ADAU1966WBSTZRL [ADI]

16-Channel High Performance; 16通道高性能
ADAU1966WBSTZRL
型号: ADAU1966WBSTZRL
厂家: ADI    ADI
描述:

16-Channel High Performance
16通道高性能

文件: 总52页 (文件大小:2329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Channel High Performance  
Differential Output, 192 kHz, 24-Bit DAC  
ADAU1966  
GENERAL DESCRIPTION  
FEATURES  
The ADAU1966 is a high performance, single-chip DAC that  
provides 16 digital-to-analog converters (DACs) with differen-  
tial output using the Analog Devices, Inc., patented multibit  
sigma-delta (Σ-Δ) architecture. An SPI/I2C port is included,  
allowing a microcontroller to adjust volume and many other  
parameters. The ADAU1966 operates from 2.5 V digital and  
3.3 V or 5 V analog supplies. A linear regulator is included to  
generate the digital supply voltage from the analog supply volt-  
age. The ADAU1966 is available in an 80-lead LQFP package.  
118 dB DAC dynamic range and SNR  
−98 dB THD + N  
Differential voltage DAC output  
2.5 V digital and 3.3 V or 5 V analog and IO supplies  
299 mW total (19 mW/channel) quiescent power at AVDD = 3.3 V  
PLL generated or direct MCLK master clock  
Low EMI design  
Linear regulator driver to generate digital supply  
Supports 24-bit and 32 kHz to 192 kHz sample rates  
Low propagation 192 kHz sample rate mode  
Log volume control with autoramp function  
Temperature sensor with digital readout 3°C accuracy  
SPI and I2C controllable for flexibility  
The ADAU1966 is designed for low EMI. This consideration is  
apparent in both the system and circuit design architectures.  
By using the on-board PLL to derive the internal master clock  
from an external LRCLK, the ADAU1966 can eliminate the  
need for a separate high frequency master clock and can be  
used with or without a bit clock. The DACs are designed using  
the latest Analog Devices continuous time architectures to  
further minimize EMI. By using 2.5 V digital supplies, power  
consumption is minimized, and the digital waveforms are a  
smaller amplitude, further reducing emissions.  
Software-controllable clickless mute  
Software power-down  
Right-justified, left-justified, I2S, and TDM modes  
Master and slave modes with up to 16-channel input/output  
80-lead LQFP package  
Qualified for automotive applications  
APPLICATIONS  
Automotive audio systems  
Home theater systems  
Digital audio effects processors  
FUNCTIONAL BLOCK DIAGRAM  
DIGITAL AUDIO  
INPUT  
ADAU1966  
DAC  
SERIAL DATA PORT  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
SDATA  
IN  
SDATA  
IN  
DAC  
DIGITAL  
DIGITAL  
FILTER  
AND  
VOLUME  
CONTROL  
DIFFERENTIAL  
ANALOG  
DIFFERENTIAL  
ANALOG  
DAC  
DAC  
DAC  
DAC  
DAC  
CLOCKS  
FILTER  
AND  
AUDIO  
AUDIO  
VOLUME  
CONTROL  
OUTPUTS  
OUTPUTS  
TIMING MANAGEMENT  
AND CONTROL  
(CLOCK AND PLL)  
2
SPI/I C  
CONTROL PORT  
PRECISION  
VOLTAGE  
REFERENCE  
INTERNAL  
TEMP  
SENSOR  
CONTROL DATA  
INPUT/OUTPUT  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
ADAU1966  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Block Power-Down and Thermal Sensor Control 1 Register26  
Power-Down Control 2 Register.............................................. 27  
Power-Down Control 3 Register.............................................. 28  
Thermal Sensor Temperature Readout Register.................... 29  
DAC Control 0 Register ............................................................ 30  
DAC Control 1 Register ............................................................ 31  
DAC Control 2 Register ............................................................ 32  
DAC Individual Channel Mutes 1 Register ............................ 33  
DAC Individual Channel Mutes 2 Register ............................ 34  
Master Volume Control Register.............................................. 35  
DAC 1 Volume Control Register.............................................. 35  
DAC 2 Volume Control Register.............................................. 36  
DAC 3 Volume Control Register.............................................. 36  
DAC 4 Volume Control Register.............................................. 37  
DAC 5 Volume Control Register.............................................. 37  
DAC 6 Volume Control Register.............................................. 38  
DAC 7 Volume Control Register.............................................. 38  
DAC 8 Volume Control Register.............................................. 39  
DAC 9 Volume Control Register.............................................. 39  
DAC 10 Volume Control Register............................................ 40  
DAC 11 Volume Control Register............................................ 40  
DAC 12 Volume Control Register............................................ 41  
DAC 13 Volume Control Register............................................ 41  
DAC 14 Volume Control Register............................................ 42  
DAC 15 Volume Control Register............................................ 42  
DAC 16 Volume Control Register............................................ 43  
Common-Mode and Pad Strength Register ........................... 43  
DAC Power Adjust 1 Register................................................... 44  
DAC Power Adjust 2 Register................................................... 45  
DAC Power Adjust 3 Register................................................... 46  
DAC Power Adjust 4 Register................................................... 47  
Outline Dimensions....................................................................... 51  
Ordering Guide .......................................................................... 51  
Automotive Products................................................................. 51  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Analog Performance Specifications........................................... 3  
Crystal Oscillator Specifications................................................. 5  
Digital Input/Output Specifications........................................... 6  
Power Supply Specifications........................................................ 6  
Digital Filters................................................................................. 7  
Timing Specifications .................................................................. 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 13  
Application Circuits ....................................................................... 14  
Theory of Operation ...................................................................... 15  
Digital-to-Analog Converters (DACs) .................................... 15  
Clock Signals............................................................................... 15  
RST  
Power-Up and  
..................................................................... 16  
Standalone Mode........................................................................ 17  
I2C Control Port.......................................................................... 17  
Serial Control Port: SPI Control Mode ................................... 19  
Power Supply and Voltage Reference....................................... 19  
Serial Data Ports—Data Format............................................... 19  
Time-Division Multiplexed (TDM) Modes............................ 19  
Temperature Sensor ................................................................... 20  
Additional Modes....................................................................... 22  
Register Summary .......................................................................... 23  
Register Details ............................................................................... 24  
PLL and Clock Control 0 Register ........................................... 24  
PLL and Clock Control 1 Register ........................................... 25  
REVISION HISTORY  
9/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 52  
 
ADAU1966  
SPECIFICATIONS  
Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.  
Master clock = 12.288 MHz (48 kHz fS, 256 × fS mode), input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word  
width = 24 bits, load capacitance (digital output) = 20 pF, load current (digital output) = 1 mꢀ or 1.5 kΩ to ½ DVDD supply, input  
voltage high = 2.0 V, input voltage low = 0.8 V, unless otherwise noted.  
ANALOG PERFORMANCE SPECIFICATIONS  
Specifications guaranteed at VDDx = 5 V and an ambient temperature of 25°C. Supply voltages = ꢀVDDx = 5 V, DVDD = 2.5 V,  
ambient temperature1 (T) = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
With A-Weighted Filter (RMS)  
Total Harmonic Distortion + Noise  
105  
108  
115.5  
118  
−90  
dB  
dB  
dB  
0 dBFS  
Two channels running, −1 dBFS  
16 channels running, −1 dBFS  
AVDDx = 5.0 V  
−98  
−98  
3.00 ( 8.ꢀ9)  
dB  
dB  
−85  
Full-Scale Differential Output Voltage  
Gain Error  
Offset Error  
Gain Drift  
Interchannel Isolation  
Interchannel Phase Deviation  
Volume Control Step  
Volume Control Range  
De-emphasis Gain Error  
Output Resistance at Each Pin  
REFERENCE VOLTAGES  
V rms (V p-p)  
%
mV  
ppm/°C  
dB  
Degrees  
dB  
dB  
dB  
Ω
−10  
−25  
−30  
+10  
+25  
+30  
−6  
100  
0
0.375  
95.25  
0.6  
100  
Temperature Sensor Reference Voltage  
Common-Mode Reference Output  
External Reference Voltage Source  
TEMPERATURE SENSOR  
Temperature Accuracy  
Temperature Readout Range  
Temperature Readout Step Size  
Temperature Sample Rate  
REGULATOR  
TS_REF pin, AVDDx = 5.0 V  
CM pin, AVDDx = 5.0 V  
CM pin, AVDDx = 5.0 V  
1.50  
2.25  
2.25  
V
V
V
2.1ꢀ  
2.29  
−3  
−60  
+3  
+1ꢀ0  
°C  
°C  
°C  
Hz  
1
0.25  
6
Input Supply Voltage  
Regulated Output Voltage  
VSUPPLY pin  
VSENSE pin  
3.0  
2.26  
5
2.50  
5.5  
2.59  
V
V
1 Functionally guaranteed at −ꢀ0°C to +125°C case temperature.  
Rev. 0 | Page 3 of 52  
 
ADAU1966  
Specifications guaranteed at AVDDx = 5 V and an ambient temperature of 105°C. Supply voltages = AVDDx = 5 V, DVDD = 2.5 V,  
ambient temperature1 (TA) = 105°C, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
109  
113.5  
dB  
With A-Weighted Filter (RMS)  
Total Harmonic Distortion + Noise  
110.5  
116  
−85  
dB  
dB  
0 dBFS  
Two channels running  
Eight channels running  
AVDDx = 5.0 V  
−92.5  
−92.5  
3.00 ( 8.49)  
dB  
dB  
−85  
Full-Scale Differential Output Voltage  
Gain Error  
Offset Error  
V rms (V p-p)  
%
mV  
ppm/°C  
dB  
Degrees  
dB  
dB  
dB  
Ω
−10  
−25  
−30  
+10  
+25  
+30  
−6  
Gain Drift  
Interchannel Isolation  
Interchannel Phase Deviation  
Volume Control Step  
Volume Control Range  
De-emphasis Gain Error  
Output Resistance at Each Pin  
REFERENCE  
100  
0
0.375  
95.25  
0.6  
100  
Temperature Sensor Reference Voltage  
Common-Mode Reference Output  
External Reference Voltage Source  
REGULATOR  
TS_REF pin, AVDDx = 5.0 V  
CM pin, AVDDx = 5.0 V  
CM pin, AVDDx = 5.0 V  
1.50  
2.25  
2.25  
V
V
V
2.14  
2.29  
Input Supply Voltage  
Regulated Output Voltage  
VSUPPLY pin  
VSENSE pin  
3.0  
2.25  
5
2.50  
5.5  
2.55  
V
V
1 Functionally guaranteed at −40°C to +125°C case temperature.  
Specifications guaranteed at AVDDx = 3.3 V and an ambient temperature of 25°C. Supply voltages = AVDDx = 3.3 V, DVDD = 2.5 V,  
ambient temperature1 (TA) = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
109  
111  
dB  
With A-Weighted Filter (RMS)  
Total Harmonic Distortion + Noise  
111.5  
113.5  
−90  
dB  
dB  
0 dBFS  
Two channels running  
Eight channels running  
AVDDx = 3.3 V  
−97  
−97  
2.00 ( 5.66)  
dB  
dB  
−85  
Full-Scale Differential Output Voltage  
Gain Error  
Offset Error  
V rms (V p-p)  
%
mV  
ppm/°C  
dB  
Degrees  
dB  
dB  
dB  
Ω
−10  
−25  
−30  
+10  
+25  
+30  
−6  
Gain Drift  
Interchannel Isolation  
Interchannel Phase Deviation  
Volume Control Step  
Volume Control Range  
De-Emphasis Gain Error  
Output Resistance at Each Pin  
100  
0
0.375  
95.25  
0.6  
100  
Rev. 0 | Page 4 of 52  
ADAU1966  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
REFERENCE  
Temperature Sensor Reference Voltage  
Common-Mode Reference Output  
External Reference Voltage Source  
REGULATOR  
TS_REF pin, AVDDx = 3.3 V  
CM pin, AVDDx = 3.3 V  
CM pin, AVDDx = 3.3 V  
1.50  
1.50  
1.50  
V
V
V
1.43  
1.56  
Input Supply Voltage  
Regulated Output Voltage  
VSUPPLY pin  
VSENSE pin  
3.0  
2.26  
5
2.50  
5.5  
2.59  
V
V
1 Functionally guaranteed at −40°C to +125°C case temperature.  
Specifications guaranteed at AVDDx = 3.3 V and an ambient temperature of 105°C. Supply voltages = AVDDx = 3.3 V, DVDD = 2.5 V,  
ambient temperature1 (TA) = 105°C, unless otherwise noted.  
Table 4.  
Parameter  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL-TO-ANALOG CONVERTERS  
Dynamic Range  
20 Hz to 20 kHz, −60 dB input  
No Filter (RMS)  
With A-Weighted Filter (RMS)  
Total Harmonic Distortion + Noise  
108  
110  
109  
112  
−85  
dB  
dB  
dB  
0 dBFS  
Two channels running  
Eight channels running  
AVDDx = 3.3 V  
−92  
−92  
2.00 (5.66)  
dB  
dB  
−83  
Full-Scale Differential Output Voltage  
Gain Error  
Offset Error  
V rms (V p-p)  
%
mV  
ppm/°C  
dB  
Degrees  
dB  
dB  
dB  
Ω
−10  
−25  
−30  
+10  
+25  
+30  
−6  
Gain Drift  
Interchannel Isolation  
Interchannel Phase Deviation  
Volume Control Step  
Volume Control Range  
De-emphasis Gain Error  
Output Resistance at Each Pin  
REFERENCE  
100  
0
0.375  
95.25  
0.6  
100  
Temperature Sensor Reference Voltage  
Common-Mode Reference Output  
External Reference Voltage Source  
REGULATOR  
TS_REF pin, AVDDx = 3.3 V  
CM pin, AVDDx = 3.3 V  
CM pin, AVDDx = 3.3 V  
1.50  
1.50  
1.50  
V
V
V
1.43  
1.56  
Input Supply Voltage  
Regulated Output Voltage  
VSUPPLY pin  
VSENSE pin  
3.0  
2.25  
5
2.50  
5.5  
2.55  
V
V
1 Functionally guaranteed at −40°C to +125°C case temperature.  
CRYSTAL OSCILLATOR SPECIFICATIONS  
Table 5.  
Parameter  
Min  
Typ  
Max  
14  
12  
Unit  
Transconductance, TA = 25°C  
Transconductance, TA = 105°C  
6.4  
5.2  
7 to 10  
7.5 to 8.5  
mmhos  
mmhos  
Rev. 0 | Page 5 of 52  
 
