns min  
Write Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB31 (MSB)  
DB30  
DATA  
LE  
(CONTROL BIT C4)  
(CONTROL BIT C2)  
t7  
t1  
t6  
Figure 2. Write Timing Diagram  
Rev. B | Page 5 of 35  
 
 
ADF4355  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
TA = 25°C, unless otherwise noted.  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 3.  
Parameter  
VRF, DVDD, AVDD to GND1  
Rating  
−0.3 V to +3.6 V  
−0.3 V to +0.3 V  
−0.3 V to +5.8 V  
−0.3 V to VP + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
2.1 V  
AVDD to DVDD  
VP, VVCO to GND1  
CPOUT to GND1  
The ADF4355 is a high performance RF integrated circuit with  
an ESD rating of 2500 V and is ESD sensitive. Take proper  
precautions for handling and assembly.  
Digital Input/Output Voltage to GND1  
Analog Input/Output Voltage to GND1  
REFINA, REFINB to GND1  
REFINA to REFINB  
TRANSISTOR COUNT  
The transistor count for the ADF4355 is 103,665 (CMOS) and  
3214 (bipolar).  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
θJA, Thermal Impedance Pad Soldered  
to GND1  
−40°C to +85°C  
−65°C to +125°C  
150°C  
ESD CAUTION  
27.3°C/W  
Reflow Soldering  
Peak Temperature  
260°C  
40 sec  
Time at Peak Temperature  
Electrostatic Discharge (ESD)  
Charged Device Model  
Human Body Model  
1000 V  
2500 V  
1 GND = AGND = SDGND = AGNDRF = AGNDVCO = CPGND = 0 V.  
Rev. B | Page 6 of 35  
 
 
 
Data Sheet  
ADF4355  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
V
V
R
A
V
CLK  
DATA  
LE  
BIAS  
REF  
SET  
ADF4355  
TOP VIEW  
(Not to Scale)  
CE  
GNDVCO  
AV  
TUNE  
DD  
V
A
V
V
P
REGVCO  
CP  
CP  
GNDVCO  
VCO  
OUT  
GND  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO A  
.
GND  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
CLK  
DATA  
LE  
Serial Clock Input. Data is clocked into the 32-bit shift register on the CLK rising edge. This input is a high  
impedance CMOS input.  
Serial Data Input. The serial data is loaded most significant bit (MSB) first with the four least significant bits (LSBs)  
as the control bits. This input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift register is loaded into the register  
selected by the four LSBs.  
2
3
4
CE  
Chip Enable. A logic low on this pin powers down the device and puts the charge pump into three-state mode. A  
logic high on this pin powers up the device, depending on the status of the power-down bits.  
5, 16  
AVDD  
VP  
Analog Power Supply. This pin ranges from 3.15 V to 3.45 V. Connect decoupling capacitors to the analog ground  
plane as close to this pin as possible. AVDD must have the same value as DVDD  
.
6
7
Charge Pump Power Supply. VP must have the same value as VVCO. Connect decoupling capacitors to the ground  
plane as close to VP as possible.  
Charge Pump Output. When enabled, this output provides ICP to the external loop filter. The output of the loop  
filter is connected to VTUNE to drive the internal VCO.  
CPOUT  
8
9
10  
CPGND  
AGND  
VRF  
Charge Pump Ground. This output is the ground return pin for CPOUT  
Analog Ground. Ground return pin for AVDD  
Power Supply for the RF Output. Connect decoupling capacitors to the analog ground plane as close to this pin  
as possible. VRF must have the same value as AVDD  
.
.
.
11  
12  
RFOUTA+  
RFOUTA−  
VCO Output. The output level is programmable. The VCO fundamental output or a divided down version is available.  
Complementary VCO Output. The output level is programmable. The VCO fundamental output or a divided down  
version is available.  
13  
14  
AGNDRF  
RFOUTB+  
RF Output Stage Ground. Ground return pins for the RF output stage.  
Auxiliary VCO Output. The output level is programmable. The VCO fundamental output or a divided down version  
is available.  
15  
17  
RFOUTB−  
VVCO  
Complementary Auxiliary VCO Output. The output level is programmable. The VCO fundamental output or a  
divided down version is available.  
Power Supply for the VCO. The voltage on this pin ranges from 4.75 V to 5.25 V. Connect decoupling capacitors to  
the analog ground plane as close to this pin as possible.  
18, 21  
19  
AGNDVCO  
VREGVCO  
VCO Ground. Ground return path for the VCO.  
VCO Compensation Node. Connect decoupling capacitors to the ground plane as close to this pin as possible.  
Connect VREGVCO directly to VVCO  
.
20  
VTUNE  
Control Input to the VCO. This voltage determines the output frequency and is derived from filtering the CPOUT  
output voltage. The capacitance at this pin (VTUNE input capacitance) is 9 pF.  
22  
23  
RSET  
VREF  
Bias Current Resistor. Connecting a resistor between this pin and ground sets the charge pump output current.  
Internal Compensation Node. DC biased at half the tuning range. Connect decoupling capacitors to the ground  
plane as close to this pin as possible.  
24  
VBIAS  
Reference Voltage. Connect a 100 nF decoupling capacitor to the ground plane as close to this pin as possible.  
Rev. B | Page 7 of 35  
 
ADF4355  
Data Sheet  
Pin No. Mnemonic  
Description  
25, 32  
CREG1, CREG  
2
Outputs from the LDO Regulator. CREG1 and CREG2 are the supply voltages to the digital circuits and have a  
nominal voltage of 1.8 V. Decoupling capacitors of 100 nF connected to AGND are required for these pins.  
26  
27  
PDBRF  
DVDD  
RF Power-Down. A logic low on this pin mutes the RF outputs. This mute function is also software controllable.  
Digital Power Supply. This pin must be at the same voltage as AVDD. Place decoupling capacitors to the ground  
plane as close to this pin as possible.  
28  
29  
30  
REFINB  
REFINA  
MUXOUT  
Complementary Reference Input. If unused, ac-couple this pin to AGND  
Reference Input.  
Multiplexer Output. The multiplexer output allows the digital lock detect, the analog lock detect, scaled RF, or the  
scaled reference frequency to be externally accessible.  
.
31  
SDGND  
EP  
Digital Σ-Δ Modulator Ground. SDGND is the ground return path for the Σ-Δ modulator.  
Exposed Pad. The exposed pad must be connected to AGND  
.
Rev. B | Page 8 of 35  
Data Sheet  
ADF4355  
TYPICAL PERFORMANCE CHARACTERISTICS  
–50  
–50  
–70  
÷1  
÷2  
÷4  
÷8  
÷16  
÷32  
÷64  
–70  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
100M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4. Open-Loop VCO Phase Noise, 3.4 GHz  
Figure 7. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and Dividers,  
VCO = 3.4 GHz, PFD = 61.44 MHz, Loop Bandwidth = 20 kHz  
–50  
–50  
÷1  
÷2  
÷4  
÷8  
÷16  
÷32  
÷64  
–70  
–90  
–70  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. Open-Loop VCO Phase Noise, 5.0 GHz  
Figure 8. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and Dividers,  
VCO = 5.0 GHz, PFD = 61.44 MHz, Loop Bandwidth = 20 kHz  
–50  
–70  
–50  
÷1  
÷2  
÷4  
÷8  
÷16  
÷32  
÷64  
–70  
–90  
–90  
–110  
–130  
–150  
–170  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. Open-Loop VCO Phase Noise, 6.8 GHz  
Figure 9. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and Dividers,  
VCO = 6.8 GHz, PFD = 61.44 MHz, Loop Bandwidth = 20 kHz  
Rev. B | Page 9 of 35  
 
