ADAU1462 [ADI]

SigmaDSP Digital Audio Processor;
ADAU1462
型号: ADAU1462
厂家: ADI    ADI
描述:

SigmaDSP Digital Audio Processor

文件: 总202页 (文件大小:10165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SigmaDSP Digital Audio Processor  
ADAU1462/ADAU1466  
Data Sheet  
Clock oscillator for generating master clock from crystal  
Integer PLL and flexible clock generators  
Integrated die temperature sensor  
I2C and SPI control interfaces (both slave and master)  
Standalone operation  
FEATURES  
Qualified for automotive applications  
Fully programmable audio DSP for enhanced sound processing  
Features SigmaStudio, a proprietary graphical programming  
tool for the development of custom signal flows  
Up to 294.912 MHz, 32-bit SigmaDSP core at 1.2 V  
Up to 24 kWords of program memory  
Up to 80 kWords of parameter/data RAM  
Up to 6144 SIMD instructions per sample at 48 kHz  
Up to 1600 ms digital audio delay pool at 48 kHz  
Audio I/O and routing  
4 serial input ports, 4 serial output ports  
48-channel, 32-bit digital I/O up to a sample rate of 192 kHz  
Flexible configuration for TDM, I2S, left and right justified  
formats, and PCM  
Up to 8 stereo ASRCs from 1:8 up to 7.75:1 ratio and  
139 dB dynamic range  
Self-boot from serial EEPROM  
6-channel, 10-bit SAR auxiliary control ADC  
14 multipurpose pins for digital controls and outputs  
On-chip regulator for generating 1.2 V from 3.3 V supply  
72-lead, 10 mm × 10 mm LFCSP package with 5.3 mm  
exposed pad  
Temperature range: −40°C to +105°C  
APPLICATIONS  
Automotive audio processing  
Head units  
Distributed amplifiers  
Rear seat entertainment systems  
Trunk amplifiers  
Commercial and professional audio processing  
Stereo S/PDIF input and output at 192 kHz  
Four PDM microphone input channels  
Multichannel, byte addressable TDM serial ports  
FUNCTIONAL BLOCK DIAGRAM  
2
2
SPI/I C* SPI/I C*  
PLLFILT  
ADAU1462/  
ADAU1466  
VDRIVE  
REGULATOR  
2
2
GPIO/  
AUX ADC  
CLOCK  
OSCILLATOR  
I C/SPI  
SLAVE  
I C/SPI  
MASTER  
CLKOUT  
PLL  
THD_P  
THD_M  
TEMPERATURE  
SENSOR  
®
INPUT AUDIO  
ROUTING MATRIX  
OUTPUT AUDIO  
ROUTING MATRIX  
294.912MHz  
PROGRAMMABLE AUDIO  
PROCESSING CORE  
S/PDIF  
RECEIVER  
S/PDIF  
TRANSMITTER  
SPDIFIN  
SPDIFOUT  
RAM, ROM, WATCHDOG,  
MEMORY PARITY CHECK  
SERIAL DATA  
INPUT PORTS  
(×4)  
SDATA_IN3 TO SDATA_IN0  
(48-CHANNEL  
SDATA_OUT3 TO SDATA_OUT0  
(48-CHANNEL  
DIGITAL AUDIO  
SERIAL DATA  
OUTPUT PORTS  
(×4)  
8 × 2-CHANNEL  
ASYNCHRONOUS  
SAMPLE RATE  
CONVERTERS  
DIGITAL AUDIO  
INPUTS)  
OUTPUTS)  
DIGITAL  
MIC INPUT  
INPUT  
CLOCK  
DOMAINS  
(×4)  
OUTPUT  
CLOCK  
DOMAINS  
(×4)  
BCLK_IN3 TO BCLK_IN0/  
LRCLK_IN3 TO LRCLK_IN0  
(INPUT CLOCK PAIRS)  
BCLK_OUT3 TO BCLK_OUT0  
LRCLK_OUT3 TO LRCLK_OUT0  
(OUTPUT CLOCK PAIRS)  
DEJITTER AND  
CLOCK GENERATOR  
2
*SPI/I C INCLUDES THE FOLLOWING PIN FUNCTIONS: SS_M, MOSI_M, SCL_M, SCLK_M, SDA_M, MISO_M, MISO, SDA,  
SCLK, SCL, MOSI, ADDR1, SS, AND ADDR0 PINS.  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Software Features ....................................................................... 86  
Pin Drive Strength, Slew Rate, and Pull Configuration........ 87  
Global RAM and Control Register Map...................................... 89  
Random Access Memory .......................................................... 89  
Control Registers........................................................................ 92  
Control Register Details ................................................................ 98  
PLL Configuration Registers .................................................... 98  
Clock Generator Registers ...................................................... 103  
Power Reduction Registers ..................................................... 108  
Audio Signal Routing Registers.............................................. 111  
Serial Port Configuration Registers....................................... 117  
Flexible TDM Interface Registers........................................... 121  
DSP Core Control Registers.................................................... 124  
Debug and Reliability Registers.............................................. 129  
Software Panic Value 0 Register ............................................. 136  
Software Panic Value 1 Register ............................................. 136  
DSP Program Execution Registers......................................... 139  
Panic Mask Registers ............................................................... 142  
Multipurpose Pin Configuration Registers........................... 155  
ASRC Status and Control Registers ....................................... 160  
Auxiliary ADC Registers......................................................... 164  
S/PDIF Interface Registers ...................................................... 165  
Hardware Interfacing Registers.............................................. 178  
Soft Reset Register.................................................................... 196  
Applications Information............................................................ 197  
PCB Design Considerations ................................................... 197  
Typical Applications Block Diagram ..................................... 199  
Example PCB Layout ............................................................... 200  
PCB Manufacturing Guidelines ............................................. 201  
Outline Dimensions..................................................................... 202  
Ordering Guide ........................................................................ 202  
Automotive Products............................................................... 202  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
General Description......................................................................... 4  
Differences Between the ADAU1466 and ADAU1462 ........... 4  
Specifications..................................................................................... 5  
Electrical Characteristics............................................................. 7  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 17  
Thermal Considerations............................................................ 17  
ESD Caution................................................................................ 17  
Pin Configuration and Function Descriptions........................... 18  
Theory of Operation ...................................................................... 22  
System Block Diagram............................................................... 22  
Overview...................................................................................... 22  
Initialization................................................................................ 24  
Master Clock, PLL, and Clock Generators.............................. 28  
Power Supplies, Voltage Regulator, and Hardware Reset...... 33  
Temperature Sensor Diode........................................................ 34  
Slave Control Ports..................................................................... 35  
Slave Control Port Addressing.................................................. 35  
Slave Port to DSP Core Address Mapping .............................. 36  
Master Control Ports.................................................................. 44  
Self Boot....................................................................................... 45  
Audio Signal Routing................................................................. 48  
Serial Data Input/Output........................................................... 57  
Flexible TDM Interface.............................................................. 68  
Asynchronous Sample Rate Converters .................................. 74  
S/PDIF Interface ......................................................................... 74  
Digital PDM Microphone Interface......................................... 76  
Multipurpose Pins...................................................................... 77  
Auxiliary ADC............................................................................ 80  
SigmaDSP Core .......................................................................... 80  
Rev. C | Page 2 of 202  
Data Sheet  
ADAU1462/ADAU1466  
REVISION HISTORY  
3/2018—Rev. B to Rev. C  
Changes to Table 6 ............................................................................9  
Changes to Table 21 ........................................................................29  
Changes to PLL Filter Section and Table 22................................30  
Changes to Clock Generators Section and Figure 18.................31  
Changes to Figure 19 ......................................................................32  
Changes to Figure 26 ......................................................................37  
Changes to Figure 27 ......................................................................38  
Changes to SigmaDSP Core Section ............................................80  
Changes to Table 58 ........................................................................89  
Changes to Figure 82 ......................................................................90  
Changes to Figure 83 ......................................................................91  
Changes to Ordering Guide.........................................................202  
Changes to Table 1 ............................................................................4  
Changes to Table 2 ............................................................................5  
Changes to Table 3 ............................................................................6  
Added Endnote 1, Table 6 ................................................................9  
Deleted Endnote 1, Table 9 ............................................................11  
Changes to S/PDIF Transmitter and Receiver Section and  
Table 10.............................................................................................11  
Deleted S/PDIF Receiver Section and Table 11; Renumbered  
Sequentially......................................................................................11  
Added Table 11; Renumbered Sequentially.................................12  
Added I2C Interface—Master Section ..........................................13  
Changes to Table 20 ........................................................................29  
Changes to Table 21 ........................................................................30  
Changes to SigmaDSP Core Section.............................................80  
Changes to Ordering Guide.........................................................202  
9/2017—Rev. 0 to Rev. A  
Change to Supply Current Analog Current (AVDD) Parameter,  
Table 2.................................................................................................4  
Change to Supply Current PLL Current (PVDD) Parameter and  
Supply Current Analog Current (AVDD) Parameter, Table 3 ....5  
Added Endnote 2 to Ordering Guide.........................................201  
10/2017—Rev. A to Rev. B  
Changes to Table 1 ............................................................................4  
Changes to Table 2 ............................................................................5  
Changes to Table 3 ............................................................................6  
8/2017—Revision 0: Initial Version  
Rev. C | Page 3 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
GENERAL DESCRIPTION  
The ADAU1462/ADAU1466 are automotive qualified audio  
processors that far exceed the digital signal processing  
capabilities of earlier SigmaDSP® devices. They are pin and  
register compatible with each other, as well as with the  
ADAU1450/ADAU1451/ADAU1452 SigmaDSP processors.  
The restructured hardware architecture is optimized for  
efficient audio processing. The audio processing algorithms  
support a seamless combination of stream processing (sample  
by sample), multirate processing, and block processing  
paradigms. The SigmaStudiographical programming tool  
enables the creation of signal processing flows that are  
interactive, intuitive, and powerful. The enhanced digital signal  
processor (DSP) core architecture enables some types of audio  
processing algorithms to be executed using significantly fewer  
instructions than were required on previous SigmaDSP  
generations, leading to vastly improved code efficiency.  
Dedicated decimation filters can decode the pulse code  
modulation (PDM) output of up to four MEMS microphones.  
Independent slave and master I2C/SPI control ports allow the  
ADAU1462/ADAU1466 to be programmed and controlled by  
an external master device such as a microcontroller, and to  
program and control slave peripherals directly. Self boot  
functionality and the master control port enable complex  
standalone systems.  
The power efficient DSP core can execute at high computational  
loads while consuming only a few hundred milliwatts (mW) in  
typical conditions. This relatively low power consumption and  
small footprint make the ADAU1462/ADAU1466 ideal  
replacements for large, general-purpose DSPs that consume  
more power at the same processing load.  
Note that throughout this data sheet, multifunction pins, such  
as SS_M/MP0, are referred to either by the entire pin name or  
by a single function of the pin, for example, MP0, when only  
that function is relevant.  
The 1.2 V, 32-bit DSP core can run at frequencies of up to  
294.912 MHz and execute up to 6144 SIMD instructions per  
sample at the standard sample rate of 48 kHz. Powerful clock  
generator hardware, including a flexible phase-locked loop  
(PLL) with multiple fractional integer outputs, supports all  
industry standard audio sample rates. Nonstandard rates over a  
wide range can generate up to 15 sample rates simultaneously.  
These clock generators, along with the on board asynchronous  
sample rate converters (ASRCs) and a flexible hardware audio  
routing matrix, make the ADAU1462/ADAU1466 ideal audio  
hubs that greatly simplify the design of complex multirate audio  
systems.  
DIFFERENCES BETWEEN THE ADAU1466 AND  
ADAU1462  
The three variants of this device are differentiated by memory  
and DSP core frequency. A detailed summary of the differences  
is listed in Table 1.  
Table 1. Product Selection Table  
Data  
Memory Memory  
(kWords) (kWords) (MHz)  
Program DSP Core  
Frequency  
Device  
The ADAU1462/ADAU1466 interface with a wide range of  
analog-to-digital converters (ADCs), digital-to-analog  
converters (DACs), digital audio devices, amplifiers, and  
control circuitry with highly configurable serial ports, I2C, serial  
peripheral interface (SPI), Sony/Philips Digital Interconnect  
Format (S/PDIF) interfaces, and multipurpose input/output  
(I/O) pins.  
ADAU1462WBCPZ300  
ADAU1462WBCPZ150  
ADAU1466 WBCPZ300  
48  
48  
80  
16  
16  
24  
294.912  
147.456  
294.912  
Rev. C | Page 4 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
SPECIFICATIONS  
AVDD = 3.3 V 10%, DVDD = 1.2 V 5%, PVDD = 3.3 V 10%, IOVDD = 1.8 V − 5% to 3.3 V + 10%, TA = 25°C, master clock input =  
12.288 MHz, core clock (fCORE) = 294.912 MHz, I/O pins set to low drive setting, unless otherwise noted.  
Table 2.  