ADAU1966  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
−40°C < TA < +105°C, IOVDD = 5.0 V and 3.3 V 10ꢀ.  
Table 6.  
Parameter  
Test Conditions/Comments  
Min  
3.7  
2.5  
Typ  
Max  
Unit  
V
V
V
V
μA  
μA  
V
V
pF  
High Level Input Voltage (VIH)  
IOVDD = 5.0 V  
IOVDD = 3.3 V  
IOVDD = 5.0 V  
IOVDD = 3.3 V  
IIH at VIH = 2.4 V  
IIL at VIL = 0.8 V  
IOH = 1 mA  
Low Level Input Voltage (VIL)  
Input Leakage  
1.3  
0.8  
10  
10  
High Level Output Voltage (VOH)  
Low Level Output Voltage (VOL)  
Input Capacitance  
IOVDD − 0.60  
IOL = 1 mA  
0.4  
5
POWER SUPPLY SPECIFICATIONS  
Table 7.  
Parameter  
SUPPLIES  
Voltage  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
AVDD  
DVDD  
PLLVDD  
IOVDD  
VSUPPLY  
3.0  
5.0  
2.5  
2.5  
5.0  
5.0  
5.5  
3.6  
3.6  
5.5  
5.5  
V
V
V
V
V
2.25  
2.25  
3.0  
3.0  
Analog Current—AVDD = 5.0 V  
Normal Operation  
Power-Down  
82  
1
mA  
μA  
Analog Current—AVDD = 3.3 V  
Normal Operation  
Power-Down  
60  
1
mA  
μA  
Digital Current—DVDD = 2.5 V  
Normal Operation  
Power-Down  
fS = 48 kHz to 192 kHz  
No MCLK or I2S  
30  
4
mA  
μA  
PLL Current—PLLVDD = 2.5 V  
Normal Operation  
Power-Down  
fS = 48 kHz to 192 kHz  
5
1
mA  
μA  
IO Current—IOVDD = 3.3 V  
Normal Operation  
Power-Down  
4
1
mA  
μA  
QUIESCENT DISSIPATION—DITHER INPUT  
Operation  
MCLK = 256 × fS, 48 kHz  
All Supplies  
All Supplies  
Analog Supply  
Analog Supply  
Digital Supply  
PLL Supply  
I/O Supply  
AVDDx = 5.0 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V  
AVDDx = 3.3 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V  
511  
299  
410  
198  
75  
13  
13  
0
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
AVDDx = 5.0 V  
AVDDx = 3.3 V  
DVDD = 2.5 V  
PLLVDD= 2.5 V  
IOVDD = 3.3 V  
Power-Down, All Supplies  
POWER SUPPLY REJECTION RATIO  
Signal at Analog Supply Pins  
1 kHz, 200 mV p-p  
20 kHz, 200 mV p-p  
85  
85  
dB  
dB  
Rev. 0 | Page 6 of 52  
 
ADAU1966  
DIGITAL FILTERS  
Table 8.  
Parameter  
Mode  
Factor  
Min  
Typ  
22  
Max  
Unit  
DAC INTERPOLATION FILTER  
Pass Band  
48 kHz mode, typical at 48 kHz  
96 kHz mode, typical at 96 kHz  
192 kHz mode, typical at 192 kHz  
48 kHz mode, typical at 48 kHz  
96 kHz mode, typical at 96 kHz  
192 kHz mode, typical at 192 kHz  
48 kHz mode, typical at 48 kHz  
96 kHz mode, typical at 96 kHz  
192 kHz mode, typical at 192 kHz  
48 kHz mode, typical at 48 kHz  
96 kHz mode, typical at 96 kHz  
192 kHz mode, typical at 192 kHz  
48 kHz mode, typical at 48 kHz  
96 kHz mode, typical at 96 kHz  
192 kHz mode, typical at 192 kHz  
48 kHz mode, typical at 48 kHz  
96 kHz mode, typical at 96 kHz  
192 kHz mode, typical at 192 kHz  
192 kHz low delay mode, typical at 192 kHz  
0.4535 × fS  
0.3646 × fS  
0.3646 × fS  
kHz  
kHz  
kHz  
dB  
dB  
dB  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
dB  
dB  
μs  
μs  
μs  
μs  
35  
70  
Pass-Band Ripple  
Transition Band  
Stop Band  
0.01  
0.05  
0.1  
0.5 × fS  
0.5 × fS  
0.5 × fS  
0.5465 × fS  
0.6354 × fS  
0.6354 × fS  
24  
48  
96  
26  
61  
122  
Stop-Band Attenuation  
Propagation Delay  
68  
68  
68  
25/fS  
11/fS  
8/fS  
521  
115  
42  
2/fS  
10  
TIMING SPECIFICATIONS  
−40°C < TA < +105°C, DVDD = 2.5 V 10ꢀ.  
Table 9.  
Parameter  
Description  
Min Typ Max Unit  
INPUT MASTER CLOCK (MCLK) AND RESET  
tMH  
MCLK duty cycle, DAC clock source = PLL clock at  
256 × fS, 384 × fS, 512 × fS, and 768 × fS  
DAC clock source = direct MCLK at 512 × fS (bypass  
on-chip PLL)  
MCLKI frequency, PLL mode  
Direct MCLK 512 × fS mode  
DBCLK frequency, PLL mode  
Low  
40  
40  
6.9  
60  
60  
%
%
tMH  
fMCLK  
fMCLK  
fBCLK  
tPDR  
40.5 MHz  
27.1 MHz  
27.0 MHz  
ns  
15  
tPDRR  
Recovery, reset to active output  
300  
ms  
PLL  
Lock Time  
Lock Time  
MCLK input  
DLRCLK input  
10  
50  
60  
ms  
ms  
%
256 × fS VCO Clock, Output Duty Cycle, MCLKO Pin  
40  
SPI PORT  
tCCH  
tCCL  
See Figure 14  
CCLK high  
CCLK low  
35  
35  
ns  
ns  
fCCLK  
tCDS  
tCDH  
tCLS  
CCLK frequency, fCCLK = 1/tCCP; only tCCP shown in Figure 14  
CDATA setup, time to CCLK rising  
CDATA hold, time from CCLK rising  
10  
MHz  
ns  
ns  
10  
10  
10  
10  
10  
CLATCH setup, time to CCLK rising  
ns  
tCLH  
CLATCH hold, time from CCLK falling  
CLATCH high, not shown in Figure 14  
ns  
tCLHIGH  
ns  
Rev. 0 | Page 7 of 52  
 
 
ADAU1966  
Parameter  
tCOE  
tCOD  
tCOH  
tCOTS  
I2C  
fSCL  
tSCLL  
tSCLH  
tSCS  
Description  
Min Typ Max Unit  
COUT enable from CCLK falling  
COUT delay from CCLK falling  
COUT hold from CCLK falling, not shown in Figure 14  
COUT tristate from CCLK falling  
See Figure 2 and Figure 13  
SCL clock frequency  
30  
30  
ns  
ns  
ns  
ns  
30  
30  
400  
kHz  
μs  
SCL low  
SCL high  
1.3  
0.6  
μs  
Setup time (start condition), relevant for repeated start 0.6  
condition  
μs  
tSCH  
Hold time (start condition), first clock generated after  
this period  
0.6  
μs  
tSSH  
tDS  
tSR  
tSF  
Setup time (stop condition)  
Data setup time  
SDA and SCL rise time  
SDA and SCL fall time  
Bus-free time between stop and start  
See Figure 16  
0.6  
100  
μs  
ns  
ns  
ns  
μs  
300  
300  
tBFT  
1.3  
DAC SERIAL PORT  
tDBH  
tDBL  
tDLS  
tDLH  
tDLS  
tDDS  
tDDH  
DBCLK high, slave mode  
DBCLK low, slave mode  
10  
10  
10  
5
−8  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLRCLK setup, time to DBCLK rising, slave mode  
DLRCLK hold from DBCLK rising, slave mode  
DLRCLK skew from DBCLK falling, master mode  
DSDATAx setup to DBCLK rising  
DSDATAx hold from DBCLK rising  
+8  
tDS  
tSCH  
tSCH  
SDA  
SCL  
tSR  
tSCLH  
tSCS  
tBFT  
tSCLL  
tSF  
Figure 2. I2C Timing Diagram  
Rev. 0 | Page 8 of 52  
 
ADAU1966  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 10.  
θJA represents junction-to-ambient thermal resistance; θJC repre-  
sents the junction-to-case thermal resistance. All characteristics  
are for a 4-layer board with a solid ground plane.  
Parameter  
Rating  
Analog (AVDD)  
I/O (IOVDD)  
Digital (DVDD)  
PLL (PLLVDD)  
−0.3 V to +5.5 V  
−0.3 V to +5.5 V  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +6.0 V  
20 mA  
Table 11. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
VSUPPLY  
80-Lead LQFP  
42.3  
10.0  
°C/W  
Input Current (Except Supply Pins)  
Analog Input Voltage (Signal Pins)  
Digital Input Voltage (Signal Pins)  
–0.3 V to AVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
ESD CAUTION  
Operating Temperature Range (Case) −40°C to +125°C  
Storage Temperature Range −65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 9 of 52  
 
ADAU1966  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
DAC_BIAS3  
DAC_BIAS4  
AVDD3  
DAC_BIAS2  
DAC_BIAS1  
AVDD2  
PIN 1  
INDICATOR  
3
4
DAC13P  
DAC13N  
DAC14P  
DAC14N  
DAC15P  
DAC15N  
DAC16P  
DAC16N  
AVDD4  
DAC4N  
5
DAC4P  
6
DAC3N  
7
DAC3P  
8
DAC2N  
ADAU1966  
9
DAC2P  
TOP VIEW  
(Not to Scale)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DAC1N  
DAC1P  
AVDD1  
AGND4  
AGND1  
PLLGND  
LF  
PU/RST  
SA_MODE  
CLATCH/ADDR0/SA*  
CCLK/SCL/SA*  
COUT/SDA/SA*  
CDATA/ADDR1/SA*  
DVDD  
PLLVDD  
MCLKI/XTALI  
XTALO  
MCLKO  
DVDD  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
*SEE TABLE 15 FOR SA_MODE SETTINGS.  
Figure 3. Pin Configuration  
Table 12. Pin Function Descriptions  
Pin No.  
Type1  
Mnemonic  
DAC_BIAS3  
DAC_BIAS4  
AVDD3  
DAC13P  
DAC13N  
DAC14P  
DAC14N  
DAC15P  
DAC15N  
DAC16P  
DAC16N  
AVDD4  
AGND4  
PLLGND  
LF  
PLLVDD  
MCLKI/XTALI  
XTALO  
Description  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
I
I
DAC Bias 3. AC couple with 470 nF to AGND3.  
DAC Bias 4. AC couple with 470 nF to AVDD3.  
Analog Power.  
PWR  
O
O
O
O
O
O
O
O
PWR  
GND  
GND  
O
PWR  
I
DAC13 Positive Output.  
DAC13 Negative Output.  
DAC14 Positive Output.  
DAC14 Negative Output.  
DAC15 Positive Output.  
DAC15 Negative Output.  
DAC16 Positive Output.  
DAC16 Negative Output.  
Analog Power.  
Analog Ground.  
PLL Ground.  
PLL Loop Filter, Reference to PLLVDD.  
Apply 2.5 V to power PLL.  
Master Clock Input, Input to Crystal Inverter.  
Output from Crystal Inverter.  
Master Clock Output.  
17  
18  
19  
O
O
MCLKO  
20, 29, 41  
PWR  
DVDD  
Digital Power, 2.5 V.  
21, 26, 30, 40 GND  
DGND  
Digital Ground.  
Rev. 0 | Page 10 of 52  
 