ADF4355  
Data Sheet  
10  
9
8
7
6
–50  
÷1  
–40°C  
+25°C  
+85°C  
÷2  
–70  
5
4
3
2
1
–90  
–110  
–130  
–150  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–170  
1k  
1
2
3
4
5
6
7
10k  
100k  
1M  
10M  
100M  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 10. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 3.4 GHz, PFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
Figure 13. Output Power vs. Frequency, RFOUTA+/RFOUTA− (7.5 nH Inductors,  
10 pF Bypass Capacitors, Board Losses De-Embedded)  
–50  
÷1  
0
SECOND HARMONIC  
THIRD HARMONIC  
÷2  
–5  
–70  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–90  
–110  
–130  
–150  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1
2
3
4
5
6
7
FREQUENCY (Hz)  
FREQUENCY (GHz)  
Figure 11. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 5.0 GHz, PFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
Figure 14. RFOUTA+/RFOUTA− Harmonics vs. Frequency (7.5 nH Inductors,  
10 pF Bypass Capacitors, Board Losses De-Embedded)  
–50  
÷1  
10  
8
÷2  
–70  
6
4
–90  
–110  
–130  
–150  
–170  
2
0
–2  
–4  
–6  
–8  
–10  
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
6
7
FREQUENCY (Hz)  
FREQUENCY (GHz)  
Figure 12. Closed-Loop Phase Noise, RFOUTA+, Fundamental VCO and  
Divide by 2, VCO = 6.8 GHz, PFD = 61.44 MHz, Loop Bandwidth = 2 kHz  
Figure 15. RFOUTA+/RFOUTA− Power vs. Frequency (100 nH Inductors, 100 pF  
Bypass Capacitors, Board Measurement)  
Rev. B | Page 10 of 35  
Data Sheet  
ADF4355  
0.50  
–80  
–90  
RMS JITTER (ps) 1kHz TO 20MHz  
RMS JITTER (ps) 12kHz TO 20MHz  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–100  
–110  
–120  
–130  
–140  
–150  
–160  
0.8  
1.8  
2.8  
3.8  
4.8  
5.8  
6.8  
1k  
10k  
100k  
1M  
10M  
100M  
OUTPUT FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 19. Fractional-N Spur Performance, W-CDMA Band, RFOUTA+ =  
2113.5 MHz, REFIN = 122.88 MHz, PFD = 61.44 MHz, Output Divide by 2  
Selected, Loop Filter Bandwidth = 20 kHz, Channel Spacing = 20 kHz  
Figure 16. RMS Jitter vs. Output Frequency, PFD Frequency = 61.44 MHz,  
Loop Filter = 20 kHz  
–80  
–50  
PFD = 15.36MHz  
PFD = 30.72MHz  
PFD = 61.44MHz  
–60  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–70  
–80  
–90  
–100  
–110  
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
6
7
FREQUENCY (Hz)  
RF  
A+/RF  
A– OUTPUT FREQUENCY (GHz)  
OUT  
OUT  
Figure 17. PFD Spur Amplitude vs. RFOUTA+/RFOUTA− Output Frequency,  
PFD = 15.36 MHz, PFD = 30.72 MHz, PFD = 61.44 MHz, Loop Filter = 20 kHz  
Figure 20. Fractional-N Spur Performance, RFOUTA+ = 2.591 GHz,  
REFIN = 122.88 MHz, PFD = 61.44 MHz, Output Divide-by-2 Selected,  
Loop Filter Bandwidth = 20 kHz, Channel Spacing = 20 kHz  
–80  
–90  
4.65  
4.60  
4.55  
4.50  
4.45  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
1
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
1k  
10k  
100k  
1M  
10M  
100M  
–1  
0
1
2
3
4
TIME (ms)  
FREQUENCY (Hz)  
Figure 18. Fractional-N Spur Performance, GSM1800 Band, RFOUTA+ =  
1550.2 MHz, REFIN = 122.88 MHz, PFD = 61.44 MHz, Output Divide by 4  
Selected, Loop Filter Bandwidth = 20 kHz, Channel Spacing = 20 kHz  
Figure 21. Lock Time for 250 MHz Jump from 4150 MHz to 4400 MHz,  
Loop Bandwidth = 20 kHz  
Rev. B | Page 11 of 35  
ADF4355  
Data Sheet  
CIRCUIT DESCRIPTION  
INT, FRAC1, FRAC2, MOD1, MOD2, and R Counter  
Relationship  
REFERENCE INPUT SECTION  
Figure 22 shows the reference input stage. The reference input  
can accept both single-ended and differential signals. Use the  
reference mode bit (Register 4, Bit DB9) to select the signal. To  
use a differential signal on the reference input, program this bit  
high. In this case, SW1 and SW2 are open, SW3 and SW4 are  
closed, and the current source that drives the differential pair of  
transistors switches on. The differential signal buffers and provides  
an emitter-coupled logic (ECL) to the CMOS converter. When a  
single-ended signal is used as the reference, program Bit DB9  
in Register 4 to 0. Connect the single-ended reference signal to  
REFINA. In this case, SW1 and SW2 are closed, SW3 and SW4  
are open, and the current source that drives the differential pair  
of transistors switches off.  
The INT, FRAC1, FRAC2, MOD1, and MOD2 values, in  
conjunction with the R counter, make it possible to generate  
output frequencies spaced by fractions of the PFD frequency  
(fPFD). For more information, see the RF Synthesizer—A Worked  
Example section.  
Calculate the RF VCO frequency (VCOOUT) by  
VCOOUT = fPFD × N  
where:  
(1)  
VCOOUT is the output frequency of the VCO (without using the  
output divider).  
f
PFD is the frequency of the phase frequency detector.  
N is the desired value of the feedback counter, N.  
Calculate fPFD by  
REFERENCE  
INPUT MODE  
f
PFD = REFIN × [(1 + D)/(R × (1 + T))]  
(2)  
85k  
where:  
SW2  
BUFFER  
SW1  
REFIN is the reference input frequency.  
D is the REFIN doubler bit.  
R is the preset divide ratio of the binary 10-bit programmable  
reference counter (1 to 1023).  
SW3  
TO  
R COUNTER  
MULTIPLEXER  
T is the REFIN divide by 2 bit (0 or 1).  
AV  
DD  
N comprises  
ECL TO CMOS  
CONVERTER  
FRAC2  
MOD2  
MOD1  
FRAC1  
REF  
REF  
A
IN  
N INT   
(3)  
where:  
B
IN  
INT is the 16-bit integer value (23 to 32,767 for the 4/5  
prescaler, 75 to 65,535 for the 8/9 prescaler).  
2.5kΩ  
2.5kΩ  
SW4  
FRAC1 is the numerator of the primary modulus (0 to 16,777,215).  
FRAC2 is the numerator of the 14-bit auxiliary modulus  
(0 to 16,383).  
BIAS  
GENERATOR  
Figure 22. Reference Input Stage  
MOD2 is the programmable, 14-bit auxiliary fractional  
RF N DIVIDER  
modulus (2 to 16,383).  
MOD1 is a 24-bit primary modulus with a fixed value of 224 =  
16,777,216.  
The RF N divider allows a division ratio in the PLL feedback  
path. Determine the division ratio by the INT, FRAC1, FRAC2,  
and MOD2 values that this divider comprises.  
Equation 3 results in a very fine frequency resolution with no  
residual frequency error. To apply this formula, take the  
following steps:  
FRAC2  
MOD2  
RF N COUNTER  
N = INT +  
FRAC1 +  
MOD1  
1. Calculate N by dividing VCOOUT/fPFD  
.
FROM  
VCO OUTPUT/  
OUTPUT DIVIDERS  
TO PFD  
2. The integer value of this number forms INT.  
3. Subtract the INT value from the full N value.  
4. Multiply the remainder by 224.  
5. The integer value of this number forms FRAC1.  
6. Calculate MOD2 based on the channel spacing (fCHSP) by  
N COUNTER  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
INT  
FRAC1  
REGISTER REGISTER  
FRAC2  
VALUE  
MOD2  
VALUE  
MOD2 = fPFD/GCD(fPFD, fCHSP  
)
(4)  
where:  
GCD(fPFD, fCHSP) is the greatest common divider of the PFD  
frequency and the channel spacing frequency.  
Figure 23. RF N Divider  
f
CHSP is the desired channel spacing frequency.  
Rev. B | Page 12 of 35  
 
 
 
 
 
Data Sheet  
ADF4355  
DV  
DD  
7. Calculate FRAC2 by the following equation:  
FRAC2 = [(N INT) × 224 FRAC1)] × MOD2  
(5)  
(6)  
THREE-STATE OUTPUT  
DV  
The FRAC2 and MOD2 fraction results in outputs with zero  
frequency error for channel spacings when  
DD  
SD  
GND  
f
PFD/GCD(fPFD/fCHSP) < 16,383  
where:  
PFD is the frequency of the phase frequency detector.  
GCD is a greatest common denominator function.  
CHSP is the desired channel spacing frequency.  
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
MUX  
CONTROL  
MUXOUT  
ANALOG LOCK DETECT  
f
DIGITAL LOCK DETECT  
RESERVED  
f
If zero frequency error is not required, the MOD1 and MOD2  
denominators operate together to create a 38-bit resolution  
modulus.  
SD  
GND  
Figure 25. MUXOUT Block Diagram  
INT N Mode  
INPUT SHIFT REGISTERS  
When FRAC1 and FRAC2 = 0, the synthesizer operates in  
integer-N mode.  
The ADF4355 digital section includes a 10-bit R counter, a  
16-bit RF integer-N counter, a 24-bit FRAC1 counter, a 14-bit  
auxiliary fractional counter, and a 14-bit auxiliary modulus  
counter. Data clocks into the 32-bit shift register on each rising  
edge of CLK. The data clocks in MSB first. Data transfers from  
the shift register to one of 12 latches on the rising edge of LE.  
The state of the four control bits (C4, C3, C2, and C1) in the  
shift register determines the destination latch. As shown in  
Figure 2, the four least significant bits (LSBs) are DB3, DB2,  
DB1, and DB0. The truth table for these bits is shown in Table 5.  
Figure 28 and Figure 29 summarize the programing of the latches.  
R Counter  
The 10-bit R counter allows the input reference frequency  
(REFIN) to be divided down to produce the reference clock to  
the PFD. Division ratios from 1 to 1023 are allowed.  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
The PFD takes inputs from the R counter and N counter and  
produces an output proportional to the phase and frequency  
difference between them. Figure 24 is a simplified schematic  
of the PFD. The PFD includes a fixed delay element that sets the  
width of the antibacklash pulse. This pulse ensures that there is  
no dead zone in the PFD transfer function and provides a  
consistent reference spur level. Set the phase detector polarity to  
positive on this device because of the positive tuning of the VCO.  
Table 5. Truth Table for the C4, C3, C2, and C1 Control Bits  
Control Bits  
C4  
0
0
0
0
0
0
0
0
1
1
1
1
1
C3  
0
0
0
0
1
1
1
1
0
0
0
0
1
C2  
0
0
1
1
0
0
1
1
0
0
1
1
0
C1  
0
1
0
1
0
1
0
1
0
1
0
1
0
Register  
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
UP  
HIGH  
D1  
Q1  
U1  
CLR1  
+IN  
CHARGE  
PUMP  
CP  
U3  
DELAY  
DOWN  
CLR2  
D2 Q2  
HIGH  
U2  
PROGRAM MODES  
–IN  
Table 5 and Figure 28 through Figure 42 show the program  
modes that must be set up in the ADF4355.  
Figure 24. PFD Simplified Schematic  
MUXOUT AND LOCK DETECT  
The following settings in the ADF4355 are double buffered: main  
fractional value (FRAC1), auxiliary modulus value (MOD2),  
auxiliary fractional value (FRAC2), reference doubler, reference  
divide by 2 (RDIV2), R counter value, and charge pump current  
setting. Two events must occur before the ADF4355 uses a new  
value for any of the double buffered settings. First, the new value  
must latch into the device by writing to the appropriate register,  
and second, a new write to Register 0 must be performed.  
The output multiplexer on the ADF4355 allows the user to access  
various internal points on the chip. The M3, M2, and M1 bits in  
Register 4 control the state of MUXOUT. Figure 25 shows the  
MUXOUT section in block diagram form.  
Rev. B | Page 13 of 35  
 
 
 
 
 
 
 