Parameter  
Min Typ Max  
Unit Test Conditions/Comments  
POWER  
Supply Voltage  
Analog Voltage (AVDD)  
Digital Voltage (DVDD)  
2.97 3.3  
1.14 1.2  
3.63  
1.26  
V
V
Supply for analog circuitry, including auxiliary ADC  
Supply for digital circuitry, including the DSP core, ASRCs,  
and signal routing  
PLL Voltage (PVDD)  
I/O Supply Voltage (IOVDD)  
2.97 3.3  
1.71 3.3  
3.63  
3.63  
V
V
Supply for PLL circuitry  
Supply for input/output circuitry, including pads and level  
shifters  
Supply Current  
Analog Current (AVDD)  
Idle State  
1.36 1.66  
1.00 1.10 40  
1.00 1.10 40  
2
mA  
μA  
μA  
mA  
μA  
μA  
Power applied, chip not programmed  
Power applied, RESET held low  
Reset State  
PLL Current (PVDD)  
Idle State  
Reset State  
8.3  
10.1 12.9  
12.288 MHz MCLK with default PLL settings  
Power applied, PLL not configured  
Power applied, RESET held low  
18.3 18.7 40  
18.3 18.7 40  
I/O Current (IOVDD)  
Dependent on the number of active serial ports, clock pins,  
and characteristics of external loads  
Operation State  
53  
22  
4.1  
mA  
mA  
mA  
IOVDD = 3.3 V; all serial ports are clock masters  
IOVDD = 1.8 V; all serial ports are clock masters  
IOVDD = 1.8 V − 5% to 3.3 V + 10%  
Power-Down State  
Digital Current (DVDD)  
ADAU1466 Operation State  
Maximum Program  
4.2  
233 495  
220  
mA  
mA  
Typical Program  
Test program includes 16-channel I/O, 10-band equalizer (EQ)  
per channel, all ASRCs active  
Minimal Program  
ADAU1462 Operation State  
fCORE = 294.912 MHz  
Maximum Program  
Typical Program  
213  
mA  
Test program includes 2-channel I/O, 10-band EQ per channel  
233 495  
220  
mA  
mA  
Test program includes 16-channel I/O, 10-band EQ per channel,  
all ASRCs active  
Minimal Program  
fCORE = 147.456 MHz  
Maximum Program  
Typical Program  
213  
mA  
Test program includes 2-channel I/O, 10-band EQ per channel  
170 455  
135  
110  
mA  
mA  
mA  
Test program includes 16-channel I/O, 10-band EQ per channel  
Test program includes 2-channel I/O, 10-band EQ per channel  
Minimal Program  
Idle State  
Reset State  
18.3 18.7 19.9  
18.3 18.7 19.9  
mA  
mA  
Power applied, DSP not enabled  
Power applied, RESET held low  
ASYNCHRONOUS SAMPLE RATE CONVERTERS  
Dynamic Range  
139  
dB  
A-weighted, 20 Hz to 20 kHz  
I/O Sample Rate  
6
192  
kHz  
I/O Sample Rate Ratio  
Total Harmonic Distortion + Noise (THD + N)  
CRYSTAL OSCILLATOR  
Transconductance  
REGULATOR  
DVDD Voltage  
1:8  
7.75:1  
−120  
dB  
mS  
V
8.3  
10.6 13.4  
1.14 1.2  
Regulator maintains typical output voltage up to a maximum  
800 mA load; IOVDD = 1.8 V − 5% to 3.3 V + 10%  
Rev. C | Page 5 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
AVDD = 3.3 V 10%, DVDD = 1.2 V 5%, PVDD = 3.3 V 10%, IOVDD = 1.8 V − 5% to 3.3 V + 10%, TA = −40°C to +105°C,  
master clock input = 12.288 MHz, fCORE = 294.912 MHz, I/O pins set to low drive setting, unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit Test Conditions/Comments  
POWER  
Supply Voltage  
Analog Voltage (AVDD)  
Digital Voltage (DVDD)  
2.97  
1.14  
3.3  
1.2  
3.63  
1.26  
V
V
Supply for analog circuitry, including auxiliary ADC  
Supply for digital circuitry, including the DSP core, ASRCs, and  
signal routing  
PLL Voltage (PVDD)  
IOVDD Voltage (IOVDD)  
2.97  
1.71  
3.3  
3.3  
3.63  
3.63  
V
V
Supply for PLL circuitry  
Supply for input/output circuitry, including pads and level  
shifters  
Supply Current  
Analog Current (AVDD)  
Idle State  
Reset State  
PLL Current (PVDD)  
Idle State  
1.36  
1.0  
1.0  
8.3  
18.4  
18.4  
1.66  
1.1  
1.1  
10.2  
18.7  
18.7  
2
mA  
μA  
μA  
mA  
μA  
μA  
40  
40  
15  
40  
40  
12.288 MHz master clock; default PLL settings  
Power applied, PLL not configured  
Power applied, RESET held low  
Reset State  
I/O Current (IOVDD)  
Dependent on the number of active serial ports, clock pins,  
and characteristics of external loads  
Operation State  
53  
22  
4.1  
mA  
mA  
mA  
IOVDD = 3.3 V; all serial ports are clock masters  
IOVDD = 1.8 V; all serial ports are clock masters  
IOVDD = 1.8 V − 5% to 3.3 V + 10%  
Power-Down State  
Digital Current (DVDD)  
ADAU1466 Operation State  
Maximum Program  
4.3  
485  
330  
920  
mA  
mA  
Typical Program  
Test program includes 16-channel I/O, 10-band EQ per channel,  
all ASRCs active  
Minimal Program  
213  
mA  
Test program includes 2-channel I/O, 10-band EQ per  
channel  
ADAU1462 Operation State  
fCORE = 294.912 MHz  
Maximum Program  
Typical Program  
485  
330  
920  
490  
mA  
mA  
Test program includes 16-channel I/O, 10-band EQ per  
channel, all ASRCs active  
Test program includes 2-channel I/O, 10-band EQ per channel  
Minimal Program  
fCORE = 147.456 MHz  
Maximum Program  
Typical Program  
213  
mA  
270  
220  
mA  
mA  
Test program includes 16-channel I/O, 10-band EQ per  
channel, all ASRCs active  
Minimal Program  
Idle State  
Reset State  
210  
15.7  
15.7  
mA  
mA  
mA  
Test program includes 2-channel I/O, 10-band EQ per channel  
Power applied, DSP not enabled  
Power applied, RESET held low  
5.9  
5.9  
559  
559  
ASYNCHRONOUS SAMPLE RATE CONVERTERS  
Dynamic Range  
139  
dB  
A-weighted, 20 Hz to 20 kHz  
I/O Sample Rate  
6
192  
kHz  
I/O Sample Rate Ratio  
THD + N  
CRYSTAL OSCILLATOR  
Transconductance  
REGULATOR  
1:8  
7.75:1  
−120  
dB  
mS  
V
8.1  
10.6  
1.2  
14.6  
DVDD Voltage  
1.14  
Regulator maintains typical output voltage up to a maximum  
800 mA load; IOVDD = 1.8 V − 5% to 3.3 V + 10%  
Rev. C | Page 6 of 202  
Data Sheet  
ADAU1462/ADAU1466  
ELECTRICAL CHARACTERISTICS  
Digital Input/Output  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL INPUT  
Input Voltage  
IOVDD = 3.3 V  
High Level (VIH)  
Low Level (VIL)  
IOVDD = 1.8 V  
High Level (VIH)  
Low Level (VIL)  
Input Leakage  
High Level (IIH)  
Excluding SPDIFIN, which is not a standard digital input  
1.71  
0
3.3  
1.71  
V
V
0.92  
0
1.8  
0.89  
V
V
2
14  
2
8
120  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
pF  
Digital input pins with pull-up resistor  
Digital input pins with pull-down resistor  
Digital input pins with no pull resistor  
MCLK  
SPDIFIN  
Low Level (IIL) at 0 V  
−14  
−2  
−2  
−8  
−120  
Digital input pins with pull-up resistor  
Digital input pins with pull-down resistor  
Digital input pins with no pull resistor  
MCLK  
SPDIFIN  
Guaranteed by design  
Input Capacitance (CI)  
DIGITAL OUTPUT  
Output Voltage  
2
IOVDD = 3.3 V  
High Level (VOH)  
Low Level (VOL)  
3.09  
0
3.3  
0.26  
V
V
IOH = 1 mA  
IOL = 1 mA  
IOVDD = 1.8 V  
High Level (VOH)  
Low Level (VOL)  
1.45  
0
1.8  
0.33  
Digital Output Pins, Output Drive  
The digital output pins are driving low impedance PCB traces to a  
high impedance digital input buffer  
IOVDD = 1.8 V  
Drive Strength Setting  
Lowest  
1
2
3
5
mA  
mA  
mA  
mA  
The digital output pins are not designed for static current draw;  
do not use these pins to drive LEDs directly  
The digital output pins are not designed for static current draw;  
do not use these pins to drive LEDs directly  
The digital output pins are not designed for static current draw;  
do not use these pins to drive LEDs directly  
The digital output pins are not designed for static current draw;  
do not use these pins to drive LEDs directly  
Low  
High  
Highest  
IOVDD = 3.3 V  
Drive Strength Setting  
Lowest  
2
mA  
mA  
mA  
mA  
The digital output pins are not designed for static current draw;  
do not use these pins to drive LEDs directly  
The digital output pins are not designed for static current draw;  
do not use these pins to drive LEDs directly  
The digital output pins are not designed for static current draw;  
do not use these pins to drive LEDs directly  
The digital output pins are not designed for static current draw;  
do not use these pins to drive LEDs directly  
Low  
5
High  
10  
15  
Highest  
Rev. C | Page 7 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Auxiliary ADC  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, AVDD = 3.3 V 10%, IOVDD = 1.8 V − 5% to 3.3 V + 10%, unless otherwise noted.  
Table 5.  
Parameter  
Min  
Typ  
10  
Max  
Unit  
Bits  
V
RESOLUTION  
FULL-SCALE ANALOG INPUT  
NONLINEARITY  
AVDD  
Integrated Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
GAIN ERROR  
−2.5  
−2.5  
−2.5  
+2.5  
+2.5  
+2.5  
LSB  
LSB  
LSB  
kΩ  
INPUT IMPEDANCE  
SAMPLE RATE  
200  
fCORE/6144  
Hz  
Rev. C | Page 8 of 202  
Data Sheet  
ADAU1462/ADAU1466  
TIMING SPECIFICATIONS  
Master Clock Input  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%, unless otherwise noted.  
Table 6.  
Parameter  
Min  
Max  
Unit  
Description  
MASTER CLOCK INPUT (MCLK)  
fMCLK  
tMCLK  
2.375  
27.8  
36  
421  
MHz  
ns  
MCLK frequency  
MCLK period  
tMCLKD  
tMCLKH  
tMCLKL  
CLKOUT Jitter  
CORE CLOCK  
fCORE  
25  
75  
%
ns  
ns  
ps  
MCLK duty cycle  
MCLK width high  
MCLK width low  
Cycle to cycle rms average  
0.25 × tMCLK  
0.25 × tMCLK  
12  
0.75 × tMCLK  
0.75 × tMCLK  
106  
ADAU1462 and ADAU1466  
152  
294.912  
MHz  
ns  
System (DSP core) clock frequency; PLL  
feedback divider ranges from 64 to 108  
1
tCORE  
ADAU1462 and ADAU1466  
3.39  
System (DSP core) clock period  
1 Not shown in Figure 2.  
tMCLK  
MCLK  
tMCLKH  
tMCLKL  
Figure 2. Master Clock Input Timing Specifications  
RESET  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%.  
Table 7.  
Parameter  
Min  
Max  
Unit  
Description  
Reset pulse width low  
tWRST  
10  
ns  
tWRST  
RESET  
Figure 3. Reset Timing Specification  
Rev. C | Page 9 of 202  
 
 
ADAU1462/ADAU1466  
Data Sheet  
Serial Ports  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%, unless otherwise noted. BCLK in Table 8 refers to BCLK_  
OUT3 to BCLK_OUT0 and BCLK_IN3 to BCLK_IN0. LRCLK refers to LRCLK_OUT3 to LRCLK_OUT0 and LRCLK_IN3 to LRCKL_IN0.  
Table 8.  
Parameter  
fLRCLK  
tLRCLK  
fBCLK  
tBCLK  
tBIL  
tBIH  
tLIS  
tLIH  
tSIS  
Min Max  
192  
5.21  
Unit Description  
kHz  
μs  
LRCLK frequency  
LRCLK period  
24.576 MHz BCLK frequency, sample rate ranging from 6 kHz to 192 kHz  
40.7  
10  
14.5  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK period  
BCLK low pulse width, slave mode; BCLK frequency = 24.576 MHz; BCLK period = 40.6 ns  
BCLK high pulse width, slave mode; BCLK frequency = 24.576 MHz; BCLK period = 40.6 ns  
LRCLK setup to BCLK_INx input rising edge, slave mode; LRCLK frequency = 192 kHz  
LRCLK hold from BCLK_INx input rising edge, slave mode; LRCLK frequency = 192 kHz  
SDATA_INx setup to BCLK_INx input rising edge  
SDATA_INx hold from BCLK_INx input rising edge  
BCLK_OUTx output falling edge to LRCLK_OUTx output timing skew, slave  
SDATA_OUTx delay in slave mode from BCLK_OUTx output falling edge; serial outputs function in  
slave mode at all valid sample rates, provided that the external circuit design provides sufficient  
electrical signal integrity  
5
5
tSIH  
tTS  
tSODS  
10  
35  
tSODM  
tTM  
10  
5
ns  
ns  
SDATA_OUTx delay in master mode from BCLK_OUTx output falling edge  
BCLK falling edge to LRCLK timing skew, master  
tLIH  
tBIH  
tBCLK  
BCLK_INx  
tBIL  
tLIS  
tTM  
LRCLK_INx  
SDATA_INx  
tLRCLK  
tSIS  
LEFT JUSTIFIED MODE  
(SERIAL_BYTE_x_0[4:3], (DATA_FMT) = 0b01)  
MSB – 1  
MSB  
tSIH  
tSIS  
SDATA_INx  
2
I S MODE  
MSB  
tSIH  
(SERIAL_BYTE_x_0[4:3], (DATA_FMT) = 0b00)  
SDATA_INx  
RIGHT JUSTIFIED MODES  
(SERIAL_BYTE_x_0[4:3], (DATA_FMT) = 0b10  
OR  
tSIS  
tSIS  
SERIAL_BYTE_x_0[4:3], (DATA_FMT) = 0b11)  
t
SIH  
Figure 4. Serial Input Port Timing Specifications  
tBIH  
tBCLK  
TS  
BCLK_OUTx  
tBIL  
LRCLK_OUTx  
tLRCLK  
SDATA_OUTx  
LEFT JUSTIFIED MODE  
(SERIAL_BYTE_x_0 [4:3] (DATA_FMT) = 0b01)  
SDATA_OUTx  
2
I S MODE  
(SERIAL_BYTE_x_0 [4:3] (DATA_FMT) = 0b00)  
SDATA_OUTx  
RIGHT JUSTIFIED MODES  
tSODS  
tSODM  
(SERIAL_BYTE_x_0 [4:3] (DATA_FMT) = 0b10  
OR  
LSB  
MSB  
SERIAL_BYTE_x_0 [4:3] (DATA_FMT) = 0b11)  
Figure 5. Serial Output Port Timing Specifications  
Rev. C | Page 10 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Multipurpose Pins (MPx)  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%.  
Table 9.  
Parameter  
Min  
Max  
Unit  
Description  
fMP  
24.576  
MHz  
MPx maximum switching rate when pin is configured as a general-purpose  
input or general-purpose output  
10 × tCORE  
6144 × tCORE  
tMPIL  
sec  
MPx pin input latency until high/low value is read by core; the duration in the  
Max column is equal to the period of one audio sample when the DSP is  
processing 6144 instructions per sample  
S/PDIF Transmitter and Receiver  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 10% to 3.3 V + 10%.  
Table 10.  
Parameter  
Min  
Max  
Unit  
Description  
AUDIO SAMPLE RATE  
Transmitter  
Receiver  
18  
18  
192  
192  
kHz  
kHz  
Audio sample rate of data output from S/PDIF transmitter  
Audio sample rate of data input to S/PDIF receiver  
Rev. C | Page 11 of 202  
ADAU1462/ADAU1466  
Data Sheet  
I2C Interface—Slave  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%, default drive strength (fSCL) = 400 kHz.  