ADAU1966  
Pin No.  
22, 39  
23  
Type1  
PWR  
I
Mnemonic  
IOVDD  
VSENSE  
Description  
Power for Digital Input and Output Pins, 3.3 V to 5 V.  
2.5 V Output of Regulator, Collector of Pass Transistor. Bypass with 10 μF in parallel  
with 100 nF.  
24  
25  
O
I
VDRIVE  
VSUPPLY  
Drive for Base of Pass Transistor.  
5 V Input to Voltage Regulator, Emitter of Pass Transistor. Bypass with 10 μF in parallel  
with 100 nF.  
27  
28  
31  
I/O  
I/O  
I
DBCLK  
DLRCLK  
DSDATA8/SA  
Bit Clock for DACs.  
Frame Clock for DACs.  
DAC15 and DAC 16 Serial Data Input/SA_MODE TDM State (see the Standalone Mode  
section, Table 15, and Table 16).  
32  
I
DSDATA7/SA  
DAC13 and DAC 14 Serial Data Input/SA_MODE TDM State (see the Standalone Mode  
section, Table 15, and Table 16).  
33  
34  
35  
36  
37  
38  
42  
I
I
I
I
I
I
I
DSDATA6  
DSDATA5  
DSDATA4  
DSDATA3  
DSDATA2  
DSDATA1  
CDATA/ADDR1/SA  
DAC11 and DAC 12 Serial Data Input.  
DAC9 and DAC 10 Serial Data Input.  
DAC7 and DAC 8 Serial Data Input.  
DAC5 and DAC 6 Serial Data Input.  
DAC3 and DAC 4 Serial Data Input.  
DAC1 and DAC 2 Serial Data Input.  
Control Data Input (SPI)/Address 1 (I2C)/SA_MODE State (see the Standalone Mode  
section and Table 15).  
43  
44  
45  
46  
I/O  
COUT/SDA/SA  
CCLK/SCL/SA  
CLATCH/ADDR0/SA  
SA_MODE  
Control Data Output (SPI)/Control Data Input (I2C)/SA_MODE State (see the  
Standalone Mode section and Table 15).  
Control Clock Input (SPI)/Control Clock Input (I2C)/SA_MODE State (see the Standalone  
Mode section and Table 15).  
Control Chip Select (SPI) (Low Active)/Address 0 (I2C)/SA_MODE State (see the  
Standalone Mode section and Table 15).  
Standalone Mode. This pin allows mode control of ADAU1966 using Pin 42 to Pin 45,  
Pin 31, and Pin 32 (high active, see Table 15 and Table 16).  
I
I
I
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
I
PU/RST  
AGND1  
AVDD1  
DAC1P  
DAC1N  
DAC2P  
DAC2N  
DAC3P  
DAC3N  
DAC4P  
DAC4N  
AVDD2  
DAC_BIAS1  
DAC_BIAS2  
AGND2  
CM  
Power-Up/Reset (Low Active).  
Analog Ground.  
Analog Power.  
GND  
PWR  
O
O
O
O
O
O
O
DAC1 Positive Output.  
DAC1 Negative Output.  
DAC2 Positive Output.  
DAC2 Negative Output.  
DAC3 Positive Output.  
DAC3 Negative Output.  
DAC4 Positive Output.  
DAC4 Negative Output.  
Analog Power.  
DAC Bias 1. AC couple with 470 nF to AVDD2.  
DAC Bias 2. AC couple with 470 nF to AGND2.  
Analog Ground.  
Common-Mode Reference Filter Capacitor Connection. Bypass with 10 μF in parallel  
with 100 nF to AGND2. This reference can be shut off in the PLL_CLK_CTRL1 register  
and the pin can be driven with an outside voltage source.  
O
PWR  
I
I
GND  
O
63  
O
TS_REF  
Voltage Reference Filter Capacitor Connection. Bypass with 10 μF in parallel with  
100 nF to AGND2.  
64  
65  
66  
67  
68  
69  
70  
O
O
O
O
O
O
O
DAC5P  
DAC5N  
DAC6P  
DAC6N  
DAC7P  
DAC7N  
DAC8P  
DAC5 Positive Output.  
DAC5 Negative Output.  
DAC6 Positive Output.  
DAC6 Negative Output.  
DAC7 Positive Output.  
DAC7 Negative Output.  
DAC8 Positive Output.  
Rev. 0 | Page 11 of 52  
ADAU1966  
Pin No.  
71  
72  
73  
74  
75  
76  
77  
78  
Type1  
Mnemonic  
DAC8N  
DAC9P  
Description  
O
O
O
O
O
O
O
O
DAC8 Negative Output.  
DAC9 Positive Output.  
DAC9 Negative Output.  
DAC10 Positive Output.  
DAC10 Negative Output.  
DAC11 Positive Output.  
DAC11 Negative Output.  
DAC12 Positive Output.  
DAC12 Negative Output.  
Analog Ground.  
DAC9N  
DAC10P  
DAC10N  
DAC11P  
DAC11N  
DAC12P  
DAC12N  
AGND3  
79  
80  
O
GND  
1 I = input, O = output, I/O = input/output, PWR = power, GND = ground.  
Rev. 0 | Page 12 of 52  
ADAU1966  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.05  
0.20  
0.15  
0.10  
0.05  
0
0.04  
0.03  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.05  
–0.10  
–0.15  
–0.20  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
FREQUENCY (FACTORED TO fS  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
)
FREQUENCY (FACTORED TO fS  
)
Figure 4. DAC Pass-Band Filter Response, 48 kHz  
Figure 6. DAC Pass-Band Filter Response, 96 kHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (FACTORED TO fS  
)
FREQUENCY (FACTORED TO fS  
)
Figure 5. DAC Stop-Band Filter Response, 48 kHz  
Figure 7. DAC Stop-Band Filter Response, 96 kHz  
Rev. 0 | Page 13 of 52  
 
ADAU1966  
APPLICATION CIRCUITS  
Typical application circuits are shown in Figure 8 to Figure 11. Recommended loop filters for DLRCLK and MCLKI/XTALI modes of the  
PLL reference are shown in Figure 8. Output filters for the DAC outputs are shown in Figure 9 and Figure 10, and an external regulator  
circuit is shown in Figure 11.  
DLRCLK  
MCLKI/XTALI  
LF  
LF  
39nF  
5.6nF  
2.2nF  
390pF  
3.32k  
562Ω  
PLLVDD  
PLLVDD  
Figure 8. Recommended Loop Filters for DLRCLK or MCLKI/XTALI PLL Reference Modes  
10µF  
+
237  
DACP  
DACN  
OUTP  
OUTN  
2.7nF  
237Ω  
10µF  
+
49.9kΩ  
49.9kΩ  
Figure 9. Typical DAC Output Passive Filter Circuit (Differential)  
1.1nF  
AD8672ARZ  
1.50k  
1.54kΩ  
5
4.7µF  
+
DAC1P  
+12V DC  
100Ω  
7
OUTPUT1P  
6
422Ω  
2.49kΩ  
100kΩ  
100kΩ  
+
+
+
0.1µF  
0.1µF  
4.7µF  
1nF  
1nF  
4.7µF  
8
V+  
V–  
4
+
4.7µF  
4.7µF  
2.49kΩ  
422Ω  
2
3
–12V DC  
4.7µF  
+
100Ω  
1
OUTPUT1N  
1.50kΩ  
1.54kΩ  
DAC1N  
AD8672ARZ  
1.1nF  
Figure 10. Typical DAC Output Active Filter Circuit (Differential)  
100nF  
10µF  
E
+
VSUPPLY  
5V  
1k  
B
VDRIVE  
VSENSE  
FZT953  
C
2.5V  
+
100nF  
10µF  
Figure 11. Recommended 2.5 V Regulator Circuit  
Rev. 0 | Page 14 of 52  
 
 
 
 
 
ADAU1966  
THEORY OF OPERATION  
The ADAU1966 offers control over the analog performance  
DIGITAL-TO-ANALOG CONVERTERS (DACS)  
of the DACs; it is possible to program the registers to reduce  
the power consumption with the trade-off of lower SNR and  
THD + N. The reduced power consumption is the result of  
changing the internal bias current to the analog output  
amplifiers.  
The 16 ADAU1966 digital-to-analog converter (DAC) channels  
are differential for improved noise and distortion performance  
and are voltage output for simplified connection. The DACs  
include on-chip digital interpolation filters with 68 dB stop-band  
attenuation and linear phase response, operating at an over-  
sampling ratio of 256× (48 kHz range), 128× (96 kHz range), or  
64× (192 kHz range). Each channel has its own independently  
programmable attenuator, adjustable in 255 steps in increments  
of 0.375 dB. Digital inputs are supplied through eight serial data  
input pins (two channels on each pin), a common frame clock  
(DLRCLK), and a bit clock (DBCLK). Alternatively, any one of the  
TDM modes can be used to access up to 16 channels on a single  
TDM data line.  
Register DAC_POWER1 to Register DAC_POWER4 present  
four basic settings for the DAC power vs. performance in each  
of the 16 channels: best performance, good performance, low  
power, and lowest power. Alternatively, in Register PLL_CLK_  
CTRL1[7:6], the LOPWR_MODE bits offer global control over  
the power and performance for all 16 channels. The default  
setting is b00. This setting allows the channels to be controlled  
individually using the DAC_POWERx registers. Setting b10  
and Setting b11 select the low power and lowest power settings.  
The data presented in Table 13 shows the result of setting all  
16 channels to each of the four settings. The SNR and THD + N  
specifications are shown in relation to the measured perfor-  
mance of a device at the best performance setting.  
The ADAU1966 has a low propagation delay mode; this mode  
is an option for an fS of 192 kHz and is enabled in Register DAC_  
CTRL0[2:1]. By setting these bits to b11, the propagation delay  
is reduced by the amount shown in Table 8. The shorter delay is  
achieved by reducing the amount of digital filtering; the nega-  
tive impact of selecting this mode is reduced audio frequency  
response and increased out-of-band energy.  
The voltage at CM, the common-mode reference pin, can be  
used to bias the external op amps that buffer the output signals  
(see the Power Supply and Voltage Reference section).  
When AVDD is supplied with 5 V, each analog output pin has a  
nominal common-mode (CM) dc level of 2.25 V and swings  
8.49 V p-p (3 V rms differential) from a 0 dBFS digital input  
signal. An AVDD of 3.3 V generates a CM dc voltage of 1.5 V  
and allows differential audio swings of 5.66 V p-p (2 V rms)  
from a 0 dBFS digital input signal. The differential analog  
outputs require only a single-order passive differential RC filter  
to provide the specified DNR performance; see Figure 9 for an  
example filter. The outputs can easily drive differential inputs  
on a separate PCB through cabling as well as differential inputs  
on the same PCB.  
CLOCK SIGNALS  
RST  
Upon powering the ADAU1966 and asserting the PU/  
pin  
high, the part starts in either standalone mode (SA_MODE) or  
program mode, depending on the state of SA_MODE (Pin 46).  
The clock functionality of SA_MODE is described in the  
Standalone Mode section. In program mode, the default for the  
ADAU1966 is for the MCLKO pin to feed a buffered output of  
the MCLKI signal. The default for the DLRCLK and DBCLK  
ports is slave mode; the DAC must be driven with a coherent set  
of MCLK, LRCLK, and BCLK signals to function.  
If more signal level is required or if a more robust filter is needed, a  
single op amp gain stage designed as a second-order, low-pass  
Bessel filter can be used to remove the high frequency out-of-  
band noise present on each pin of the differential outputs. The  
choice of components and design of this circuit is critical to  
yield the full DNR of the DACs (see the recommended passive  
and active circuits in Figure 9 and Figure 10). This filter can be  
built into an active difference amplifier to provide a single-ended  
output with gain, if necessary. Note that the use of op amps with  
low slew rate or low bandwidth can cause high frequency noise  
and tones to fold down into the audio band; exercise care when  
selecting these components.  
The MCLKO pin can be programmed to provide different clock  
signals using Register Bits PLL_CLK_CTRL1[5:4]. The default,  
b10, provides a buffered copy of the clock signal that is driving  
the MCLKI pin. Two modes, b00 and b01, provide low jitter  
clock signals. The b00 setting yields a clock rate between 4 MHz  
and 6 MHz, and b01 yields a clock rate between 8 MHz and  
12 MHz. Both of these clock frequencies are scaled as ratios of  
MCLK automatically inside the ADAU1966. As an example, an  
MCLK of 8.192 MHz and a setting of b00 yield an MCLKO of  
(8.192/2) = 4.096 MHz. Alternatively, an MCLK of 36.864 MHz  
and a setting of b01 yield an MCLKO frequency of (36.864/3) =  
12.288 MHz. The setting b11 shuts off the MCLKO pin.  
Table 13. DAC Power vs. Performance  
Register Setting  
Total AVDD Current  
SNR  
Best Performance  
Good Performance  
73 mA  
−0.2 dB  
Low Power  
64 mA  
−1.5 dB  
−3.0 dB  
Lowest Power  
54 mA  
−14.2 dB  
−5.8 dB  
82 mA  
Reference  
Reference  
THD + N (−1 dbFS signal)  
−1.8 dB  
Rev. 0 | Page 15 of 52  
 