ADF4355  
Data Sheet  
For example, to ensure that the modulus value loads correctly,  
every time the modulus value updates, Register 0 must be  
written to. The RF divider select in Register 6 is also double  
buffered, but only when Bit DB14 of Register 4 is high.  
OUTPUT STAGE  
The RFOUTA+ and RFOUTA− pins of the ADF4355 connect to  
the collectors of an NPN differential pair driven by buffered  
outputs of the VCO, as shown in Figure 27. In this scheme, the  
ADF4355 contains internal 50 Ω resistors connected to the VRF pin.  
To optimize the power dissipation vs. the output power requirements,  
the tail current of the differential pair is programmable using  
Bits[D2:D1] in Register 6. Four current levels can be set. These  
levels give approximate output power levels of −4 dBm, −1 dBm,  
+2 dBm, and +5 dBm, respectively, using a 50 Ω resistor to VRF  
and ac coupling into a 50 Ω load. For accurate power levels,  
refer to the Typical Performance Characteristics section. With  
an output power of 5 dBm, an external shunt inductor is necessary  
to provide higher power levels; however, this addition results in  
less wideband than the internal bias only. Terminate the unused  
complementary output with a similar circuit to the used output.  
VCO  
The VCO core in the ADF4355 consists of four separate VCOs,  
each of which uses 256 overlapping bands, which allows covering  
a wide frequency range without a large VCO sensitivity (KV) and  
without resultant poor phase noise and spurious performance.  
The correct VCO and band are chosen automatically by the  
VCO and band select logic when Register 0 is updated and auto-  
calibration is enabled. The VCO VTUNE is disconnected from  
the output of the loop filter and is connected to an internal  
reference voltage.  
The R counter output is used as the clock for the band select logic.  
After band selection, normal PLL action resumes. The nominal  
value of KV is 15 MHz/V when the N divider is driven from the  
VCO output, or the KV value is divided by D. D is the output  
divider value if the N divider is driven from the RF output divider  
(chosen by programming Bits[D23:D21] in Register 6).  
V
V
RF  
RF  
50Ω  
A+  
50Ω  
RF  
RF  
A–  
OUT  
OUT  
BUFFER/  
DIVIDE BY  
1/2/4/8/  
VCO  
The VCO shows variation of KV as the tuning voltage, VTUNE  
,
16/32/64  
varies within the band and from band to band. For wideband  
applications covering a wide frequency range (and changing  
output dividers), a value of 15 MHz/V provides the most accurate  
KV, because this value is closest to the average value. Figure 26  
shows how KV varies with fundamental VCO frequency along with  
an average value for the frequency band. Users may prefer this  
figure when using narrow-band designs.  
Figure 27. Output Stage  
Another feature of the ADF4355 is that the supply current to the  
output stages can shut down until the ADF4355 achieves lock as  
measured by the digital lock detect circuitry. The mute till lock  
detect (MTLD) bit (DB11) in Register 6 enables this.  
50  
45  
40  
35  
The RFOUTB+/RFOUTB− pins are duplicate outputs that can be  
used independently or in addition to the RFOUTA+/RFOUTA− pins.  
LINEAR  
TREND LINE  
30  
AVERAGE  
VCO SENSITIVITY  
25  
20  
15  
10  
5
0
3.3  
3.8  
4.3  
4.8  
5.3  
5.8  
6.3  
6.8  
FREQUENCY (GHz)  
Figure 26. KV vs. Frequency  
Rev. B | Page 14 of 35  
 
 
 
 
Data Sheet  
ADF4355  
Table 6. Total IDD (RFOUTA Refers to RFOUTA+/RFOUTA−)  
Divide By  
RFOUTA  
Off  
RFOUTA  
= −4 dBm  
RFOUTA  
= −1 dBm  
RFOUTA  
= +2 dBm  
RFOUTA = +5 dBm  
5 V Supply (IVCO and IP)  
78 mA  
78 mA  
78 mA  
78 mA  
78 mA  
3.3 V Supply (AIDD, DIDD, IRF)  
1
2
4
8
16  
32  
64  
79.8 mA  
87.8 mA  
97.1 mA  
104.9 mA  
109.8 mA  
113.6 mA  
115.9 mA  
101.3 mA  
110.1 mA  
119.3 mA  
127.1 mA  
131.8 mA  
135.5 mA  
137.8 mA  
111.9 mA  
120.6 mA  
130.1 mA  
137.8 mA  
142.7 mA  
146.5 mA  
148.9 mA  
122.7 mA  
131.9 mA  
141.6 mA  
149.2 mA  
154.1 mA  
157.8 mA  
160.1 mA  
132.8 mA  
141.9 mA  
152.1 mA  
159.7 mA  
164.6 mA  
168.4 mA  
170.8 mA  
Rev. B | Page 15 of 35  
ADF4355  
Data Sheet  
REGISTER MAPS  
REGISTER 0  
CONTROL  
BITS  
16-BIT INTEGER VALUE (INT)  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
N15 N14 N13 N12 N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1 C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
AC1  
PR1  
N16  
REGISTER 1  
CONTROL  
BITS  
DBR1  
RESERVED  
24-BIT MAIN FRACTIONAL VALUE (FRAC1)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F24  
F23  
F22  
F21  
F20  
F19  
F18  
F17  
F16  
F15  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
0
0
0
C3(0) C2(0) C1(1)  
C4(0)  
0
REGISTER 2  
CONTROL  
BITS  
DBR1  
DBR 1  
14-BIT AUXILIARY FRACTIONAL VALUE (FRAC2)  
14-BIT AUXILIARY MODULUS VALUE (MOD2)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
C3(0) C2(1) C1(0)  
C4(0)  
REGISTER 3  
CONTROL  
BITS  
24-BIT PHASE VALUE (PHASE)  
DBR1  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(0) C2(1) C1(1)  
P1 C4(0)  
0
SD1  
PR1 PA1 P24  
P23 P22  
P21  
P20  
P19  
P18  
P17  
P16 P15  
P14 P13  
P12  
P11 P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
REGISTER 4  
CONTROL  
BITS  
CURRENT  
SETTING  
DBR1  
RESERVED  
MUXOUT  
10-BIT R COUNTER  
DBR1  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(1) C2(0) C1(0)  
U1 C4(0)  
0
0
M3  
M2  
M1  
RD2 RD1  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
D1  
CP4  
CP3 CP2 CP1 U6  
U5  
U4  
U3  
U2  
REGISTER 5  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
C4(0) C3(1) C2(0)  
C1(1)  
REGISTER 6  
AUX RF  
OUTPUT  
POWER  
RF  
OUTPUT  
POWER  
RF DIVIDER  
SELECT2  
CONTROL  
BITS  
RESERVED  
CHARGE PUMP BLEED CURRENT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BL2  
BL3  
0
BL10 BL9  
1
0
1
0
D13 D12 D11  
D10  
BL7  
BL4  
BL1  
0
D8  
0
D6  
D5  
D4  
D3  
D2  
D1  
BL8  
BL6  
BL5  
C4(0) C3(1) C2(1) C1(0)  
1
2
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
DBB = DOUBLE BUFFERED BITS—BUFFERED BY A WRITE TO REGISTER 0 WHEN BIT DB14 OF REGISTER 4 IS HIGH.  
Figure 28. Register Summary (Register 0 to Register 6)  
Rev. B | Page 16 of 35  
 
 
Data Sheet  
ADF4355  
REGISTER 7  
LD  
CYCLE  
COUNT  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LD4  
LD3 LD2 LD1 C4(0) C3(1) C2(1) C1(1)  
0
0
0
1
0
0
LE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD5  
LOL  
REGISTER 8  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
1
0
0
0
0
0
1
0
1
1
0
1
0
0
0
1
0
0
0
1
0
0
0
C4(1) C3(0) C2(0) C1(0)  
REGISTER 9  
SYNTHESIZER  
LOCK TIMEOUT  
CONTROL  
BITS  
VCO BAND DIVISION  
TIMEOUT  
AUTOMATIC LEVEL TIMEOUT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VC8 VC7 VC6 VC5 VC4 VC3 VC2 VC1 TL10 TL9 TL8 TL7 TL6 TL5 TL4 TL3 TL2 TL1 AL5 AL4 AL3 AL2 AL1 SL5 SL4 SL3 SL2 SL1 C4(1) C3(0) C2(0) C1(1)  
REGISTER 10  
ADC  
CLOCK DIVIDER  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
AD8 AD7 AD6  
AD5 AD4 AD3 AD2 AD1 AE2 AE1 C4(1) C3(0) C2(1) C1(0)  
REGISTER 11  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
REGISTER 12  
CONTROL  
BITS  
RESERVED  
RESYNC CLOCK  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P13 P12  
P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1  
0
0
0
0
0
1
0
0
0
0
0
1
P16 P15  
C4(1) C3(1) C2(0) C1(0)  
P14  
Figure 29. Register Summary (Register 7 to Register 12)  
Rev. B | Page 17 of 35  
 
