ADDAC80Z-CBI-V2 [ADI]

Complete Low Cost 12-Bit D/A Converters;
ADDAC80Z-CBI-V2
型号: ADDAC80Z-CBI-V2
厂家: ADI    ADI
描述:

Complete Low Cost 12-Bit D/A Converters

文件: 总16页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete Low Cost  
12-Bit D/A Converters  
a
ADDAC80/ADDAC85/ADDAC87  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Single Chip Construction  
On-Board Output Amplifier  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
(MSB) BIT 1  
BIT 2  
V
OUT  
Low Power Dissipation: 300 mW  
Monotonicity Guaranteed over Temperature  
Guaranteed for Operation with 12 V Supplies  
Improved Replacement for Standard DAC80, DAC800  
Hl-5680  
High Stability, High Current Output  
Buried Zener Reference  
Laser Trimmed to High Accuracy  
1/2 LSB Max Nonlinearity  
REF  
REF  
CONTROL  
CIRCUIT  
GAIN ADJUST  
3
BIT 3  
+V  
S
4
BIT 4  
COMMON  
12-BIT  
RESISTOR  
LADDER  
NETWORK  
AND  
CURRENT  
SWITCHES  
5
BIT 5  
SUMMING JUNCTION  
20V RANGE  
5kꢀ  
6
BIT 6  
5kꢀ  
7
BIT 7  
10V RANGE  
8
BIT 8  
BIPOLAR OFFSET  
REF INPUT  
6.3kꢀ  
9
BIT 9  
+
10  
11  
12  
BIT 10  
BIT 11  
(LSB) BIT 12  
V
Low Cost Plastic Packaging  
OUT  
–V  
S
ADDAC80  
NC/+V *  
L
*NC = CBIVERSIONS  
5V – CCDVERSIONS  
PRODUCT DESCRIPTION  
The ADDAC80 Series is a family of low cost 12-bit digital-to-  
analog converters with both a high stability voltage reference  
and output amplifier combined on a single monolithic chip.  
The ADDAC80 Series is recommended for all low cost 12-bit D/A  
converter applications where reliability and cost are of paramount  
importance.  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
(MSB) BIT 1  
BIT 2  
V
OUT  
REF  
REF  
GAIN ADJUST  
+V  
CONTROL  
CIRCUIT  
3
BIT 3  
S
4
BIT 4  
COMMON  
12-BIT  
RESISTOR  
LADDER  
NETWORK  
AND  
CURRENT  
SWITCHES  
5
BIT 5  
SCALING NETWORK  
SCALING NETWORK  
SCALING NETWORK  
BIPOLAR OFFSET  
REF INPUT  
2kꢀ  
6
BIT 6  
5kꢀ  
Advanced circuit design and precision processing techniques  
result in significant performance advantages over conventional  
DAC80 devices. Innovative circuit design reduces the total  
power consumption to 300 mW, which not only improves reli-  
ability, but also improves long term stability.  
7
BIT 7  
5kꢀ  
8
BIT 8  
6.3kꢀ  
9
BIT 9  
10  
11  
12  
BIT 10  
BIT 11  
(LSB) BIT 12  
I
OUT  
V  
S
NC/+V *  
L
The ADDAC80 incorporates a fully differential, nonsaturating  
precision current switching cell structure which provides greatly  
increased immunity to supply voltage variation. This same struc-  
ture also reduces nonlinearities due to thermal transients as the  
various bits are switched; nearly all critical components operate  
at constant power dissipation. High stability, SiCr thin film  
resistors are trimmed with a fine resolution laser, resulting in  
lower differential nonlinearity errors. A low noise, high stability,  
subsurface Zener diode is used to produce a reference voltage  
with excellent long term stability, high external current capabil-  
ity and temperature drift characteristics which challenge the  
best discrete Zener references.  
*NC = CBIVERSIONS  
5V CCDVERSIONS  
PRODUCT HIGHLIGHTS  
1. The ADDAC80 series of D/A converters directly replaces all  
other devices of this type with significant increases in performance.  
2. Single chip construction and low power consumption pro-  
vides the optimum choice for applications where low cost  
and high reliability are major considerations.  
3. The high speed output amplifier has been designed to settle  
within 1/2 LSB for a 10 V full scale transition in 2.0 µs, when  
properly compensated.  
The ADDAC80 Series is available in three performance grades  
and three package types. The ADDAC80 is specified for use  
over the 0°C to 70°C temperature range and is available in  
both plastic and ceramic DIP packages. The ADDAC85 and  
ADDAC87 are available in hermetically sealed ceramic packages  
and are specified for the –25°C to +85°C and –55°C to +125°C  
temperature ranges.  
4. The precision buried Zener reference can supply up to 2.5 mA  
for use elsewhere in the application.  
5. The low TC binary ladder guarantees that all units aremono-  
tonic over the specified temperature range.  
6. System performance upgrading is possible without redesign.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(TA = 25C, rated power supplies  
unless otherwise noted.)  
ADDAC80/ADDAC85/ADDAC87–SPECIFICATIONS  
ADDAC80  
Typ  
ADDAC85  
Typ  
ADDAC87  
Model  
Min  
Max  
Min  
Max  
Min  
Typ  
Max  
Unit  
TECHNOLOGY  
Monolithic  
Monolithic  
Monolithic  
DIGITAL INPUT  
Binary–CBI  
BCD–CCD  
12  
12  
12  
Bits  
Digits  
Logic Levels (TTL Compatible)  
V
IH (Logic “1”)  
2.0  
0
5.5  
0.8  
250  
100  
2.0  
0
5.5  
0.8  
250  
100  
2.0  
0
5.5  
0.8  
250  
100  
V
V
µA  
µA  
VIL (Logic “0”)  
IIH (VIH = 5.5 V)  
IIL (VIL = 0.8 V)  
TRANSFER CHARACTERISTICS  
ACCURACY  
Linearity Error @ 25°C  
CBI  
1/2  
1/2  
3/4  
1/2  
1/2  
3/4  
1/2  
3/4  
3/4  
LSB1  
LSB  
LSB  
CCD  
TA @ TMIN to TMAX  
Differential Linearity Error @ 25°C  
CBI  
1/4  
1/4  
1/2  
LSB  
LSB  
CCD  
T
A @ TMIN to TMAX  
3/4  
0.3  
0.15  
1
0.2  
0.1  
1
0.2  
0.1  
LSB  
Gain Error2  
0.1  
0.05  
0.1  
0.05  
0.1  
0.05  
%FSR3  
%FSR3  
Offset Error2  
Temperature Range for Guaranteed  
Monotonicity  
0
+70  
20  
–25  
+85  
–55  
+125  
°C  
DRIFT (TMIN to TMAX  
)
Total Bipolar Drift, max (includes gain,  
offset, and linearity drifts)  
Total Error (TMIN to TMAX  
Unipolar  
20  
30  
ppm of FSR/°C  
4
)
0.08  
0.06  
15  
4
1
5
0.15  
0.12  
0.08  
0.2  
0.12  
20  
10  
3
0.18  
0.14  
0.3  
0.24  
20  
10  
3
% of FSR  
% of FSR  
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR/°C  
Bipolar  
0.10  
30  
7
3
10  
Gain Including Internal Reference  
Gain Excluding Internal Reference  
Unipolar Offset  
Bipolar Offset  
10  
10  
CONVERSION SPEED  
Voltage Model (V)5  
Settling Time to 0.01% of FSR for  
FSR Change (2 kʈ500 pF load)  
with 10 kFeedback  
with 5 kFeedback  
3
2
1
4
3
3
2
1
4
3
3
2
1
4
3
µs  
µs  
For LSB Change  
µs  
V/µs  
Slew Rate  
10  
10  
10  
ANALOG OUTPUT  
Voltage Models  
Ranges–CBI  
2.5, 5,  
10, +5,  
10  