 
 
 
ADAU1966  
RST  
bit in the DAC_CTRL1 register. With the BCLK_GEN bit set to  
b1 (internal) and the SAI_MS bit set to b0 (slave), the ADAU1966  
generate its own DBCLK; this works with the PLL input set to  
either MCLKI/XTALI or DLRCLK. DLRCLK is the only required  
clock in DLRCLK PLL mode.  
After the PU/  
pin has been asserted high, the PLL_CLK_  
CTRLx registers (0x00 and 0x01) can be programmed. The  
on-chip phase-locked loop (PLL) can be selected to use the  
clock appearing at the MCLKI/XTALI pin at a frequency of  
256, 384, 512, or 768 times the sample rate (fS), referenced to  
the 48 kHz mode from the master clock select (MCS) setting,  
as described in Table 14. In 96 kHz mode, the master clock fre-  
quency stays at the same absolute frequency; therefore, the  
actual multiplication rate is divided by 2. In 192 kHz mode,  
the actual multiplication rate is divided by 4. For example, if  
the ADAU1966 is programmed in 256 × fS mode, the frequency  
of the master clock input is 256 × 48 kHz = 12.288 MHz. If the  
ADAU1966 is then switched to 96 kHz operation (by writing to  
DAC_CTRL0 [2:1]), the frequency of the master clock should  
remain at 12.288 MHz, which is 128 × fS in this example. In  
192 kHz mode, MCS becomes 64 × fS.  
POWER-UP AND RST  
Power sequencing for the ADAU1966 should start with AVDD  
and IOVDD, followed by DVDD. It is very important that  
AVDD be settled at a regulated voltage and that IOVDD be  
within 10ꢀ of regulated voltage before applying DVDD. When  
using the ADAU1966 internal regulator, this timing occurs by  
default.  
RST  
To guarantee proper startup, the PU/  
pin should be pulled  
low by an external resistor and then driven high after the power  
RST  
supplies have stabilized. The PU/  
using a simple RC network.  
can also be pulled high  
The internal clock for the digital core varies by mode: 512 × fS  
(48 kHz mode), 256 × fS (96 kHz mode), or 128 × fS (192 kHz  
mode). By default, the on-board PLL generates this internal  
master clock from an external clock.  
RST  
Driving the PU/  
state (<3 μA). All functionality of the ADAU1966 is disabled  
RST  
pin low puts the part into a very low power  
until the PU/  
pin is asserted high. Once this pin is asserted  
The PLL should be powered and stable before the ADAU1966 is  
used as a source for quality audio. The PLL is enabled by reset  
and does not require writing to the I2C or SPI port for normal  
operation.  
high, the ADAU1966 requires 300 ms to stabilize. The MMUTE  
bit in the DAC_CTRL0 register must be toggled for operation.  
The PUP bit in the PLL_CLK_CTRL0 register can be used to  
power down the ADAU1966. Engaging the master power-down  
puts the ADAU1966 in an idle state while maintaining the set-  
tings of all registers. Additionally, the power-down bits in the  
PDN_THRMSENS_CTRL1 register (TS_PDN, PLL_PDN, and  
VREG_PDN) can be used to power down individual sections of  
the ADAU1966.  
With the PLL enabled, the performance of the ADAU1966 is  
not affected by jitter as high as a 300 ps rms time interval error  
(TIE). If the internal PLL is not used, it is best to use an independ-  
ent crystal oscillator to generate the master clock.  
If the ADAU1966 is to be used in direct MCLK mode, the PLL  
can be powered down in the PDN_THRMSENS_CTRL_1 regis-  
ter. For direct MCLK mode, a 512 × fS (referenced to 48 kHz  
mode) master clock must be used as MCLK, and the CLK_SEL  
bit in the PLL_CLK_CTRL1 register must be set to b1.  
The SOFT_RST bit in the PLL_CLK_CTRL0 register sets all of  
the control registers to their default settings while maintaining  
the internal clocks in default mode. The SOFT_RST bit does  
not power down the analog outputs; toggling this bit does not  
cause audible popping sounds at the differential analog outputs.  
The ADAU1966 PLL can also be programmed to run from an  
external LRCLK. When the PLLIN bits in the PLL_CLK_CTRL0  
register are set to 01 and the appropriate loop filter is connected  
to the LF pin (see Figure 8), the ADAU1966 PLL generates all  
of the necessary internal clocks for operation with no external  
MCLK. This mode reduces the number of high frequency  
signals in the design, reducing EMI emissions.  
Proper startup of the ADAU1966 should proceed as follows:  
1. Apply power to the ADAU1966 as described previously.  
RST  
2. Assert the PU/  
stabilized.  
pin high after power supplies have  
3. Set the PUP bit to b1.  
4. Program all necessary registers for the desired settings.  
5. Set the MMUTE bit to b0 to unmute all channels.  
It is possible to further reduce EMI emissions of the circuit by  
using the internal DBCLK generation setting of the BCLK_GEN  
Rev. 0 | Page 16 of 52  
 
ADAU1966  
Table 14. MCS and fS Modes  
Master Clock Select (MCS), PLL_CLK_CTRL0[2:1]  
Setting 1, b01 Setting 2, b10  
Sample Rate Select (FS)  
DAC_CTRL0[2:1]  
32 kHz, b00  
44.1 kHz, b00  
48 kHz, b00  
Setting 0, b00  
MCLK (MHz) Ratio  
Setting 3, b11  
Ratio  
MCLK  
Ratio  
MCLK  
Ratio  
MCLK  
256 × fS  
256 × fS  
256 × fS  
128 × fS  
128 × fS  
128 × fS  
64 × fS  
8.192  
384 × fS  
384 × fS  
384 × fS  
192 × fS  
192 × fS  
192 × fS  
96 × fS  
12.288  
16.9344  
18.432  
12.288  
16.9344  
18.432  
12.288  
16.9344  
18.432  
512 × fS  
512 × fS  
512 × fS  
256 × fS  
256 × fS  
256 × fS  
128 × fS  
128 × fS  
128 × fS  
16.384  
22.5792  
24.576  
16.384  
22.5792  
24.576  
16.384  
22.5792  
24.576  
768 × fS  
768 × fS  
768 × fS  
384 × fS  
384 × fS  
384 × fS  
192 × fS  
192 × fS  
192 × fS  
24.576  
33.8688  
36.864  
24.576  
33.8688  
36.864  
24.576  
33.8688  
36.864  
11.2896  
12.288  
8.192  
11.2896  
12.288  
8.192  
64 kHz, b01  
88.2 kHz, b01  
96 kHz, b01  
128 kHz, b10 or b11  
176.4 kHz, b10 or b11  
192 kHz, b10 or b11  
64 × fS  
64 × fS  
11.2896  
12.288  
96 × fS  
96 × fS  
and a data line, SDA. SDA is bidirectional, and the ADAU1966  
drives SDA either to acknowledge the master (ACK) or to send  
data during a read operation. The SDA pin for the I2C port is an  
open-drain collector and requires a 2 kΩ pull-up resistor. A write  
or read access occurs when the SDA line is pulled low while the  
SCL line is high, indicated by a start in Figure 12 and Figure 13.  
SDA is only allowed to change when SCL is low except when a  
start or stop condition occurs, as shown in Figure 12 and Figure 13.  
The first eight bits of the data-word consist of the device address  
and the R/W bit. The device address consists of an internal built-in  
address (0x04) and two address pins, ADDR1 and ADDR0. The  
two address bits allow four ADAU1966 devices to be used in a  
system. Initiating a write operation to the ADAU1966 involves  
sending a start condition and then sending the device address  
STANDALONE MODE  
The ADAU1966 can operate without a typical I2C or SPI  
connection to a microcontroller. This standalone mode is  
made available by setting the SA_MODE (Pin 46) to high  
(IOVDD). All registers are set to default except the options  
shown in Table 15.  
Table 15. SA_MODE Settings  
Pin No. Setting Function  
42  
43  
44  
45  
0
1
0
1
0
1
0
1
Master mode serial audio interface (SAI)  
Slave mode SAI  
MCLK = 256 × fS, PLL on  
MCLK = 384 × fS, PLL on  
AVDD = 5.0 V (CM = 2.25 V)  
AVDD = 3.3 V (CM = 1.50 V)  
I2S SAI format  
R
with the /W bit set low. The ADAU1966 responds by issuing  
an acknowledge to indicate that it has been addressed. The user  
then sends a second frame telling the ADAU1966 which register  
is required to be written. Another acknowledge is issued by the  
ADAU1966. Finally, the user can send another frame with the  
eight data bits required to be written to the register. A third  
acknowledge is issued by the ADAU1966 after which the user  
can send a stop condition to complete the data transfer.  
TDM modes, determined by Pin 31 and Pin 32  
When both SA_MODE and Pin 45 are set high, TDM mode is  
selected. Table 16 shows the available TDM modes; these modes  
are set by connecting Pin 31 (DSDATA8) and Pin 32 (DSDATA7)  
to GND or IOVDD.  
Table 16. TDM Modes  
A read operation requires that the user first write to the  
ADAU1966 to point to the correct register and then read the  
data. This is achieved by sending a start condition followed by  
Pin No.  
Setting  
Function  
32:31  
00  
TDM4—DLRCLK pulse  
TDM8—DLRCLK pulse  
TDM16—DLRCLK pulse  
TDM8—DLRCLK 50% duty cycle  
01  
10  
11  
R
the device address frame, with the /W bit low, and then the  
register address frame. Following the acknowledge from the  
ADAU1966, the user must issue a repeated start condition. The  
R
next frame is the device address with the /W bit set high. On  
When the ADAU1966 is powered up in SA_MODE and the  
RST  
ered version of the MCLKI pin, whether the source is a crystal  
or an active oscillator.  
the next frame, the ADAU1966 outputs the register data on the  
SDA line. A stop condition completes the read operation.  
PU/  
pin is asserted high, the MCLKO pin provides a buff-  
Table 17. I2C Addresses  
I2C CONTROL PORT  
ADDR1  
ADDR0  
Slave Address  
0x04  
0x24  
0x44  
0x64  
The ADAU1966 has an I2C-compatible control port that per-  
mits programming and reading back of the internal control  
registers for the DACs and clock system. The I2C interface of the  
ADAU1966 is a 2-wire interface consisting of a clock line, SCL,  
0
0
1
1
0
1
0
1
Rev. 0 | Page 17 of 52  
 
 
 
 
 