ADF4355  
Data Sheet  
CONTROL  
BITS  
16-BIT INTEGER VALUE (INT)  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
N15 N14 N13 N12 N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1 C4(0) C3(0) C2(0) C1(0)  
0
0
0
0
0
0
0
0
0
0
AC1  
PR1 N16  
N16  
0
N15  
0
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
N5  
N4  
N3  
N2  
N1  
0
1
0
.
INTEGER VALUE (INT)  
PR1 PRESCALER  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
NOT ALLOWED  
0
1
4/5  
8/9  
0
0
NOT ALLOWED  
0
0
NOT ALLOWED  
.
.
...  
0
0
1
1
1
.
0
0
1
.
1
1
0
.
1
1
0
.
0
1
0
.
NOT ALLOWED  
0
0
23  
0
0
24  
VCO  
AUTOCAL  
AC1  
.
.
...  
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
65533  
65534  
65535  
0
1
DISABLED  
ENABLED  
1
1
1
1
INT  
= 75 WITH PRESCALER = 8/9  
MIN  
Figure 30. Register 0  
Prescaler  
REGISTER 0  
The dual modulus prescaler (P/P + 1), along with the INT,  
FRACx, and MODx counters, determines the overall division  
ratio from the VCO output to the PFD input. The PR1 bit  
(Bit DB20) in Register 0 sets the prescaler value.  
Control Bits  
With Bits[C4:C1] set to 0000, Register 0 is programmed. Figure 30  
shows the input data format for programming this register.  
Reserved  
Operating at current mode logic levels, the prescaler takes the  
clock from the VCO output and divides it down for the counters. It  
is based on a synchronous 4/5 core. When the prescaler is set to  
4/5, the maximum RF frequency allowed is 6.8 GHz. The prescaler  
limits the INT value; therefore, if P is 4/5, NMIN is 23, and if P is  
8/9, NMIN is 75.  
Bits[DB31:DB22] are reserved and must be set to 0.  
Automatic Calibration (Autocalibration)  
Write to Register 0 to enact (by default) the VCO autocalibration  
and to choose the appropriate VCO and VCO subband. Write a  
1 to the AUTOCAL bit (AC1, Bit DB21) (Bit DB21) to enable  
the autocalibration, which is the recommended mode of  
operation.  
16-Bit Integer Value  
The 16 INT bits (Bits[DB19:DB4]) set the INT value, which  
determines the integer part of the feedback division factor. The  
INT value is used in Equation 3 (see the INT, FRAC1, FRAC2,  
MOD1, MOD2, and R Counter Relationship section). All  
integer values from 23 to 32,767 are allowed for the 4/5 prescaler.  
For the 8/9 prescaler, the minimum integer value is 75, and the  
maximum value is 65,535.  
Set the AC1 bit to 0 to disable the autocalibration, leaving the  
ADF4355 in the same band it is already in when Register 0  
is updated.  
Disable the autocalibration only for fixed frequency applications,  
phase adjust applications, or very small (<10 kHz) frequency  
jumps. Toggling AUTOCAL is also required when changing  
frequency (see the Frequency Update Sequence section for  
additional details).  
Rev. B | Page 18 of 35  
 
 
Data Sheet  
ADF4355  
CONTROL  
BITS  
1
RESERVED  
24-BIT MAIN FRACTIONAL VALUE (FRAC1)  
DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
F24 F23 F22 F21 F20 F19 F18 F17 F16 F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1  
0
0
0
C3(0) C2(0) C1(1)  
C4(0)  
0
F24  
F23  
.......... F2  
F1  
MAIN FRACTIONAL VALUE (FRAC1)  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16777212  
16777213  
16777214  
16777215  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 31. Register 1  
24-Bit Main Fractional Value  
REGISTER 1  
The 24 FRAC1 bits (Bits[DB27:DB4]) set the numerator of the  
fraction that is input to the Σ-Δ modulator. This fraction, along  
with the INT value, specifies the new frequency channel that  
the synthesizer locks to, as shown in the RF Synthesizer—A  
Worked Example section. FRAC1 values from 0 to (MOD1 − 1)  
cover channels over a frequency range equal to the PFD  
reference frequency.  
Control Bits  
With Bits[C4:C1] set to 0001, Register 1 is programmed. Figure 31  
shows the input data format for programming this register.  
Reserved  
Bits[DB31:DB28] are reserved and must be set to 0.  
Rev. B | Page 19 of 35  
 
 
ADF4355  
Data Sheet  
CONTROL  
BITS  
1
1
14-BIT AUXILIARY FRACTIONAL VALUE (FRAC2) DBR  
14-BIT AUXILIARY MODULUS VALUE (MOD2) DBR  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
M14 M13 M12 M11 M10 M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
F14  
F13  
F12  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
C3(0) C2(1) C1(0)  
C4(0)  
M14 M13 .......... M2  
M1  
0
1
0
1
.
MODULUS VALUE (MOD2)  
F14  
F13  
.......... F2  
F1  
0
1
0
1
.
FRAC2 WORD  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
NOT ALLOWED  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
NOT ALLOWED  
1
2
2
3
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16380  
16381  
16382  
16383  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16381  
16382  
16382  
16383  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 32. Register 2  
14-Bit Auxiliary Modulus Value (MOD2)  
REGISTER 2  
The 14-bit auxiliary modulus value (Bits[DB17:DB4]) sets the  
auxiliary fractional modulus. Use MOD2 to correct any residual  
error due to the main fractional modulus.  
Control Bits  
With Bits[C4:C1] set to 0010, Register 2 is programmed. Figure 32  
shows the input data format for programming this register.  
14-Bit Auxiliary Fractional Value (FRAC2)  
The 14-bit auxiliary fractional value (Bits[DB31:DB18]) controls  
the auxiliary fractional word. FRAC2 must be less than the  
MOD2 value programmed in Register 2.  
Rev. B | Page 20 of 35  
 
 
Data Sheet  
ADF4355  
CONTROL  
BITS  
1
DBR  
24-BIT PHASE VALUE (PHASE)  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(0) C2(1) C1(1)  
0
SD1  
PR1 PA1 P24  
P23 P22  
P21  
P20  
P19  
P18  
P17  
P16 P15  
P14 P13 P12  
P11 P10  
P9  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1 C4(0)  
PHASE  
ADJUST  
PA1  
P24  
P23  
0
0
0
0
.
.......... P2  
P1  
PHASE VALUE (PHASE)  
0
1
DISABLED  
ENABLED  
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
.........  
0
0
1
1
.
0
1
0
1
.
0
1
2
3
PHASE  
PR1  
.
RESYNC  
.
.
.
.
.
0
1
DISABLED  
ENABLED  
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
16777212  
16777213  
16777214  
16777215  
SD LOAD  
RESET  
SD1  
0
1
ON REGISTER0 UPDATE  
DISABLED  
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 33. Register 3  
This is achieved by programming the D13 bit (Bit DB24) in  
Register 6 to 0, which ensures divided feedback to the N divider.  
Phase resynchronization only operateswhen FRAC2 = 0.  
REGISTER 3  
Control Bits  
With Bits[C4:C1] set to 0011, Register 3 is programmed. Figure 33  
shows the input data format for programming this register.  
For resync applications, enable the SD load reset in Register 3  
by setting DB30 to 0.  
Reserved  
Phase Adjust  
Bit DB31 is reserved and must be set to 0.  
SD Load Reset  
To adjust the relative output phase of the ADF4355 on each  
Register 0 update, set the PA1 bit (Bit DB28) to 1. This feature  
differs from the resynchronization feature in that it is useful  
when adjustments to the phase are made continually in an  
application. For this function, disable the VCO automatic  
calibration by setting the AC1 bit (Bit DB21) in Register 0 to 1  
and disable the SD load reset by setting the SD1 bit (Bit DB30)  
in Register 3 to 1. Note that phase resync and phase adjust  
cannot be used simultaneously.  
When writing to Register 0, the Σ-Δ modulator resets. For  
applications when the phase is continually adjusted, this may  
not be desirable; therefore, in these cases, the Σ-Δ reset can be  
disabled by writing a 1 to the SD1 bit (Bit DB30).  
Phase Resync  
To use the phase resynchronization feature, the PR1 bit (Bit DB29)  
must be set to 1. If unused, the bit can be programmed to 0. The  
phase resync timer must also be used in Register 12 to ensure that  
the resynchronization feature is applied after the PLL has settled  
to the final frequency. If the PLL has not settled to the final frequency,  
phase resync may not function correctly. Resynchronization is  
useful in phased array and beam forming applications. It ensures  
repeatability of output phase when programming the same  
frequency. In phase critical applications that use frequencies  
requiring the output divider (<3400 MHz), it is necessary to  
feed the N divider with the divided VCO frequency rather than  
from the fundamental VCO frequency.  
24-Bit Phase Value  
The phase of the RF output frequency can adjust in 24-bit steps;  
from 0° (0) to 360° (224 − 1). For phase adjust applications, the  
phase is set by  
(Phase Value/16,777,216) × 360°  
When the phase value is programmed to Register 3, each  
subsequent adjustment of Register 0 increments the phase by  
the value in this equation.  
Rev. B | Page 21 of 35  
 
 
ADF4355  
Data Sheet  
CURRENT  
SETTING  
CONTROL  
BITS  
1
1
DBR  
MUXOUT  
10-BIT R COUNTER  
DBR  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
0
0
M3  
M2  
M1 RD2 RD1 R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
D1  
CP4 CP3 CP2 CP1 U6  
U5  
U4  
U3  
U2  
U1  
C3(1) C2(0) C1(0)  
C4(0)  
REFERENCE  
RD2  
COUNTER  
RESET  
DOUBLE BUFFERED  
REGISTER 6, BITS[DB23:DB21]  
U1  
D1  
U6  
0
REFIN  
SINGLE  
DIFF  
DOUBLER  
0
1
DISABLED  
ENABLED  
0
1
DISABLED  
ENABLED  
0
1
DISABLED  
1
ENABLED  
RD1 REFERENCE DIVIDE BY 2  
CP  
I
(mA)  
CP  
U2  
U5  
LDP  
THREE-STATE  
CP4  
CP3  
CP2  
CP1  
5.1k  
0
1
DISABLED  
ENABLED  
0
1
1.8V  
3.3V  
0
1
DISABLED  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.31  
0.63  
0.94  
1.25  
1.56  
1.88  
2.19  
2.50  
2.81  
3.13  
3.44  
3.75  
4.06  
4.38  
4.69  
5.00  
ENABLED  
R10  
R9  
..........  
R2  
R1  
R DIVIDER (R)  
U4  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
U3  
POWER DOWN  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
0
1
DISABLED  
ENABLED  
2
1
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1020  
1021  
1022  
1023  
M3  
0
M2  
0
M1  
0
OUTPUT  
THREE-STATE OUTPUT  
0
0
1
DV  
DD  
0
1
0
SD  
GND  
0
1
1
R DIVIDER OUTPUT  
N DIVIDER OUTPUT  
ANALOG LOCK DETECT  
DIGITAL LOCK DETECT  
RESERVED  
1
0
0
1
0
1
1
1
0
1
1
1
1
DBR = DOUBLE BUFFERED REGISTER—BUFFERED BY THE WRITE TO REGISTER 0.  
Figure 34. Register 4  
RDIV2  
REGISTER 4  
Setting the RD1 bit (Bit DB25) to 1 inserts a divide by 2 toggle  
flip-flop between the R counter and PFD, which extends the  
maximum reference frequency input rate. This function provides  
a 50% duty cycle signal at the PFD input.  
Control Bits  
With Bits[C4:C1] set to 0100, Register 4 is programmed. Figure 34  
shows the input data format for programming this register.  
Reserved  
10-Bit R Counter  
Bits[DB31:DB30] are reserved and must be set to 0.  
The 10-bit R counter divides the input reference frequency  
(REFIN) to produce the reference clock to the PFD. Division  
ratios range from 1 to 1023.  
MUXOUT  
The on-chip multiplexer (MUXOUT) is controlled by  
Bits[DB29:DB27]. For additional details, see Figure 34.  
Double Buffer  
Reference Doubler  
The D1 bit (Bit DB14) enables or disables double buffering of  
the RF divider select bits (Bits[DB23:DB21]) in Register 6. The  
Program Modes section explains how double buffering works.  
Setting the RD2 bit (Bit DB26) to 0 feeds the REFIN signal directly  
to the 10-bit R counter, disabling the doubler. Setting this bit to  
1 multiplies the reference frequency by a factor of 2 before feeding  
it into the 10-bit R counter. When the doubler is disabled, the REFIN  
falling edge is the active edge at the PFD input to the fractional  
synthesizer. When the doubler is enabled, both the rising and  
falling edges of the reference frequency become active edges at  
the PFD input.  
Charge Pump Current Setting  
The CP4 to CP1 bits (Bits[DB13:DB10]) set the charge pump  
current. Set this value to the charge pump current that the loop  
filter is designed with (see Figure 34). For the lowest spurs, the  
0.9 mA setting is recommended.  
The maximum allowable reference frequency when the doubler  
is enabled is 100 MHz.  
Rev. B | Page 22 of 35  
 
