ADD8502ACP [ADI]

IC SPECIALTY CONSUMER CIRCUIT, QCC24, 4 X 4 MM, MO-220-VGGD-2, LFCSP-24, Consumer IC:Other;
ADD8502ACP
型号: ADD8502ACP
厂家: ADI    ADI
描述:

IC SPECIALTY CONSUMER CIRCUIT, QCC24, 4 X 4 MM, MO-220-VGGD-2, LFCSP-24, Consumer IC:Other

CD
文件: 总16页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated LCD  
Grayscale Generator  
a
ADD8502  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Two Mask Programmable Sets of Five Reference Levels  
Dual 10-Bit DACs for Flicker Offset and Range Adjustment  
Integrated VCOM Switching  
REV2  
V
DD  
Single-Supply Operation: 5.0 V  
Low Supply Current: 300 A  
Global Power Save Mode: 1 A Max  
Fast Settling Time for Load Change: 20 s  
Stable with 20 nF/100 Loads  
VP0  
VN0  
GND  
V
DD  
VREF+  
10-BIT  
DAC A  
VREF–  
V0  
A0  
A1  
A2  
A3  
A4  
V
/2  
DD  
R
VP0  
CMOS/TTL Input Levels  
R
R
APPLICATIONS  
Color TFT Cell Phones  
Color TFT PDAs  
V1  
V2  
V3  
V4  
VN4  
V
L
MUX  
SCK  
GENERAL DESCRIPTION  
DIGITAL  
CORE  
D
The ADD8502 is an integrated, high accuracy, programmable  
grayscale generator. Two sets of five output reference voltages  
are mask programmed to 0.2% resolution. The outputs switch  
between the two sets of five levels. The reference levels are selected  
from a 512 tap resistor network using a via mask.  
IN  
CS-LD  
VP4  
VN4  
POWER  
SAVE  
LOGIC  
R
R
VP4  
ADD8502 includes two serially addressable, 10-bit digital-to-  
analog converters (DACs) and five fast, low current buffers.  
The dual DACs set the endpoint voltages applied to the resistor  
network to adjust for flicker and range. The two power save modes  
can reduce the total current to less than 1 µA and feature fast  
recovery time from Shutdown/Sleep Mode. The ADD8502  
accepts CMOS or TTL inputs for all controls, including the  
common drive circuit levels.  
PSK  
GS1  
GS2  
VN0  
R
R
V
/2  
DD  
VREF+  
10-BIT  
DAC B  
VREF–  
V
DD  
ADD8502 operates over the industrial temperature range from  
–40°C to +85°C and is available in a space-saving 24-lead  
4 mm 4 mm frame chip scale package.  
V
COM  
LOGIC  
COM  
COM_M  
REV1 CM CV4  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
that may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(@ V = 5.0 V, 40C T 85C, unless otherwise noted.)  
ADD8502–SPECIFICATIONS  
DD  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
SYSTEM ACCURACY  
VOUT Error  
3
1
3
3
3
20  
17  
21  
21  
25  
mV  
mV  
mV  
mV  
mV  
Swing Error1  
(VPn – VNn) – (VPi – VNi)  
(VPn+ VNn)/2 – (VPi + VNi)/2)  
Mean Error2  
Mean Error between Adjacent Channels3  
Mean Error between V0 and V44  
DAC ACCURACY  
Resolution  
10  
Bits  
Differential Nonlinearity  
Integral Nonlinearity5  
Offset Error  
DNL  
INL  
0.25  
0.5  
0.4  
0.15  
LSB  
LSB  
% of FSR  
% of FSR  
Gain Error  
OUTPUT CHARACTERISTICS  
Output Current  
Short Circuit Current  
Output Leakage Current in High-Z Mode  
Slew Rate  
IOUT  
ISC  
ILEAKAGE  
SR  
tS  
SR  
tS  
φo  
(VDD – 1 V)  
Short to Ground  
High-Z Mode  
25  
60  
0.01  
1.25  
8
0.7  
8
67  
mA  
mA  
µA  
1.0  