ADAU1966  
SCL  
SDA  
AD1  
AD0  
0
0
1
0
0
R/W  
0
0
0
0
0
1
1
0
START BY  
MASTER (S)  
ACK. BY  
ADAU1966 (AS)  
ACK. BY  
ADAU1966 (AS)  
FRAME 1  
CHIP ADDRESS BYTE  
FRAME 2  
REGISTER ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY STOP BY  
ADAU1966 (AS) MASTER (P)  
FRAME 3  
DATA BYTE TO ADAU1966  
Figure 12. I2C Write Format  
SCL  
SDA  
AD1  
AD0  
0
0
1
0
0
R/W  
0
0
0
0
0
1
1
0
START BY  
MASTER (S)  
ACK. BY  
ADAU1966 (AS)  
ACK. BY  
ADAU1966 (AS)  
FRAME 1  
CHIP ADDRESS BYTE  
FRAME 2  
REGISTER ADDRESS BYTE  
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
0
0
0
0
1
AD1  
AD0  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
REPEATED START  
BY MASTER (S)  
ACK. BY  
ADAU1966 (AS)  
ACK. BY STOP BY  
MASTER (AM) MASTER (P)  
FRAME 3  
CHIP ADDRESS BYTE  
FRAME 4  
REGISTER DATA  
Figure 13. I2C Read Format  
Table 18. I2C Abbreviations  
Abbreviation  
Condition  
S
Start bit  
P
Stop bit  
AM  
AS  
Acknowledge by master  
Acknowledge by slave  
Table 19. Single Word I2C Write  
S
Chip Address, R = 0  
AS  
Register Address  
AS  
Data-Word  
AS  
P
Table 20. Burst Mode I2C Write  
Chip Address, R = 0  
AS  
S
Register Address  
Register Address  
AS  
Data-Word 1  
AS  
Data-Word 2  
AS  
Data-Word N  
AS  
P
Table 21. Single Word I2C Read  
Chip Address, R = 0  
S
AS  
AS  
S
Chip Address, R = 1  
AS  
Data-Word  
AM Data-  
AM  
P
Table 22. Burst Mode I2C Read  
Chip Address, R AS Register  
Address  
S
AS  
S
Chip Address, R AS Data-  
Word 1  
AM Data-  
Word 2  
AM  
P
Word N  
= 0  
= 1  
Rev. 0 | Page 18 of 52  
 
 
ADAU1966  
The temperature sensor internal voltage reference (VTS_REF  
)
is brought out on the TS_REF pin and should be bypassed as  
close as possible to the chip with a parallel combination of  
10 μF and 100 nF.  
SERIAL CONTROL PORT: SPI CONTROL MODE  
The ADAU1966 has an SPI control port that permits program-  
ming and reading back of the internal control registers for the  
DACs and clock system. A standalone mode is also available for  
operation without serial control; it is configured at reset using the  
SA_MODE pin. See the Standalone Mode section for details  
about SA_MODE.  
The internal band gap reference can be disabled in the  
PLL_CLK_CTRL1 register by setting VREF_EN to 0; the CM  
pin can be then be driven from an external source. This can be  
used to scale the DAC output to the clipping level of a power  
amplifier based on its power supply voltage.  
By default, the ADAU1966 is in I2C mode, but it can be put into  
CLATCH  
SPI control mode by pulling  
low three times. This  
The CM pin is the internal common-mode reference. It should  
be bypassed as close as possible to the chip, with a parallel  
combination of 10 μF and 100 nF. This voltage can be used to  
bias external op amps to the common-mode voltage of the  
analog input and output signal pins. The output current should  
be limited to less than 0.5 mA source and 2 mA sink.  
is done by performing three dummy writes to the SPI port (the  
ADAU1966 does not acknowledge these three writes). Begin-  
ning with the fourth SPI write, data can be written to or read  
from the IC. The ADAU1966 can be taken out of SPI control  
mode only by a full reset initiated by power cycling the IC.  
The SPI control port of the ADAU1966 is a 4-wire serial control  
port. The format is similar to the Motorola SPI format except  
the input data-word is 24 bits wide. The serial bit clock and  
latch can be completely asynchronous to the sample rate of the  
DACs. Figure 14 shows the format of the SPI signal. The first  
byte is a global address with a read/write bit. For the ADAU1966,  
SERIAL DATA PORTS—DATA FORMAT  
The 16 DAC channels use a common serial bit clock (DBCLK)  
and a common left-right framing clock (DLRCLK) in the serial  
data port. The clock signals are all synchronous with the sample  
rate. The normal stereo serial modes are shown in Figure 15.  
The DAC serial data mode defaults to I2S (1 BCLK delay) upon  
power-up and reset. The ports can also be programmed for left-  
justified and right-justified (24-bit and 16-bit) operation using  
DAC_CTRL0[7:6]. Stereo and TDM modes can be selected using  
DAC_CTRL0[5:3]. The polarity of DBCLK and DLRCLK is  
programmable according to the DAC_CTRL1[1] and DAC_  
CTRL1[5] bits. The serial ports are programmable as the clock  
masters according to the DAC_CTRL1[0] bit. By default, the  
serial port is in slave mode.  
R
the address is 0x06, shifted left one bit due to the /W bit. The  
second byte is the ADAU1966 register address, and the third  
byte is the data.  
POWER SUPPLY AND VOLTAGE REFERENCE  
The ADAU1966 is designed for 3.3 V or 5 V analog and 2.5 V  
digital supplies. To minimize noise pickup, the power supply  
pins should be bypassed with 100 nF ceramic chip capacitors  
placed as close to the pins as possible. A bulk aluminum  
electrolytic capacitor of at least 22 μF should also be provided  
for each rail on the same PC board as the codec. It is important  
that the analog supply be as clean as possible.  
TIME-DIVISION MULTIPLEXED (TDM) MODES  
The ADAU1966 serial ports also have several different TDM  
serial data modes. The ADAU1966 can support a single data  
line TDM16, a dual data line (TDM8), a quad data line  
(TDM4), or eight data lines (TDM2). The DLRCLK can be  
operated in both single-cycle pulse mode and a 50% duty  
cycle mode. Both 16 DBCLKs or 32 DBCLKs per channel are  
selectable for each mode.  
The ADAU1966 includes a 2.5 V regulator driver that requires  
only an external pass transistor and bypass capacitors to make a  
2.5 V regulator from a 5 V or 3.3 V supply. The VSUPPLY and  
VSENSE pins should be decoupled with no more than 10 ꢀF, in  
parallel with 100 nF high frequency bypassing. If the regulator  
driver is not used, connect VSUPPLY and VDRIVE to GND  
and leave VSENSE unconnected.  
The I/O pins of the serial ports are defined according to the  
serial mode that is selected. For a detailed description of the  
function of each pin in TDM and stereo modes, see Table 23.  
All digital inputs are compatible with TTL and CMOS levels.  
All outputs are driven from the 3.3 V or 5 V IOVDD supply and  
are compatible with TTL and 3.3 V CMOS levels.  
Rev. 0 | Page 19 of 52  
 
 
 
ADAU1966  
conversion, placing the resulting temperature data in the  
THRM_TEMP_STAT register. In continuous operation  
mode, the data conversion takes place at a rate set by Bits[7:6],  
THRM_RATE, with a range of 0.5 sec to 4 sec between samples.  
Faster rates are possible using the one-shot mode.  
TEMPERATURE SENSOR  
The ADAU1966 has an on-board temperature sensor that allows  
the user to read the temperature of the silicon inside the part.  
The temperature sensor readout has a range of −60°C to +140°C  
in 1°C steps. The PDN_THRMSENS_CTRL_1 register controls  
the settings of the sensor. The temperature sensor is powered on  
by default and can be shut off by setting the TS_PDN[2] bit to  
b1 in PDN_THRMSENS_CTRL_1. The temperature sensor can  
be run in either continuous operation or one-shot mode. The  
temperature sensor conversion mode is modified using Bit 5,  
THRM_MODE; the default is THRM_MODE = 1, one-shot  
mode. In one-shot mode, writing a 0 followed by writing a 1 to  
Bit 4, THRM_GO, results in a single reset and temperature  
Once a temperature conversion has been placed in the  
THRM_TEMP_STAT register, the data can be translated into  
degrees Celsius (°C) using the following steps:  
1. Convert the binary or hexadecimal data read from  
THRM_TEMP_STAT into decimal form.  
2. Subtract 60 from the converted THRM_TEMP_STAT  
data; this is the temperature of the silicon in °C.  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
LEFT-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 0, SDATA_FMT = 1  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
MSB  
I S-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 0, SDATA_FMT = 0  
LSB  
SDATA  
MSB  
LSB  
2
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
RIGHT-JUSTIFIED MODE—SELECT NUMBER OF BITS PER CHANNEL: SAI = 0, SDATA_FMT = 2 OR 3  
LRCLK  
BCLK  
SDATA  
MSB  
LSB  
MSB  
LSB  
TDM MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 1, 2, 3, OR 4  
1/fS  
Figure 15. Serial Audio Modes  
Rev. 0 | Page 20 of 52  
 
ADAU1966  
tDBH  
DBCLK  
tDBL  
tDLS  
tDLH  
DLRCLK  
tDDS  
DSDATAx  
LEFT-JUSTIFIED  
MODE  
MSB  
MSB – 1  
tDDH  
tDDS  
DSDATAx  
2
I S-JUSTIFIED  
MSB  
MODE  
tDDH  
tDDS  
tDDS  
DSDATAx  
RIGHT-JUSTIFIED  
MODE  
MSB  
LSB  
tDDH  
tDDH  
Figure 16. DAC Serial Timing  
Table 23. Pin Function Changes in Different Serial Audio Interface Modes  
Stereo Modes  
(SAI = 0 or 1)  
TDM4 Mode  
(SAI = 2)  
TDM8 Mode  
(SAI = 3)  
TDM16 Mode  
(SAI = 4)  
Signal  
DSDATA1  
Channel 1/Channel 2  
data in  
Channel 1 to Channel 4  
data in  
Channel 1 to Channel 8  
data in  
Channel 1 to Channel 16  
data in  
DSDATA2  
Channel 3/Channel 4  
data in  
Channel 5/Channel 6  
data in  
Channel 7/Channel 8  
data in  
Channel 9/Channel 10  
data in  
Channel 11/Channel 12  
data in  
Channel 13/Channel 14  
data in  
Channel 15/Channel 16  
data in  
Channel 5 to Channel 8  
data in  
Channel 9 to Channel 12  
data in  
Channel 13 to Channel 16 Not used  
data in  
Not used  
Not used  
Not used  
Not used  
Channel 9 to Channel 16  
data in  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
DSDATA3  
DSDATA4  
DSDATA5  
Not used  
Not Used  
Not used  
Not used  
DSDATA6  
DSDATA7  
DSDATA8  
DLRCLK  
DLRCLK in/DLRCLK out  
DBCLK in/DBCLK out  
192 kHz  
TDM frame sync in/  
TDM frame sync out  
TDM DBCLK in/TDM  
DBCLK out  
TDM frame sync in/  
TDM frame sync out  
TDM DBCLK in/TDM  
DBCLK out  
TDM frame sync in/  
TDM frame sync out  
TDM DBCLK in/  
TDM DBCLK out  
DBCLK  
Maximum Sample Rate  
192 kHz  
96 kHz  
48 kHz  
Rev. 0 | Page 21 of 52  
 
 
ADAU1966  
To relax the requirement for the setup time of the ADAU1966  
in cases of high speed TDM data transmission, the ADAU1966  
can latch in the data using the falling edge of DBCLK; see the  
BCLK_EDGE bit in the DAC_CTRL1 register. This effectively  
dedicates the entire BCLK period to the setup time. This mode  
is useful in cases where the source has a large delay time in the  
serial data driver. Figure 18 shows this inverted DBCLK mode  
of data transmission.  
ADDITIONAL MODES  
The ADAU1966 offers several additional modes for board level  
design enhancements. To reduce the EMI in board level design,  
serial data can be transmitted without an explicit DBCLK. See  
Figure 17 for an example of a DAC TDM data transmission mode  
that does not require a high speed DBCLK or an external  
MCLK. This configuration is applicable when the ADAU1966  
master clock is generated by the PLL with the DLRCLK as the  
PLL reference frequency.  
DLRCLK  
32 BITS  
INTERNAL  
DBCLK  
DSDATAx  
DLRCLK  
INTERNAL  
DBCLK  
TDM-DSDATAx  
Figure 17. Serial DAC Data Transmission in TDM Format Without DBCLK  
(Applicable Only If PLL Locks to DLRCLK)  
DLRCLK  
DBCLK  
DATA MUST BE VALID  
AT THIS BCLK EDGE  
MSB  
DSDATAx  
Figure 18. Inverted DBCLK Mode in DAC Serial Data Transmission  
(Applicable in Stereo and TDM, Useful for High Frequency TDM Transmission)  
Rev. 0 | Page 22 of 52  
 
 
 