 
Data Sheet  
ADF4355  
When power-down activates, the following events occur:  
Reference Mode  
The ADF4355 permits use of either differential or single-ended  
reference sources.  
The synthesizer counters are forced to their load state  
conditions.  
The VCO powers down.  
For optimum integer boundary spur performance, use the  
single-ended setting for all references up to 250 MHz (even if  
using a differential reference signal). Use the differential setting for  
reference frequencies above 250 MHz.  
The charge pump is forced into three-state mode.  
The digital lock detect circuitry resets.  
The RFOUTA+/RFOUTA− and RFOUTB+/RFOUTB− output  
stages are disabled.  
The input registers remain active and capable of loading  
and latching data.  
Level Select  
To assist with logic compatibility, MUXOUT is programmable to  
two logic levels. Set the U5 bit (Bit DB8) to 0 to select 1.8 V logic,  
and set it to 1 to select 3.3 V logic.  
Charge Pump Three-State  
Setting the U2 bit (Bit DB5) to 1 puts the charge pump into  
three-state mode. Set DB5 to 0 for normal operation.  
Phase Detector (PD) Polarity  
The U4 bit (Bit DB7) sets the phase detector polarity. When a  
passive loop filter or a noninverting active loop filter is used,  
set DB7 to 1 (positive). If an active filter with an inverting  
characteristic is used, set this bit to 0 (negative).  
Counter Reset  
The U1 bit (Bit DB4) resets the R counter, N counter, and  
VCO band select of the ADF4355. When DB4 is set to 1, the RF  
synthesizer N counter and R counter, and the VCO band select,  
are reset. For normal operation, set DB4 to 0. Toggling counter  
reset (Bit DB4) is also required when changing frequency (see  
the Frequency Update Sequence section for additional details).  
Power-Down  
The U3 bit (Bit DB6) sets the programmable power-down mode.  
Setting DB6 to 1 performs a power-down. Setting DB6 to 0  
returns the synthesizer to normal operation. In software power-  
down mode, the ADF4355 retains all information in its registers.  
The register contents are only lost if the supply voltages are  
removed.  
REGISTER 5  
The bits in Register 5 are reserved and must be programmed as  
described in Figure 35, using a hexadecimal word of 0x00800025.  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(0) C3(1) C2(0)  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
C1(1)  
Figure 35. Register 5 (0x00800025)  
Rev. B | Page 23 of 35  
 
 
ADF4355  
Data Sheet  
AUX RF  
OUTPUT  
POWER  
RF  
OUTPUT  
POWER  
RF DIVIDER  
SELECT1  
CONTROL  
BITS  
RESERVED  
CHARGE PUMP BLEED CURRENT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
BL2  
BL3  
0
BL10 BL9  
1
0
1
0
D13 D12 D11 D10  
BL7  
BL4  
BL1  
0
D8  
0
D6  
D5  
D4  
D3  
D2  
D1  
BL8  
BL6 BL5  
C4(0) C3(1) C2(1) C1(0)  
FEEDBACK  
SELECT  
D13  
D2  
D1  
OUTPUT POWER  
–4dBm  
0
0
1
1
0
0
1
DIVIDED  
1
0
1
–1dBm  
FUNDAMENTAL  
+2dBm  
+5dBm  
BLEED CURRENT  
BL9  
D12  
D11  
D10 RF DIVIDER SELECT  
D3  
0
RF OUT  
0
1
DISABLED  
ENABLED  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
÷1  
DISABLED  
ENABLED  
÷2  
MUTE TILL  
LOCK DETECT  
1
D8  
÷4  
0
1
MUTE DISABLED  
MUTE ENABLED  
÷8  
GATED BLEED  
BL10  
D5  
D4  
AUXILIARY OUTPUT POWER  
÷16  
÷32  
÷64  
0
0
1
1
0
1
0
1
–4dBm  
–1dBm  
+2dBm  
+5dBm  
0
1
DISABLED  
ENABLED  
D6  
0
AUXILIARY OUT  
DISABLED  
1
ENABLED  
BL8  
BL7  
..........  
BL2  
BL1 BLEED CURRENT  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
(3.75µA)  
(7.5µA)  
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252 (945µA)  
253 (948.75µA)  
254 (952.5µA)  
255 (956.25µA)  
1
BITS[DB23:DB21] ARE BUFFERED BY A WRITE TO REGISTER 0 WHEN THE DOUBLE BUFFER BIT IS ENABLED, BIT DB14 OF REGISTER 4.  
Figure 36. Register 6  
Use negative bleed only when operating in fractional-N mode,  
that is, FRAC1 or FRAC2 is not equal to 0. Do not use negative  
bleed for fPFD greater than 100 MHz.  
REGISTER 6  
Control Bits  
With Bits[C4:C1] set to 0110, Register 6 is programmed. Figure 36  
shows the input data format for programming this register.  
Reserved  
Bits[DB28:DB25] are reserved and must be set to 1010.  
Reserved  
Feedback Select  
Bit DB31 is reserved and must be set to 0.  
Gated Bleed  
D13 (Bit DB24) selects the feedback from the output of the  
VCO to the N counter. When D13 is set to 1, the signal is taken  
directly from the VCO. When this bit is set to 0, the signal is  
taken from the output of the output dividers. The dividers  
enable coverage of the wide frequency band (54 MHz to  
6800 MHz). When the divider is enabled and the feedback  
signal is taken from the output, the RF output signals of two  
separately configured PLLs are in phase. Divided feedback is  
useful in some applications where the positive interference of  
signals is required to increase the power.  
Bleed currents can improve phase noise and spurs; however, due  
to a potential impact on lock time, the gated bleed bit, BL10  
(Bit DB30), if set to 1, ensures bleed currents are not switched  
on until the digital lock detect asserts logic high. Note that this  
function requires digital lock detect to be enabled.  
Negative Bleed  
Use of constant negative bleed is recommended for most  
applications because it improves the linearity of the charge  
pump leading to lower noise and spurs than leaving negative  
bleed off. To enable negative bleed, write 1 to BL9 (Bit DB29),  
and to disable negative bleed, write 0 to BL9 (Bit DB29).  
RF Divider Select  
D12 to D10 (Bits[DB23:DB21]) select the value of the RF output  
divider (see Figure 36).  
Rev. B | Page 24 of 35  
 