12  
12  
RL = 100 kΩ  
V/µs  
µs  
Settling Time to 1%  
V0 to V4 Step Size  
LD =100 Series 16 nF  
V0 to V4 Step Size  
Slew Rate5  
V/µs  
µs  
Degrees  
Settling Time to 1%5  
Phase Margin  
VCOM SWITCHES ACTIVE IMPEDANCE  
COM to VDD  
COM to GND  
COM to COM_M  
COM to V4  
Z
Z
Z
Z
See Table IV  
I = 20 mA  
25  
25  
25  
25  
50  
50  
50  
50  
MASK PROGRAMMABLE  
RESISTOR CHAIN  
Resistor Matching  
RMATCH  
Any Two Segments between  
512 Resistor String  
1
%
POWER SUPPLY  
Supply Voltage  
Supply Current  
Shutdown Supply Current  
Sleep Supply Current  
Shutdown Recovery Time  
Sleep Recovery Time  
VDD  
ISY  
ISY-GLB  
ISY-GS1-3  
4.5  
190  
5
5.5  
400  
1
210  
30  
V
VDD = 5 V; No Load  
Full Shutdown Mode  
Mid 3 Buffers Shutdown  
Global PD to 1%  
270  
0.2  
175  
23  
µA  
µA  
µA  
µs  
140  
V1–V3 Off to 1%  
10  
15  
µs  
LOGIC SUPPLY  
Logic Input Voltage Level  
Logic Input Current  
VL  
IVL  
2.3  
3.3  
0.01  
5.5  
1
V
µA  
DIGITAL I/O  
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
Digital Input Capacitance  
VIH  
VIL  
IIN  
VL 0.7  
V
V
µA  
pF  
VL 0.3  
1
10  
GND VIN 5.5 V  
CIN  
NOTES  
1Swing error is a comparison of measured VOUT step versus theoretical VOUT step. Theoretical values can be found on the Mask Tap Point Option sheet.  
2Mean error is measured VOUT mean versus theoretical VOUT mean (see Figure 3).  
3Mean errors between two adjacent channels versus theoretical (see Figure 3).  
4Mean errors between V0 and V4 versus theoretical (see Figure 3).  
5Slew rate and settling time are measured between the output resistor and the capacitor (see Figure 1).  
R
100ꢁ  
Specifications subject to change without notice.  
L
C
L
16nF  
V
COM  
Figure 1. Slew Rate Diagram  
–2–  
REV. 0  
ADD8502  
Table I. Serial Data Timing Characteristics  
Parameter  
Symbol  
t1  
Min Typ Max  
Unit  
SCK Cycle Time  
SCK High Time  
SCK Low Time  
CS-LD Setup Time  
Data Setup Time  
Data Hold Time  
LSB SCK High to CS-LD High  
Minimum CS-LD High Time  
SCK to CS-LD Active Edge Setup Time  
CS-LD High to SCK Positive Edge  
SCK Frequency (Square Wave)  
100  
45  
45  
20  
5
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
10  
5
ns  
ns  
MHz  
10  
10  
NOTES  
1All input signals are specified with rise/fall time –5 ns (10% to 90% of VDD) and timed from a voltage level  
of (VS + VIH)/2.  
2See Figure 2.  
t
t
5
1
SCK  
t
t
t
t
t
t
6
3
2
7
10  
9
D
C3  
C2  
X1  
X0  
IN  
t
t
4
8
CS-LD  
Figure 2. Serial Write Interface  
VO  
VP0  
SEE NOTE 2 ON SPECIFICATIONSTABLE  
VN0  
V0 – V1  
SEE NOTE 3 ON SPECIFICATIONSTABLE  
VP1  
VN1  
V1  
SEE NOTE 4 ON  
SPECIFICATIONSTABLE  
VN2  
VP2  
V2  
VN3  
SEE NOTE 1 ON SPECIFICATIONSTABLE  
V3  
V4  
VP3  
VN4  
VP4  
Figure 3. Output Wave Form Diagram  
–3–  
REV. 0  
ADD8502  
ABSOLUTE MAXIMUM RATINGS*  
1
2
Package Type  
JA  
34.8  
JB  
Unit  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VL to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Digital Input Voltage to GND . . . . . . . . . . . . . –0.3 V to +7 V  