Table 11.  
Parameter  
Min  
Max  
Unit  
kHz  
μs  
μs  
μs  
Description  
fSCL  
1000  
SCL clock frequency  
SCL pulse width high  
SCL pulse width low  
Start and repeated start condition setup time  
Start condition hold time  
Data setup time  
tSCLH  
tSCLL  
tSCS  
tSCH  
tDS  
0.26  
0.5  
0.26  
0.26  
50  
μs  
ns  
tDH  
0.45  
120  
120  
120  
120  
μs  
ns  
ns  
ns  
Data hold time  
SCL rise time  
SCL fall time  
SDA rise time  
tSCLR  
tSCLF  
tSDR  
tSDF  
ns  
SDA fall time  
tBFT  
tSUSTO  
0.5  
0.26  
μs  
μs  
Bus free time between stop and start  
Stop condition setup time  
tSCH  
STOP  
START  
tDS  
tSCH  
tSDR  
SDA  
SCL  
tSDF  
tBFT  
tSCLH  
tSCLR  
tSCS  
tSUSTO  
tSCLL  
tSCLF  
tDH  
Figure 6. I2C Slave Port Timing Specifications  
Rev. C | Page 12 of 202  
Data Sheet  
ADAU1462/ADAU1466  
I2C Interface—Master  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%.  
Table 12.  
Parameter  
Min  
Max  
Unit  
kHz  
μs  
μs  
μs  
Description  
fSCL  
1000  
SCL clock frequency  
SCL pulse width high  
SCL pulse width low  
Start and repeated start condition setup time  
Start condition hold time  
Data setup time  
tSCLH  
tSCLL  
tSCS  
tSCH  
tDS  
0.26  
0.5  
0.26  
0.26  
50  
μs  
ns  
tDH  
0.45  
120  
120  
120  
120  
μs  
ns  
ns  
ns  
Data hold time  
SCL rise time  
SCL fall time  
SDA rise time  
tSCLR  
tSCLF  
tSDR  
tSDF  
ns  
SDA fall time  
tBFT  
tSUSTO  
0.5  
0.26  
μs  
μs  
Bus free time between stop and start  
Stop condition setup time  
tSCH  
STOP  
START  
tDS  
tSCH  
tSDR  
SDA_M  
tSDF  
tBFT  
tSCLH  
tSCLR  
SCL_M  
tSCS  
tSUSTO  
tSCLL  
tSCLF  
tDH  
Figure 7. I2C Master Port Timing Specifications  
Rev. C | Page 13 of 202  
ADAU1462/ADAU1466  
Data Sheet  
SPI Interface—Slave  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%.  
Table 13.  
Parameter  
Min  
Max  
20  
Unit Description  
fSCLK  
MHz SCLK write frequency  
MHz SCLK read frequency  
WRITE  
fSCLK  
20  
READ  
tSCLKPWL  
tSCLKPWH  
tSSS  
6
21  
1
2
10  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width low, SCLK = 20 MHz  
SCLK pulse width high, SCLK = 20 MHz  
SS setup to SCLK rising edge  
SS hold from SCLK rising edge  
SS pulse width high  
MOSI setup to SCLK rising edge  
MOSI hold from SCLK rising edge  
MISO valid output delay from SCLK falling edge  
tSSH  
tSSPWH  
tMOSIS  
tMOSIH  
tMISOD  
2
39  
tSSH  
tSSS  
tSSPWH  
tSCLKPWL  
tSCLKPWH  
tMOSIH  
tMOSIS  
tMISOD  
Figure 8. SPI Slave Port Timing Specifications  
Rev. C | Page 14 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
SPI Interface—Master  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%.  
Table 14.  
Parameter  
Min  
Max  
Unit  
Description  
Timing Requirements  
15  
5
tSSPIDM  
tHSPIDM  
ns  
ns  
MISO_M data input valid to SCLK_M edge (data input setup time)  
SCLK_M last sampling edge to data input not valid (data input hold time)  
Switching Characteristics  
41.7  
tSPICLKM  
fSCLK_M  
tSPICHM  
tSPICLM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tHDSM  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
SPI master clock cycle period  
SPI master clock frequency  
SCLK_M high period (fSCLK_M = 24 MHz)  
SCLK_M low period (fSCLK_M = 24 MHz)  
SCLK_M edge to data out valid (data out delay time) (fSCLK_M = 24 MHz)  
SCLK_M edge to data out not valid (data out hold time) (fSCLK_M = 24 MHz)  
SS_M (SPI device select) low to first SCLK_M edge (fSCLK_M = 24 MHz)  
Last SCLK_M edge to SS_M high (fSCLK_M = 24 MHz)  
24  
17  
17  
16.9  
21  
36  
95  
SS_M  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLKM  
tHDSM  
SCLK_M  
(CPHASE = 0)  
(OUTPUT)  
tSPICLM  
t
SPICHM  
SCLK_M  
(CPHASE = 1)  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
MOSI_M  
(OUTPUT)  
MSB  
LSB  
tSSPIDM  
tSSPIDM  
CPHASE = 1  
tHSPIDM  
tHSPIDM  
MISO_M  
(INPUT)  
MSB  
VALID  
LSB VALID  
t
tHDSPIDM  
LSB  
DDSPIDM  
MOSI_M  
(OUTPUT)  
MSB  
tSSPIDM  
t
HSPIDM  
CPHASE = 0  
MISO_M  
(INPUT)  
MSB VALID  
LSB VALID  
Figure 9. SPI Master Port Timing Specifications  
Rev. C | Page 15 of 202  
ADAU1462/ADAU1466  
Data Sheet  
PDM Inputs  
TA = −40°C to +105°C, DVDD = 1.2 V 5%, IOVDD = 1.8 V − 5% to 3.3 V + 10%. Pulse density modulation (PDM) data is latched on both  
edges of the clock (see Figure 10).  
Table 15.  
Parameter  
tMIN  
10  
5
tMAX  
Unit  
ns  
ns  
Description  
tSETUP  
tHOLD  
Data setup time  
Data hold time  
tSETUP  
tHOLD  
Figure 10. PDM Timing Diagram  
Rev. C | Page 16 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
ABSOLUTE MAXIMUM RATINGS  
Table 16.  
Table 17. Thermal Coefficients for ADAU1462/ADAU1466  
Parameter  
Rating  
Thermal Coefficient  
Value  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
DVDD to Ground  
AVDD to Ground  
IOVDD to Ground  
PVDD to Ground  
Digital Inputs  
0 V to 1.4 V  
0 V to 4.0 V  
0 V to 4.0 V  
0 V to 4.0 V  
DGND − 0.3 V to  
IOVDD + 0.3 V  
−40°C to +105°C  
125°C  
−65°C to +150°C  
300°C  
ψJT  
0.15  
1
θJA  
θJB  
29.15  
10.59  
0.04  
2
3
θJCT  
4
θJCB  
3.39  
1 Based on simulation using a JEDEC 2s2p thermal test PCB with 25 thermal vias in a  
JEDEC natural convection environment, as per JESD51.  
Maximum Ambient Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Soldering (10 sec)  
2 Based on simulation using a JEDEC 2s2p thermal test PCB with 25 thermal vias in a  
JEDEC Junction to Board environment, as per JESD51.  
3 Based on simulation using a cold plate attached directly to exposed paddle.  
To employ the ψJT-based approach to thermal analysis,  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
1. Configure the ADAU1462/ADAU1466 in the highest power  
mode of operation to be used in the application and record  
the power dissipated in the device.  
2. Compute the maximum allowable surface temperature,  
TS_MAX  
:
TS_MAX = TJ_MAX − (Power × ψJT)  
3. Measure the case temperature at the center of the  
ADAU1462/ADAU1466 package (TS) at the maximum  
ambient temperature supported in the application and  
THERMAL CONSIDERATIONS  
The capabilities of the ADAU1462/ADAU1466 are such that it  
is possible to configure the device in a mode where its power  
dissipation can risk exceeding the absolute maximum junction  
temperature. The junction temperature reached in a device is  
influenced by several factors, for example, the power dissipated  
in the device; the thermal efficiency of the printed circuit board  
(PCB) design; the maximum ambient temperature supported in  
the application.  
compare to TS_MAX  
.
4. For safe operation, use TS < TS_MAX in the highest power  
mode of operation in the application.  
For more information, see the PCB Design Considerations  
section and the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP).  
To ensure that the ADAU1462/ADAU1466 does not exceed its  
absolute maximum junction temperature in an application,  
thermal considerations must be taken from the start of the design  
(for example: likely modes of operation, thermal considerations  
in the PCB design (see the AN-772 Application Note), and  
thermal simulations) to its finish (qualification at the maximum  
ambient temperature supported in the application).  
ESD CAUTION  
While all of the following thermal coefficients can be used to  
analyze the thermal performance of ADAU1462/ADAU1466,  
ψ
JT is the most reflective of real-world applications and is  
recommended as the primary approach for thermal qualification.  
Rev. C | Page 17 of 202  
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
DGND  
54  
53 DVDD  
DGND  
IOVDD  
VDRIVE  
SPDIFIN  
SPDIFOUT  
AGND  
AVDD  
AUXADC0  
AUXADC1  
AUXADC2 10  
AUXADC3 11  
AUXADC4 12  
AUXADC5 13  
PGND 14  
PVDD 15  
PLLFILT 16  
DGND 17  
1
2
3
4
5
6
7
8
9
52 SDATA_OUT3  
51 BCLK_OUT3  
50 LRCLK_OUT3/MP9  
49 SDATA_OUT2  
48 BCLK_OUT2  
47 LRCLK_OUT2/MP8  
46 MP7  
ADAU1462/  
ADAU1466  
45 MP6  
TOP VIEW  
(Not to Scale)  
44  
43  
42  
41  
40  
39  
38  
37  
SDATA_OUT1  
BCLK_OUT1  
LRCLK_OUT1/MP5  
SDATA_OUT0  
BCLK_OUT0  
LRCLK_OUT0/MP4  
IOVDD  
IOVDD 18  
DGND  
NOTES  
1. THE EXPOSED PAD MUST BE GROUNDED BY SOLDERING IT TO A COPPER SQUARE  
OF EQUIVALENT SIZE ON THE PCB. IDENTICAL COPPER SQUARES MUST EXIST ON  
ALL LAYERS OF THE BOARD, CONNECTED BY VIAS, AND THEY MUST BE CONNECTED  
TO A DEDICATED COPPER GROUND LAYER WITHIN THE PCB.  
Figure 11. Pin Configuration  
Table 18. Pin Function Descriptions  
Pin  
Internal Pull  
Resistor  
No. Mnemonic  
Description  
1
2
3
DGND  
IOVDD  
VDRIVE  
None  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
Input/Output Supply, 1.8 V − 5% to 3.3 V + 10%. Bypass this pin with decoupling capacitors to  
Pin 1 (DGND). See the Power Supply Bypass Capacitors and Grounding sections.  
PNP Bipolar Junction Transistor-Base Drive Bias Pin for the Digital Supply Regulator. Connect  
VDRIVE to the base of an external PNP pass transistor (ON Semi NSS1C300ET4G is  
recommended). If an external supply is provided directly to DVDD, connect the VDRIVE pin to  
ground.  
None  
None  
4
SPDIFIN  
SPDIFOUT  
AGND  
None  
Input to the Integrated Sony/Philips Digital Interconnect Format Receiver. Disconnect this pin  
when not in use. This pin is internally biased to IOVDD/2.  
Output from the Integrated Sony/Philips Digital Interface Format Transmitter. Disconnect this  
pin when not in use. This pin is internally biased to IOVDD/2.  
Analog Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common  
ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
5
Configurable  
None  
6
7
AVDD  
None  
Analog (Auxiliary ADC) Supply. Must be 3.3 V 10%. Bypass this pin with decoupling capacitors  
to Pin 6 (AGND). See the Power Supply Bypass Capacitors and Grounding sections.  
8
AUXADC0  
AUXADC1  
AUXADC2  
None  
Auxiliary ADC Input Channel 0. This pin reads an analog input signal and uses its value in the  
DSP program. Disconnect this pin when not in use.  
Auxiliary ADC Input Channel 1. This pin reads an analog input signal and uses its value in the  
DSP program. Disconnect this pin when not in use.  
Auxiliary ADC Input Channel 2. This pin reads an analog input signal and uses its value in the  
DSP program. Disconnect this pin when not in use.  
9
None  
10  
None  
Rev. C | Page 18 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Pin  
Internal Pull  
Resistor  
No. Mnemonic  
Description  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AUXADC3  
AUXADC4  
AUXADC5  
PGND  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Auxiliary ADC Input Channel 3. This pin reads an analog input signal and uses its value in the  
DSP program. Disconnect this pin when not in use.  
Auxiliary ADC Input Channel 4. This pin reads an analog input signal and uses its value in the  
DSP program. Disconnect this pin when not in use.  
Auxiliary ADC Input Channel 5. This pin reads an analog input signal and uses its value in the  
DSP program. Disconnect this pin when not in use.  
PLL Ground Reference. Tie all DGND, AGND, and PGND pins directly together in a common  
ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
PLL Supply. Must be 3.3 V 10%. Bypass this pin with decoupling capacitors to Pin 14 (PGND).  
See the Power Supply Bypass Capacitors and Grounding sections.  
PLL Filter. The voltage on the PLLFILT pin, which is internally generated, is typically between  
1.65 V and 2.10 V.  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
Input/Output Supply, 1.8 V − 5% to 3.3 V + 10%. Bypass this pin to Pin 17 (DGND) with decoupling  
capacitors. See the Power Supply Bypass Capacitors and Grounding sections.  
PVDD  
PLLFILT  
DGND  
IOVDD  
DGND  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
Digital Supply. Must be 1.2 V 5%. This pin can be supplied externally or by using the internal  
regulator and external pass transistor. Bypass this pin to Pin 19 (DGND) with decoupling  
capacitors. See the Power Supply Bypass Capacitors and Grounding sections.  
DVDD  
21  
XTALIN/MCLK None  
Crystal Oscillator Input (XTALIN)/Master Clock Input to the PLL (MCLK). This pin can be supplied  
directly or generated by driving a crystal with the internal crystal oscillator via Pin 22 (XTALOUT).  
If a crystal is used, refer to the circuit shown in Figure 14.  
22  
23  
XTALOUT  
CLKOUT  
None  
Crystal Oscillator Output for Driving an External Crystal. If a crystal is used, refer to the circuit  
shown in Figure 14. Disconnect this pin when not in use.  