 
Data Sheet  
ADF4355  
Charge Pump Bleed Current  
Reserved  
BL8 to BL1 (Bits[DB20:DB13]) control the level of the bleed  
current added to the charge pump output. This current  
optimizes the phase noise and spurious levels from the device.  
Bit DB10 is reserved and must be set to 0.  
Auxiliary RF Output Enable  
Bit DB9 enables or disables the auxiliary frequency RF output  
(RFOUTB+/RFOUTB−). When DB9 is set to 1, the auxiliary  
frequency RF output is enabled. When DB9 is set to 0, the  
auxiliary RF output is disabled.  
Tests have shown that the optimal bleed set is the following:  
4/N < IBLEED/ICP < 10/N  
where:  
Auxiliary RF Output Power  
I
BLEED is the value of constant negative bleed applied to the  
charge pump, which is set by the contents of Bits[BL8:BL1].  
CP is the value of charge pump current setting, Bits[DB13:DB10] of  
Bits[DB8:DB7] set the value of the auxiliary RF output power  
level (see Figure 36).  
I
Register 4.  
RF Output Enable  
N is the value of the feedback counter from the VCO to the PFD.  
Bit DB6 enables or disables the primary RF output (RFOUTA+/  
RFOUTA−). When DB6 is set to 0, the primary RF output is  
disabled. When DB6 is set to 1, the primary RF output is  
enabled.  
Reserved  
Bit DB12 is reserved and must be set to 0.  
Mute Till Lock Detect  
Output Power  
When D8 (Bit DB11) is set to 1, the supply current to the RF  
output stage is shut down until the device achieves lock, as  
determined by the digital lock detect circuitry.  
Bits[DB5:DB4] set the value of the primary RF output power  
level (see Figure 36).  
Rev. B | Page 25 of 35  
ADF4355  
Data Sheet  
LD  
CYCLE  
COUNT  
CONTROL  
BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
LD4  
LD3 LD2 LD1 C4(0) C3(1) C2(1) C1(1)  
0
0
0
1
0
0
LE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LD5  
LOL  
LD1 LOCK DETECT MODE  
FRACTIONAL-N  
0
1
INTEGER-N (2.9ns)  
LD3  
0
LD2  
0
FRACTIONAL-N LD PRECISION  
5.0ns  
6.0ns  
8.0ns  
12.0ns  
0
1
1
0
1
1
LE  
LE SYNCHRONIZATION  
LOL LOSS OF LOCK MODE  
DISABLED  
DISABLED  
ENABLED  
0
1
0
1
LE SYNCED TO REFIN  
LD5  
0
LD4  
LOCK DETECT CYCLE COUNT  
0
1
0
1
1024  
2048  
4096  
8192  
0
1
1
Figure 37. Register 7  
Loss of Lock (LOL) Mode  
REGISTER 7  
Set LOL (Bit DB7) to 1 when the application is a fixed frequency  
application in which the input reference frequency (REFIN) is likely  
to be removed, such as a clocking application. The standard lock  
detect circuit assumes that REFIN is always present; however, this  
may not be the case with clocking applications. To enable this  
functionality, set DB7 to 1. Loss of lock mode does not function  
reliably when using a differential REFIN mode.  
Control Bits  
With Bits[C4:C1] set to 0111, Register 7 is programmed. Figure 37  
shows the input data format for programming this register.  
Reserved  
Bits[DB31:DB29] are reserved and must be set to 0. Bit DB28 is  
reserved and must be set to 1. Bits[DB27:DB26] are reserved  
and must be set to 0.  
Fractional-N Lock Detect Precision (LDP)  
LE Sync  
LD3 and LD2 (Bits[DB6:DB5]) set the precision of the lock detect  
circuitry in fractional-N mode. LDP is available at 5.0 ns, 6.0 ns,  
8.0 ns, or 12.0 ns. If bleed currents are used, use 12 ns.  
When set to 1, Bit DB25 ensures that the load enable (LE) edge  
is synchronized internally with the rising edge of reference  
input frequency. This synchronization prevents the rare event of  
reference and RF dividers from loading at the same time as a falling  
edge of reference frequency, which can lead to longer lock times.  
Lock Detect Mode (LDM)  
If LD1 (Bit DB4) is set to 0, each reference cycle is set by  
fractional-N lock detect precision as described in the  
Fractional-N Lock Detect Count (LDC) section. If DB4 is  
set to 1, each reference cycle is 2.9 ns long, which is more  
appropriate for integer-N applications.  
Reserved  
Bits[DB24:DB10] are reserved and must be set to 0.  
Fractional-N Lock Detect Count (LDC)  
LD5 and LD4 (Bits[DB9:DB8]) set the number of consecutive  
cycles counted by the lock detect circuitry before asserting lock  
detect high. See Figure 37 for details.  
Rev. B | Page 26 of 35  
 
 
 
Data Sheet  
ADF4355  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
1
0
0
0
0
0
1
0
1
1
0
1
0
0
0
1
0
0
0
0
1
0
0
C4(1)  
C1(0)  
C3(0) C2(0)  
Figure 38. Register 8 (0x102D0428)  
SYNTHESIZER  
LOCK TIMEOUT  
CONTROL  
BITS  
VCO BAND DIVISION  
TIMEOUT  
AUTOMATIC LEVEL TIMEOUT  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VC8 VC7 VC6  
VC5 VC4 VC3 VC2 VC1 TL10 TL9  
TL8  
TL7  
TL6  
TL5  
TL4  
TL3  
TL2  
TL1 AL5 AL4  
AL3 AL2 AL1 SL5 SL4 SL3 SL2 SL1 C4(1) C3(0) C2(0) C1(1)  
SL5  
SL4  
..........  
SL2  
SL1 SLC WAIT  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
TL10  
TL9  
..........  
TL2  
TL1 TIMEOUT  
2
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
.
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1020  
1021  
1022  
1023  
AL5  
AL4  
..........  
AL2  
AL1 ALC WAIT  
VC8  
VC7  
..........  
VC2  
VC1 VCO BAND DIV  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
28  
29  
30  
31  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 39. Register 9  
Automatic Level Calibration Timeout  
REGISTER 8  
AL5 to AL1 (Bits[DB13:DB9]) set the timer value used for the  
automatic level calibration of the VCO. This function combines  
the PFD frequency, the timeout variable, and ALC wait variable.  
Choose ALC such that the following equation is always greater  
than 50 μs.  
The bits in this register are reserved and must be programmed  
as described in Figure 38, using a hexadecimal word of  
0x102D0428.  
REGISTER 9  
Control Bits  
(Timeout × ALC Wait/PFD Frequency) > 50 μs  
With Bits[C4:C1] set to 1001, Register 9 is programmed. Figure 39  
shows the input data format for programming this register.  
Synthesizer Lock Timeout  
SL5 to SL1 (Bits[DB8:DB4]) set the synthesizer lock timeout  
value. Use this value to allow the VTUNE force to settle on the  
VCO Band Division  
VC8 to VC1 (Bits[DB31:DB24]) set the value of the VCO band  
division clock. Determine the value of this clock by PFD/(band  
division × 16) such that the result is <150 kHz.  
VTUNE pin. The value must be 20 μs. Calculate the value using  
the following equation:  
(Timeout × Synthesizer Lock Timeout/PFD Frequency) > 20 μs  
Timeout  
TL10 to TL1 (Bits[DB23:DB14]) set the timeout value for the  
VCO band select. Use this value as a variable in the other VCO  
calibration settings.  
Rev. B | Page 27 of 35  
 
 
 
 
ADF4355  
Data Sheet  
ADC  
CLOCK DIVIDER  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AE2 AE1 C4(1) C3(0) C2(1) C1(0)  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
AE1 ADC  
0
1
DISABLED  
ENABLED  
AE2 ADC CONVERSION  
0
1
DISABLED  
ENABLED  
AD8  
AD7  
..........  
AD2 AD1 ADC CLK DIV  
0
0
.
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
1
.
1
0
.
1
2
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252  
253  
254  
255  
Figure 40. Register 10  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
Figure 41. Register 11 (0x0061300B)  
Choose the ADC_CLK_DIV value such that  
REGISTER 10  
Control Bits  
ADC_CLK_DIV = ceiling(((fPFD/100,000) − 2)/4)  
where ceiling() is a function to round up to the nearest integer.  
With Bits[C4:C1] set to 1010, Register 10 is programmed.  
Figure 40 shows the input data format for programming this  
register.  
For example, for fPFD = 61.44 MHz, set ADC_CLK_DIV = 154  
so that the ADC clock frequency is 99.417 kHz. If ADC_CLK_DIV  
is greater than 255, set it to 255.  
Reserved  
Bits[DB31:DB14] are reserved. Bits[DB23:DB22] must be set to  
11, but all other bits in this range must be set to 0.  
ADC Conversion Enable  
AE2 (Bit DB5) ensures that the ADC performs a conversion  
when a write to Register 10 is performed. It is recommended to  
enable this mode.  
ADC Clock Divider (ADC_CLK_DIV)  
An on-board analog-to-digital converter (ADC) determines the  
VTUNE setpoint relative to the ambient temperature of the ADF4355  
environment. The ADC ensures that the initial tuning voltage  
in any application is chosen correctly to avoid any temperature  
drift issues.  
ADC Enable  
AE1 (Bit DB4), when set to 1, powers up the ADC for the  
temperature dependent VTUNE calibration. It is recommended to  
always use this function.  
The ADC uses a clock that is equal to the output of the R counter  
(or the PFD frequency) divided by ADC_CLK_DIV.  
REGISTER 11  
The bits in this register are reserved and must be programmed as  
described in Figure 41, using a hexadecimal word of 0x0061300B.  
AD8 to AD1 (Bits[DB13:DB6]) set the value of this divider. On  
power-up, the R counter is not programmed; however, in these  
power-up cases, it defaults to R = 1.  
Rev. B | Page 28 of 35  
 
 
 
 
Data Sheet  
ADF4355  
CONTROL  
BITS  
RESERVED  
RESYNC CLOCK  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P13 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1  
P12  
C1(0)  
C3(1) C2(0)  
0
0
0
0
0
1
0
0
0
0
0
1
P16  
P15  
C4(1)  
P14  
P16  
P15  
...  
P5  
P4  
P3  
P2  
P1  
RESYNC CLOCK  
0
0
0
.
0
0
0
.
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1
0
.
NOT ALLOWED  
1
2
...  
0
0
0
.
0
0
0
.
1
1
1
.
0
0
1
.
1
1
0
.
1
1
0
.
0
1
0
.
22  
23  
24  
...  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
65533  
65534  
65535  
Figure 42. Register 12  
For fPFD > 75 MHz (initially lock with half fPFD), use the  
following sequence:  
1. Register 12.  
REGISTER 12  
Control Bits  
With Bits[C4:C1] set to 1100, Register 12 is programmed. Figure 42  
shows the input data format for programming this register.  
2. Register 11.  
3. Register 10.  
4. Register 9.  
Phase Resync Clock Divider Value  
5. Register 8.  
6. Register 7.  
7. Register 6.  
8. Register 5.  
P16 to P1 (Bits[DB31:DB16]) set the timeout counter for  
activation of phase resync. This value must be set such that a  
resync happens immediately after (and not before) the PLL has  
achieved lock after reprogramming.  
9. Register 4 (with the R divider doubled to output half fPFD).  
10. Register 3.  
11. Register 2 (for halved fPFD).  
Calculate the timeout value using the following equation:  
Time Out Value = Phase Resync Clock/PFD Frequency  
Reserved  
12. Register 1 (for halved fPFD).  
13. Wait >16 ADC_CLK cycles. For example, if  
ADC_CLK = 99.417 kHz, wait 16/99417 sec = 161 μs.  
See the Register 10 section for more information.  
14. Register 0 (for halved fPFD; autocalibration enabled).  
15. Register 4 (with the R divider set for desired fPFD).  
16. Register 2 (for desired fPFD).  
Bits[DB15:DB4] are reserved. Bit DB10 and Bit DB4 must be set  
to 1, but all other bits in this range must be set to 0.  
REGISTER INITIALIZATION SEQUENCE  
At initial power-up, after the correct application of voltages to  
the supply pins, registers must be programmed in sequence. For  
17. Register 1 (for desired fPFD).  
18. Register 0 (for desired fPFD; autocalibration disabled).  
f
PFD ≤ 75 MHz, use the following sequence:  
1. Register 12.  
2. Register 11.  
3. Register 10.  
4. Register 9.  
5. Register 8.  
6. Register 7.  
7. Register 6.  
8. Register 5.  
9. Register 4.  
10. Register 3.  
11. Register 2.  
12. Register 1.  
13. Wait >16 ADC_CLK cycles. For example, if  
ADC_CLK = 99.417 kHz, wait 16/99,417 sec = 161 μs.  
See the Register 10 section for more information.  
14. Register 0.  
FREQUENCY UPDATE SEQUENCE  
Frequency updates require updating the auxiliary modulator  
(MOD2) in Register 2, the fractional value (FRAC1) in Register 1,  
and the integer value (INT) in Register 0. It is recommended to  
perform a temperature dependent VTUNE calibration by updating  
Register 10 first. A counter reset (Bit DB4) is also required in  
the frequency update sequence Therefore, for fPFD ≤ 75 MHz,  
use the following sequence:  
1. Register 10.  
2. Register 4 (counter reset enabled [DB4 = 1]).  
3. Register 2.  
4. Register 1.  
5. Register 0 (autocalibration disabled [DB21 = 0]).  
6. Register 4 (counter reset disabled [DB4 = 0]).  
Rev. B | Page 29 of 35  
 