ADAU1966  
REGISTER SUMMARY  
Table 24. ADAU1966 Register Summary  
Reg Name  
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
XTAL_SET  
Bit 3  
Bit 2  
Bit 1  
MCS  
Bit 0  
Reset RW  
0x00 PLL_CLK_CTRL0  
0x01 PLL_CLK_CTRL1  
[7:0]  
PLLIN  
SOFT_RST  
PLL_MUTE  
RESERVED  
PUP  
0x00 RW  
[7:0]  
LOPWR_MODE  
THRM_RATE  
MCLKO_SEL  
PLL_LOCK  
TS_PDN  
VREF_EN  
PLL_PDN  
CLK_SEL  
0x2A RW  
0xA0 RW  
0x02 PDN_THRMSENS_CTRL_1 [7:0]  
THRM_MODE THRM_GO  
VREG_PDN  
0x03 PDN_CTRL2  
0x04 PDN_CTRL3  
0x05 THRM_TEMP_STAT  
0x06 DAC_CTRL0  
0x07 DAC_CTRL1  
0x08 DAC_CTRL2  
0x09 DAC_MUTE1  
0x0A DAC_MUTE2  
0x0B DACMSTR_VOL  
0x0C DAC01_VOL  
0x0D DAC02_VOL  
0x0E DAC03_VOL  
0x0F DAC04_VOL  
0x10 DAC05_VOL  
0x11 DAC06_VOL  
0x12 DAC07_VOL  
0x13 DAC08_VOL  
0x14 DAC09_VOL  
0x15 DAC10_VOL  
0x16 DAC11_VOL  
0x17 DAC12_VOL  
0x18 DAC13_VOL  
0x19 DAC14_VOL  
0x1A DAC15_VOL  
0x1B DAC16_VOL  
0x1C CM_SEL_PAD_STRGTH  
0x1D DAC_POWER1  
0x1E DAC_POWER2  
0x1F DAC_POWER3  
0x20 DAC_POWER4  
[7:0] DAC08_PDN DAC07_PDN DAC06_PDN DAC05_PDN DAC04_PDN DAC03_PDN  
[7:0] DAC16_PDN DAC15_PDN DAC14_PDN DAC13_PDN DAC12_PDN DAC11_PDN  
DAC02_PDN DAC01_PDN 0x00 RW  
DAC10_PDN DAC09_PDN 0x00 RW  
[7:0]  
[7:0]  
TEMP  
0x00  
R
SDATA_FMT  
SAI  
FS  
MMUTE  
SAI_MS  
0x01 RW  
0x00 RW  
[7:0] BCLK_GEN  
[7:0] RESERVED  
LRCLK_MODE LRCLK_POL  
VREG_CTRL  
SAI_MSB  
RESERVED  
BCLK_RATE  
BCLK_EDGE  
BCLK_TDMC DAC_POL  
AUTO_MUTE_EN DAC_OSR  
DE_EMP_EN 0x06 RW  
[7:0] DAC08_MUTE DAC07_MUTE DAC06_MUTE DAC05_MUTE DAC04_MUTE DAC03_MUTE  
[7:0] DAC16_MUTE DAC15_MUTE DAC14_MUTE DAC13_MUTE DAC12_MUTE DAC11_MUTE  
DAC02_MUTE DAC01_MUTE 0x00 RW  
DAC10_MUTE DAC09_MUTE 0x00 RW  
0x00 RW  
[7:0]  
DACMSTR_VOL  
DAC01_VOL  
DAC02_VOL  
DAC03_VOL  
DAC04_VOL  
DAC05_VOL  
DAC06_VOL  
DAC07_VOL  
DAC08_VOL  
DAC09_VOL  
DAC10_VOL  
DAC11_VOL  
DAC12_VOL  
DAC13_VOL  
DAC14_VOL  
DAC15_VOL  
DAC16_VOL  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0]  
0x00 RW  
[7:0] RESERVED  
RESERVED  
PAD_DRV  
RESERVED  
RESERVED  
RESERVED  
CM_SEL  
RESERVED  
0x02 RW  
0xAA RW  
0xAA RW  
0xAA RW  
0xAA RW  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
DAC04_POWER  
DAC08_POWER  
DAC03_POWER  
DAC02_POWER  
DAC06_POWER  
DAC10_POWER  
DAC14_POWER  
DAC01_POWER  
DAC07_POWER  
DAC11_POWER  
DAC15_POWER  
DAC05_POWER  
DAC09_POWER  
DAC13_POWER  
DAC12_POWER  
DAC16_POWER  
Rev. 0 | Page 23 of 52  
 
ADAU1966  
REGISTER DETAILS  
PLL AND CLOCK CONTROL 0 REGISTER  
Address: 0x00, Reset: 0x00, Name: PLL_CLK_CTRL0  
Table 25. Bit Descriptions for PLL_CLK_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
PLLIN  
PLL Input Select. Selects between MCLKI/XTALI or DLRCLK as the input to  
the PLL.  
0x0  
RW  
00 MCLKI or XTALI  
01 DLRCLK  
10 Reserved  
11 Reserved  
[5:4]  
XTAL_SET  
XTAL Oscillator Setting. XTALO pin status.  
0x0  
RW  
00 XTAL Oscillator Enabled  
01 Reserved  
10 Reserved  
11 XTALO Off  
3
SOFT_RST  
MCS  
Software Reset Control. This bit resets all circuitry inside the IC, except  
I2C/SPI communications. All control registers are reset to default values,  
except 0x00 and 0x01. The PLL_CLK_CTRLx registers do not change state.  
Normal Operation  
Device in Reset  
0x0  
0x0  
RW  
RW  
0
1
[2:1]  
Master Clock Select. MCLKI/XTALI pin functionality (PLL active), master  
clock rate setting. The following values are for the fS rate window from 32  
kHz to 48 kHz. See Table 14 for details when using other fS selections.  
00 256 × fS MCLK (44.1 kHz or 48 kHz)  
01 384 × fS MCLK (44.1 kHz or 48 kHz)  
10 512 × fS MCLK (44.1 kHz or 48 kHz)  
11 768 × fS MCLK (44.1 kHz or 48 kHz)  
0
PUP  
Master Power-Up Control. This bit must be set to 1 as the first register  
write to power up the IC.  
0x0  
RW  
0
1
Master Power-Down  
Master Power-Up  
Rev. 0 | Page 24 of 52  
 
ADAU1966  
PLL AND CLOCK CONTROL 1 REGISTER  
Address: 0x01, Reset: 0x2A, Name: PLL_CLK_CTRL1  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
1
0
1
0
1
0
[7:6] LOPWR_MODE  
[0] CLK_SEL  
Global Power/Performance Adjust  
00: I C Register Settings  
DAC Clock Select  
0: MCLK from PLL  
2
01: Reserved  
10: Lower Power  
11: Lowest Power  
1: MCLK from MCLKI or XTALI  
[1] VREF_EN  
Internal Voltage Reference Enable  
0: Disabled  
[5:4] MCLKO_SEL  
MCLK Output Frequency  
1: Enabled  
00: MCLKO = 4 MHz to 6 MHz scaled by f  
s
[2] PLL_LOCK  
PLL Lock Indicator  
0: PLL Not Locked  
1: PLL Locked  
01: MCLKO = 8 MHz to 12 MHz scaled by f  
10: MCLKO = Buffered MCLKI  
11: MCLKO Pin Disabled  
s
[3] PLL_MUTE  
PLL Automute Enable/Lock  
0: No DAC Automute  
1: DAC Automute on PLL Unlock  
Table 26. Bit Descriptions for PLL_CLK_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
LOPWR_MODE  
Global Power/Performance Adjust. These bits adjust the power  
consumption and performance level for all 16 DAC channels at once. See  
the Digital-to-Analog Converters (DACs) section for more details.  
0x0  
RW  
00 I2C Register Settings  
01 Reserved  
10 Low Power  
11 Lowest Power  
[5:4]  
MCLKO_SEL  
PLL_MUTE  
MCLK Output Frequency. Frequency selection for MCLKO pin. See the  
Clock Signals section for more details.  
00 MCLKO = 4 MHz to 6 MHz scaled by fS  
01 MCLKO = 8 MHz to 12 MHz scaled by fS  
10 MCLKO = Buffered MCLKI  
0x2  
0x1  
RW  
RW  
11 MCLKO Pin Disabled  
3
PLL Automute Enable/Lock. This bit enables the PLL lock automute  
function.  
0
1
No DAC Automute  
DAC Automute on PLL Unlock  
PLL Lock Indicator.  
PLL Not Locked  
2
1
PLL_LOCK  
VREF_EN  
0x0  
0x1  
R
0
1
PLL Locked  
Internal Voltage Reference Enable. The internal voltage reference powers  
the common mode for the ADAU1966. Disabling this bit allows the user to  
drive the CM pin with an outside voltage source.  
RW  
0
1
Disabled  
Enabled  
0
CLK_SEL  
DAC Clock Select. Selects between PLL or Direct MCLK mode.  
MCLK from PLL  
MCLK from MCLKI or XTALI  
0x0  
RW  
0
1
Rev. 0 | Page 25 of 52  
 
ADAU1966  
BLOCK POWER-DOWN AND THERMAL SENSOR CONTROL 1 REGISTER  
Address: 0x02, Reset: 0xA0, Name: PDN_THRMSENS_CTRL_1  
Table 27. Bit Descriptions for PDN_THRMSENS_CTRL_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
THRM_RATE  
Conversion Time Interval. When THERM_MODE = 0, the THERM_RATE bits  
control the time interval between temperature conversions.  
0x2  
RW  
00 4 sec/Conversion  
01 0.5 sec/Conversion  
10 1 sec/Conversion  
11 2 sec/Conversion  
5
4
THRM_MODE  
THRM_GO  
Continuous vs. One-Shot. Determines whether the temperature  
conversions occur continuously or only when commanded. To perform  
one-shot temperature conversions, set this bit to 1.  
Continuous Operation  
One-Shot Mode  
0x1  
0x0  
RW  
RW  
0
1
One-Shot Conversion Mode. When in one-shot conversion mode,  
THERM_MODE = 1, the THERM_GO bit must be set to 0 followed by a write  
of 1. This sequence results in a single temperature conversion. The  
temperature data is available 120 ms after writing a 1 to this bit.  
0
1
Reset  
Convert temperature  
2
1
0
TS_PDN  
Temperature Sensor Power-Down.  
Temperature Sensor On  
Temperature Sensor Power-Down  
PLL Power-Down.  
PLL Normal Operation  
PLL Power-Down  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
PLL_PDN  
VREG_PDN  
0
1
Voltage Regulator Power-Down.  
Voltage Regulator Normal Operation  
Voltage Regulator Power-Down  
0
1
Rev. 0 | Page 26 of 52  
 
ADAU1966  
POWER-DOWN CONTROL 2 REGISTER  
Address: 0x03, Reset: 0x00, Name: PDN_CTRL2  
Table 28. Bit Descriptions for PDN_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC08_PDN  
Channel 8 Power-Down.  
Normal Operation  
Power-Down Channel 8  
Channel 7 Power-Down.  
Normal Operation  
Power-Down Channel 7  
Channel 6 Power-Down.  
Normal Operation  
Power-Down Channel 6  
Channel 5 Power-Down.  
Normal Operation  
Power-Down Channel 5  
Channel 4 Power-Down.  
Normal Operation  
Power-Down Channel 4  
Channel 3 Power-Down.  
Normal Operation  
Power-Down Channel 2  
Channel 2 Power-Down.  
Normal Operation  
Power-Down Channel 2  
Channel 1 Power-Down.  
Normal Operation  
0x0  
RW  
0
1
6
5
4
3
2
1
0
DAC07_PDN  
DAC06_PDN  
DAC05_PDN  
DAC04_PDN  
DAC03_PDN  
DAC02_PDN  
DAC01_PDN  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Power-Down Channel 1  
Rev. 0 | Page 27 of 52  
 
ADAU1966  
POWER-DOWN CONTROL 3 REGISTER  
Address: 0x04, Reset: 0x00, Name: PDN_CTRL3  
Table 29. Bit Descriptions for PDN_CTRL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC16_PDN  
Channel 16 Power-Down.  
Normal Operation  
Power-Down Channel 16  
Channel 15 Power-Down.  
Normal Operation  
Power-Down Channel 15  
Channel 14 Power-Down.  
Normal Operation  
Power-Down Channel 14  
Channel 13 Power-Down.  
Normal Operation  
Power-Down Channel 13  
Channel 12 Power-Down.  
Normal Operation  
Power-Down Channel 12  
Channel 11 Power-Down.  
Normal Operation  
Power-Down Channel 11  
Channel 10 Power-Down.  
Normal Operation  
Power-Down Channel 10  
Channel 9 Power-Down.  
Normal Operation  
0x0  
RW  
0
1
6
5
4
3
2
1
0
DAC15_PDN  
DAC14_PDN  
DAC13_PDN  
DAC12_PDN  
DAC11_PDN  
DAC10_PDN  
DAC09_PDN  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Power-Down Channel 9  
Rev. 0 | Page 28 of 52  
 