VOUT to GND . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD +0.3 V  
VCOM to GND . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD +0.3 V  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 10 sec)  
24-Lead LFCSP (ACP)  
13  
°C/W  
NOTES  
1θJA is specified for worst-case conditions, i.e., θJA is specified for device soldered  
in circuit board for surface-mount packages.  
2ψJB is applied for calculating the junction temperature by reference to the board  
temperature.  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
*Stresses above those listed under Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional operation  
of the device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
ADD8502ACP –40°C to +85°C 24-Lead LFCSP CP-24  
Available in 7reel only.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADD8502 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
ADD8502  
PIN CONFIGURATION  
24 23 22 21 20 19  
1
2
3
4
5
6
18  
V0  
V
L
PIN 1  
17 V1  
16 V2  
D
IN  
IDENTIFIER  
SCK  
ADD8502  
TOP VIEW  
V3  
15  
CS-LD  
CM  
(Not to Scale)  
14 V4  
13 GND  
CV4  
7
8
9
10 11 12  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
I/O Description  
Pin No. Mnemonic Name  
1
2
VL  
DIN  
Logic Select Pin  
Serial Data Input  
I
I
Logic Supply Voltage. Connect to supply used for system logic. Can accept 2.7 V to VDD.  
When CS is LOW, the input on this pin is shifted into the internal shift register on  
the rising edge of SCK.  
3
4
5
6
7
SCK  
CS-LD  
CM  
Serial Clock  
Load  
I
I
I
I
I
Accepts up to 10 MHz input. The rising edge on this clock will shift the data on  
DIN Pin into the internal shift registers.  
When CS-LD is LOW, SCK is enabled for shifting data on the DIN input into the  
internal shift register on the rising edge of SCK. Data is loaded MSB first.  
When CM is LOW, COM will output the voltage level input on COM_M.  
When CM is HIGH, COM levels will be determined by the input on REV1.  
If CV4 is HIGH, V4 output is the output of the op amp A4. If CV4 is LOW, V4 is  
connected to COM and op amp A4 is shut down. Refer to Table II.  
With CM HIGH, a HIGH on REV1 will cause COM to output the voltage level  
input at VDD. A LOW on REV1 will cause COM to output the voltage level input  
at GND.  
Logic Control 2  
for VCOM  
Logic Control V4  
CV4  
REV1  
Logic Control 1  
for VCOM  
8
9
NC  
NC  
No Connect  
No Connect  
Unused Pin  
Unused Pin  
10  
COM  
Common Output  
O
I
If CM is LOW, COM will output the voltage input at COM_M. If CM is HIGH,  
COM will output the voltage input at VDD when REV1 is HIGH and will output  
the voltage input at GND when REV1 is LOW. Refer to Table II.  
COM_M is a system voltage reference input between 2.5 V and 3.5 V. This may  
be the system 3.3 V supply.  
11  
COM_M  
Common System  
VREF  
12  
13  
14  
NC  
GND  
V4  
No Connect  
Ground  
Output  
Unused Pin  
Ground. Nominally 0 V.  
Buffers are rail-to-rail buffers that can drive high capacitive loads (>16.5 nF).  
When PSK is LOW, these outputs will be Hi-Z.  
I
O
15  
16  
17  
18  
V3  
V2  
V1  
V0  
Output  
Output  