2.5, 5,  
10, +5,  
10  
2.5, 5,  
10, +5,  
10  
V
V
V
–CCD  
Output Current  
V
mA  
5
5
5
Output Impedance (dc)  
Short Circuit Current  
Internal Reference Voltage (VR)  
Output Impedance  
Max External Current6  
Tempco of Drift  
0.05  
0.05  
0.05  
40  
6.37  
40  
6.37  
40  
6.37  
mA  
6.23  
6.3  
1.5  
6.23  
6.3  
1.5  
6.23  
6.3  
1.5  
V
mA  
2.5  
20  
2.5  
20  
2.5  
10  
10  
10  
ppm of VR/°C  
POWER SUPPLY SENSITIVITY  
15 V 10%, 5 V supply when applicable  
12 V 5%  
0.002  
0.002  
0.002  
0.002  
0.002  
0.002  
% of FSR/%VS  
% of FSR/%VS  
POWER SUPPLY REQUIREMENTS  
Rated Voltages  
Range  
15  
15  
15  
V
Analog Supplies  
Logic Supplies  
11.47  
16.5  
11.47  
16.5  
11.47  
16.5  
V
V
Supply Drain  
+12 V, +15 V  
–12 V, –15 V  
5
14  
10  
20  
5
14  
10  
20  
5
14  
10  
20  
mA  
mA  
–2–  
REV. B  
ADDAC80/ADDAC85/ADDAC87  
ADDAC80  
Typ  
ADDAC85  
Typ  
ADDAC87  
Model  
Min  
Max  
Min  
Max  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Specifications  
Operating  
0
–25  
–25  
+70  
+85  
+125  
–25  
–55  
–65  
+85  
+125  
+150  
–55  
–55  
–65  
+125  
+125  
+150  
°C  
°C  
°C  
Storage  
NOTES  
1Least Significant Bit.  
2Adjustable to zero with external trim potentiometer.  
3FSR means “Full Scale Range” and is 20 V for the 10 V range and 10 V for the 5 V range.  
4Gain and offset errors adjusted to zero at 25°C.  
5CF = 0, see Figure 3a.  
6Maximum with no degradation of specification, must be a constant load.  
7A minimum of 12.3 V is required for a 10 V full scale output and 11.4 V is required for all other voltage ranges.  
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min  
and max specifications are guaranteed, although only those shown in boldface are tested on all production units.  
Specifications subject to change without notice.  
ADDAC80  
Typ  
ADDAC85  
Typ  
ADDAC87  
Typ  
Model  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
TECHNOLOGY  
Hybrid  
Hybrid  
Hybrid  
DIGITAL INPUT  
Binary–CBI  
BCD–CCD  
12  
3
12  
3
12  
3
Bits  
Digits  
Logic Levels (TTL Compatible)  
VIH (Logic “1”)  
VIL (Logic “0”)  
2.0  
0
5.5  
0.8  
2.0  
0
5.5  
0.8  
2.0  
0
5.5  
0.8  
V
V
IIH (VIH = 5.5 V)  
IIL (VIL = 0.8 V)  
250  
–100  
250  
–100  
250  
–100  
µA  
µA  
TRANSFER CHARACTERISTICS  
ACCURACY  
Linearity Error @ 25°C  
CBI  
1/4  
1/8  
1/4  
1/2  
1/4  
1/2  
1/2  
1/4  
1/2  
1/2  
1/4  
1/2  
LSB1  
LSB  
LSB  
CCD  
TA @ TMIN to TMAX  
Differential Linearity Error @ 25°C  
CBI  
1/4  
1/2  
1/2  
1/4  
3/4  
1/2  
1
0.3  
0.15  
1/2  
1/2  
1/2  
1/2  
LSB  
LSB  
CCD  
TA @ TMIN to TMAX  
1
1
LSB  
Gain Error2  
0.1  
0.05  
0.1  
0.05  
0.1  
0.05  
%FSR3  
%FSR3  
Offset Error2  
Temperature Range for Guaranteed  
Monotonicity  
0
+70  
20  
0
+70  
–25  
+85  
°C  
DRIFT (TMIN to TMAX  
)
Total Bipolar Drift, max (includes gain,  
offset, and linearity drifts)  
Total Error (TMIN to TMAX  
ppm of FSR/°C  
4
)
Unipolar  
Bipolar  
Gain  
Including Internal Reference  
Excluding Internal Reference  
Unipolar Offset  
0.08  
0.06  
0.15  
0.10  
% of FSR  
% of FSR  
15  
5
1
30  
7
3
20  
10  
20  
10  
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR/°C  
1
1
Bipolar Offset  
5
10  
10  
10  
CONVERSION SPEED  
Voltage Model (V)5  
Settling Time to 0.01% of FSR for  
FSR Change (2 kʈ500 pF load)  
with 10 kFeedback  
with 5 kFeedback  
For LSB Change  
5
3
1.5  
15  
5
3
1.5  
20  
5
3
1.5  
20  
µs  
µs  
µs  
V/µs  
Slew Rate  
Current Model (I)  
10  
Settling time to 0.01% of FSR for  
FSR Change  
10 to 100 Load  
for 1 kΩ  
300  
1
300  
1
300  
1
ns  
µs  
–3–  
REV. B  
ADDAC80/ADDAC85/ADDAC87–SPECIFICATIONS (continued)  
ADDAC80  
Typ Max  
ADDAC85  
Typ  
ADDAC87  
Typ  
Model  
Min  
Min  
Max  
Min  
Max  
Unit  
ANALOG OUTPUT  
Voltage Models  
Ranges–CBI  
2.5, 5,  
10, +5,  
+10  
2.5, 5,  
10, +5,  
+10  
2.5, 5,  
10, +5,  
+10  
V
V
Ranges–CCD  
10  
+10  
+10  
Output Current  
Output Impedance (dc)  
Short Circuit Duration  
Current Models  
5
5
5
mA  
0.05  
0.05  
0.05  
Indefinite to Common  
Indefinite to Common  
Indefinite to Common  
Ranges–Unipolar  
Ranges–Bipolar  
–2.0  
1.0  
–2.0  
1.0  
–2.0  
1.0  
mA  
mA  
Output Impedance  
Bipolar  
Unipolar  
3.2  
6.6  
–1.5, +10  
3.2  
6.6  
–2.5, +10  
3.2  
6.6  
–2.5, +10  
kΩ  
kΩ  
Compliance  
V
Internal Reference Voltage (VR)  
Output Impedance  
Max External Current6  
Tempco of Drift  
6.17  
6.3  
1.5  
6.43  
6.17  
6.3  
1.5  
6.43  
6.17  
6.3  
1.5  
6.43  
V
mA  
2.5  
20  
2.5  
20  
2.5  
20  
10  
10  
10  
ppm of VR/°C  
POWER SUPPLY SENSITIVITY  
15 V 10%, 5 V Supply When Applicable  
0.002  
0.002  
0.002  
% of FSR/%VS  
V
POWER SUPPLY REQUIREMENTS  
Rated Voltages  
Range  
15, +5  
15, +5  
15, +5  
Analog Supplies  
Logic Supplies  
Supply Drain7  
+15 V  
14  
4.5  
16  
16  
14.5  
4.5  
15.5  
15.5  
14.5  
4.5  
15.5  
15.5  
V
V
10  
20  
8
20  
35  
20  
15  
25  
15  
20  
30  
20  
15  
25  
15  
20  
30  
20  
mA  
mA  
mA  
–15 V  
+5 V8  
TEMPERATURE RANGE  
Specifications  
Operating  
0
–25  
–55  
+70  
+85  
+130  
0
–25  
–65  
+70  
+85  
+150  
–25  
–55  
–65  
+85  
+125  
+150  
°C  
°C  
°C  
Storage  
NOTES  
1Least Significant Bit.  
2Adjustable to zero with external trim potentiometer.  
3FSR means “Full Scale Range” and is 20 V for the 10 V range and 10 V for the 5 V range.  
4Gain and offset errors adjusted to zero at 25°C.  
5CF = 0, see Figure 3a.  
6Maximum with no degradation of specification, must be a constant load.  
7Including 5 mA load.  
85 V supply required only for CCD versions.  
Specifications subject to change without notice.  
–4–  
REV. B  
ADDAC80/ADDAC85/ADDAC87  
ADDAC85LD  
ADDAC85MIL  
ADDAC87  
Model  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
TECHNOLOGY  
Hybrid  
Hybrid  
Hybrid  
DIGITAL INPUT  
Binary–CBI  
BCD–CCD  
12  
12  
12  
Bits  
Digits  
Logic Levels (TTL Compatible)  
VIH (Logic “1”)  
VIL (Logic “0”)  
2.0  
0
5.5  
0.8  
2.0  
0
5.5  
0.8  
2.0  
0
5.5  
0.8  
V
V
IIH (VIH = 5.5 V)  
IIL (VIL = 0.8 V)  
250  
–100  
250  
–100  
250  
–100  
µA  
µA  
TRANSFER CHARACTERISTICS  
ACCURACY  
Linearity Error @ 25°C  
CBI  