Master Clock Output. This pin drives a master clock signal to other ICs in the system. CLKOUT  
can be configured to output a clock signal with a frequency of 1×, 2×, 4×, or 8× the frequency  
of the divided clock signal being input to the PLL. Disconnect this pin when not in use.  
Configurable  
24  
25  
26  
RESET  
Pull-down  
None  
Active Low Reset Input. A reset is triggered on a high to low edge and exited on a low to high  
edge. A reset event sets all RAMs and registers to their default values.  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
SPI Master/Slave Select Port (SS_M)/Multipurpose, General-Purpose Input/Output (MP0). When  
in SPI master mode, this pin acts as the slave select signal to slave devices on the SPI bus. The  
pin must go low at the beginning of a master SPI transaction and high at the end of a transaction.  
This pin has an internal pull-up resistor that is nominally 250 kΩ. When the SELFBOOT pin is  
held high and the RESET pin has a transition from low to high, Pin 26 sets the communications  
protocol for self boot operation. If this pin is left floating, the SPI communications protocol is  
used for self boot operation. If this pin has a 10 kΩ pull-down resistor to DGND, the I2C  
communications protocol is used for self boot operation. When self boot operation is not used  
and this pin is not needed as a general-purpose input or output, leave it disconnected.  
DGND  
SS_M/MP0  
Pull-up; nominally  
250 kΩ; can be  
disabled by a write  
to control register  
27  
28  
MOSI_M/MP1 Pull-up; can be  
disabled by a write  
SPI Master Data Output Port (MOSI_M)/Multipurpose, General-Purpose Input/Output (MP1).  
When in SPI master mode, this pin sends data from the SPI master port to slave devices on the  
SPI bus. Disconnect this pin when not in use.  
I2C Master Serial Clock Port (SCL_M)/SPI Master Mode Serial Clock (SCLK_M)/Multipurpose,  
General-Purpose Input/Output (MP2). When in I2C master mode, this pin functions as an open  
collector output and drives a serial clock to slave devices on the I2C bus; use a 2.0 kΩ pull-up  
resistor to IOVDD on the line connected to this pin. When in SPI master mode, this pin drives  
the clock signal to slave devices on the SPI bus. Disconnect this pin when not in use.  
to control register  
SCL_M/  
Pull-up; can be  
SCLK_M/MP2 disabled by a write  
to control register  
29  
SDA_M/  
Pull-up; can be  
I2C Master Port Serial Data (SDA_M)/SPI Master Mode Data Input (MISO_M)/Multipurpose,  
General-Purpose Input/Output (MP3). When in I2C master mode, this pin functions as a bi-  
directional open collector data line between the I2C master port and slave devices on the I2C bus;  
use a 2.0 kΩ pull-up resistor to IOVDD on the line connected to this pin. When in SPI master mode,  
this pin receives data from slave devices on the SPI bus. Disconnect this pin when not in use.  
MISO_M/MP3 disabled by a write  
to control register  
Rev. C | Page 19 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Pin  
Internal Pull  
Resistor  
No. Mnemonic  
Description  
30  
MISO/SDA  
Pull-up; can be  
disabled by a write  
to control register  
SPI Slave Data Output Port (MISO)/I2C Slave Serial Data Port (SDA). In SPI slave mode, this pin  
outputs data to the master device on the SPI bus. In I2C slave mode, this pin functions as a bi-  
directional open collector data line between the I2C slave port and the master device on the  
I2C bus; use a 2.0 kΩ pull-up resistor to IOVDD on the line connected to this pin. When this pin  
is not in use, connect it to IOVDD with a 10.0 kΩ pull-up resistor.  
31  
SCLK/SCL  
Pull-up; can be  
disabled by a write  
to control register  
SPI Slave Port Serial Clock (SCLK)/I2C Slave Port Serial Clock (SCL). In SPI slave mode, this pin  
receives the serial clock signal from the master device on the SPI bus. In I2C slave mode, this pin  
receives the serial clock signal from the master device on the I2C bus; use a 2.0 kΩ pull-up  
resistor to IOVDD on the line connected to this pin. When this pin is not in use, connect it to  
IOVDD with a 10.0 kΩ pull-up resistor.  
32  
33  
MOSI/ADDR1 Pull-up; can be  
disabled by a write  
SPI Slave Port Data Input (MOSI)/I2C Slave Port Address MSB (ADDR1). In SPI slave mode, this pin  
receives a data signal from the master device on the SPI bus. In I2C slave mode, this pin acts as  
an input and sets the chip address of the I2C slave port, in conjunction with Pin 33 (SS/ADDR0).  
SPI Slave Port Slave Select (SS)/I2C Slave Port Address LSB (ADDR0). In SPI slave mode, this pin  
receives the slave select signal from the master device on the SPI bus. In I2C slave mode, this pin acts  
as an input and sets the chip address of the I2C slave port in conjunction with Pin 32 (MOSI/ADDR1).  
to control register  
SS/ADDR0  
Pull-up, nominally  
250 kΩ; can be  
disabled by a write  
to control register  
34  
35  
SELFBOOT  
Pull-up  
Self Boot Select. This pin allows the device to perform a self boot, in which it loads its random access  
memory (RAM) and register settings from an external EEPROM. Connecting Pin 34 to logic high  
(IOVDD) initiates a self boot operation the next time there is a rising edge on Pin 24 (RESET). When  
this pin is connected to ground, no self boot operation is initiated. This pin can be connected to  
IOVDD or to ground either directly or pulled up or down with a 1.0 kΩ or larger resistor.  
Digital Supply. Must be 1.2 V 5%. This pin can be supplied externally or by using the internal  
regulator and external pass transistor. Bypass this pin to Pin 36 (DGND) with decoupling  
capacitors. See the Power Supply Bypass Capacitors and Grounding sections.  
DVDD  
None  
36  
37  
38  
39  
DGND  
DGND  
IOVDD  
None  
None  
None  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
Input/Output Supply, 1.8 V − 5% to 3.3 V + 10%. Bypass this pin with decoupling capacitors to  
Pin 37 (DGND). See the Power Supply Bypass Capacitors and Grounding sections.  
Frame Clock, Serial Output Port 0 (LRCLK_OUT0)/Multipurpose, General-Purpose Input/Output  
(MP4). This pin is bidirectional, with the direction depending on whether Serial Output Port 0 is  
a master or slave. Disconnect this pin when not in use.  
LRCLK_OUT0/ Configurable  
MP4  
40  
41  
42  
BCLK_OUT0  
Configurable  
Bit Clock, Serial Output Port 0. This pin is bidirectional, with the direction depending on whether  
the Serial Output Port 0 is a master or slave. Disconnect this pin when not in use.  
Serial Data Output Port 0 (Channel 0 to Channel 15). Capable of 2-channel, 4-channel, 8-channel,  
and 16-channel modes. Disconnect this pin when not in use.  
Frame Clock, Serial Output Port 1 (LRCLK_OUT1)/Multipurpose, General-Purpose Input/Output  
(MP5). This pin is bidirectional, with the direction depending on whether Serial Output Port 1 is  
a master or slave. Disconnect this pin when not in use.  
SDATA_OUT0 Configurable  
LRCLK_OUT1/ Configurable  
MP5  
43  
44  
BCLK_OUT1  
Configurable  
Bit Clock, Serial Output Port 1. This pin is bidirectional, with the direction depending on whether  
Output Serial Port 1 is a master or slave. Disconnect this pin when not in use.  
Serial Data Output Port 1 (Channel 16 to Channel 31). Capable of 2-channel, 4-channel, 8-channel,  
and 16-channel modes. Disconnect this pin when not in use.  
SDATA_OUT1 Configurable  
45  
46  
47  
MP6  
MP7  
Configurable  
Configurable  
Multipurpose, General-Purpose Input/Output 6. Disconnect this pin when not in use.  
Multipurpose, General-Purpose Input/Output 7. Disconnect this pin when not in use.  
Frame Clock, Serial Output Port 2 (LRCLK_OUT2)/Multipurpose, General-Purpose Input/Output  
(MP8). This pin is bidirectional, with the direction depending on whether Serial Output Port 2 is  
a master or slave. Disconnect this pin when not in use.  
LRCLK_OUT2/ Configurable  
MP8  
48  
49  
50  
BCLK_OUT2  
Configurable  
Bit Clock, Serial Output Port 2. This pin is bidirectional, with the direction depending on whether  
Serial Output Port 2 is a master or slave. Disconnect this pin when not in use.  
Serial Data Output Port 2 (Channel 32 to Channel 39). Capable of 2-channel, 4-channel, 8-channel,  
or flexible TDM mode. Disconnect this pin when not in use.  
Frame Clock, Serial Output Port 3 (LRCLK_OUT3)/Multipurpose, General-Purpose Input/Output  
(MP9). This pin is bidirectional, with the direction depending on whether Serial Output Port 3 is  
a master or slave. Disconnect this pin when not in use.  
SDATA_OUT2 Configurable  
LRCLK_OUT3/ Configurable  
MP9  
Rev. C | Page 20 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Pin  
Internal Pull  
Resistor  
No. Mnemonic  
Description  
51  
52  
53  
BCLK_OUT3  
Configurable  
Bit Clock, Serial Output Port 3. This pin is bidirectional, with the direction depending on  
whether Serial Output Port 3 is a master or slave. Disconnect this pin when not in use.  
Serial Data Output Port 3 (Channel 40 to Channel 47). Capable of 2-channel, 4-channel,  
8-channel, and flexible TDM modes. Disconnect this pin when not in use.  
Digital Supply. Must be 1.2 V 5%. This pin can be supplied externally or by using the internal  
regulator and external pass transistor. Bypass Pin 53 with decoupling capacitors to Pin 54 (DGND).  
See the Power Supply Bypass Capacitors and Grounding sections.  
SDATA_OUT3 Configurable  
DVDD  
None  
54  
55  
56  
57  
58  
DGND  
None  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
Input/Output Supply, 1.8 V − 5% to 3.3 V + 10%. Bypass this pin with decoupling capacitors to  
Pin 55 (DGND). See the Power Supply Bypass Capacitors and Grounding sections.  
Bit Clock, Serial Input Port 0. This pin is bidirectional, with the direction depending on whether  
Serial Input Port 0 is a master or slave. Disconnect this pin when not in use.  
DGND  
None  
IOVDD  
BCLK_IN0  
None  
Configurable  
Configurable  
LRCLK_IN0/  
MP10  
Frame Clock, Serial Input Port 0 (LRCLK_IN0)/Multipurpose, General-Purpose Input/Output  
(MP10). This pin is bidirectional, with the direction depending on whether Serial Input Port 0 is  
a master or slave. Disconnect this pin when not in use.  
59  
60  
61  
SDATA_IN0  
BCLK_IN1  
Configurable  
Configurable  
Configurable  
Serial Data Input Port 0 (Channel 0 to Channel 15). Capable of 2-channel, 4-channel, 8-channel,  
or 16-channel mode. Disconnect this pin when not in use.  
Bit Clock, Serial Input Port 1. This pin is bidirectional, with the direction depending on whether  
the Serial Input Port 1 is a master or slave. Disconnect this pin when not in use.  
Frame Clock, Serial Input Port 1 (LRCLK_IN1)/Multipurpose, General-Purpose Input/Output (MP11).  
This pin is bidirectional, with the direction depending on whether the Serial Input Port 1 is a  
master or slave. Disconnect this pin when not in use.  
LRCLK_IN1/  
MP11  
62  
63  
64  
65  
66  
SDATA_IN1  
THD_M  
Configurable  
None  
Serial Data Input Port 1 (Channels 16 to Channel 31). Capable of 2-channel, 4-channel, 8-channel,  
or 16-channel mode. Disconnect this pin when not in use.  
Thermal Diode Negative (−) Input. Connect this pin to the D− pin of an external temperature  
sensor IC. Disconnect this pin when not in use.  
Thermal Diode Positive (+) Input. Connect this pin to the D+ pin of an external temperature  
sensor IC. Disconnect this pin when not in use.  
Bit Clock, Serial Input Port 2. This pin is bidirectional, with the direction depending on whether  
the Serial Input Port 2 is a master or slave. Disconnect this pin when not in use.  
THD_P  
None  
BCLK_IN2  
Configurable  
Configurable  
LRCLK_IN2/  
MP12  
Frame Clock, Input Serial Port 2 (LRCLK_IN2)/Multipurpose, General-Purpose Input/Output (MP12).  
This pin is bidirectional, with the direction depending on whether Serial Input Port 2 is a  
master or slave. Disconnect this pin when not in use.  
67  
68  
69  
SDATA_IN2  
BCLK_IN3  
Configurable  
Configurable  
Configurable  
Serial Data Input Port 2 (Channel 32 to Channel 39). Capable of 2-channel, 4-channel, 8-channel,  
or flexible TDM mode. Disconnect this pin when not in use.  
Bit Clock, Input Serial Port 3. This pin is bidirectional, with the direction depending on whether  
Input Serial Port 3 is a master or slave. Disconnect this pin when not in use.  
Frame Clock, Serial Input Port 3 (LRCLK_IN3)/Multipurpose, General-Purpose Input/Output (MP13).  
This pin is bidirectional, with the direction depending on whether Serial Input Port 3 is a  
master or slave. Disconnect this pin when not in use.  
LRCLK_IN3/  
MP13  
70  
71  
72  
EP  
SDATA_IN3  
DVDD  
Configurable  
None  
Serial Data Input Port 3 (Channel 40 to Channel 47). Capable of 2-channel, 4-channel, 8-channel,  
or flexible TDM mode. Disconnect this pin when not in use.  
Digital Supply. Must be 1.2 V 5%. This pin can be supplied externally or by using the internal  
regulator and external pass transistor. Bypass with decoupling capacitors to Pin 72 (DGND).  
Digital and I/O Ground Reference. Tie all DGND, AGND, and PGND pins directly together in  
a common ground plane. See the Power Supply Bypass Capacitors and Grounding sections.  
The exposed pad must be grounded by soldering it to a copper square of equivalent size on  
the PCB. Identical copper squares must exist on all layers of the board, connected by vias, and  
they must be connected to a dedicated copper ground layer within the PCB. See Exposed Pad  
PCB Design, Figure 87, and Figure 88.  