Output  
Output  
O
O
O
O
I
Buffers are rail-to-rail buffers that can drive high capacitive loads (>16.5 nF).  
When PSK is LOW or GS1 and GS2 = HIGH, these outputs will be Hi-Z.  
Buffers are rail-to-rail buffers that can drive high capacitive loads (>16.5 nF).  
When PSK is LOW or GS1 and GS2 = HIGH, these outputs will be Hi-Z.  
Buffers are rail-to-rail buffers that can drive high capacitive loads (>16.5 nF).  
When PSK is LOW or GS1 and GS2 = HIGH, these outputs will be Hi-Z.  
Buffers are rail-to-rail buffers that can drive high capacitive loads (>16.5 nF).  
When PSK is LOW, these outputs will be Hi-Z.  
19  
20  
VDD  
NC  
Supply  
No Connect  
Supply Voltage. Nominally 5 V.  
Unused Pin  
REV. 0  
–5–  
ADD8502  
Pin No. Mnemonic Name  
I/O Description  
21  
REV2  
Reference Output  
Select  
I
When PSK is HIGH and GS1 or GS2 is LOW, then INVERT selects the output  
levels on V0 to V4. If INVERT is HIGH, outputs V0 to V4 are connected to  
reference levels VP0 to VP4, respectively. If INVERT is LOW, outputs V0 to V4  
are connected to reference levels VN0 to VN4, respectively. When PSK is HIGH  
and GS1 and GS2 are HIGH, V1–V3 are, Hi-Z state, but V0 and V4 are still  
connected to reference levels VP0 and VP4 when INVERT is HIGH. Outputs V0  
and V4 switch to VN0 and VN4 when REV is LOW.  
22  
23  
24  
GS2  
GS1  
PSK  
Sleep Mode  
Select  
I
I
I
When GS1 and GS2 are HIGH, the middle three output buffers are shut down  
and V1, V2, and V3 are put into Hi-Z states. Other combinations of GS1 and GS2  
leave the outputs of A1 to A3 fully active.  
When GS1 and GS2 are HIGH, the middle three output buffers are shut down  
and V1, V2, and V3 are Hi-Z. Other combinations of GS1 and GS2 leave the  
outputs of A1 to A3 fully active.  
When PSK is pulled LOW, the chip will be put into the full Power-Down Mode.  
The DACs, resistor ladder network preamps, and output buffers will all be shut  
down, and A0 to A4 will be in Hi-Z states. Recovery from full power-down to  
normal operation is within 30 µs.  
Sleep Mode  
Select  
Global Power  
Shutdown  
All digital inputs accept CMOS or TTL logic levels.  
–6–  
REV. 0  
Typical Performance Characteristics–  
ADD8502  
250  
5
3
V
DD  
= 5V  
V
DD  
= 5V  
DAC B  
200  
150  
100  
50  
DAC A  
1
–1  
–3  
–5  
0
40  
0
128  
256  
384  
512  
640  
768  
896 1025  
25  
85  
CODE – LSB  
TEMPERATURE – C  
TPC 4. Shutdown Current vs. Temperature  
TPC 1. DAC Integral Nonlinearity  
5
3
190  
V
DD  
= 5V  
DAC A  
V
= 5V  
DD  
185  
180  
175  
170  
165  
160  
155  
1
1  
3  
5  
DAC B  
0
128  
256  
384  
512  
640  
768  
896 1024  
40  
25  
85  
CODE – LSB  
TEMPERATURE – C  
TPC 5. Sleep Supply Current vs. Temperature  
TPC 2. DAC Differential Nonlinearity  
0.5  
0  
350  
V
DD  
= 5V  
V
DD  
= 5V  
DAC A  
300  
250  
200  
150  
100  
50  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
DAC B  
0
40  
40  
25  
TEMPERATURE – C  
85  
25  
85  
TEMPERATURE – C  
TPC 3. Offset Error vs. Temperature  
TPC 6. Supply Current vs. Temperature  
–7–  
REV. 0  
ADD8502  