 
 
 
ADF4355  
Data Sheet  
7. Wait >16 ADC_CLK_DIV cycles. For example, if  
The feedback path is also important. In this example, the VCO  
output is fed back before the output divider (see Figure 43).  
ADC_CLK_DIV = 99.417 kHz, wait 16/99417 sec =  
161 µs. See the Register 10 section.  
8. Register 0 (autocalibration enabled [DB21 = 1]).  
In this example, divide the 122.88 MHz reference signal by 2 to  
generate a fPFD of 61.44 MHz. The desired channel spacing is  
200 kHz.  
For fPFD > 75 MHz (initially lock with half fPFD), use the  
following sequence:  
fPFD  
RF  
OUT  
PFD  
VCO  
÷2  
1. Register 10.  
2. Register 4 (counter reset enabled [DB4 = 1]).  
3. Register 2 (for halved fPFD).  
N
DIVIDER  
4. Register 1 (for halved fPFD).  
Figure 43. Loop Closed Before Output Divider  
5. Register 0 (for halved fPFD; autocalibration disabled).  
6. Register 4 (counter reset disabled [DB4 = 0], with the  
R divider doubled to output half fPFD).  
7. Wait >16 ADC_CLK cycles. For example, if  
ADC_CLK = 99.417 kHz, wait 16/99417 sec = 161 μs.  
See the Register 10 section for more information.  
8. Register 0 (for halved fPFD; autocalibration enabled).  
9. Register 4 (with the R divider set for desired fPFD).  
10. Register 2 (for desired fPFD).  
The worked example is as follows:  
N = VCOOUT/fPFD = 4225.6 MHz/61.44 MHz =  
68.7760416666666667  
INT = int(VCO frequency/fPFD) = 68  
FRAC = 0.7760416666666667  
MOD1 = 16,777,216  
FRAC1 = int(MOD1 × FRAC) = 13019817  
Remainder = 0.6666666667 or 2/3  
MOD2 = fPFD/GCD(fPFD/fCHSP) = 61.44  
MHz/GCD(61.44 MHz/200 kHz) = 1536  
FRAC2 = remainder × 1536 = 1024  
11. Register 1 (for desired fPFD).  
12. Register 0 (for desired fPFD; autocalibration disabled).  
The frequency change only occurs when writing to Register 0.  
RF SYNTHESIZER—A WORKED EXAMPLE  
From Equation 8,  
Use the following equations to program the ADF4355 synthesizer:  
fPFD = (122.88 MHz × (1 + 0)/2) = 61.44 MHz  
(9)  
FRAC2  
MOD2  
MOD1  
From Equation 7,  
FRAC1+  
RFOUT  
where:  
=
INT +  
× (fPFD)/RF Divider (7)  
2112.8 MHz = 61.44 MHz × ((INT + (FRAC1 +  
FRAC2/MOD2)/224))/2  
where:  
INT = 68  
FRAC1 = 13,019,817  
FRAC2 = 1024  
(10)  
RFOUT is the RF frequency output.  
INT is the integer division factor.  
FRAC1 is the fractionality.  
FRAC2 is the auxiliary fractionality.  
MOD2 is the auxiliary modulus.  
MOD1 is the fixed 24-bit modulus.  
MOD2 = 1536  
RF Divider = 2 (see Equation 7)  
RF Divider is the output divider that divides down the VCO  
frequency.  
REFERENCE DOUBLER AND REFERENCE DIVIDER  
The on-chip reference doubler allows the input reference signal  
to be doubled. The doubler is useful for increasing the PFD  
comparison frequency. To improve the noise performance of  
the system, increase the PFD frequency. Doubling the PFD  
frequency usually improves noise performance by 3 dB.  
f
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
(8)  
where:  
REFIN is the reference frequency input.  
D is the RF REFIN doubler bit.  
R is the RF reference division factor.  
T is the reference divide by 2 bit (0 or 1).  
The reference divide by 2 divides the reference signal by 2,  
resulting in a 50% duty cycle PFD frequency.  
For example, in a universal mobile telecommunication system  
(UMTS) where 2112.8 MHz RF frequency output (RFOUT) is  
required, a 122.88 MHz reference frequency input (REFIN) is  
available. Note that the ADF4355 VCO operates in the frequency  
range of 3.4 GHz to 6.8 GHz. Therefore, an RF divider of 2 must  
be used (VCO frequency = 4225.6 MHz, RFOUT = VCO frequency/  
RF divider = 4225.6 MHz/2 = 2112.8 MHz).  
SPURIOUS OPTIMIZATION AND FAST LOCK  
Narrow loop bandwidths can filter unwanted spurious signals,  
but these bandwidths usually have a long lock time. A wider  
loop bandwidth achieves faster lock times but may lead to  
increased spurious signals inside the loop bandwidth.  
Rev. B | Page 30 of 35  
 
 
 
 
 
Data Sheet  
ADF4355  
By combining the following two equations:  
OPTIMIZING JITTER  
ALC Wait > (50 µs × fPFD)/Timeout  
For lowest jitter applications, use the highest possible PFD  
frequency to minimize the contribution of in-band noise from  
the PLL. Set the PLL filter bandwidth such that the in-band noise  
of the PLL intersects with the open-loop noise of the VCO,  
minimizing the contribution of both to the overall noise.  
Synthesizer Lock Timeout > (20 µs × fPFD)/Timeout  
The following is found:  
ALC Wait = 2.5 × Synthesizer Lock Timeout  
Maximize ALC Wait (to reduce Timeout to minimize time) so  
that ALC Wait = 30 and Synthesizer Lock Timeout = 12.  
Use the ADIsimPLLdesign tool for this task.  
SPUR MECHANISMS  
Finally, ALC Wait > (50 µs × fPFD)/Timeout, is rearranged as  
Timeout = Ceiling((fPFD × 50 µs)/ALC Wait)  
Timeout = Ceiling((61.44 MHz × 50 µs)/30) = 103  
Synthesizer Lock Timeout  
This section describes the two different spur mechanisms that  
arise with a fractional-N synthesizer and how to minimize them  
in the ADF4355.  
Integer Boundary Spurs  
One mechanism for fractional spur creation is the interactions  
between the RF VCO frequency and the reference frequency.  
When these frequencies are not integer related (the purpose of a  
fractional-N synthesizer), spur sidebands appear on the VCO  
output spectrum at an offset frequency that corresponds to the  
beat note or the difference in frequency between an integer  
multiple of the reference and the VCO frequency. These spurs  
are attenuated by the loop filter and are more noticeable on  
channels close to integer multiples of the reference where the  
difference frequency can be inside the loop bandwidth (thus  
the name, integer boundary spurs).  
The synthesizer lock timeout ensures that the VCO calibration  
DAC, which forces VTUNE, has settled to a steady value for the  
band select circuitry.  
The timeout and synthesizer lock timeout variables programmed  
in Register 9 select the length of time the DAC is allowed to  
settle to the final voltage before the VCO calibration process  
continues to the next phase, which is VCO band selection. The  
PFD frequency is used as the clock for this logic, and the  
duration is set by  
Timeout ×Synthesizer Lock Timeout  
PFD Frequency  
Reference Spurs  
Reference spurs are generally not a problem in fractional-N  
synthesizers because the reference offset is far outside the loop  
bandwidth. However, any reference feedthrough mechanism  
that bypasses the loop may cause a problem. Feedthrough of  
low levels of on-chip reference switching noise, through the  
prescaler back to the VCO, can result in reference spur levels  
as high as −80 dBc.  
The calculated time must be equal to or greater than 20 µs.  
VCO Band Selection  
Use the PFD frequency again as the clock for the band selection  
process. Calculate this value by  
PFD/(VCO Band Selection × 16) < 150 kHz  
The band selection takes 11 cycles of the previously calculated  
value. Calculate the duration by  
LOCK TIME  
11 × (VCO Band Selection × 16)/PFD Frequency  
The PLL lock time divides into a number of settings. All of  
these are modeled in the ADIsimPLL design tool. Faster lock  
times than those detailed in this data sheet are possible; contact  
your local Analog Devices, Inc., sales representative for more  
information.  
Automatic Level Calibration Timeout  
Use the automatic level calibration (ALC) function to choose  
the correct bias current in the ADF4355 VCO core. Calculate  
the time taken by  
Lock Time—A Worked Example  
5 × 11 × ALC Wait × Timeout/PFD Frequency  
Assuming fPFD = 61.44 MHz,  
PLL Low-Pass Filter Settling Time  
VCO Band Div = Ceiling(fPFD/2,400,000) = 26  
where Ceiling() rounds up to the nearest integer.  
The time taken for the loop to settle is inversely proportional to  
the low-pass filter bandwidth. The settling time is also modeled  
in the ADIsimPLL design tool.  
The total lock time for changing frequencies is the sum of the  
four separate times (synthesizer lock, VCO band selection, ALC  
timeout, and PLL settling time) and is all modeled in the  
ADIsimPLL design tool.  
Rev. B | Page 31 of 35  
 