1/2  
1/2  
1/4  
1/2  
1/2  
3/4  
LSB1  
LSB  
LSB  
CCD  
TA @ TMIN to TMAX  
Differential Linearity Error @ 25°C  
CBI  
1/2  
3/4  
1/2  
1/2  
LSB  
CCD  
LSB  
TA @ TMIN to TMAX  
1
1
1
0.2  
0.1  
LSB  
Gain Error2  
0.1  
0.05  
0.1  
0.05  
0.1  
0.05  
%FSR3  
%FSR3  
Offset Error2  
Temperature Range for Guaranteed  
Monotonicity  
–25  
+85  
–55  
+125  
–55  
+125  
°C  
DRIFT (TMIN to TMAX  
)
Total Bipolar Drift, max (includes gain,  
offset, and linearity drifts)  
15  
30  
ppm of FSR/°C  
4
Total Error (TMIN to TMAX  
)
Unipolar  
Bipolar  
Gain  
Including Internal Reference  
Excluding Internal Reference  
Unipolar Offset  
0.13  
0.12  
0.30  
0.24  
% of FSR  
% of FSR  
10  
5
20  
10  
10  
5
1
25  
10  
3
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR/°C  
1
2
Bipolar Offset  
5
10  
CONVERSION SPEED  
Voltage Model (V)5  
Settling Time to 0.01% of FSR  
for FSR change (2 kʈ500 pF load)  
with 10 kFeedback  
with 5 kFeedback  
For LSB Change  
5
3
1.5  
20  
5
3
1.5  
20  
5
3
1.5  
20  
µs  
µs  
µs  
V/µs  
Slew Rate  
Current Model (I)  
Settling Time to 0.01% of FSR  
for FSR Change  
10 to 100 Load  
for 1 kΩ  
300  
1
300  
1
300  
1
ns  
µs  
ANALOG OUTPUT  
Voltage Models  
Ranges–CBI  
2.5, 5,  
10, +5,  
2.5, 5,  
10, +5,  
2.5, 5,  
10, +5,  
+10  
+10  
+10  
V
V
mA  
Ranges–CCD  
Output Current  
Output Impedance (dc)  
Short Circuit Duration  
Current Models  
Ranges–Unipolar  
Ranges–Bipolar  
5
5
5
0.05  
0.05  
0.05  
Indefinite to Common  
Indefinite to Common  
Indefinite to Common  
–2.0  
1.0  
–2.0  
1.0  
–2.0  
1.0  
mA  
mA  
Output Impedance  
Bipolar  
Unipolar  
3.2  
6.6  
–2.5, +10  
3.2  
6.6  
–2.5, +10  
2.5  
5.0  
3.2  
6.6  
–1.5, +10  
4.1  
8.2  
kΩ  
kΩ  
Compliance  
V
Internal Reference Voltage (VR)  
Output Impedance  
Max External Current6  
Tempco of Drift  
6.17  
6.3  
1.5  
6.43  
6.17  
6.3  
1.5  
6.43  
6.17  
6.3  
1.5  
6.43  
V
mA  
2.5  
20  
2.5  
20  
2.5  
10  
10  
0.002  
10  
0.002  
5
ppm of VR/°C  
POWER SUPPLY SENSITIVITY  
15 V 10%, 5 V supply when applicable  
0.002 0.003  
% of FSR/%VS  
–5–  
REV. B  
ADDAC80/ADDAC85/ADDAC87–SPECIFICATIONS (continued)  
ADDAC85LD  
Min Typ Max  
ADDAC85MIL  
Min Typ Max  
ADDAC87  
Typ  
Model  
Min  
Max  
Unit  
POWER SUPPLY REQUIREMENTS  
Rated Voltages  
Range  
15, 5  
15, 5  
15, 5  
V
Analog Supplies  
Logic Supplies  
Supply Drain7  
+15 V  
14.5  
+4.5  
15.5  
15.5  
14.5  
+4.5  
15.5  
+15.5  
13.5  
+4.5  
16.5  
16.5  
V
V
15  
25  
15  
20  
30  
20  
15  
25  
15  
20  
30  
20  
10  
20  
10  
20  
35  
20  
mA  
mA  
mA  
–15 V  
+5 V8  
TEMPERATURE RANGE  
Specification  
Operating  
–25  
–55  
–55  
+85  
+125  
+125  
–55  
–55  
–55  
+125  
+125  
+125  
–55  
–55  
–65  
+125  
+125  
+150  
°C  
°C  
Storage  
°
C
NOTES  
1Least Significant Bit.  
2Adjustable to zero with external trim potentiometer.  
3FSR means “Full-Scale Range” and is 20 V for the 10 V range and 10 V for the 5 V range.  
4Gain and offset errors adjusted to zero at 25°C.  
5CF = 0, see Figure 3a.  
6Maximum with no degradation of specification, must be a constant load.  
7Including 5 mA load.  
85 V supply required only for CCD versions.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS  
+VS to Power Ground . . . . . . . . . . . . . . . . . . . . 0 V to +18 V  
–VS to Power Ground . . . . . . . . . . . . . . . . . . . . 0 V to –18 V  
Digital Inputs (Pins 1 to 12) to Power Ground . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1.0 V to +7 V  
Ref In to Reference Ground . . . . . . . . . . . . . . . . . . . . .  
Bipolar Offset to Reference Ground . . . . . . . . . . . . . .  
10 V Span R to Reference Ground . . . . . . . . . . . . . . .  
20 V Span R to Reference Ground . . . . . . . . . . . . . . .  
12 V  
12 V  
12 V  
24 V  
Ref Out . . . . . . . . . Indefinite Short to Power Ground or +VS  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
(MSB) BIT 1  
BIT 2  
V
OUT  
1
2
24  
23  
(MSB) BIT 1  
BIT 2  
V
OUT  
REF  
REF  
REF  
CONTROL  
CIRCUIT  
REF  
CONTROL  
CIRCUIT  
GAIN ADJUST  
GAIN ADJUST  
3
BIT 3  
+V  
S
3
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
BIT 3  
+V  
S
4
BIT 4  
COMMON  
4
BIT 4  
COMMON  
12-BIT  
RESISTOR  
LADDER  
NETWORK  
AND  
CURRENT  
SWITCHES  
12-BIT  
5
BIT 5  
SUMMING JUNCTION  
20V RANGE  
5
BIT 5  
SCALING NETWORK  
SCALING NETWORK  
SCALING NETWORK  
BIPOLAR OFFSET  
REF INPUT  
RESISTOR  
LADDER  
NETWORK  
AND  
2kꢀ  
5kꢀ  
5kꢀ  
6
BIT 6  
6
BIT 6  
5kꢀ  
7
BIT 7  
10V RANGE  
7
BIT 7  
CURRENT  
SWITCHES  
5kꢀ  
8
BIT 8  
BIPOLAR OFFSET  
REF INPUT  
8
BIT 8  
6.3kꢀ  
6.3kꢀ  
9
BIT 9  
9
BIT 9  
10  
11  
12  
BIT 10  
BIT 11  
(LSB) BIT 12  
V
10  
11  
12  
BIT 10  
BIT 11  
(LSB) BIT 12  
I
OUT  
OUT  
+
V  
V  
S
S
ADDAC80  
NC/+V *  
NC/+V *  
L
L
*NC = CBIVERSIONS  
5V CCDVERSIONS  
*NC = CBIVERSIONS  
5V CCDVERSIONS  
Figure 1. Voltage Model Function Diagram  
and Pin Configuration  
Figure 2. Current Model Functional Diagram  
and Pin Configuration  
–6–  
REV. B  
ADDAC80/ADDAC85/ADDAC87  
ORDERING GUIDE  
Output  
Input  
Code  
Temperature  
Range  
Linearity  
Error  
Package  
Option1  
Model  
Mode  
Technology  
ADDAC80N-CBI-V  
ADDAC80D-CBI-V  
Binary  
Binary  
Voltage  
Voltage  
Monolithic  
Monolithic  
0°C to 70°C  
0°C to 70°C  
1/2 LSB  
1/2 LSB  
N-24A  
D-24  
ADDAC85D-CBI-V  
ADDAC87D-CBI-V  
Binary  
Binary  
Voltage  
Voltage  
Monolithic  
Monolithic  
–25°C to +85°C  
–55°Cto +125°C  
1/2 LSB  
1/2 LSB  
D-24  
D-24  
ADDAC80-CBI-V  
ADDAC80-CBI-I  
Binary  
Binary  
Binary Coded Decimal  
Binary Coded Decimal  
Binary  
Binary  
Binary Coded Decimal  
Binary Coded Decimal  
Voltage  
Current  
Voltage  
Current  
Voltage  
Current  
Voltage  
Current  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
1/2 LSB  
1/2 LSB  
1/4 LSB  
1/4 LSB  
1/2 LSB  
1/2 LSB  
1/4 LSB  
1/4 LSB  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
ADDAC80-CCD-V  
ADDAC80-CCD-I  
ADDAC80Z-CBI-V2  
ADDAC80Z-CBI-I2  
ADDAC80Z-CCD-V2  
ADDAC80Z-CCD-I2  
ADDAC85C-CBI-V3  
ADDAC85C-CBI-I  
ADDAC85-CBI-V3  
ADDAC85-CBI-I3  
Binary  
Binary  
Binary  
Binary  
Binary  
Binary  
Voltage  