350  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
V
DD  
= 5V  
300  
250  
200  
150  
100  
2
3
4
5
6
7
40  
25  
85  
V
–V  
DD  
TEMPERATURE – C  
TPC 7. System Supply Current at Full Power  
TPC 10. Sleep Recovery Time vs. Temperature  
10  
400  
350  
300  
250  
200  
150  
100  
50  
V
DD  
= 5V  
8
6
4
2
0
0
2.0  
2  
40  
25  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
– V  
5.0  
5.5  
6.0  
6.5  
7.0  
V
TEMPERATURE – C  
DD  
TPC 8. System Supply Current at Shutdown  
TPC 11. Output Leakage  
28  
0
0
0
0
0
0
0
0
0
V
DD  
= 5V  
V
DD  
= 5V  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
REV2  
V0  
40  
25  
85  
0
0
0
0
0
0
0
0
0
0
0
TEMPERATURE – C  
TIME – 10s/DIV  
TPC 9. Shutdown Recovery Time vs. Temperature  
TPC 12. V0 Output Swing Response to REV2  
–8–  
REV. 0  
ADD8502  
25  
20  
15  
10  
5
400  
350  
300  
250  
200  
150  
100  
50  
V
DD  
= 5V  
0
40  
0
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11 13 15  
25  
85  
OUTPUTVOLTAGE MEAN ERROR  
TEMPERATURE – C  
TPC 13. VCOM Switch-On-Resistance vs. Temperature  
TPC 16. VOUT Swing Mean vs. Distribution  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.0  
1.5  
VP3–VP4  
1.0  
0.5  
VP2–VP3  
0
–0.5  
–1.0  
VP1–VP2  
VP0–VP1  
–23  
–18  
–13  
–8  
–3  
2
7
12  
17  
22  
40  
25  
TEMPERATURE – C  
85  
OUTPUTVOLTAGE – mV  
TPC 14. VOUT Error Distribution  
TPC 17. Mean Error between Adjacent Channel  
vs. Temperature  
2.0  
0.6  
0.4  
1.5  
1.0  
V0  
0.2  
VN2–VN3  
0
0.5  
V1  
V2  
VN3–VN4  
0.2  
0
0.4  
VN1–VN2  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V3  
0.6  
0.8  
1.0  
1.2  
V4  
VN0–VN1  
1.4  
40  
25  
85  
40  
25  
85  
TEMPERATURE – C  
TEMPERATURE – C  
TPC 18. Mean Error between Adjacent Channel  
vs. Temperature  
TPC 15. Swing Error vs. Temperature  
–9–  
REV. 0  
ADD8502  
2.0  
1.5  
1.0  
0.5  
10  
9
V
DD  
= 5V  
VP0–VP4  
RISING EDGE  
8
0
0.5  
1.0  
1.5  
2.0  
7
6
5
4
FALLING EDGE  
VN0–VN4  
2.5  
40  
25  
TEMPERATURE – C  
85  
40  
45  
TEMPERATURE – C  
125  
TPC 22. Settling Time at VOUT vs. Temperature  
TPC 19. Mean Error between V0 and V4 vs. Temperature  
5
0
V
L
= 2.5V  
0
0
0
0
0
0
0
0
SOURCE  
4
SINK  
3
V
HIGH  
TH  
V
LOW  
TH  
2
1
0
0
20  
40  
60  
80  
0
0
0
0
0
0
0
0
0
0
0
OUTPUT CURRENT – mA  
TIME – 500mV/DIV  
TPC 23. Output Current Source and Sink  
TPC 20. REV1 Hysteresis  
1.40  
1.35  
1.30  
1.25  
1.20  
V
DD  
= 5V  
SLEW RATE FALLING  
SLEW RATE RISING  
1.15  
1.10  
1.05  
1.00  
40  
25  
85  
TEMPERATURE – C  
TPC 21. Slew Rate vs. Temperature  
–10–  
REV. 0  
ADD8502  
OPERATION  
Transfer Function  
The transfer function for the ADD8502 is given in the following  
equations:  
V
V
V
OUTA = 4.941 V  
OUTB = 0.244 V  
TX = 4.831 V  
Equations 1–3 will provide a theoretical calculation of the out-  
puts. The actual will vary with load, process, and architecture.  
See Specifications table.  
1. Digital-to-analog transfer function for DAC A. An output can  
be derived from Equation 1 as:  
VDD   
DA  
1024  
SERIAL INTERFACE  
VOUTA  
=
1+  
  