DGND  
None  
Exposed Pad  
None  
Rev. C | Page 21 of 202  
ADAU1462/ADAU1466  
Data Sheet  
THEORY OF OPERATION  
SYSTEM BLOCK DIAGRAM  
CONTROL CIRCUITRY  
(PUSH BUTTONS,  
ROTARY  
ENCODERS,  
POTENTIOMETERS)  
SYSTEM HOST  
CONTROLLER  
(MICROCONTROLLER,  
MICROPROCESSOR)  
CRYSTAL  
RESONATOR  
PLL  
SELF BOOT  
MEMORY  
LOOP  
FILTER  
ADAU1462/  
ADAU1466  
POWER  
SUPPLY  
REGULATOR  
2
2
I C/SPI  
I C/SPI  
GPIO/  
AUX ADC  
CLOCK  
OSCILLATOR  
SLAVE  
MASTER  
PLL  
TEMPERATURE  
SENSOR  
CONTROLLER  
TEMPERATURE  
SENSOR  
INPUT AUDIO  
ROUTING MATRIX  
OUTPUT AUDIO  
ROUTING MATRIX  
AUDIO SOURCES  
AUDIO SINKS  
S/PDIF  
S/PDIF  
S/PDIF OPTICAL  
TRANSMITTER  
S/PDIF OPTICAL  
RECEIVER  
1
1
RECEIVER  
TRANSMITTER  
294.912MHz  
PROGRAMMABLE AUDIO  
PROCESSING CORE  
AUDIO  
ADCS  
AUDIO  
DACS  
SERIAL DATA  
INPUT PORTS  
(×4)  
RAM, ROM, WATCHDOG,  
MEMORY PARITY CHECK  
SERIAL DATA  
OUTPUT PORTS  
(×4)  
LPF  
MEMS  
DIGITAL  
AUDIO  
SINKS  
DIGITAL  
MICROPHONES  
8× 2-CHANNEL  
ASYNCHRONOUS  
SAMPLE RATE  
CONVERTERS  
MIC INPUT  
INPUT  
CLOCK  
DOMAINS  
(×4)  
OUTPUT  
CLOCK  
DOMAINS  
(×4)  
DIGITAL  
AUDIO  
SOURCES  
DEJITTER AND  
CLOCK GENERATOR  
Figure 12. System Block Diagram with Example Connections to External Components  
The input audio routing matrix and output audio routing  
matrix allow the user to multiplex inputs from multiple sources  
that are running at various sample rates to or from the  
SigmaDSP core, and then to pass them on to the desired  
hardware outputs. This multiplexing drastically reduces the  
complexity of signal routing and clocking issues in the audio  
system. The audio subsystem includes eight stereo ASRCs,  
S/PDIF input and output, and serial audio data ports  
OVERVIEW  
The ADAU1462/ADAU1466 are enhanced audio processors with  
48 channels of input and output. They include options for the  
hardware routing of audio signals between the various inputs,  
outputs, SigmaDSP core, and integrated sample rate converters.  
The SigmaDSP core features full 32-bit processing (that is, 64-bit  
processing in double precision mode) with an 80-bit arithmetic  
logic unit (ALU). By using a quadruple multiply accumulator  
(MAC) data path, the ADAU1462/ADAU1466 can execute more  
than 1.2 billion MAC operations per second, which allows  
processing power that far exceeds predecessors in the SigmaDSP  
family of products. The powerful DSP core can process over  
3,000 double precision biquad filters or 24,000 FIR filter taps  
per sample at the standard 48 kHz audio sampling rate. Other  
features, including synchronous parameter loading for ensuring  
filter stability and 100% code efficiency with the SigmaStudio  
tools, reduce complexity in audio system development. The  
SigmaStudio library of audio processing algorithms allows  
system designers to compensate for real-world limitations of  
speakers, amplifiers, and listening environments, through  
speaker equalization, multiband compression, limiting, and  
third party branded algorithms.  
supporting 2 to 16 channels in formats such as I2S and time  
division multiplexing (TDM). Any of the inputs can be routed  
to the SigmaDSP core or to any of the ASRCs. Similarly, the  
output signals can be taken from the SigmaDSP core, any of the  
ASRC outputs, the serial inputs, the PDM microphones, or the  
S/PDIF receiver. This routing scheme, which can be modified at  
any time using control registers, allows maximum system  
flexibility without requiring hardware design changes.  
Two serial input ports and two serial output ports can operate  
as pairs in a special flexible TDM mode, allowing the user to  
assign byte specific locations independently to audio streams at  
varying bit depths. This mode ensures compatibility with  
codecs that use similar flexible TDM streams.  
Rev. C | Page 22 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
The DSP core is optimized for audio processing, and it can  
process audio at sample rates of up to 192 kHz. The program  
and parameter/data RAMs can be loaded with a custom audio  
processing signal flow built with the SigmaStudio graphical  
programming software from Analog Devices, Inc., which is  
available for download at www.analog.com. The values that are  
stored in the parameter RAM can control individual signal  
processing blocks, such as infinite impulse response (IIR) and  
finite impulse response (FIR) equalization filters, dynamics  
processors, audio delays, and mixer levels. A software safeload  
feature allows transparent parameter updates and prevents  
clicks on the output signals.  
Algorithms are created in SigmaStudio by dragging and  
dropping signal processing cells from the library, connecting  
them together in a flow, compiling the design, and downloading  
the executable program and parameters to the SigmaDSP  
memory through the control port. The tasks of linking,  
compiling, and downloading the project are all handled  
automatically by the software.  
The signal processing cells included in the library range from  
primitive operations, such as addition and gain, to large and  
highly optimized building blocks. For example, the libraries  
include the following:  
Single and double precision biquad filter  
Monochannel and multichannel dynamics processors with  
peak or rms detection  
Reliability features, such as memory parity checking and a  
program counter watchdog, help ensure that the system can  
detect and recover from any errors related to memory corruption.  
Mixer and splitter  
Tone and noise generator  
Fixed and variable gain  
Loudness  
Delay  
Stereo enhancement  
Dynamic bass boost  
Noise and tone source  
Level detector  
On the ADAU1462/ADAU1466, the audio data in an S/PDIF  
stream can be routed through an ASRC for processing in the  
DSP or can be sent directly to a serial audio output. Other  
components of the stream, including status and user bits, are  
not lost and can be used in algorithm or output on the MPx  
pins. The user can also independently program the nonaudio  
data that is embedded in the output signal of the S/PDIF  
transmitter.  
The 14 MPx pins are available to provide a simple user interface  
without the need for an external microcontroller. These multi-  
purpose pins are available to input external control signals and  
output flags or controls to other devices in the system. As inputs,  
the MPx pins can be connected to push buttons, switches,  
rotary encoders, or other external control circuitry to control  
the internal signal processing program. When configured as  
outputs, these pins can drive LEDs (with a buffer), output flags  
to a microcontroller, control other ICs, or connect to other  
external circuitry in an application. In addition to the  
MPx pin control and conditioning  
FFT and frequency domain processing algorithms  
Analog Devices continuously develops new processing  
algorithms and provides proprietary and third party algorithms  
for applications such as matrix decoding, bass enhancement,  
and surround virtualizers.  
Several power saving mechanisms are available, including  
programmable pad strength for digital I/O pins and the ability  
to power down unused subsystems.  
multipurpose pins, six dedicated input pins (AUXADC5 to  
AUXADC0) are connected to an auxiliary ADC for use with  
analog controls such as potentiometers or system voltages.  
Fabricated on a single monolithic integrated circuit for  
operation over the −40°C to +105°C temperature range, the  
device is housed in a 72-lead LFCSP package with an exposed  
pad to assist in heat dissipation.  
The SigmaStudio software programs and controls the device  
through the control port. In addition to designing and tuning a  
signal flow, the software can configure all of the DSP registers in  
real time and download a new program and parameters into the  
external self boot EEPROM. The SigmaStudio graphical  
interface allows anyone with audio processing knowledge to  
design a DSP signal flow and export production quality code  
without the need for writing text code. The software provides  
enough flexibility and programmability to allow an experienced  
DSP programmer to have in-depth control of the design.  
The device can be controlled in one of two operational modes,  
as follows:  
The s  
ettings of the chip can be loaded and dynamically  
updated through the SPI/I2C port via SigmaStudio or a  
processor in the system.  
The DSP can self boot from an external EEPROM in  
a system with no microcontroller.  
Rev. C | Page 23 of 202  
ADAU1462/ADAU1466  
Data Sheet  
When all four POR circuits signal that the power-on conditions  
are met, a reset synchronizer circuit releases the internal digital  
circuitry from reset, provided that the following conditions  
are met:  
INITIALIZATION  
Power-Up Sequence  
The first step in the initialization sequence is to power up the  
device. First, apply voltage to the power pins. All the power pins  
can be supplied simultaneously. If the power pins are not supplied  
simultaneously, supply IOVDD first because the internal ESD  
protection diodes are referenced to the IOVDD voltage. AVDD,  
DVDD, and PVDD can be supplied at the same time as IOVDD  
or after, but they must not be supplied prior to IOVDD. The  
order in which AVDD, DVDD, and PVDD are supplied does  
not matter.  
A valid MCLK signal is provided to the digital circuitry  
and the PLL.  
RESET  
The  
pin is high.  
When the internal digital circuitry becomes active, the DSP  
core runs eight lines of initialization code stored in read-only  
memory (ROM), requiring eight cycles of the MCLK signal. For  
a 12.288 MHz MCLK input, this process takes 650 ns.  
DVDD, the power supply for the internal digital logic, can be  
regulated and supplied directly or it can by generated from  
IOVDD using an internal voltage regulator. When the internal  
regulator is not used and DVDD is directly supplied, no special  
sequence is required when providing the proper voltages to  
AVDD, DVDD, and PVDD.  
After the ROM program completes its execution, the PLL is  
ready to be configured using register writes to Register 0xF000  
(PLL_CTRL0), Register 0xF001 (PLL_CTRL1), Register 0xF002  
(PLL_CLK_SRC), and Register 0xF003 (PLL_ENABLE).  
When the PLL is configured and enabled, the PLL starts to lock  
to the incoming master clock signal. The absolute maximum  
PLL lock time is 32 × 1024 = 32,768 clock cycles on the clock  
signal (after the input prescaler), which is fed to the input of the  
PLL. In a standard 48 kHz use case, the PLL input clock  
frequency after the prescaler is 3.072 MHz; therefore, the  
maximum PLL lock time is 10.666 ms.  
When the internal regulator is used, DVDD is derived from  
IOVDD in combination with an external pass transistor, after  
AVDD, IOVDD, and PVDD are supplied. See the Power  
Supplies section for more information.  
Each power supply domain has its own internal power-on reset  
(POR) circuits (also known as power OK circuits) to ensure that  
the level shifters attached to each power domain can be initialized  
properly. AVDD and PVDD must reach their nominal level  
before the auxiliary ADC and PLL can be used, respectively.  
Typically, the PLL locks much faster than 10.666 ms. In most  
systems, the PLL locks within about 3.5 ms. The PLL_LOCK  
register (Address 0xF004) can be polled via the control port  
until Bit 0 (PLL_LOCK) goes high, signifying that the PLL lock  
is complete.  
While the PLL is attempting to lock to the input clock, the I2C  
slave and SPI slave control ports are inactive; therefore, no other  
registers are accessible over the control port. While the PLL is  
attempting to lock, all attempts to write to the control port fail.  
However, the AVDD and PVDD supplies have no role in the rest  
of the power-up sequence. After the AVDD power reaches its  
nominal threshold, the regulator becomes active and begins to  
charge up the DVDD supply. The DVDD supply also has a POR  
circuit to ensure that the level shifters initialize during power-up.  
The POR signals are combined into three global level shifter  
resets that properly initialize the signal crossings between each  
separate power domain and DVDD.  
Figure 13 shows an example power-up sequence with all relevant  
signals labeled. If possible, apply the required voltage to all four  
power supply domains (IOVDD, AVDD, PVDD, and DVDD)  
simultaneously. If the power supplies are separate, IOVDD, which  
is the reference for the ESD protection diodes that are situated  
inside the input and output pins, must be applied first to avoid  
stressing these diodes. PVDD, AVDD, and DVDD can then be  
supplied in any order (see the System Initialization Sequence  
section for more information). Note that the gray areas in  
Figure 13 represent clock signals.  
The digital circuits remain in reset until the IOVDD to DVDD  
level shifter reset is released. At that point, the digital circuits  
exit reset.  
When a crystal is in use, the crystal oscillator circuit must provide  
a stable master clock to the XTALIN/MCLK pin by the time the  
PVDD supply reaches its nominal level. The XTALIN/MCLK  
pin is restricted from passing into the PLL circuitry until the  
DVDD POR signal becomes active and the PVDD to DVDD  
level shifter is initialized.  
Rev. C | Page 24 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
STEP  
IOVDD PINS  
PVDD PIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
AVDD PIN  
DVDD PINS  
IOVDD TO DVDD LEVEL SHIFTER ENABLE  
(INTERNAL)  
PVDD TO DVDD LEVEL SHIFTER ENABLE  
(INTERNAL)  
AVDD TO DVDD LEVEL SHIFTER ENABLE  
(INTERNAL)  
RESET PIN  
RESET  
(INTERNAL)  
MASTER POWER-ON RESET  
(INTERNAL)  
XTALIN/MCLK PIN  
CLOCK INPUT TO THE PLL  
PLL OUTPUT CLOCK  
DESCRIPTION  
Figure 13. Power Sequencing and POR Timing Diagram for a System with Separate Power Supplies  
Rev. C | Page 25 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Table 19 contains an example series of register writes used to  
configure the system at startup. The contents of the data  
column may vary depending on the system configuration. The  
configuration that is listed in Table 19 represents the default  
initialization sequence for project files generated in SigmaStudio.  
System Initialization Sequence  
Before the IC can process the audio in the DSP, the following  
initialization sequence must be completed.  
1. If possible, apply the required voltage to all four power  
supply domains (IOVDD, AVDD, PVDD, and DVDD)  
simultaneously. If simultaneous application is not possible,  
supply IOVDD first to prevent damage or reduced  
operating lifetime. If using the on-board regulator, AVDD  
and PVDD can be supplied in any order, and DVDD is  
then generated automatically. If not using the on-board  
regulator, AVDD, PVDD, and DVDD can be supplied in  
any order following IOVDD.  
2. Start providing a master clock signal to the XTALIN/MCLK  
pin, or, if using the crystal oscillator, let the crystal oscillator  
start generating a master clock signal. The master clock  
signal must be valid when the DVDD supply stabilizes.  
3. If the SELFBOOT pin is pulled high, a self boot sequence  
initiates on the master control port. Wait until the self boot  
operation is complete.  
Recommended Program/Parameter Loading Procedure  
When writing large amounts of data to the program or parameter  
RAM in direct write mode (such as when downloading the  
initial contents of the RAMs from an external memory), use the  
hibernate register (Address 0xF400) to disable the processor  
core, thus preventing unpleasant noises from appearing at the  
audio output. When small amounts of data are transmitted  
during real-time operation of the DSP (such as when updating  
individual parameters), the software safeload mechanism can be  
used (see the Software Safeload section).  