Current  
Voltage  
Current  
Voltage  
Current  
Voltage  
Current  
Voltage  
Current  
Voltage  
Current  
Current  
Voltage  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
0°C to 70°C  
1/2 LSB  
1/2 LSB  
1/2 LSB  
1/2 LSB  
1/2 LSB  
1/2 LSB  
1/2 LSB  
1/2 LSB  
1/4 LSB  
1/4 LSB  
1/4 LSB  
1/4 LSB  
1/2 LSB  
1/2 LSB  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
0°C to 70°C  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
0°C to 70°C  
ADDAC85LD-CBI-V3  
ADDAC85LD-CBI-I3  
ADDAC85MIL-CBI-V3 Binary  
ADDAC85MIL-CBI-I3  
ADDAC85C-CCD-V3  
ADDAC85C-CCD-I3  
ADDAC85-CCD-V3  
ADDAC85-CCD-I3  
ADDAC85MILCBII8  
ADDAC85MILCBIV8  
Binary  
Binary Coded Decimal  
Binary Coded Decimal  
Binary Coded Decimal  
Binary Coded Decimal  
Binary  
0°C to 70°C  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
Binary  
ADDAC87-CBI-V3  
ADDAC87-CBI-I3  
ADDAC87-CBII883  
ADDAC87-CBIV883  
Binary  
Binary  
Binary  
Binary  
Voltage  
Current  
Current  
Voltage  
Hybrid  
Hybrid  
Hybrid  
Hybrid  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
1/2 LSB  
1/2 LSB  
1/2 LSB  
1/2 LSB  
DH-24A  
DH-24A  
DH-24A  
DH-24A  
NOTES  
1For outline information see Package Information section.  
2Z-Suffix devices guarantee performance of 0 V to +5 V and 5 V spans with minimum supply voltages of 11.4 V.  
3These models have been discontinued. This is for historical information only.  
PRODUCT OFFERING  
Table I. Digital Input Codes  
Analog Input  
COB  
Analog Devices has developed a number of technologies to  
support products within the data acquisition market. In serving  
the market new products are implemented with the technology  
best suited to the application. The DAC80 series of products was  
first implemented in hybrid form and now it is available in a single  
monolithic chip. We will provide both the hybrid and mono-  
lithic versions of the family so that in existing designs changes to  
documentation or product qualification will not have to be done.  
Specifications and ordering information for both versions are  
delineated in this data sheet.  
Digital Input  
CSB  
CTC*  
Compl.  
Two’s  
Compl.  
Straight  
Binary  
Compl.  
Offset  
Binary  
MSB  
LSB  
Compl.  
000000000000 +Full-Scale  
+Full-Scale  
–1 LSB  
011111111111 +1/2 Full-Scale Zero  
–Full-Scale  
+Full-Scale  
Zero  
100000000000 Midscale  
111111111111 Zero  
–1 LSB  
–Full-Scale  
*Invert the MSB of the COB code with an external inverter to obtain CTC code.  
DIGITAL INPUT CODES  
The ADDAC80 Series accepts complementary digital input  
code in binary (CBI) format. The CBI model may be connected  
by the user for anyone of three complementary codes: CSB,  
COB or CTC.  
REV. B  
–7–  
ADDAC80/ADDAC85/ADDAC87  
ACCURACY  
18  
10V  
Accuracy error of a D/A converter is the difference between the  
analog output that is expected when a given digital code is  
applied and the output that is actually measured with that code  
applied to the converter. Accuracy error can be caused by gain  
error, zero error, linearity error, or any combination of the three.  
Of these three specifications, the linearity error specification is  
the most important since it cannot be corrected. Linearity error  
is specified over its entire temperature range. This means that  
the analog output will not vary by more than its maximum  
specification, from an ideal straight line drawn between the  
end points (inputs all “1”s and all “0”s) over the specified  
temperature range.  
TEKTRONIX  
7A13  
2kꢀ  
100pF  
15  
112  
DATA  
IN  
V
OUT  
SUMMING  
JUNCTION  
20  
C
F
10V  
25pF  
HP6216A  
Figure 3a. Voltage Model Settling Time Circuit  
>1mV  
5V  
Differential linearity error of a D/A converter is the deviation  
from an ideal 1 LSB voltage change from one adjacent output  
state to the next. A differential linearity error specification of  
1/2 LSB means that the output voltage step sizes can range  
from 1/2 LSB to 1 1/2 LSB when the input changes from one  
adjacent input state to the next.  
100  
90  
10  
0%  
DRIFT  
Gain Drift  
500ns  
5V  
A measure of the change in the full scale range output over  
temperature expressed in parts per million of full scale range  
per °C (ppm of FSR/°C). Gain drift is established by: 1) testing  
the end point differences for each ADDAC80 model at the  
lowest operating temperature, 25°C and the highest operating  
temperature; 2) calculating the gain error with respect to the  
25°C value and; 3) dividing by the temperature change.  
Figure 3b. Voltage Model Settling Time CF = 25 pF  
POWER SUPPLY SENSITIVITY  
Power supply sensitivity is a measure of the effect of a power  
supply change on the D/A converter output. It is defined as a  
percent of FSR per percent of change in either the positive or  
negative supplies about the nominal power supply voltages.  
Offset Drift  
A measure of the actual change in output with all “1”s on the  
input over the specified temperature range. The maximum  
change in offset is referenced to the offset at 25°C and is  
divided by the temperature range. This drift is expressed in  
parts per million of full scale range per °C (ppm of FSR/°C).  
REFERENCE SUPPLY  
All models are supplied with an internal 6.3 V reference voltage  
supply. This voltage (Pin 24) is accurate to 1% and must be  
connected to the Reference Input (Pin 16) for specified opera-  
tion. This reference may also be used externally with external  
current drain limited to 2.5 mA. An external buffer amplifier is  
recommended if this reference is to be used to drive other sys-  
tem components. Otherwise, variations in the load driven by the  
reference will result in gain variations. All gain adjustments  
should be made under constant load conditions.  
SETTLING TIME  
Settling time for each model is the total time (including slew  
time) required for the output to settle within an error band  
around its final value after a change in input.  
Voltage Output Models  
Three settling times are specified to 0.01% of full scale range  
(FSR); two for maximum full scale range changes of 20 V, 10 V  
and one for a 1 LSB change. The 1 LSB change is measured at  