  
(1)  
The ADD8502 has a 3-wire serial interface (CS-LD, SCK, and  
DIN). The writing sequence begins by bringing the CS-LD line  
LOW. Data on the DIN line is clocked into the 16-bit shift regis-  
ter on the rising edge of SCK. The serial clock frequency can be  
as high as 10 MHz. When the last data bit is clocked in,  
CS-LD line needs to be brought HIGH to load the DAC regis-  
ters and the operation mode is dependent upon the control bits.  
2
2. Digital-to-analog transfer function for DAC B. An output can  
be derived from Equation 2 as:  
DB V  
 DD   
VOUTB  
=
(2)  
  
2
1024  
Input Shift Register  
Where DA and DB are decimal equivalents of the binary codes  
The input shift register is 16 bits wide (see Figure 4). The first  
four control bits (C3, C2, C1, and C0) are used to set the different  
operating modes of the device. The next 10 bits are the data bits  
and the last two bits are “Don’t Cares.” This composes a full word  
that is transferred to the DAC register on the rising edge of CS-LD.  
that are loaded to the DAC Register from 0 to 1023.  
3. Using any programmed tap point from the 512 resistor string,  
the system output can be derived from Equation 3:  
TX  
512  
VTX = (VOUTA VOUTB  
)
+ VOUTB  
In a normal write sequence, the CS-LD line is kept LOW for at  
least 16 rising edges of SCK and then it is brought HIGH to  
update the DACs. However, if CS-LD is brought HIGH before  
the 16th rising edge, this acts as an interrupt to the write sequence.  
The shift register is reset and the write sequence is seen as invalid.  
Neither an update of the DAC register contents nor a change in  
the operation mode occurs.  
(3)  
Where TX is any tap point of the 512 resistor string. It is mask  
programmable. VTX is the voltage output at any output (VO, ... V4)  
and will switch between two voltages depending on the mask  
programmed tap points.  
Example: VDD = 5 V, DA = 1,000, DB = 100, and TX = 500.  
DB15 (MSB)  
DB0 (LSB)  
C3  
C2  
C1  
C0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X1  
X0  
DON’T  
CARE  
DATA BITS  
CONTROL BITS  
Figure 4. Input Register Contents  
REV. 0  
–11–  
ADD8502  
Table II. DAC Control Function  
Control Code  
C3 C2 C1 C0  
Input Register  
Status  
DAC Register  
(Sleep/Wake)  
Power-Down Status  
Comments  
Status  
0
0
0
0
0
0
0
0
1
0
1
0
No Change  
No Update  
No Change  
No Change  
No Change  
No operation; power-down status unchanged  
(part stays in Wake or Sleep Mode).  
Load DAC A  
Load DAC B  
No Update  
No Update  
Load input Register A with data. DAC outputs  
unchanged. Power-down status unchanged.  
Load input Register B with data. DAC outputs  
unchanged. Power-down status unchanged.  
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
1
0
0
0
No Change  
Update Outputs  
Wake  
Wake  
Load both DAC registers with existing contents  
of input registers. Update DAC outputs. Part  
wakes up.  
1
0
0
1
Load DAC A  
Update Outputs  
Load input Register A. Load DAC registers with  
new contents of input register A and existing  
contents of Register B. Update DAC outputs.  
Part wakes up.  
1
0
1
0
Load DAC B  
Update Outputs  
Wake  
Load input Register B. Load DAC registers with  
new contents of input Register B and existing  
contents of Register A. Update DAC outputs.  
Part wakes up.  
1
1
0
1
1
0
1
0
Not Used  
Not Used  
1
1
0
1
No Change  
No Change  
No Update  
Wake  
Part wakes up. Input and DAC registers  
unchanged. DAC outputs reflect existing  
contents of DAC registers.  
1
1
1
1
1
1
0
1
No Update  
Sleep  
Wake  
Power down the IC, put in into Sleep Mode.  
Load DACs  
A, B with Same  
10-Bit Code  
Update  
Outputs  
Load both input registers. Load both DAC  
registers with new contents of input registers.  
Update DAC outputs. Part wakes up.  
Modes of Operation  
Access to the DAC register is controlled by the control codes,  