 
ADF4355  
Data Sheet  
APPLICATIONS INFORMATION  
The LO ports of the ADL5375 can be driven differentially from  
the complementary RFOUTA+/RFOUTA− outputs of the ADF4355.  
Differential drive gives better second-order distortion performance  
than a single-ended LO driver and eliminates the use of a balun  
to convert from a single-ended LO input to the more desirable  
differential LO input for the ADL5375.  
DIRECT CONVERSION MODULATOR  
Direct conversion architectures are increasingly being used to  
implement base station transmitters. Figure 44 shows how to  
use Analog Devices devices to implement such a system.  
The circuit block diagram shows the AD9761 TxDAC+® being  
used with the ADL5375. The use of a dual integrated DAC, such  
as the AD9761, ensures minimum error contribution (over  
temperature) from this portion of the signal chain.  
The ADL5375 accepts LO drive levels from −6 dBm to +6 dBm.  
The optimum LO power can be software programmed on the  
ADF4355, which allows levels from −4 dBm to +5 dBm from  
each output.  
The local oscillator (LO) is implemented using the ADF4355.  
The low-pass filter was designed using the ADIsimPLL design  
tool for a PFD of 61.44 MHz and a closed-loop bandwidth of  
20 kHz.  
The RF output is designed to drive a 50 Ω load; however, it  
must be ac-coupled, as shown in Figure 44. If the I and Q inputs  
are driven in quadrature by 2 V p-p signals, the resulting output  
power from the ADL5375 modulator is approximately 2 dBm.  
51Ω  
51Ω  
REFIO  
IOUTA  
IOUTB  
LOW-PASS  
FILTER  
MODULATED  
DIGITAL  
DATA  
AD9761  
TxDAC  
QOUTA  
QOUTB  
LOW-PASS  
FILTER  
FSADJ  
51Ω  
51Ω  
2kΩ  
V
LOCK  
DETECT  
VCO  
V
DD  
100nF  
32  
100nF  
1
25  
17  
5
4
26  
10  
6
27  
DV  
16  
AV  
30  
V
PDB  
V
C
RF RF  
2
C
REG  
MUXOUT  
V
AV  
CE  
REG  
VCO  
P
DD  
DD  
DD  
1nF 1nF  
1nF 1nF  
ADL5375  
IBBP  
FREF  
FREF  
29  
IN  
REF  
REF  
A
B
IN  
IN  
RF  
B+ 14  
OUT  
IBBN  
V
OUT  
RF  
B–  
15  
28  
OUT  
IN  
7.5nH  
7.5nH  
1
2
3
CLK  
DATA  
LE  
1nF  
LOIP  
11  
12  
RF  
RF  
A+  
A–  
QUADRATURE  
PHASE  
SPLITTER  
OUT  
LPF  
ADF4355  
RFOUT  
LOIN  
OUT  
LPF  
1nF  
V
20  
7
TUNE  
DSOP  
3.3kΩ  
QBBN  
QBBP  
22  
R
CP  
OUT  
SET  
4.7kΩ  
33nF  
1500pF  
390pF  
1kΩ  
CP  
SD  
A
A
A
V
V
GND  
GND GND GNDRF  
GNDVCO  
REGVCO  
19  
V
BIAS  
REF  
8
31  
9
13  
18 21  
23  
24  
10pF  
0.1µF 10pF  
0.1µF 10pF  
0.1µF  
Figure 44. Direct Conversion Modulator  
Rev. B | Page 32 of 35  
 
 
 
 
Data Sheet  
ADF4355  
The bottom of the chip-scale package has a central exposed  
POWER SUPPLIES  
thermal pad. The thermal pad on the PCB must be at least as  
large as the exposed pad. On the PCB, there must be a minimum  
clearance of 0.25 mm between the thermal pad and the inner  
edges of the pad pattern. This clearance ensures the avoidance  
of shorting.  
The ADF4355-2 contains four multiband VCOs that cover an  
octave range of frequencies. To ensure best performance, it is vital  
to connect a low noise regulator, such as the ADM7170, to the  
VVCO pin. Connect the same regulator to package pins VVCO  
,
VREGVCO, and VP.  
To improve the thermal performance of the package, use thermal  
vias on the PCB thermal pad. If vias are used, incorporate them  
into the thermal pad at the 1.2 mm pitch grid. The via diameter  
must be between 0.3 mm and 0.33 mm and the via barrel must  
be plated with 1 oz. of copper to plug the via.  
For the 3.3 V supply pins, use two ADM7170 regulators, one for  
the DVDD and AVDD supplies and one for VRF. Figure 45 shows  
the recommended connections.  
PRINTED CIRCUIT BOARD (PCB) DESIGN  
GUIDELINES FOR A CHIP-SCALE PACKAGE  
For a microwave PLL and VCO synthesizer, such as the ADF4355,  
take care with the board stack-up and layout. Do not consider  
using FR4 material because it is too lossy above 3 GHz. Instead,  
Rogers 4350, Rogers 4003, or Rogers 3003 dielectric material is  
suitable.  
The lands on the 32-lead lead frame chip-scale package are  
rectangular. The PCB pad for these lands must be 0.1 mm  
longer than the package land length and 0.05 mm wider than  
the package land width. Center each land on the pad to  
maximize the solder joint size.  
Take care with the RF output traces to minimize discontinuities  
and ensure the best signal integrity. Via placement and grounding  
are critical.  
V
= 3.3V  
OUT  
V
= 6.0V  
IN  
VIN  
EN  
VOUT  
VOUT  
C
10µF  
IN  
C
10µF  
OUT  
ON  
SENSE  
OFF  
ADM7170  
SS  
C
SS  
1nF  
LOCK  
GND  
DETECT  
100nF  
100nF  
1
17  
V
25  
26  
C
CE PDB V  
RF RF  
10  
6
27  
DV  
16  
AV  
4
32  
30  
2
C
REG  
V
MUXOUT  
REG  
VCO  
P
DD  
DD  
1nF 1nF  
1nF 1nF  
V
= 3.3V  
C
OUT  
FREF  
FREF  
29  
IN  
REF  
A
B
IN  
IN  
V
= 6.0V  
RF  
B+ 14  
IN  
OUT  
VIN  
EN  
VOUT  
VOUT  
V
OUT  
C
RF  
B–  
IN  
15  
28 REF  
OUT  
IN  
OUT  
10µF  
ON  
10µF  
7.5nH  
7.5nH  
SENSE  
1
2
3
CLK  
OFF  
1nF  
1nF  
ADM7170  
DATA  
LE  
11  
12  
RF  
RF  
A+  
A–  
SS  
OUT  
C
ADF4355  
SS  
1nF  
OUT  
GND  
V
20  
7
TUNE  
3.3kΩ  
22  
R
CP  
OUT  
SET  
4.7kΩ  
33nF  
V
= 5.0V  
C
V
= 6.0V  
OUT  
IN  
1500pF  
390pF  
AV  
5
DD  
VIN  
EN  
VOUT  
VOUT  
1kΩ  
C
CP  
SD  
A
A
A
V
V
V
BIAS  
IN  
GND  
GND GND  
GNDRF  
GNDVCO  
REGVCO  
REF  
OUT  
10µF  
ON  
10µF  
8
31  
9
13  
18 21  
19  
23  
24  
SENSE  
OFF  
ADM7170  
SS  
C
SS  
1nF  
10pF  
0.1µF 10pF  
0.1µF 10pF  
0.1µF  
GND  
Figure 45. ADF4355 Power Supplies  
Rev. B | Page 33 of 35  
 
 
 
ADF4355  
Data Sheet  
When differential outputs are not needed, terminate the unused  
output or combine it with both outputs using a balun.  
OUTPUT MATCHING  
The low frequency output can simply be ac-coupled to the next  
circuit, if desired; however, if higher output power is required,  
use a pull-up inductor to increase the output power level.  
For lower frequencies below 2 GHz, it is recommended to use a  
100 nH inductor on the RFOUTA+/RFOUTA− pins.  
V
RF  
The RFOUTA+/RFOUTA− pins are a differential circuit. Provide  
each output with the same (or similar) components where  
possible, such as the same shunt inductor value, bypass  
capacitor, and termination.  
7.5nH  
100pF  
RF  
A+  
OUT  
50Ω  
The auxiliary frequency output, RFOUTB+/RFOUTB−, can be  
treated the same as the RFOUTA+/RFOUTA− output. If unused,  
leave both RFOUTB+/RFOUTB− pins open.  
Figure 46. Optimum Output Stage  
Rev. B | Page 34 of 35  
Data Sheet  
ADF4355  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
25  
32  
24  
1
0.50  
BSC  
3.75  
3.60 SQ  
3.55  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5.  
Figure 47. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADF4355BCPZ  
ADF4355BCPZ-RL7  
EV-ADF4355SD1Z  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-32-12  
CP-32-12  
1 Z = RoHS Compliant Part.  
©2015–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12910-0-8/17(B)  
Rev. B | Page 35 of 35  
 
 

相关型号:

ADF4355-2

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-2BCPZ

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-2BCPZ-RL7

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-2_17

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-3

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-3BCPZ

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-3BCPZ-RL7

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355-3_17

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355BCPZ

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355BCPZ-RL7

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4355_17

Microwave Wideband Synthesizer with Integrated VCO
ADI

ADF4356

6.8 GHz Wideband Synthesizer with Integrated VCO
ADI