the major carry (0 1 1 1 . . . 1 1 to 1 0 0 0 . . . 0 0), the point at  
which the worst case settling time occurs. The settling time  
characteristic depends on the compensation capacitor selected,  
the optimum value is 25 pF as shown in Figure 3a.  
ANALYZING DEVICE ACCURACY OVER THE  
TEMPERATURE RANGE  
For the purposes of temperature drift analysis, the major device  
components are shown in Figure 4. The reference element and  
buffer amplifier drifts are combined to give the total reference  
temperature coefficient. The input reference current to the  
DAC, IREF, is developed from the internal reference and will  
show the same drift rate as the reference voltage. The DAC  
output current, IDAC, which is a function of the digital input  
codes, is designed to track IREF; if there is a slight mismatch in  
these currents over temperature, it will contribute to the gain  
T.C. The bipolar offset resistor, RBP, and gain setting resistor,  
Current Output Models  
Two settling times are specified to 0.01% of FSR. Each is given  
for current models connected with two different resistive loads:  
10 to 100 and 1000 to 1875 . Internal resistors are provided  
for connecting nominal load resistances of approximately 1000 Ω  
to 1800 for output voltage ranges of 1 V and 0 V to –2 V.  
R
GAIN, also have temperature coefficients that contribute to  
system drift errors. The input offset voltage drift of the output  
amplifier, OA, also contributes a small error.  
–8–  
REV. B  
ADDAC80/ADDAC85/ADDAC87  
Note that if the DAC and application resistors track perfectly,  
the bipolar offset drift will be zero even if the reference drifts. A  
change in the reference voltage, which causes a shift in the bipolar  
offset, will also cause an equivalent change in IREF and thus IDAC  
so that IDAC will always be exactly balanced by IBP with the MSB  
turned on. This effect is shown in Figure 5. The net effect of the  
reference drift then is simply to cause a rotation in the transfer  
around bipolar zero. However, consideration of second order  
effects (which are often overlooked) reveals the errors in the  
bipolar mode. The unipolar offset drifts previously discussed  
will have the same effect on the bipolar offset. A mismatch of RBP  
to the DAC resistors is usually the largest component of bipolar  
drift, but in the ADDAC80 this error is held to 10 ppm/°C max.  
Gain drift in the DAC also contributes to bipolar offset drift,  
as well as full-scale drift, but again is held to 10 ppm/°C max.  
15V  
R
GAIN  
R
6.3kꢀ  
BP  
+
6.3V  
OA  
+
,
I
I
DAC  
REF  
DAC  
V–  
Figure 4. Bipolar Configuration  
There are three types of drift errors over temperature: offset,  
gain, and linearity. Offset drift causes a vertical translation of  
the entire transfer curve; gain drift is a change in the slope of the  
curve; and linearity drift represents a change in the shape of the  
curve. The combination of these three drifts results in the com-  
plete specification for total error over temperature.  
ACTUAL  
GAIN SHIFT  
Total error is defined as the deviation from a true straight line  
transfer characteristic from exactly zero at a digital input that  
calls for zero output to a point that is defined as full-scale. A  
specification for total error over temperature assumes that both  
the zero and full-scale points have been trimmed for zero error  
at 25°C. Total error is normally expressed as a percentage of the  
full-scale range. In the bipolar situation, this means the total  
range from –VFS to +VFS.  
IDEAL  
OFFSET (ZERO) SHIFT  
INPUT  
UNIPOLAR  
Several new design concepts not previously used in DAC80-type  
devices contribute to a reduction in all the error factors over  
temperature. The incorporation of low temperature coefficient  
silicon-chromium thin-film resistors deposited on a single chip,  
a patented, fully differential, emitter weighted, precision current  
steering cell structure, and a T.C. trimmed buried Zener diode  
reference element results in superior wide temperature range  
performance. The gain setting resistors and bipolar offset resis-  
tor are also fabricated on the chip with the same SiCr material  
as the ladder network, resulting in low gain and offset drift.  
GAIN SHIFT  
INPUT  
OFFSET SHIFT  
BIPOLAR (IDEAL CASE)  
Figure 5. Unipolar and Bipolar Drifts  
MONOTONICITY AND LINEARITY  
The initial linearity error of 1/2 LSB max and the differential  
linearity error of 3/4 LSB max guarantee monotonic performance  
over the specified range. It can therefore be assumed that linearity  
errors are insignificant in computation of total temperature errors.  
USING THE ADDAC80 SERIES  
POWER SUPPLY CONNECTIONS  
For optimum performance power supply decoupling capacitors  
should be added as shown in the connection diagrams. These  
capacitors (1 µF electrolytic recommended) should be located  
close to the ADDAC80. Electrolytic capacitors, if used, should  
be paralleled with 0.01 µF ceramic capacitors for optimum high  
frequency performance.  
UNIPOLAR ERRORS  
Temperature error analysis in the unipolar mode is straightforward:  
there is an offset drift and a gain drift. The offset drift (which  
comes from leakage currents and drift in the output amplifier  
(OA)) causes a linear shift in the transfer curve as shown in  
Figure 5. The gain drift causes a change in the slope of the  
curve and results from reference drift, DAC drift, and drift in  
RGAIN relative to the DAC resistors.  
EXTERNAL OFFSET AND GAIN ADJUSTMENT  
Offset and gain may be trimmed by installing external OFFSET  
and GAIN potentiometers. These potentiometers should be  
connected as shown in the block diagrams and adjusted as  
described below. TCR of the potentiometers should be 100 ppm/°C  
or less. The 3.9 Mand 10 Mresistors (20% carbon or better)  
should be located close to the ADDAC80 to prevent noise pickup.  
If it is not convenient to use these high-value resistors, a function-  
ally equivalent “T” network, as shown in Figure 8 may be  
substituted in each case. The gain adjust (Pin 23) is a high  
impedance point and a 0.01 µF ceramic capacitor should be  
connected from this pin to common to prevent noise pickup.  