C0 to C3. The user can update both DACs simultaneously as  
well as individually. It depends on the selected control codes to  
The ADD8502 has various modes of operation, such as updating  
both DACs simultaneously or changing the power-down status  
(Sleep/Wake). These are selected by writing the appropriate  
4-bit control code (C0–C3). The details for each mode are  
summarized in Table II.  
update individual output or both outputs simultaneously.  
Initial Power-Up Condition  
The ADD8502 has preset DAC conditions when its initially  
powered on. The DACs are loaded with 1110 1011 11 for the  
upper DAC and 0000 1010 00 for the lower DAC. The part is  
powered up in a normal operation mode (Wake Status).  
Low Power Serial Interface  
To reduce the power consumption of the device ever further, the  
interface only powers up fully when the device is being written  
to. As soon as the 16-bit control word has been written to the  
part, the SCK and DIN input buffers are powered down. They  
only power up again following a falling edge of CS-LD.  
Power-Down Modes  
The ADD8502 has two shutdown modes. One mode is to fully  
shut down the device using PSK or the digital serial control code,  
and the other mode is to shut down V1 to V3 buffers using GS1  
and GS2. See Table III for the priority of the shutdown control  
functions.  
Double-Buffered Interface  
The ADD8502 has double-buffered interfaces consisting of two  
banks of registers: input and DAC. The input register is con-  
nected directly to the input shift register, and the digital code is  
transferred to the relevant input register on completion of a  
valid write sequence. The DAC register contains the digital  
code used by the resistor string.  
–12–  
REV. 0  
ADD8502  
The ADD8502 will have a quiescent current less than 1 µA when  
it is fully shut down and all output buffers are switched to a high  
impedance state. The only active circuitries are the digital logics  
and the latches for the serial control. When the device is brought  
back from Sleep Mode to normal operation, it will use the last  
serial word to update the DACs or a new control code or data if  
any was loaded when the part was in Sleep Mode; i.e., the contents  
of the input register, DAC register, and power-down status shown  
VCOM Logic  
VCOM operation is described in Table IV. The VCOM logic is  
always active and its logic inputs are CM, REV1, and CV4.  
When CM is LOW, COM is connected to COM_M. When CM  
is HIGH, COM is determined by the logic input of REV1. If  
REV1 is HIGH, COM is connected to VDD. When REV1 is  
LOW, COM is connected to GND.  
CV4 controls the V4 output. If CV4 goes LOW, V4 is connected  
to COM and A4 is shut down with its output in a Hi-Z state.  
When CV4 is HIGH, the switch connecting V4 to COM is open  
and A4 is in normal operation mode.  
in Table II is retained as long as VDD and VL are on.  
The second power save mode (mid 3 buffers are shut down) is  
using GS1 and GS2. In a condition where both GS1 and GS2  
logics are HIGH, the output buffers (V1, V2, and V3) are shut  
down and switched into a high impedance state.  
Table IV. VCOM Logic Control  
Inputs  
Outputs  
VCOM  
Table III. Shutdown Control Function  
CM  
L
REV1  
CV4  
L
V4  
Serial  
Control  
Operation  
GS1 GS2 Mode  
X
X
L
COM_M  
COM_M  
GND  
COM  
A4  
PSK  
H
L
H
Wake  
Wake  
Wake  
Wake  
Sleep  
X
L
L
Normal Operation  
Normal Operation  
Normal Operation  
Mid 3 Buffers are Shutdown  
Full Shutdown  
H
L
COM  
COM  
A4  
H
L
H
L
H
H
L
L
VDD  
H
H
H
X
X
H
H
GND  
H
H
X
X
H
H
H
VDD  
A4  
H
X = Don’t Care  
L
Full Shutdown  
X = Don’t Care  
REV. 0  
–13–  
ADD8502  
V
L
V
DD  
LOGIC LEVEL  
TRANSLATOR  
SCK  
LOGIC LEVEL  
TRANSLATOR  
D
IN  
V0  
V1  
LOGIC LEVEL  
TRANSLATOR  
CS-LD  
V2  
LOGIC LEVEL  
TRANSLATOR  
PSK  
V3  
LOGIC LEVEL  
TRANSLATOR  
GS1  
ADD8502  
CORE  
V4  