4. If SPI slave control mode is desired, toggle the SS/ADDR0  
pin three times. Ensure that each toggle lasts at least the  
duration of one cycle of the master clock being input to the  
XTALIN/MCLK pin. When the SS/ADDR0 line rises for  
the third time, the slave control port is then in SPI mode.  
5. Execute the register and memory write sequence that is  
required to configure the device in the proper operating  
mode.  
Rev. C | Page 26 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Table 19. Example System Initialization Register Write Sequence1  
Address  
Data  
Register/Memory  
Description  
N/A  
N/A  
N/A  
Toggle SS/ADDR0 three times to enable SPI slave mode, if necessary.  
Enter soft reset.  
Exit soft reset.  
Set feedback divider to 96 (this is the default power-on setting).  
Set PLL input clock divider to 4.  
Set clock source to PLL clock.  
Enable MCLK output (12.288 MHz).  
Enable PLL.  
0xF890  
0xF890  
0xF000  
0xF001  
0xF002  
0xF005  
0xF003  
N/A  
0x00, 0x00  
0x00, 0x01  
0x00, 0x60  
0x00, 0x02  
0x00, 0x01  
0x00, 0x05  
0x00, 0x01  
N/A  
SOFT_RESET  
SOFT_RESET  
PLL_CTRL0  
PLL_CTRL1  
PLL_CLK_SRC  
MCLK_OUT  
PLL_ENABLE  
N/A  
Wait for PLL lock (see the Power-Up Sequence section); the maximum PLL lock  
time is 10.666 ms.  
0xF050  
0xF051  
0x4F, 0xFF  
0x00, 0x00  
POWER_ENABLE0  
POWER_ENABLE1  
Enable power for all major systems except Clock Generator 3 (Clock Generator 3 is  
rarely used in most systems).  
Disable power for subsystems like PDM microphones, S/PDIF, and the ADC if they  
are not being used in the system.  
0xF899  
0xC000  
0x00, 0x00  
Data generated  
by SigmaStudio (Page 0)  
SECONDPAGE_ENABLE  
Program RAM data  
Toggle the SECONDPAGE_ENABLE to point at host port memory Page 0.  
Download the lower half of program RAM contents using a block write (data  
provided by SigmaStudio compiler).  
0x0000  
0x6000  
Data generated  
by SigmaStudio  
Data generated  
by SigmaStudio  
DM0 RAM data (Page 0)  
Download the lower half of Data Memory DM0 using a block write (data provided  
by SigmaStudio compiler).  
Download the lower half of Data Memory DM1 using a block write (data provided  
by SigmaStudio compiler).  
DM1 RAM data (Page 0)  
0xF899  
0xC000  
0x00,0x01  
Data generated  
by SigmaStudio (Page 1)  
SECONDPAGE_ENABLE  
Program RAM data  
Toggle the SECONDPAGE_ENABLE to point at host port memory Page 1.  
Download the upper half of Program RAM contents using a block write (data  
provided by SigmaStudio compiler).  
0x0000  
0x6000  
Data generated  
by SigmaStudio  
Data generated  
by SigmaStudio  
DM0 RAM data (Page 1)  
Download the upper half of Data Memory DM0 using a block write (data  
provided by SigmaStudio compiler).  
Download the upper half of Data Memory DM1 using a block write (data  
provided by SigmaStudio compiler).  
DM1 RAM data (Page 2)  
0xF404  
0xF401  
N/A  
0xF402  
0xF402  
N/A  
0x00, 0x00  
0x00, 0x02  
N/A  
0x00, 0x00  
0x00, 0x01  
N/A  
START_ADDRESS  
START_PULSE  
N/A  
START_CORE  
START_CORE  
N/A  
Set program start address as defined by the SigmaStudio compiler.  
Set DSP core start pulse to internally generated pulse.  
Configure any other registers that require nondefault values.  
Stop the core.  
Start the core.  
Wait 50 μs for initialization program to execute.  
1 N/A means not applicable.  
Rev. C | Page 27 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
On the EVAL-ADAU1466Z evaluation board, the C1 and C2  
load capacitors are 22 pF.  
MASTER CLOCK, PLL, AND CLOCK GENERATORS  
Clocking Overview  
Do not directly drive another IC using the crystal signal on  
XTALOUT. This signal is an analog sine wave with low drive  
capability and, therefore, is not appropriate to drive an external  
digital input. A separate pin, CLKOUT, is provided for this  
purpose. The CLKOUT pin is set up using the MCLK_OUT  
register (Address 0xF005). For a more detailed explanation of  
CLKOUT, refer to the Master Clock Output section or the  
register map description of the MCLK_OUT register (see the  
CLKOUT Control Register section).  
Connect the clock source directly to the XTALIN/MCLK pin to  
externally supply the master clock. Alternatively, use the internal  
clock oscillator to drive an external crystal.  
Using the Oscillator  
The ADAU1462/ADAU1466 can use an on-board oscillator to  
generate its master clock. However, to complete the oscillator  
circuit, an external crystal must be attached. The on-board  
oscillator is designed to work with a crystal that is tuned to  
resonate at a frequency of the nominal system clock divided by  
24. For a normal system, where the nominal system clock is  
294.912 MHz, this frequency is 12.288 MHz.  
If a clock signal is provided from elsewhere in the system directly  
to the XTALIN/MCLK pin, the crystal resonator circuit is not  
necessary, and the XTALOUT pin can remain disconnected.  
The fundamental frequency of the crystal can be up to 30 MHz.  
Practically speaking, in most systems the fundamental frequency of  
the crystal is most easily sourced and simplest to work with when it  
is in a range from 3.072 MHz to 24.576 MHz.  
Setting the Master Clock and PLL Mode  
An integer PLL is available to generate the core system clock  
from the master clock input signal. The PLL generates the  
nominal 294.912 MHz core system clock to run the DSP core.  
The flexible clock generator circuitry enables this nominal core  
clock frequency to generate a wide range of audio sample rates.  
An integer prescaler takes the clock signal from the MCLK pin  
and divides its frequency by 1, 2, 4, or 8 to meet the appropriate  
frequency range requirements for the PLL itself. The nominal  
input frequency to the PLL is 3.072 MHz. For systems with  
an 11.2896 MHz input master clock, the input to the PLL is  
2.8224 MHz.  
For the external crystal in the circuit, use an AT-cut parallel  
resonance device operating at its fundamental frequency. Do not  
use ceramic resonators, which have poor jitter performance.  
Quartz crystals are ideal for audio applications. Figure 14 shows  
the crystal oscillator circuit that is recommended for proper  
operation.  
22pF  
XTALIN/MCLK  
12.288MHz  
1, 2, 4, (DEFAULT)  
100  
OR 8  
96  
XTALOUT  
XTALIN/  
MCLK  
294.912MHz  
SYSTEM CLOCK  
×
÷
22pF  
NOMINALLY  
3.072MHz  
Figure 14. Crystal Resonator Circuit  
Figure 15. PLL Functional Block Diagram  
The 100 Ω damping resistor on XTALOUT provides the oscillator  
with a voltage swing of approximately 3.1 V at the XTALIN/  
MCLK pin. The optimal crystal shunt capacitance is 7 pF. Its  
optimal load capacitance, specified by the manufacturer, is  
commonly approximately 20 pF, although the circuit supports  
values of up to 25 pF. Ensure that the equivalent series  
resistance is as small as possible. Calculate the necessary values of  
the two load capacitors in the circuit from the crystal load  
capacitance, using the following equation:  
The master clock input signal ranges in frequency from 2.375 MHz  
to 36 MHz. For systems that are intended to operate at a 48 kHz,  
96 kHz, or 192 kHz audio sample rate, the typical master clock  
input frequencies are 3.072 MHz, 6.144 MHz, 12.288 MHz, and  
24.576 MHz. Note that the flexibility of the PLL allows a large  
range of other clock frequencies, as well.  
The PLL in the ADAU1462 and ADAU1466 has a nominal (and  
maximum) output frequency of 294.912 MHz.  
C1C2  
C1C2  
The PLL is configured by setting Register 0xF000 (PLL_CTRL0),  
Register 0xF001 (PLL_CTRL1), and Register 0xF002 (PLL_CLK_  
SRC). After these registers are modified, set Register 0xF003, Bit 0  
(PLL_ENABLE), forcing the PLL to reset itself and attempt to  
relock to the incoming clock signal. Typically, the PLL locks  
within 3.5 ms. When the PLL locks to an input clock and creates  
a stable output clock, a lock flag is set in Register 0xF004, Bit 0  
(PLL_LOCK).  
CL   
CSTRAY  
where:  
C1 and C2 are the load capacitors.  
STRAY is the stray capacitance in the circuit. CSTRAY is usually  
C
assumed to be approximately 2 pF to 5 pF, but it varies  
depending on the PCB design.  
Short trace lengths in the oscillator circuit decrease stray  
capacitance, thereby increasing the loop gain of the circuit and  
helping to avoid crystal start-up problems. Therefore, place the  
crystal as near to the XTALOUT pin as possible and on the  
same side of the PCB.  
Rev. C | Page 28 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
Example PLL Settings  
overall power consumption of the device. Table 20 shows several  
example MCLK frequencies and the corresponding PLL settings  
that allow the highest number of program instructions to be  
executed for each audio frame. The settings provide the highest  
possible system clock without exceeding the 294.912 MHz upper  
limit.  
Depending on the input clock frequency, there are several possible  
configurations for the PLL. Setting the PLL to generate the highest  
possible system clock, without exceeding the maximum, allows for  
the execution of more DSP program instructions for each audio  
frame. Alternatively, setting the PLL to generate a lower frequency  
system clock allows fewer instructions to be executed and lowers  
Table 20. Optimal Predivider and Feedback Divider Settings for Varying Input MCLK Frequencies  
Input MCLK  
Frequency (MHz)  
Predivider  
Setting  
PLL Input  
Clock (MHz)  
Feedback  
Divider Setting  
ADAU1462/ADAU1466 Fast  
Grade System Clock (MHz)  
ADAU1462 Slow Grade  
System Clock (MHz)  
2.8224  
3
3.072  
3.5  
4
4.5  
5
5.5  
5.6448  
6
6.144  
6.5  
7
7.5  
8
8.5  
9
9.5  
10  
10.5  
11  
11.2896  
11.5  
12  
12.288  
12.5  
13  
13.5  
14  
14.5  
15  
15.5  
16  
16.5  
17  
17.5  
18  
18.5  
19  
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
8
8
8
8
8
8
2.8224  
3
3.072  
3.5  
4
4.5  
104  
98  
96  
84  
73  
293.5296  
294  
294.912  
294  
292  
292.5  
146.7648  
147  
147.456  
147  
146  
65  
146.25  
146.25  
147.125  
146.7648  
147  
147.456  
146.25  
147  
2.5  
117  
107  
104  
98  
96  
90  
84  
78  
73  
69  
292.5  
2.75  
2.8224  
3
3.072  
3.25  
3.5  
3.75  
4
4.25  
4.5  
294.25  
293.5296  
294  
294.912  
292.5  
294  
292.5  
292  
293.25  
292.5  
146.25  
146  
146.625  
146.25  
147.25  
146.25  
147  
147.125  
146.7648  
146.625  
147  
147.456  
146.875  
146.25  
146.8125  
147  
146.8125  
146.25  
147.25  
146  
146.4375  
146.625  
146.5625  
146.25  
146.84375  
147.25  
146.25  
146.25  
147.34375  
147  
65  
2.375  
2.5  
124  
117  
112  
107  
104  
102  
98  
96  
94  
90  
87  
84  
81  
78  
76  
73  
71  
69  
67  
294.5  
292.5  
294  
2.625  
2.75  
2.8224  
2.875  
3
3.072  
3.125  
3.25  
3.375  
3.5  
3.625  
3.75  
3.875  
4
4.125  
4.25  
4.375  
4.5  
294.25  
293.5296  
293.25  
294  
294.912  
293.75  
292.5  
293.625  
294  
293.625  
292.5  
294.5  
292  
292.875  
293.25  
293.125  
292.5  
293.6875  
294.5  
292.5  
292.5  
294.6875  
294  
65  
2.3125  
2.375  
2.4375  
2.5  
2.5625  
2.625  
127  
124  
120  
117  
115  
112  
19.5  
20  
20.5  
21  
Rev. C | Page 29 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Input MCLK  
Frequency (MHz)  
Predivider  
Setting  
PLL Input  
Clock (MHz)  
Feedback  
Divider Setting  
ADAU1462/ADAU1466 Fast  
Grade System Clock (MHz)  
ADAU1462 Slow Grade  
System Clock (MHz)  
146.46875  
147.125  
146.25  
146.7648  
146.625  
146.875  
147  
21.5  
22  
22.5  
22.5792  
23  
23.5  
24  
24.5  
24.576  
25  
8
8
8
8
8
8
8
8
8
8
2.6875  
2.75  
109  
107  
104  
104  
102  
100  
98  
96  
96  
94  
292.9375  
294.25  
292.5  
293.5296  
293.25  
293.75  
294  
294  
294.912  
293.75  
2.8125  
2.8224  
2.875  
2.9375  
3
3.0625  
3.072  
3.125  
147  
147.456  
146.875  
Relationship Between System Clock and Number of  
Instructions per Sample  
Table 21. Maximum Instructions/Sample  
System  
DSP Core  
Maximum Instructions  
Clock (MHz)  
Sample Rate (kHz) per Sample  
The DSP core executes only a limited number of instructions  
within the span of each audio sample. The number of instructions  
that can be executed is a function of the system clock and the DSP  
core sample rate. The core sample rate is set by Register 0xF401  
(START_PULSE), Bits[4:0] (START_PULSE).  
294.912  
294.912  
294.912  
294.912  
294.912  
294.912  
294.912  
294.912  
294.912  
294.912  
293.5296  
293.5296  
293.5296  
293.5296  
293.5296  
147.456  
147.456  
147.456  
147.456  
147.456  
147.456  
147.456  
147.456  
147.456  
147.456  
146.7648  
146.7648  
146.7648  
146.7648  
146.7648  
8
12  
16  
24  
32  
48  
36,8641  
24,5761  
18,4321  
12,2881  
92161  
6144  
The number of instructions that can be executed per sample is  
equal to the system clock frequency divided by the DSP core  
sample rate. However, the program RAM size is 8192 words;  
therefore, where the maximum instructions per sample exceeds  
8192, subroutines and loops must be used to make use of all  
available instructions (see Table 21).  