ADAU1966  
THERMAL SENSOR TEMPERATURE READOUT REGISTER  
Address: 0x05, Reset: 0x00, Name: THRM_TEMP_STAT  
Thermal Sensor Temperature Readout. −60°C to +140°C range, 1°C step size. Read this register and convert the hexadecimal or binary  
TEMP value into decimal form; then subtract 60 from this decimal conversion. The result is the temperature in degrees Celsius.  
Table 30. Bit Descriptions for THRM_TEMP_STAT  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
TEMP  
Thermal Sensor Temperature Readout. −60°C to +140°C range, 1°C step  
size. To convert TEMP code to temperature, use the equation (TEMP − 60).  
0x00  
R
Rev. 0 | Page 29 of 52  
 
ADAU1966  
DAC CONTROL 0 REGISTER  
Address: 0x06, Reset: 0x01, Name: DAC_CTRL0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
0
0
0
0
1
[7:6] SDATA_FMT  
SDATA Format  
[0] MMUTE  
DAC Master Mute  
0: Normal Operation  
1: All Channels Muted  
2
00: I S—1-BCLK Cycle Delay  
01: Left-Justified—0-BCLK Cycle Delay  
10: Right-Justified 24-bit Data—  
8-BCLK Cycle Delay  
11: Right-Justified 16-bit Data—  
16-BCLK Cycle Delay  
[2:1] FS  
Sample Rate Select  
00: 32 kHz/44.1kHz/48kHz  
01: 64 kHz/88.2kHz/96kHz  
10: 128 kHz/176.4kHz/192kHz  
11: 128 kHz/176.4kHz/192kHz Low Propagation Delay  
[5:3] SAI  
Serial Audio Interface  
2
000: Stereo (I S, LJ, RJ)  
001: TDM2—Octal Line  
010: TDM4—Quad Line  
011: TDM8—Dual Line  
100: TDM16—Single Line (48 kHz)  
101: Reserved  
110: Reserved  
111: Reserved  
Table 31. Bit Descriptions for DAC_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
SDATA_FMT  
SDATA Format. Only used when SAI = 000.  
00 I2S—1-BCLK Cycle Delay  
0x0  
RW  
01 Left-Justified—0-BCLK Cycle Delay  
10 Right-Justified 24-bit Data—8-BCLK Cycle Delay  
11 Right-Justified 16-bit Data—16-BCLK Cycle Delay  
[5:3]  
SAI  
Serial Audio Interface. When SAI = 000, the SDATA_FMT bits control stereo 0x0  
SDATA format.  
000 Stereo (I2S, LJ, RJ)  
RW  
001 TDM2—Octal Line  
010 TDM4—Quad Line  
011 TDM8—Dual Line  
100 TDM16—Single Line (48 kHz)  
101 Reserved  
110 Reserved  
111 Reserved  
[2:1]  
FS  
Sample Rate Select.  
0x0  
0x1  
RW  
RW  
00 32 kHz/44.1 kHz/48 kHz  
01 64 kHz/88.2 kHz/96 kHz  
10 128 kHz/176.4 kHz/192 kHz  
11 128 kHz/176.4 kHz/192 kHz Low Propagation Delay  
DAC Master Mute.  
0
MMUTE  
0
1
Normal Operation  
All Channels Muted  
Rev. 0 | Page 30 of 52  
 
ADAU1966  
DAC CONTROL 1 REGISTER  
Address: 0x07, Reset: 0x00, Name: DAC_CTRL1  
Table 32. Bit Descriptions for DAC_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
BCLK_GEN  
DBCLK Generation. When the PLL is locked to DLRCLK, it is possible to run  
the ADAU1966 without an external DBCLK.  
0x0  
RW  
0
1
Normal Operation—DBCLK  
Internal DBCLK Generation  
6
5
4
2
LRCLK_MODE  
LRCLK_POL  
SAI_MSB  
DLRCLK Mode Select. Only Valid for TDM modes.  
50% Duty Cycle DLRCLK  
Pulse Mode  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
DLRCLK Polarity. Allows the swapping of data between channels.  
Left/Odd channels are DLRCLK Low (Normal)  
Left/Odd channels are DLRCLK High (Inverted)  
MSB Position.  
MSB First DSDATA  
LSB First DSDATA  
0
1
0
1
BCLK_RATE  
DBCLK Rate. Number of DBCLK cycles per DLRCLK Frame. Used only for  
generating DBCLK in Master Mode operation (SAI_MS = 1).  
0
1
32 Cycles per Frame  
16 Cycles per Frame  
1
0
BCLK_EDGE  
SAI_MS  
DBCLK Active Edge. Adjust the polarity of the DBCLK leading edge.  
Latch in Rising Edge  
Latch in Falling Edge  
0x0  
0x0  
RW  
RW  
0
1
Serial Interface Master. Both DLRCLK and DBCLK become master when  
enabled.  
0
1
DLRCLK/DBCLK Slave  
DLRCLK/DBCLK Master  
Rev. 0 | Page 31 of 52  
 
ADAU1966  
DAC CONTROL 2 REGISTER  
Address: 0x08, Reset: 0x06, Name: DAC_CTRL2  
Table 33. Bit Descriptions for DAC_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:5]  
VREG_CTRL  
Voltage Regulator Control. Select the Regulator Output Voltage.  
00 Regulator Out = 2.5 V  
0x0  
RW  
01 Regulator Out = 2.75 V  
10 Regulator Out = 3.0 V  
11 Regulator Out = 3.3 V  
4
BCLK_TDMC  
DBCLK Rate in TDM Mode. Number of DBCLK cycles per channel slot when 0x0  
in TDM mode.  
RW  
0
1
32 BCLK cycles/channel slot  
16 BCLK cycles/channel slot  
3
2
DAC_POL  
DAC Output Polarity. This is a global switch of DAC polarity.  
Noninverted DAC Output  
Inverted DAC Output  
0x0  
0x1  
RW  
RW  
0
1
AUTO_MUTE_EN  
Automute Enable. Automatically mutes the DACs when 1024 consecutive  
zero input samples are received. This is independent per channel.  
0
1
Auto-Zero Input Mute Disabled  
Auto-Zero Input Mute Enabled  
DAC Oversampling Rate. OSR Selection.  
256 × fS DAC Oversampling  
128 × fS DAC Oversampling  
De-Emphasis Enable.  
1
0
DAC_OSR  
0x1  
0x0  
RW  
RW  
0
1
DE_EMP_EN  
0
1
No De-Emphasis/Flat  
De-Emphasis Enabled  
Rev. 0 | Page 32 of 52  
 
ADAU1966  
DAC INDIVIDUAL CHANNEL MUTES 1 REGISTER  
Address: 0x09, Reset: 0x00, Name: DAC_MUTE1  
Table 34. Bit Descriptions for DAC_MUTE1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC08_MUTE  
DAC8 Soft Mute.  
DAC8 Normal Operation  
DAC8 Mute  
0x0  
RW  
0
1
6
5
4
3
2
1
0
DAC07_MUTE  
DAC06_MUTE  
DAC05_MUTE  
DAC04_MUTE  
DAC03_MUTE  
DAC02_MUTE  
DAC01_MUTE  
DAC7 Soft Mute.  
DAC7 Normal Operation  
DAC7 Mute  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
DAC6 Soft Mute.  
DAC6 Normal Operation  
DAC6 Mute  
0
1
DAC5 Soft Mute.  
DAC5 Normal Operation  
DAC5 Mute  
0
1
DAC4 Soft Mute.  
DAC4 Normal Operation  
DAC4 Mute  
0
1
DAC3 Soft Mute.  
DAC3 Normal Operation  
DAC3 Mute  
0
1
DAC2 Soft Mute.  
DAC2 Normal Operation  
DAC2 Mute  
0
1
DAC1 Soft Mute.  
DAC1 Normal Operation  
DAC1 Mute  
0
1
Rev. 0 | Page 33 of 52  
 
ADAU1966  
DAC INDIVIDUAL CHANNEL MUTES 2 REGISTER  
Address: 0x0A, Reset: 0x00, Name: DAC_MUTE2  
Table 35. Bit Descriptions for DAC_MUTE2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC16_MUTE  
DAC16 Soft Mute.  
DAC16 Normal Operation  
DAC16 Mute  
0x0  
RW  
0
1
6
5
4
3
2
1
0
DAC15_MUTE  
DAC14_MUTE  
DAC13_MUTE  
DAC12_MUTE  
DAC11_MUTE  
DAC10_MUTE  
DAC09_MUTE  
DAC15 Soft Mute.  
DAC15 Normal Operation  
DAC15 Mute  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
DAC14 Soft Mute.  
DAC14 Normal Operation  
DAC14 Mute  
0
1
DAC13 Soft Mute.  
DAC13 Normal Operation  
DAC13 Mute  
0
1
DAC12 Soft Mute.  
DAC12 Normal Operation  
DAC12 Mute  
0
1
DAC11 Soft Mute.  
DAC11 Normal Operation  
DAC11 Mute  
0
1
DAC10 Soft Mute.  
DAC10 Normal Operation  
DAC10 Mute  
0
1
DAC9 Soft Mute.  
0
1
DAC9 Normal Operation  
DAC9 Mute  
Rev. 0 | Page 34 of 52  
 
ADAU1966  
MASTER VOLUME CONTROL REGISTER  
Address: 0x0B, Reset: 0x00, Name: DACMSTR_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 36. Bit Descriptions for DACMSTR_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DACMSTR_VOL  
Master Volume Control.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
DAC 1 VOLUME CONTROL REGISTER  
Address: 0x0C, Reset: 0x00, Name: DAC01_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 37. Bit Descriptions for DAC01_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC01_VOL  
DAC Volume Control Channel 1.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
Rev. 0 | Page 35 of 52  
 
ADAU1966  
DAC 2 VOLUME CONTROL REGISTER  
Address: 0x0D, Reset: 0x00, Name: DAC02_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 38. Bit Descriptions for DAC02_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC02_VOL  
DAC Volume Control Channel 2.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
DAC 3 VOLUME CONTROL REGISTER  
Address: 0x0E, Reset: 0x00, Name: DAC03_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 39. Bit Descriptions for DAC03_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC03_VOL  
DAC Volume Control Channel 3.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
Rev. 0 | Page 36 of 52  
 
ADAU1966  
DAC 4 VOLUME CONTROL REGISTER  
Address: 0x0F, Reset: 0x00, Name: DAC04_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 40. Bit Descriptions for DAC04_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC04_VOL  
DAC Volume Control Channel 4.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
DAC 5 VOLUME CONTROL REGISTER  
Address: 0x10, Reset: 0x00, Name: DAC05_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 41. Bit Descriptions for DAC05_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC05_VOL  
DAC Volume Control Channel 5.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
Rev. 0 | Page 37 of 52  
 
ADAU1966  
DAC 6 VOLUME CONTROL REGISTER  
Address: 0x11, Reset: 0x00, Name: DAC06_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 42. Bit Descriptions for DAC06_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC06_VOL  
DAC Volume Control Channel 6.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
DAC 7 VOLUME CONTROL REGISTER  
Address: 0x12, Reset: 0x00, Name: DAC07_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 43. Bit Descriptions for DAC07_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC07_VOL  
DAC Volume Control Channel 7.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
Rev. 0 | Page 38 of 52  
 
ADAU1966  
DAC 8 VOLUME CONTROL REGISTER  
Address: 0x13, Reset: 0x00, Name: DAC08_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 44. Bit Descriptions for DAC08_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC08_VOL  
DAC Volume Control Channel 8.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
DAC 9 VOLUME CONTROL REGISTER  
Address: 0x14, Reset: 0x00, Name: DAC09_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 45. Bit Descriptions for DAC09_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC09_VOL  
DAC Volume Control Channel 9.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
Rev. 0 | Page 39 of 52  
 
ADAU1966  
DAC 10 VOLUME CONTROL REGISTER  
Address: 0x15, Reset: 0x00, Name: DAC10_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 46. Bit Descriptions for DAC10_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC10_VOL  
DAC Volume Control Channel 10.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
DAC 11 VOLUME CONTROL REGISTER  
Address: 0x16, Reset: 0x00, Name: DAC11_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 47. Bit Descriptions for DAC11_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC11_VOL  
DAC Volume Control Channel 11.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
Rev. 0 | Page 40 of 52  
 
ADAU1966  
DAC 12 VOLUME CONTROL REGISTER  
Address: 0x17, Reset: 0x00, Name: DAC12_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 48. Bit Descriptions for DAC12_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC12_VOL  
DAC Volume Control Channel 12.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
DAC 13 VOLUME CONTROL REGISTER  
Address: 0x18, Reset: 0x00, Name: DAC13_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 49. Bit Descriptions for DAC13_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC13_VOL  
DAC Volume Control Channel 13.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
Rev. 0 | Page 41 of 52  
 