LOGIC LEVEL  
TRANSLATOR  
GS2  
REV1  
REV2  
CM  
COM  
LOGIC LEVEL  
TRANSLATOR  
LOGIC LEVEL  
TRANSLATOR  
COM_M  
LOGIC LEVEL  
TRANSLATOR  
V
L
V
DD  
LOGIC LEVEL  
TRANSLATOR  
CV4  
GND  
Figure 5. CST ESD and Logic Level Translation Scheme  
ADD8502 Description  
No damage to the digital inputs will occur with applied  
voltages up to 7 V (see Absolute Maximum Ratings section  
of data sheet).  
The ADD8502 uses logic level translators to convert external  
logic levels to levels suitable for use in the ADD8502 core.  
No current will flow between VDD and VL under normal  
operating conditions.  
The logic level translators are intended to be powered from  
the same supply voltage as is used to power the external  
logic driving the ADD8502.  
Logic voltages can be present on the logic input pins even if  
VL is powered down. Inputs are limited by max supply rating  
of 7 V.  
VDD may be powered down while normal voltages are present  
on the VL and logic input pins.  
Digital input pins have ESD protection connected to GND.  
V
DD and VL are independent and can be in the range 0 V to  
5.5 V.  
All other input and output pins have ESD protection connected  
to GND and VDD.  
–14–  
REV. 0  
ADD8502  
V
OUTA  
ADD8502-000 MASK OPTION  
DAC A  
Table V. Default Power-Up Conditions  
DAC Setpoints (0 D 1023)  
Decimal Code Voltage  
VP  
0
VP  
1
VP  
2
VP  
3
VP  
4
VN  
4
VN  
3
VN  
2
VN  
1
VN  
0
Unit  
Upper DAC  
Lower DAC  
943  
40  
4.8022  
0.0977  
V
V
Resistor Tap Points (0 X 512)  
Tap Point  
Voltage  
Unit  
DAC B  
VP0  
VP1  
VP2  
VP3  
VP4  
VN0  
VN1  
VN2  
VN3  
VN4  
450  
271  
203  
137  
3
4.2325  
2.5878  
1.9630  
1.3565  
0.1252  
0.3825  
2.0732  
2.7624  
3.4699  
4.7747  
V
V
V
V
V
V
V
V
V
V
V
OUTB  
Figrue 6. Tap Point References  
Tap point voltages can be derived from the following equation:  
X
512  
31  
Vx = VOUTB  
+
V
VOUTB  
[
]
OUTA  
215  
290  
367  
509  
Where VOUTA and VOUTB can be derived from the transfer func-  
tions under the Operation Section of the datasheet.  
The ADD8502 uses a single resistor string consisting of 512  
individual elements. Both sets of reference voltages (VP0–VP4,  
N0–VN4) are generated from this single string. Two separate  
Supply voltage = 5 V  
V
resistor networks are shown to demonstrate the tap points, which  
are changeable by mask option and completely independent of  
each other.  
REV. 0  
–15–  
ADD8502  
OUTLINE DIMENSIONS  
24-Lead Frame Chip Scale Package [LFCSP]  
4x4 mm Body  
(CP-24)  
0.60 MAX  
4.0  
BSC SQ  
0.25  
MIN  
PIN 1  
INDICATOR  
0.60 MAX  
1
19  
18  
24  
PIN 1  
INDICATOR  
0.50  
BSC  
3.75  
BSC SQ  
TOP  
VIEW  
BOTTOM  
VIEW  
0.50  
0.40  
0.30  
2.25  
1.70  
0.75  
6
13  
12  
7
2.50  
REF  
0.70 MAX  
0.65 NOM  
1.00  
0.90  
0.85  
12MAX  
0.05 MAX  
0.02 NOM  
0.25  
REF  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANTTO JEDEC STANDARDS MO-220-VGGD-2  
–16–  
REV. 0  

相关型号:

ADD8502ACP-REEL7

SPECIALTY CONSUMER CIRCUIT, QCC24, 4 X 4 MM, MO-220-VGGD-2, LFCSP-24
ROCHESTER

ADD8504

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI

ADD8504-EVAL

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI

ADD8504WRUZ

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI

ADD8504WRUZ

QUAD BUFFER AMPLIFIER, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16
ROCHESTER

ADD8504WRUZ-REEL

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI

ADD8504WRUZ-REEL7

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI

ADD8504WRUZ-REEL7

QUAD BUFFER AMPLIFIER, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16
ROCHESTER

ADD8504_10

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI

ADD8505

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI

ADD8505-EVAL

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI

ADD8505WRUZ

4-, 5-, 6-Channel, Muxed Input Line Inversion LCD Gamma Buffers
ADI