64  
4608  
96  
3072  
128  
192  
11.025  
22.05  
44.1  
88.2  
176.4  
8
12  
16  
24  
32  
2304  
1536  
26,6241  
13,3121  
6656  
PLL Filter  
An external PLL filter is required to help the PLL maintain  
stability and to limit the amount of ripple appearing on the phase  
detector output of the PLL. For a nominal 3.072 MHz PLL input  
and a 294.912 MHz system clock output (or 147.456 MHz), the  
recommended filter configuration is shown in Figure 16. This  
filter works for the full frequency range of the PLL.  
3328  
1664  
184320  
122880  
92160  
61440  
46080  
3072  
5.6nF  
PVDD  
150pF  
4.3k  
48  
64  
2304  
PLLFILT  
96  
1536  
Figure 16. PLL Filter  
128  
192  
11.025  
22.05  
44.1  
88.2  
176.4  
1152  
768  
133120  
66560  
3328  
Because the center frequency and bandwidth of the loop filter  
is determined by the values of the included components, use high  
accuracy (low tolerance) components. Components that are  
valued within 10% of the recommended component values and  
with a 15% or lower tolerance are suitable for use in the loop  
filter circuit.  
1664  
832  
The voltage on the PLLFILT pin, which is internally generated,  
is typically between 1.65 V and 2.10 V.  
1 The instructions per sample in these cases exceed the program memory  
size of 8192 words; therefore, to utilize the full number of instructions,  
subroutines or branches are required in the SigmaStudio program.  
Rev. C | Page 30 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
For Clock Generator 1 and Clock Generator 2, the integer numera-  
tor (N) and the integer denominator (M) are each nine bits long.  
For Clock Generator 3, N and M are each 16 bits long, allowing  
a higher precision when generating arbitrary clock frequencies.  
Clock Generators  
Three clock generators are available to generate audio clocks for  
the serial ports, DSP, ASRCs, and other audio related functional  
blocks in the system. Each clock generator can be configured to  
generate a base frequency and several fractions or multiples of that  
base frequency, creating a total of 15 clock domains available for  
use in the system. Each of the 15 clock domains can create the  
appropriate frame clock (LRCLK) and bit clock (BCLK) signals for  
the serial ports. Five BCLK signals are generated at frequencies of  
32 BCLK/sample, 64 BCLK/sample, 128 BCLK/sample, 256 BCLK/  
sample, and 512 BCLK/sample to deal with TDM data. Therefore,  
with a single master clock input frequency, 15 different frame clock  
frequencies and 75 different bit clock frequencies can be generated  
for use in the system.  
Figure 17 shows a basic block diagram of the PLL and clock  
generators. Each division operator symbolizes that the frequency  
of the clock is divided when passing through that block. Each  
multiplication operator symbolizes that the frequency of the  
clock is multiplied when passing through that block.  
Figure 18 shows an example where the master clock input has a  
frequency of 12.288 MHz, and the default settings are used for  
the PLL predivider, feedback divider, and Clock Generator 1  
and Clock Generator 2. The resulting system clock is  
12.288 MHz ÷ 4 × 96 = 294.912 MHz  
The base output of Clock Generator 1 is  
294.912 MHz ÷ 1024 × 1 ÷ 6 = 48 kHz  
The base output of Clock Generator 2 is  
294.912 MHz ÷ 1024 × 1 ÷ 9 = 32 kHz  
The nominal output of each clock generator is determined by  
the following formula:  
Output Frequency = (Input Frequency × N)/(1024 × M)  
where:  
Input Frequency is the PLL output (nominally 294.912 MHz).  
Output Frequency is the frame clock output frequency.  
N and M are integers that are configured by writing to the clock  
generator configuration registers.  
In this example, Clock Generator 3 is configured with N = 49  
and M = 320; therefore, the resulting base output of Clock  
Generator 3 is  
In addition to the nominal output, four additional output signals  
are generated at double, quadruple, half, and a quarter of the  
frequency of the nominal output frequency.  
1, 2, 4, PROGRAMMABLE  
294.912 MHz ÷ 1024 × 49 ÷ 320 = 44.1 kHz  
OR 8  
TYPICALLY 96  
XTALIN/  
MCLK  
×
SYSTEM CLOCK  
÷
(Default)  
N = 1,  
DIVIDER  
FEEDBACK  
DIVIDER  
×4  
×2  
×1  
÷2  
÷4  
M = 6  
CLKGEN 1  
× N ÷ M  
÷1024  
(Default)  
N = 1,  
M = 9  
×4  
×2  
×1  
÷2  
÷4  
CLKGEN 2  
× N ÷ M  
÷1024  
÷1024  
×4  
×2  
×1  
÷2  
÷4  
CLKGEN 3  
× N ÷ M  
Figure 17. PLL and Clock Generators Block Diagram  
4
÷
96  
×
12.288MHz  
CLOCK  
SOURCE  
294.912MHz  
SYSTEM CLOCK  
DIVIDER  
FEEDBACK  
DIVIDER  
N = 1,  
M = 6  
192kHz  
96kHz  
48kHz  
24kHz  
12kHz  
CLKGEN 1  
× N ÷ M  
÷1024  
÷1024  
÷1024  
N = 1,  
M = 9  
128kHz  
64kHz  
32kHz  
16kHz  
8kHz  
CLKGEN 2  
× N ÷ M  
N = 49,  
M = 320  
176.4kHz  
88.2kHz  
44.1kHz  
22.05kHz  
11.025kHz  
CLKGEN 3  
× N ÷ M  
Figure 18. PLL and Audio Clock Generators with Default Settings and Resulting Clock Frequencies Labeled, XTALIN/MCLK = 12.288 MHz  
Rev. C | Page 31 of 202  
 
 
ADAU1462/ADAU1466  
Data Sheet  
4
÷
96  
×
11.2896MHz  
270.9504MHz  
CLOCK  
SYSTEM CLOCK  
SOURCE  
DIVIDER  
FEEDBACK  
DIVIDER  
N = 1,  
M = 6  
176.4kHz  
88.2kHz  
44.1kHz  
22.05kHz  
11.025kHz  
CLKGEN 1  
× N ÷ M  
÷1024  
÷1024  
÷1024  
N = 1,  
M = 9  
117.6kHz  
58.8kHz  
29.4kHz  
14.7kHz  
7.35kHz  
CLKGEN 2  
× N ÷ M  
N = 80,  
M = 441  
192kHz  
96kHz  
48kHz  
24kHz  
12kHz  
CLKGEN 3  
× N ÷ M  
Figure 19. PLL and Audio Clock Generators with Default Settings and Resulting Clock Frequencies Labeled, XTALIN/MCLK = 11.2896 MHz  
1, 2, 4,  
Figure 19 shows an example where the master clock input has a  
OR 8  
×
frequency of 11.2896 MHz, and the default settings are used for  
the PLL predivider, feedback divider, and Clock Generator 1 and  
Clock Generator 2. The resulting system clock is  
CLKOUT  
1, 2, 4,  
OR 8  
TYPICALLY 96  
×
MCLK  
SYSTEM CLOCK  
÷
DIVIDER  
FEEDBACK  
DIVIDER  
CLKGEN 1  
CLKGEN 2  
CLKGEN 3  
11.2896 MHz ÷ 4 × 96 = 270.9504 MHz  
The base output of Clock Generator 1 is  
270.9504 MHz ÷ 1024 × 1 ÷ 6 = 44.1 kHz  
The base output of Clock Generator 2 is  
270.9504 MHz ÷ 1024 × 1 ÷ 9 = 29.4 kHz  
Figure 20. Clock Output Generator  
The CLKOUT pin can drive more than one external slave IC if  
the drive strength is sufficient to drive the traces and external  
receiver circuitry. The ability to drive external ICs varies greatly,  
depending on the application and the characteristics of the PCB  
and the slave ICs. The drive strength and slew rate of the  
CLKOUT pin is configurable in the CLKOUT_PIN register  
(Address 0xF7A3); therefore, its performance can be tuned to  
match the specific application. The CLKOUT pin is not designed to  
drive long cables or other high impedance transmission lines.  
Use the CLKOUT pin only to drive signals to other integrated  
circuits on the same PCB. When changing the settings for the pre-  
divider, disable and then reenable the PLL using Register 0xF003  
(PLL_ENABLE), allowing the frequency of the CLKOUT signal  
to update.  
In this example, Clock Generator 3 is configured with N = 80  
and M = 441; therefore, the resulting base output of Clock  
Generator 3 is  
270.9504 MHz ÷ 1024 × 80 ÷ 441 = 48 kHz  
Master Clock Output  
The master clock output pin (CLKOUT) is useful in cases where  
a master clock must be fed to other ICs in the system, such as  
audio codecs. The master clock output frequency is determined  
by the setting of the MCLK_OUT register (Address 0xF005).  
Four frequencies are possible: 1×, 2×, 4×, or 8× the frequency  
of the predivider output.  
The predivider output × 1 generates a 3.072 MHz output  
for a nominal system clock of 294.912 MHz.  
The predivider output × 2 generates a 6.144 MHz output for  
a nominal system clock of 294.912 MHz.  
The predivider output × 4 generates a 12.288 MHz output  
for a nominal system clock of 294.912 MHz.  
The predivider output × 8 generates a 24.576 MHz output for  
a nominal system clock of 294.912 MHz.  
Dejitter Circuitry  
To account for jitter between ICs in the system and to handle  
interfacing safely between internal and external clocks, dejitter  
circuits are included to guarantee that jitter related clocking errors  
are avoided. The dejitter circuitry is automated and does not  
require interaction or control from the user.  
Rev. C | Page 32 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
Table 23. Power Supply Details  
Master Clock, PLL, and Clock Generators Registers  
Externally  
Supplied?  
An overview of the registers related to the master clock, PLL,  
and clock generators is listed in Table 22. For a more detailed  
description, see the PLL Configuration Registers section and the  
Clock Generator Registers section.  
Supply  
Voltage  
Description  
IOVDD (Input/  
Output)  
DVDD (Digital)  
1.8 V − 5% to  
3.3 V + 10%  
1.2 V 5%  
Yes  
Optional  
Can be derived  
from IOVDD using  
an internal LDO  
regulator  
Table 22. Master Clock, PLL, and Clock Generator Registers  
Address Register  
Description  
AVDD (Analog)  
PVDD (PLL)  
3.3 V 10%  
3.3 V 10%  
Yes  
Yes  
0xF000  
0xF001  
0xF002  
0xF003  
0xF004  
0xF005  
0xF006  
0xF020  
0xF021  
0xF022  
0xF023  
0xF024  
0xF025  
0xF026  
0xF027  
PLL_CTRL0  
PLL_CTRL1  
PLL_CLK_SRC  
PLL_ENABLE  
PLL_LOCK  
PLL feedback divider  
PLL prescale divider  
PLL clock source  
PLL enable  
PLL lock  
CLKOUT control  
Voltage Regulator  
The ADAU1462/ADAU1466 include a linear regulator that can  
generate the 1.2 V supply required by the DSP core and other  
internal digital circuitry from an external supply. Source the  
linear regulator from the I/O supply (IOVDD), which can range  
from 1.8 V − 5% to 3.3 V + 10%. A simplified block diagram of the  
internal structure of the regulator is shown in Figure 22.  
MCLK_OUT  
PLL_WATCHDOG Analog PLL watchdog control  
CLK_GEN1_M  
CLK_GEN1_N  
CLK_GEN2_M  
CLK_GEN2_N  
CLK_GEN3_M  
CLK_GEN3_N  
CLK_GEN3_SRC  
Denominator (M) for Clock Generator 1  
Numerator (N) for Clock Generator 1  
Denominator (M) for Clock Generator 2  
Numerator (N) for Clock Generator 2  
Denominator (M) for Clock Generator 3  
Numerator (N) for Clock Generator 3  
Input source for Clock Generator 3  
For proper operation, the linear regulator requires several  
external components. A PNP bipolar junction transistor, such as  
the ON Semiconductor NSS1C300ET4G, acts as an external pass  
device to bring the higher IOVDD voltage down to the lower  
DVDD voltage, thus externally dissipating the power of the IC  
package. Ensure that the current gain of the transistor (β) is 200  
or greater and that the transistor is able to dissipate at least 1 W  
in the worst case. Place a 1 kΩ resistor between the transistor  
emitter and base to help stabilize the regulator for varying loads.  
This resistor placement also guarantees that current is always  
flowing into the VDRIVE pin, even for minimal regulator loads.  
Figure 21 shows the connection of the external components.  
10µF  
CLK_GEN3_LOCK Lock bit for Clock Generator 3 input  
reference  
POWER SUPPLIES, VOLTAGE REGULATOR, AND  
HARDWARE RESET  
Power Supplies  
The ADAU1462/ADAU1466 are supplied by four power  
supplies: IOVDD, DVDD, AVDD, and PVDD.  
IOVDD (input/output supply) sets the reference voltage  
for all digital input and output pins. It can be any value  
ranging from 1.8 V − 5% to 3.3 V + 10%. To use the I2C/SPI  
control ports or any of the digital input or output pins, the  
IOVDD supply must be present.  
1k  
100nF  
DVDD (digital supply) powers the DSP core and supporting  
digital logic circuitry. It must be 1.2 V 5%.  
AVDD (analog supply) powers the analog auxiliary ADC  
circuitry. It must be supplied even if the auxiliary ADCs are  
not in use.  
PVDD (PLL supply) powers the PLL and acts as a reference  
for the voltage controlled oscillator (VCO). It must be supplied  
even if the PLL is not in use.  
DVDD  
VDRIVE  
IOVDD  
Figure 21. External Components Required for Voltage Regulator Circuit  
If an external supply is provided to DVDD, ground the  
VDRIVE pin. The regulator continues to draw a small amount  
of current (approximately 100 μA) from the IOVDD supply. Do  
not use the regulator to provide a voltage supply to external ICs.  
There are no control registers associated with the regulator.  
EXTERNAL  
STABILITY  
RESISTOR  
VDRIVE  
EXTERNAL  
PNP BIPOLAR  
PASS TRANSISTOR  
INTERNAL  
1.2V  
REFERENCE  
PMOS DEVICE  
Figure 22. Simplified Block Diagram of Regulator Internal Structure, Including External Components  
Rev. C | Page 33 of 202  
 
 
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
3.3V  
Power Reduction Modes  
ADM811  
100nF  
RESET  
1
4
GND RESET  
2
3
All sections of the IC have clock gating functionality that allows  
individual functional blocks to be disabled for power savings.  