BIPOLAR RANGE ERRORS  
The analysis is slightly more complex in the bipolar mode. In  
this mode RBP is connected to the summing node of the output  
amplifier (see Figure 4) to generate a current that exactly balances  
the current of the MSB so that the output voltage is zero with  
only the MSB on.  
REV. B  
–9–  
ADDAC80/ADDAC85/ADDAC87  
+V  
+V  
S
S
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
10kꢀ  
TO  
100kꢀ  
10kꢀ  
TO  
100kꢀ  
10Mꢀ  
10Mꢀ  
REF  
CONTROL  
CIRCUIT  
REF  
CONTROL  
CIRCUIT  
3
3
0.01F  
0.01F  
V  
V  
S
S
4
4
10kꢀ  
TO  
100kꢀ  
12-BIT  
RESISTOR  
LADDER  
NETWORK  
AND  
CURRENT  
SWITCHES  
10kꢀ  
TO  
100kꢀ  
12-BIT  
RESISTOR  
LADDER  
NETWORK  
AND  
CURRENT  
SWITCHES  
5
5
2kꢀ  
3kꢀ  
3.9Mꢀ  
1F  
5kꢀ  
6
6
5kꢀ  
+V  
+V  
S
S
7
7
1F  
3.9Mꢀ  
5kꢀ  
8
8
6.3kꢀ  
6.3kꢀ  
9
9
10  
11  
12  
10  
11  
12  
+
V  
V  
S
S
1F  
1F  
Figure 6. External Adjustment and Voltage Supply  
Connection Diagram, Current Model  
Figure 7. External Adjustment and Voltage Supply  
Connection Diagram, Voltage Model  
Offset Adjustment  
10Mꢀ  
270k270kꢀ  
For unipolar (CSB) configurations, apply the digital input code  
that should produce zero potential output and adjust the  
OFFSET potentiometer for zero output. For bipolar (COB, CTC)  
configurations, apply the digital input code that should produce  
the maximum negative output voltage. Example: If the FULL  
SCALE RANGE is connected for 20 V, the maximum negative  
output voltage is –10 V. See Table II for corresponding codes.  
7.8kꢀ  
3.9Mꢀ  
180k180kꢀ  
10kꢀ  
Gain Adjustment  
Figure 8. Equivalent Resistances  
For either unipolar or bipolar configurations, apply the digital  
input that should give the maximum positive voltage output.  
Adjust the GAIN potentiometer for this positive full-scale voltage.  
See Table II for positive full-scale voltages.  
Table II. Digital Input Analog Output  
Digital Input  
12-Bit Resolution  
MSB  
0 0 0 0 0 0 0 0 0 0 0 0 +9.9976 V  
0 1 1 1 1 1 1 1 1 1 1 1 +5.0000 V  
1 0 0 0 0 0 0 0 0 0 0 0 +4.9976 V  
1 1 1 1 1 1 1 1 1 1 1 1 0.0000 V  
Analog Output  
Voltage  
*
Current  
LSB 0 to +10 V  
10 V  
0 to –2 mA  
–1.9995 mA  
–1.0000 mA  
1 mA  
+9.9951 V  
0.0000 V  
4.88 mV  
–0.9995 mA  
0.0000 mA  
+0.0005 mA  
–1.00 mA  
0.488 µA  
–0.9995 mA  
–10.0000 V 0.0000 mA  
–0.0049 V 0.488 µA  
l LSB  
2.44 mV  
*To obtain values for other binary ranges 0 to 5 V range: divide 0 to 10 values by 2; 5 V range: divide  
10 V range values by 2; 2.5 V range: divide 10 V range values by 4.  
–10–  
REV. B  
ADDAC80/ADDAC85/ADDAC87  
TO REF CONTROL CIRCUIT  
VOLTAGE OUTPUT MODELS  
Internal scaling resistors provided in the ADDAC80 may be  
connected to produce bipolar output voltage ranges of 10 V,  
5 V or 2.5 V or unipolar output voltage ranges of 0 V to +5 V  
or 0 V to +10 V (see Figure 9).  
6.3kꢀ  
17  
19  
20  
16  
18  
15  
REF IN  
3kꢀ  
2kꢀ  
5kꢀ  
REF  
INPUT  
16  
TO REF  
6.3kꢀ  
BIPOLAR  
OFFSET  
CONTROL  
CIRCUIT  
17  
Figure 10. Internal Scaling Resistors  
21 COM  
6.3kꢀ  
17  
16  
BIPOLAR OFFSET  
SUMMING  
JUNCTION  
TO REF  
REFERENCE  
INPUT  
CONTROL  
CIRCUIT  
20  
18  
FROM  
WEIGHTED  
RESISTOR  
NETWORK  
5kꢀ  
5kꢀ  
15  
21  
I
OUT  
19  
15  
I
OUTPUT  
6.6kꢀ  
0TO 2mA  
+
COMMON  
V
6.3V  
Figure 9. Output Amplifier Voltage Range Scaling Circuit  
+
24  
REFERENCE OUT  
Gain and offset drift are minimized in the ADDAC80 because  
of the thermal tracking of the scaling resistors with other device  
components. Connections for various output voltage ranges are  
shown in Table III. Settling time is specified for a full-scale  
range change: 4 s for a 10 kfeedback resistor; 3 s for a 5 kΩ  
feedback resistor when using the compensation capacitor shown  
in Figure 3a.  
Figure 11. ADDAC80 Current Model Equivalent Output Circuit  
Internal resistors are provided to scale an external op amp or to  
configure a resistive load to offer two output voltage ranges of 1 V  
or 0 V to –2 V. These resistors (RLI TCR = 20 ppm/°C) are an  
integral part of the ADDAC80 and maintain gain and bipolar  
offset drift specifications. If the internal resistors are not used, exter-  
nal RL (or RF) resistors should have a TCR of 25 ppm/°C or  
less to minimize drift. This will typically add 50 ppm/°C + the  
TCR of RL (or RF) to the total drift.  
The equivalent resistive scaling network and output circuit of  
the current model are shown in Figures 10 and 11. External RLS  
resistors are required to produce exactly 0 V to –2 V or 1 V  
output. TCR of these resistors should be 100 ppm/°C or less  
to maintain the ADDAC80 output specifications. If exact output  
ranges are not required, the external resistors are not needed.  
Table III. Output Voltage Range Connections, Voltage Model ADDAC80  
Output  
Range  
Digital  
Input Codes  
Connect  
Pin 15 to  
Connect  
Pin 17 to  
Connect  
Pin 19 to  
Connect  
Pin 16 to  
10 V  
5 V  
2.5 V  
0 V to 10 V  
0 V to 5 V  
0 V to 10 V  
COB or CTC 19  
COB or CTC 18  
COB or CTC 18  
20  
20  
20  
21  
21  
NC  
15  
NC  
20  
NC  
20  
15  
24  
24  
24  
24  
24  
24  
CSB  
CSB  
CCD  
18  
18  
19  
NC = No Connect  
DRIVING A RESISTIVE LOAD UNIPOLAR  
A load resistance, RL = RLI, + RLS, connected as shown in  
Figure 12 will generate a voltage range, VOUT, determined by:  
15  
+
R
LI  
968ꢀ  
R
0TO  
2mA  
LS  
18  
21  
V
OUT  
6.6kꢀ  
6.6 kΩ ×RL  
COMMON  
VOUT = –2 mA  
(1)  
6.6 k+R  
L
CURRENT CONTROLLED  
BY DIGITAL INPUT  
where RL max = 1.54 kand VOUT max = –2.5 V  
Figure 12. Equivalent Circuit ADDAC80-CBI-I Connected  
for Unipolar Voltage Output with Resistive Load  
To achieve specified drift, connect the internal scaling resistor  
(RLI) as shown in Table IV to an external metal film trim resistor  
(RLS) to provide full scale output voltage range of 0 V to –2 V.  
With RLS = 0 V, VOUT = –1.69 V.  
REV. B  
–11–  
ADDAC80/ADDAC85/ADDAC87  
DRIVING A RESISTOR LOAD BIPOLAR  
The equivalent output circuit for a bipolar output voltage range  
is shown in Figure 13, RL = RLI + RLS. VOUT is determined by:  
20V RANGE  
10V RANGE  
19  
18  
5kCBI  
5kꢀ  
RL × 3.22 kΩ  
15  
21  
VOUT = 1mA  