ADAU1966  
DAC 14 VOLUME CONTROL REGISTER  
Address: 0x19, Reset: 0x00, Name: DAC14_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 50. Bit Descriptions for DAC14_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC14_VOL  
DAC Volume Control Channel 14.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
DAC 15 VOLUME CONTROL REGISTER  
Address: 0x1A, Reset: 0x00, Name: DAC15_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 51. Bit Descriptions for DAC15_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC15_VOL  
DAC Volume Control Channel 15.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
Rev. 0 | Page 42 of 52  
 
ADAU1966  
DAC 16 VOLUME CONTROL REGISTER  
Address: 0x1B, Reset: 0x00, Name: DAC16_VOL  
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 58 for a complete list of the volume settings.  
Table 52. Bit Descriptions for DAC16_VOL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
DAC16_VOL  
DAC Volume Control Channel 16.  
0x00  
RW  
00000000 0 dB (default)  
00000001 −0.375 dB  
00000010 −0.750 dB  
11111110 −95.250 dB  
11111111 −95.625 dB  
COMMON-MODE AND PAD STRENGTH REGISTER  
Address: 0x1C, Reset: 0x02, Name: CM_SEL_PAD_STRGTH  
Table 53. Bit Descriptions for CM_SEL_PAD_STRGTH  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
5
PAD_DRV  
Output Pad Drive Strength Control. Pad strength is stated for IOVDD = 5 V. 0x0  
RW  
0
1
4 mA Drive for All Pads  
8 mA Drive for All Pads  
1
CM_SEL  
Common Mode Generation Selection.  
Fixed 3.3 V AVDD CM Generation  
Fixed 5 V AVDD CM Generation  
0x1  
RW  
0
1
Rev. 0 | Page 43 of 52  
 
ADAU1966  
DAC POWER ADJUST 1 REGISTER  
Address: 0x1D, Reset: 0xAA, Name: DAC_POWER1  
Table 54. Bit Descriptions for DAC_POWER1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
DAC04_POWER  
DAC Power Control Channel 4.  
0x2  
RW  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 3.  
00 Low Power  
[5:4]  
[3:2]  
[1:0]  
DAC03_POWER  
DAC02_POWER  
DAC01_POWER  
0x2  
0x2  
0x2  
RW  
RW  
RW  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 2.  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 1.  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
Rev. 0 | Page 44 of 52  
 
ADAU1966  
DAC POWER ADJUST 2 REGISTER  
Address: 0x1E, Reset: 0xAA, Name: DAC_POWER2  
Table 55. Bit Descriptions for DAC_POWER2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
DAC08_POWER  
DAC Power Control Channel 8.  
0x2  
RW  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 7.  
00 Low Power  
[5:4]  
[3:2]  
[1:0]  
DAC07_POWER  
DAC06_POWER  
DAC05_POWER  
0x2  
0x2  
0x2  
RW  
RW  
RW  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 6.  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 5.  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
Rev. 0 | Page 45 of 52  
 
ADAU1966  
DAC POWER ADJUST 3 REGISTER  
Address: 0x1F, Reset: 0xAA, Name: DAC_POWER3  
Table 56. Bit Descriptions for DAC_POWER3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
DAC12_POWER  
DAC Power Control Channel 12.  
0x2  
RW  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 11.  
00 Low Power  
[5:4]  
[3:2]  
[1:0]  
DAC11_POWER  
DAC10_POWER  
DAC09_POWER  
0x2  
0x2  
0x2  
RW  
RW  
RW  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 10.  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 9.  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
Rev. 0 | Page 46 of 52  
 
ADAU1966  
DAC POWER ADJUST 4 REGISTER  
Address: 0x20, Reset: 0xAA, Name: DAC_POWER4  
Table 57. Bit Descriptions for DAC_POWER4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
DAC16_POWER  
DAC Power Control Channel 16.  
0x2  
RW  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 15.  
00 Low Power  
[5:4]  
[3:2]  
[1:0]  
DAC15_POWER  
DAC14_POWER  
DAC13_POWER  
0x2  
0x2  
0x2  
RW  
RW  
RW  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 14.  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
DAC Power Control Channel 13.  
00 Low Power  
01 Lowest Power  
10 Best Performance  
11 Good Performance  
Rev. 0 | Page 47 of 52  
 
ADAU1966  
Table 58. Volume Table  
Binary Value  
Volume Attenuation (dB)  
Binary Value  
00101110  
00101111  
00110000  
00110001  
00110010  
00110011  
00110100  
00110101  
00110110  
00110111  
00111000  
00111001  
00111010  
00111011  
00111100  
00111101  
00111110  
00111111  
01000000  
01000001  
01000010  
01000011  
01000100  
01000101  
01000110  
01000111  
01001000  
01001001  
01001010  
01001011  
01001100  
01001101  
01001110  
01001111  
01010000  
01010001  
01010010  
01010011  
01010100  
01010101  
01010110  
01010111  
01011000  
01011001  
01011010  
01011011  
Volume Attenuation (dB)  
−17.25  
−17.625  
−18  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001011  
00001100  
00001101  
00001110  
00001111  
00010000  
00010001  
00010010  
00010011  
00010100  
00010101  
00010110  
00010111  
00011000  
00011001  
00011010  
00011011  
00011100  
00011101  
00011110  
00011111  
00100000  
00100001  
00100010  
00100011  
00100100  
00100101  
00100110  
00100111  
00101000  
00101001  
00101010  
00101011  
00101100  
00101101  
0
−0.375  
−0.75  
−1.125  
−1.5  
−18.375  
−18.75  
−19.125  
−19.5  
−1.875  
−2.25  
−2.625  
−3  
−19.875  
−20.25  
−20.625  
−21  
−3.375  
−3.75  
−4.125  
−4.5  
−21.375  
−21.75  
−22.125  
−22.5  
−4.875  
−5.25  
−5.625  
−6  
−22.875  
−23.25  
−23.625  
−24  
−6.375  
−6.75  
−7.125  
−7.5  
−24.375  
−24.75  
−25.125  
−25.5  
−7.875  
−8.25  
−8.625  
−9  
−25.875  
−26.25  
−26.625  
−27  
−9.375  
−9.75  
−10.125  
−10.5  
−27.375  
−27.75  
−28.125  
−28.5  
−10.875  
−11.25  
−11.625  
−12  
−28.875  
−29.25  
−29.625  
−30  
−12.375  
−12.75  
−13.125  
−13.5  
−30.375  
−30.75  
−31.125  
−31.5  
−13.875  
−14.25  
−14.625  
−15  
−31.875  
−32.25  
−32.625  
−33  
−15.375  
−15.75  
−16.125  
−16.5  
−33.375  
−33.75  
−34.125  
−16.875  
Rev. 0 | Page 48 of 52  
 
ADAU1966  
Binary Value  
01011100  
01011101  
01011110  
01011111  
01100000  
01100001  
01100010  
01100011  
01100100  
01100101  
01100110  
01100111  
01101000  
01101001  
01101010  
01101011  
01101100  
01101101  
01101110  
01101111  
01110000  
01110001  
01110010  
01110011  
01110100  
01110101  
01110110  
01110111  
01111000  
01111001  
01111010  
01111011  
01111100  
01111101  
01111110  
01111111  
10000000  
10000001  
10000010  
10000011  
10000100  
10000101  
10000110  
10000111  
10001000  
10001001  
10001010  
Volume Attenuation (dB)  
−34.5  
Binary Value  
10001011  
10001100  
10001101  
10001110  
10001111  
10010000  
10010001  
10010010  
10010011  
10010100  
10010101  
10010110  
10010111  
10011000  
10011001  
10011010  
10011011  
10011100  
10011101  
10011110  
10011111  
10100000  
10100001  
10100010  
10100011  
10100100  
10100101  
10100110  
10100111  
10101000  
10101001  
10101010  
10101011  
10101100  
10101101  
10101110  
10101111  
10110000  
10110001  
10110010  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
Volume Attenuation (dB)  
−52.125  
−52.5  
−34.875  
−35.25  
−35.625  
−36  
−52.875  
−53.25  
−53.625  
−54  
−36.375  
−36.75  
−37.125  
−37.5  
−54.375  
−54.75  
−55.125  
−55.5  
−37.875  
−38.25  
−38.625  
−39  
−55.875  
−56.25  
−56.625  
−57  
−39.375  
−39.75  
−40.125  
−40.5  
−57.375  
−57.75  
−58.125  
−58.5  
−40.875  
−41.25  
−41.625  
−42  
−58.875  
−59.25  
−59.625  
−60  
−42.375  
−42.75  
−43.125  
−43.5  
−60.375  
−60.75  
−61.125  
−61.5  
−43.875  
−44.25  
−44.625  
−45  
−61.875  
−62.25  
−62.625  
−63  
−45.375  
−45.75  
−46.125  
−46.5  
−63.375  
−63.75  
−64.125  
−64.5  
−46.875  
−47.25  
−47.625  
−48  
−64.875  
−65.25  
−65.625  
−66  
−48.375  
−48.75  
−49.125  
−49.5  
−66.375  
−66.75  
−67.125  
−67.5  
−49.875  
−50.25  
−50.625  
−51  
−67.875  
−68.25  
−68.625  
−69  
−51.375  
−51.75  
−69.375  
Rev. 0 | Page 49 of 52  
ADAU1966  
Binary Value  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
11000000  
11000001  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
11001000  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
11010101  
11010110  
11010111  
11011000  
11011001  
11011010  
11011011  
11011100  
Volume Attenuation (dB)  
−69.75  
−70.125  
−70.5  
Binary Value  
11011101  
11011110  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
11101110  
11101111  
11110000  
11110001  
11110010  
11110011  
11110100  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
11111101  
11111110  
11111111  
Volume Attenuation (dB)  
−82.875  
−83.25  
−83.625  
−84  
−70.875  
−71.25  
−71.625  
−72  
−84.375  
−84.75  
−85.125  
−85.5  
−72.375  
−72.75  
−73.125  
−73.5  
−85.875  
−86.25  
−86.625  
−87  
−73.875  
−74.25  
−74.625  
−75  
−87.375  
−87.75  
−88.125  
−88.5  
−75.375  
−75.75  
−76.125  
−76.5  
−88.875  
−89.25  
−89.625  
−90  
−76.875  
−77.25  
−77.625  
−78  
−90.375  
−90.75  
−91.125  
−91.5  
−78.375  
−78.75  
−79.125  
−79.5  
−91.875  
−92.25  
−92.625  
−93  
−79.875  
−80.25  
−80.625  
−81  
−93.375  
−93.75  
−94.125  
−94.5  
−81.375  
−81.75  
−82.125  
−82.5  
−94.875  
−95.25  
−95.625  
Rev. 0 | Page 50 of 52  
ADAU1966  
OUTLINE DIMENSIONS  
16.00  
BSC SQ  
0.75  
0.60  
0.45  
1.60  
MAX  
80  
61  
60  
1
SEATING  
PLANE  
PIN 1  
14.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
10°  
6°  
2°  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
VIEW A  
20  
41  
3.5°  
0°  
40  
21  
0.15  
0.05  
SEATING  
PLANE  
0.10 MAX  
COPLANARITY  
0.65  
BSC  
0.38  
0.32  
0.22  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 19. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
ADAU1966WBSTZ  
ADAU1966WBSTZRL  
EVAL-ADAU1966Z  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
ST-80-2  
ST-80-2  
80-Lead LQFP  
80-Lead LQFP, 13”Tape and Reel  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADAU1966W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. 0 | Page 51 of 52  
 
ADAU1966  
NOTES  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09434-0-9/11(0)  
Rev. 0 | Page 52 of 52  
 
 
 
 
 

相关型号:

ADAU1977

Quad ADC with Diagnostics
ADI

ADAU1977WBCPZ

Quad ADC with Diagnostics
ADI

ADAU1977WBCPZ-R7

Quad ADC with Diagnostics
ADI

ADAU1977WBCPZ-RL

Quad ADC with Diagnostics
ADI

ADAU1978

Quad Analog-to-Digital Converter (ADC)
ADI

ADAU1978WBCPZ

Quad Analog-to-Digital Converter (ADC)
ADI

ADAU1978WBCPZ-RL

Quad Analog-to-Digital Converter (ADC)
ADI

ADAU1979

Quad Analog-to-Digital Converter (ADC)
ADI

ADAU1979WBCPZ

Quad Analog-to-Digital Converter (ADC)
ADI

ADAU1979WBCPZ-RL

Quad Analog-to-Digital Converter (ADC)
ADI

ADAU7002

Stereo PDM-to-I2S or TDM Conversion IC
ADI

ADAU7002ACBZ-R7

Stereo PDM-to-I2S or TDM Conversion IC
ADI