(2)  
A
R + 3.22 kΩ  
L
I
6.6kꢀ  
0TO 2mA  
V
OUT  
AD509KH*  
where RL max = 11.18 kand VOUT max = 2.5 V  
To achieve specified drift, connect the internal scaling resistors  
(RLI) as shown in Table IV for the COB or CTC codes and add  
an external metal film resistor (RLS) in series to obtain a full scale  
output range of 1 V. In this configuration, with RLS equal to  
zero, the full scale range will be 0.874 V.  
*FOR FAST SETTLINGTIME  
Figure 14. External Op Amp Using Internal  
Feedback Resistors  
OUTPUT LARGER THAN 20 V RANGE  
15  
For output voltage ranges larger than 10 V, a high voltage op  
amp may be employed with an external feedback resistor. Use  
IOUT values of l mA for bipolar voltage ranges and –2 mA for  
unipolar voltage ranges (see Figure 15). Use protection diodes  
when a high voltage op amp is used.  
+
R
LI  
1.2kꢀ  
R
LS  
20  
21  
V
OUT  
1mA  
3.22kꢀ  
COMMON  
CURRENT CONTROLLED  
BY DIGITAL INPUT  
The feedback resistor, RF, should have a temperature coefficient  
as low as possible. Using an external feedback resistor, overall  
drift of the circuit increases due to the lack of temperature track-  
ing between RF and the internal scaling resistor network. This will  
typically add 50 ppm/°C + RF drift to total drift.  
Figure 13. ADDAC80-CBI-I Connected for Bipolar  
Output Voltage with Resistive Load  
DRIVING AN EXTERNAL OP AMP  
The current model ADDAC80 will drive the summing junction  
of an op amp used as a current to voltage converter to produce  
an output voltage. As seen in Figure 14,  
17  
R
F
6.3kꢀ  
6.6kꢀ  
16  
15  
VOUT = IOUT × RF  
(3)  
171K*  
I
where IOUT is the ADDAC80 output current and RF is the feed-  
back resistor. Using the internal feedback resistors of the current  
model ADDAC80 provides output voltage ranges the same as  
the voltage model ADDAC80. To obtain the desired output  
voltage range when connecting an external op amp, refer to  
Table V and Figure 14.  
0TO 2mA  
V
OUT  
21  
24  
V
REF  
6.3V  
V
+
*FOR OUTPUTVOLTAGE SWINGS UPTO 140V p-p  
Figure 15. External Op Amp Using External  
Feedback Resistors  
Table IV. Current Model/Resistive Load Connections  
1%  
Metal Film  
External  
R
LI Connections  
Reference  
Bipolar Offset  
Connect  
Internal  
Digital  
Output  
Resistance Resistance Connect Connect  
Connect Connect  
Pin 20 to Pin 16 to  
Input Codes Range  
RLI (k)  
RLS  
Pin 15 to Pin 18 to  
Pin 17 to  
RLS  
CSB  
0 to –2 V 0.968  
210 Ω  
20  
19 and RLS 15  
24  
24  
24  
Com (21)  
Between  
Pin 18 and  
Com (21)  
Between  
Pin 20 and  
Com (21)  
N/A  
COB or CTC  
CCD  
1 V  
1.2  
249 Ω  
18  
19  
21  
RLS  
NC  
15  
0 to 2 V 3  
N/A  
NC  
NC  
–12–  
REV. B  
ADDAC80/ADDAC85/ADDAC87  
Table V. External Op Amp Voltage Mode Connections  
Output  
Range  
Digital  
Input Codes  
Connect  
A to  
Connect  
Pin 17 to  
Connect  
Pin 19 to  
Connect  
Pin 16 to  
10 V  
5 V  
2.5 V  
0 V to 10 V  
0 V to 5 V  
COB or CTC 19  
COB or CTC 18  
COB or CTC 18  
15  
15  
15  
21  
21  
A
NC  
15  
NC  
15  
24  
24  
24  
24  
24  
CSB  
CSB  
18  
18  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
24-Lead Plastic DIP (N-24A)  
1.290 (32.70)  
1.150 (29.30)  
24  
13  
0.580 (14.73)  
0.485 (12.32)  
1
12  
PIN 1  
0.625 (15.87)  
0.600 (15.24)  
0.060 (1.52)  
0.015 (0.38)  
0.250  
0.195 (4.95)  
0.125 (3.18)  
(6.35)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.030 (0.77)  
SEATING  
PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS: INCH DIMENSIONS  
ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE  
ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
24-Lead Ceramic DIP (D-24)  
SEE NOTE 5  
0.098 (2.49) MAX  
13  
0.005 (0.13) MIN  
24  
0.610 (15.49)  
0.500 (12.70)  
SEE NOTE 4  
PIN 1  
1
12  
SEE NOTE 1  
0.620 (15.75)  
0.590 (14.99)  
SEE NOTE 3  
0.075 (1.91)  
0.015 (0.38)  
SEE NOTE 4  
1.290 (32.77) MAX  
0.225 (5.72)  
MAX  
0.150  
(3.81)  
MIN  
SEATING  
PLANE  
0.200 (5.08)  
0.120 (3.05)  
0.015 (0.38)  
0.008 (0.20)  
SEE NOTE 6  
0.023 (0.58)  
0.014 (0.36)  
0.070 (1.78)  
0.030 (0.76)  
0.110 (2.79)  
0.090 (2.29)  
SEE NOTE 7 SEE NOTE 2, 6  
NOTES  
1. INDEX AREA; A NOTCH OR A LEAD ONE IDENTIFICATION MARK IS LOCATED ADJACENT TO LEAD ONE.  
2. THE MINIMUM LIMIT FOR DIMENSION MAY BE 0.023" (0.58 mm) FOR ALL FOUR CORNER LEADS ONLY.  
3. DIMENSION SHALL BE MEASURED FROM THE SEATING PLANE TO THE BASE PLANE.  
4. THIS DIMENSION ALLOWS FOR OFF-CENTER LID, MENISCUS AND GLASS OVERRUN.  
5. APPLIES TO ALL FOUR CORNERS.  
6. ALL LEADS INCREASE MAXIMUM LIMIT BY 0.003" (0.08 mm) MEASURED AT THE CENTER OF THE FLAT,  
WHEN HOT SOLDER DIP LEAD FINISH IS APPLIED.  
7. TWENTY TWO SPACES.  
8. CONTROLLING DIMENSIONS ARE IN MILLIMETERS. INCH DIMENSIONS ARE ROUNDED-OFF MILLIMETER  
EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. B  
–13–  
ADDAC80/ADDAC85/ADDAC87  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
24-Lead Side Brazed Ceramic DIP for Hybrid (DH-24A)  
SEE NOTE 5  
0.098 (2.49) MAX  
13  
0.005 (0.13) MIN  
24  
0.600 (14.70)  
0.580 (14.21)  
PIN 1  
SEE NOTE 1  
1
12  
SEE NOTE 3  
0.075 (1.91)  
0.015 (0.38)  
1.212 (29.69) MAX  
0.225 (5.72)  
MAX  
0.200 (5.08)  
0.120 (3.05)  
0.180  
(4.57)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
0.100 (2.54)  
BSC  
0.620 (15.75)  
0.590 (14.99)  
SEE NOTE 6  
SEE NOTE 4, 7 SEE NOTE 2  
NOTES  
1. INDEX AREA; A NOTCH OR A LEAD ONE IDENTIFICATION MARK IS LOCATED ADJACENT TO LEAD ONE.  
2. THE MINIMUM LIMIT FOR DIMENSION MAY BE 0.023" (0.58 mm) FOR ALL FOUR CORNER LEADS ONLY.  
3. DIMENSION SHALL BE MEASURED FROM THE SEATING PLANE TO THE BASE PLANE.  
4. THE BASIC PIN SPACING IS 0.100" (2.54 mm) BETWEEN CENTERLINES.  
5. APPLIES TO ALL FOUR CORNERS.  
6. SHALL BE MEASURED AT THE CENTERLINE OF THE LEADS.  
7. TWENTY TWO SPACES.  
8. CONTROLLING DIMENSIONS ARE IN MILLIMETERS: INCH DIMENSIONS ARE ROUNDED-OFF MILLIMETER  
EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
–14–  
REV. B  
ADDAC80/ADDAC85/ADDAC87  
Revision History  
Location  
Page  
Data Sheet changed from REV. A to REV. B.  
Update OUTLINE DIMENSION drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
REV. B  
–15–  
–16–  

相关型号:

ADDAC80Z-CBI-VZ

IC PARALLEL, WORD INPUT LOADING, 5 us SETTLING TIME, 12-BIT DAC, CDIP24, CERAMIC, DIP-24, Digital to Analog Converter
ADI

ADDAC80Z-CCD-I

COMPLETE LOW COST 12-BIT D/A CONVERTERS
ADI

ADDAC80Z-CCD-I2

Complete Low Cost 12-Bit D/A Converters
ADI

ADDAC80Z-CCD-IZ

IC PARALLEL, WORD INPUT LOADING, 5 us SETTLING TIME, 12-BIT DAC, CDIP24, CERAMIC, DIP-24, Digital to Analog Converter
ADI

ADDAC80Z-CCD-V

COMPLETE LOW COST 12-BIT D/A CONVERTERS
ADI

ADDAC80Z-CCD-V2

Complete Low Cost 12-Bit D/A Converters
ADI

ADDAC80Z-CCD-VZ

IC PARALLEL, WORD INPUT LOADING, 5 us SETTLING TIME, 12-BIT DAC, CDIP24, CERAMIC, DIP-24, Digital to Analog Converter
ADI

ADDAC80_15

Complete Low Cost 12-Bit D/A Converters
ADI

ADDAC85

COMPLETE LOW COST 12-BIT D/A CONVERTERS
ADI

ADDAC85-CBI-I

COMPLETE LOW COST 12-BIT D/A CONVERTERS
ADI

ADDAC85-CBI-I3

Complete Low Cost 12-Bit D/A Converters
ADI

ADDAC85-CBI-V

COMPLETE LOW COST 12-BIT D/A CONVERTERS
ADI