Functional blocks that can optionally be powered down include  
the following:  
MR  
V
CC  
Figure 23. Example Manual Reset Generation Circuit  
Clock Generator 1, Clock Generator 2, and Clock Generator 3  
S/PDIF receiver  
S/PDIF transmitter  
Serial data input and output ports  
Auxiliary ADC  
ASRCs (in two banks of eight channels each)  
PDM microphone inputs and decimation filters  
If the hardware reset function is not required in a system, pull  
RESET  
the  
pin high to the IOVDD supply using a weak pull-up  
resistor (in the range of several kiloohms). The device is designed  
RESET  
to boot properly even when the  
pulled high.  
pin is permanently  
DSP Core Current Consumption  
The DSP core draws varying amounts of current, depending  
on the processing load required by the program it is running.  
Figure 24 shows the relationship between program size and  
digital (DVDD) current draw. The minimum of 0 MIPS signifies  
the case where no program is running in the DSP core, and the  
maximum of 294 MIPS signifies that the DSP core is at full  
utilization, executing a typical audio processing program.  
Overview of Power Reduction Registers  
An overview of the registers related to power reduction is shown  
in Table 24. For a more detailed description, refer to the Power  
Reduction Registers section.  
Table 24. Power Reduction Registers  
Address Register  
Description  
0xF050  
POWER_ENABLE0 Disables clock generators, serial  
ports, and ASRCs  
0xF051  
POWER_ENABLE1 Disables PDM microphone inputs,  
S/PDIF interfaces, and auxiliary  
ADCs  
Hardware Reset  
RESET  
An active low hardware reset pin (  
) is available for  
externally triggering a reset of the device. When this pin is tied  
to ground, all functional blocks in the device are disabled, and  
the current consumption decreases dramatically. The amount of  
current drawn depends on the leakage current of the silicon, which  
depends greatly on the ambient temperature and the properties  
0
50  
100  
150  
200  
250  
300  
PROGRAM LENGTH (MIPS)  
RESET  
of the die. When the  
pin is connected to IOVDD, all control  
Figure 24. ADAU1466 Typical DVDD Current Draw vs. Program MIPS at an  
Ambient Temperature of 25°C and a Sample Rate of 48 kHz  
registers are reset to their power-on default values. The state of  
the RAM is not guaranteed to be cleared after a reset; therefore,  
the memory must be manually cleared by the DSP program.  
TEMPERATURE SENSOR DIODE  
The chip includes an on-board temperature sensor diode with  
an approximate range of 0°C to 120°C. The temperature sensor  
function is enabled by the two sides of a diode connected to the  
THD_P and THD_M pins. Value processing (calculating the  
actual temperature based on the current through the diode) is  
handled off chip by an external controller IC. The temperature  
value is not stored in an internal register; it is available only in  
the external controller IC. The temperature sensor requires an  
external IC to operate properly. See the Engineer-to-Engineer  
Note EE-346 for more information and instructions for using the  
temperature sensor diode.  
The default program generated by SigmaStudio includes code  
that automatically clears the memory. To ensure that no chatter  
RESET  
exists on the  
signal line, implement an external reset  
generation circuit in the system hardware design. Figure 23  
shows an example of the ADM811 microprocessor supervisory  
circuit with a push button connected, providing a method for  
RESET  
manually generating a clean  
on the application level, place a weak pull-down resistor (in the  
RESET  
signal. For reliability purposes  
range of several kiloohms) on the  
line to guarantee that  
the device is held in reset in the event that the reset supervisory  
circuitry fails.  
ADAU1462/  
ADAU1466  
THERMAL  
64  
D+  
D–  
THD_P  
THD_M  
DIODE  
63  
MONITOR  
Figure 25. Example External Temperature Sensor Circuit  
Rev. C | Page 34 of 202  
 
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
long because the memory locations within the devices are  
directly addressable, and their sizes exceed the range of single  
byte addressing. The third byte to the end of the sequence  
contain the data, such as control port data, program data, or  
parameter data. The number of bytes written per word depends  
on the type of data. For more information, see the Burst Mode  
Writing and Reading section. The ADAU1462/ADAU1466 must  
have a valid master clock to write to the slave control port, with  
the exception of the PLL configuration registers, 0xF000 to 0xF004.  
SLAVE CONTROL PORTS  
A total of four control ports are available: two slave ports and  
two master ports. The slave I2C port and slave SPI port allow an  
external master device to modify the contents of the memory  
and registers. The master I2C port and master SPI port allow the  
device to self boot and to send control messages to slave devices  
on the same bus.  
Slave Control Port Overview  
To program the DSP and configure the control registers, a slave  
port is available that can communicate using either the I2C or  
SPI protocols. Any external device that controls the ADAU1462/  
ADAU1466, including a hardware interface used with  
SigmaStudio for development or a microcontroller in a large  
running system, uses the slave control port to communicate  
with the DSP. This port is unrelated to the master  
If large blocks of data must be downloaded, halt the output of  
the DSP core (using Register 0xF400, HIBERNATE), load new  
data, and then restart the device (using Register 0xF402,  
START_CORE). This process is most common during the  
booting sequence at startup or when loading a new program  
into RAM because the ADAU1462/ADAU1466 has several  
mechanisms for updating signal processing parameters in real  
time without causing pops or clicks.  
communications port that also uses the I2C or SPI protocols. The  
master port enables applications without an external controller  
and can read from an external EEPROM to self boot and  
control external ICs.  
The slave communications port defaults to I2C mode; however, it  
can be put into SPI mode by toggling SS (SS/ADDR0), the slave  
select pin, from high to low three times. The slave select pin  
must be held low for at least one master clock period (that is,  
one period of the clock on the XTALIN_MCLK input pin). Only  
the PLL configuration registers (0xF000 to 0xF004) are accessible  
before the PLL locks. For this reason, always write to the PLL  
registers first after the chip powers up. After the PLL locks, the  
remaining registers and the RAM become accessible. See the  
System Initialization Sequence section for more information.  
When updating a signal processing parameter while the DSP  
core is running, use the software safeload function. This  
function allows atomic writes to memory and prevents updates  
to parameters across the boundary of an audio frame, which  
can lead to an audio artifact such as a click or pop sound. For  
more information, see the Software Safeload section.  
The slave control port supports either I2C or SPI, but not  
simultaneously. The function of each pin is described in Table 25  
for the two modes.  
Burst Mode Writing and Reading  
Burst write and read modes are available for convenience when  
writing large amounts of data to contiguous registers. In these  
modes, the chip and memory addresses are written once, and  
then a large amount of data can follow uninterrupted. The sub-  
addresses are automatically incremented at the word boundaries.  
This increment happens automatically after a single word write  
or read unless a stop condition is encountered (I2C mode) or the  
slave select is disabled and brought high (SPI mode). A burst write  
starts like a single word write, but, following the first data-word,  
the data-word for the next address can be written immediately  
without sending its 2-byte address. The control registers in the  
ADAU1462/ADAU1466 are two bytes wide, and the memories  
are four bytes wide. The auto-increment feature knows the word  
length at each subaddress; therefore, it is not necessary to manually  
specify the subaddress for each address in a burst write.  
SLAVE CONTROL PORT ADDRESSING  
Unlike earlier SigmaDSP processors, the ADAU1462/ADAU1466  
slave control port 16-bit addressing cannot provide direct access  
to the total amount of memory available to the DSP core on its  
wider internal busses. Full read/write access to all memory and  
addressable registers is possible, but it must be accessed as two  
pages of memory in the slave control port address space. Page 0  
is referred to as lower memory and Page 1 as upper memory.  
The single-bit register SECONDPAGE_ENABLE (0xF899)  
selects the active page.  
Within a page, all addresses are accessible using both single  
address mode and burst mode. The first byte (Byte 0) of a  
control port write contains the 7-bit chip address plus the R/  
bit. The next two bytes (Byte 1 and Byte 2) together form the  
subaddress of the register location within the memory maps of  
the ADAU1462/ADAU1466. This subaddress must be two bytes  
W
The subaddresses are automatically incremented by one address,  
following each read or write of a data-word, regardless of whether  
there is a valid register or RAM word at that address.  
Rev. C | Page 35 of 202  
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
Table 25. Control Port Pin Functions  
Pin Name  
I2C Slave Mode  
SPI Slave Mode  
SS/ADDR0  
Address 0 (Bit 1 of the address word, input to the  
ADAU1462/ADAU1466)  
Slave select (input to the ADAU1462/ADAU1466)  
CCLK/SCL  
Clock (input to the ADAU1462/ADAU1466)  
Clock (input to the ADAU1462/ADAU1466)  
MOSI/ADDR1 Address 1 (Bit 2 of the address word, input to the  
ADAU1462/ADAU1466)  
Data; master out, slave in (input to the  
ADAU1462/ADAU1466)  
MISO/SDA  
Data (bidirectional, open collector)  
Data; master in, slave out (output from the  
ADAU1462/ADAU1466)  
Note that there is only one set of control registers, and they  
are at Address 0xF000 to Address 0xFBFF. The value of  
SECONDPAGE_ENABLE has no effect on these registers.  
SLAVE PORT TO DSP CORE ADDRESS MAPPING  
The DSP core architecture use of three separate areas of memory,  
PM, DM0, and DM1 (program memory, Data Memory 0, and  
Data Memory 1, respectively). To maintain backward compati-  
bility with the ADAU1450/ADAU1451/ADAU1452 family of  
processors, slave port access to this memory is divided into two  
pages, Page 1 and Page 2. The single-bit register SECONDPAGE_  
ENABLE (0xF899) selects the active page. Figure 26 shows the  
mapping between slave port addresses and the native address  
space of the core for ADAU1462. Figure 27 shows the mapping  
between slave port addresses and the native address space of the  
core for ADAU1466.  
For example,  
A write on the slave port to Address 0x6000 while  
SECONDPAGE_ENABLE is set to 0 (on Page 1) changes  
the value of Address 0x0000 in DM1 memory.  
A write on the slave port to Address 0xAFFF while  
SECONDPAGE_ENABLE is set to 0 (on Page 1) changes  
the value of Address 0x4FFF in DM1 memory.  
A write on the slave port to Address 0x6000 while  
SECONDPAGE_ENABLE is set to 1 (on Page 2) changes  
the value of Address 0x5000 in DM1 memory.  
Note that the lower and upper halves of program memory, Data  
Memory 0, and Data Memory 1 map to the same slave control  
port addresses. The value of register SECONDPAGE_ENABLE  
(Address 0xF899) determines whether a slave control port address  
points to the lower or upper areas of PM, DM0, and DM1.  
A write on the slave port to Address 0xAFFF while  
SECONDPAGE_ENABLE is set to 1 (on Page 2) changes  
the value of Address 0x9FFF in DM1 memory.  
Although the slave port accesses memory in pages, the  
addressing is contiguous and seamless to the DSP core.  
Rev. C | Page 36 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
PM BUS  
DM0 BUS  
DM1 BUS  
CORE  
ADDRESS  
SLAVE CONTROL PORT  
ADDRESS/MAPPING  
CORE  
ADDRESS  
SLAVE CONTROL PORT  
ADDRESS/MAPPING  
CORE  
ADDRESS  
SLAVE CONTROL PORT  
ADDRESS/MAPPING  
0x0000  
0x0000  
0xC000  
0x0000  
0x0000  
0x6000  
PM LOWER  
(PAGE 1)  
DM1 LOWER  
(PAGE 1)  
DM0 LOWER  
(PAGE 1)  
0x1FFF  
0x2000  
0xDFFF  
0xC000  
0x2FFF  
0x3000  
0x2FFF 0x2FFF  
0x8FFF  
0x6000  
PM UPPER  
(PAGE 2)  
0x3000  
0x0000  
0x3FFF  
0x4000  
0xDFFF  
DM0 UPPER  
(PAGE 2)  
DM1 UPPER  
(PAGE 2)  
0x5FFF 0x2FFF  
0x6000  
0x5FFF  
0x6000  
0x8FFF  
0xBFFF  
0xC000  
0xBFFF  
0xC000  
0xBFFF  
0xC000  
BOOT  
ROM  
DATA  
ROM 0  
DATA  
ROM 1  
0xEFFF  
0xF000  
0xEFFF  
0xEFFF  
0xF000  
0xF000  
0xF000  
REGISTERS  
0xFBFF 0xFBFF  
0xF000  
REGISTERS  
0xFBFF  
0xFBFF 0xFBFF  
Figure 26. ADAU1462 Slave Port Address to DSP Core Address Mapping  
Rev. C | Page 37 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
PM BUS  
DM0 BUS  
DM1 BUS  
CORE  
SLAVE CONTROL PORT  
CORE  
SLAVE CONTROL PORT  
CORE  
SLAVE CONTROL PORT  
ADDRESS ADDRESS/MAPPING  
ADDRESS ADDRESS/MAPPING  
ADDRESS ADDRESS/MAPPING  
0x0000 0xC000  
0x0000  
0x0000  
0x0000  
0x6000  
PM LOWER  
(PAGE 1)  
DM0 LOWER  
(PAGE 1)  
DM1 LOWER  
(PAGE 1)  
0x2FFF 0xEFFF  
0x3000 0xC000  
PM UPPER  
(PAGE 2)  
0x4FFF 0x4FFF  
0x4FFF  
0x5000  
0xAFFF  
0x6000  
0x5000  
0x0000  
0x5FFF 0xEFFF  
0x6000  
DM0 UPPER  
(PAGE 2)  
DM1 UPPER  
(PAGE 2)  
0x9FFF  
0xA000  
0x4FFF  
0x9FFF  
0xA000  
0xAFFF  
0xBFFF  
0xC000  
0xBFFF  
0xC000  
0xBFFF  
0xC000  
BOOT  
ROM  
DATA  
ROM 0  
DATA  
ROM 1  
0xEFFF  
0xF000  
0xEFFF  
0xF000  
0xEFFF  
0xF000  
0xF000  
REGISTERS  
0xFBFF 0xFBFF  
0xF000  
REGISTERS  
0xFBFF  
0xFBFF  
0xFBFF  
Figure 27. ADAU1466 Slave Port Address to DSP Core Address Mapping  
Rev. C | Page 38 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
I2C Slave Port  
condition, defined by a high to low transition on SDA while SCL  
remains high. This start condition indicates that an address/data  
stream follows. All devices on the bus respond to the start  
condition and shift the next eight bits (the 7-bit address plus the  
The ADAU1462/ADAU1466 support a 2-wire serial (I2C  
compatible) microprocessor bus driving multiple peripherals.  
The maximum clock frequency on the I2C slave port is 400 kHz.  
Two pins, serial data (SDA) and serial clock (SCL), carry  
information between the ADAU1462/ADAU1466 and the system  
I2C master controller. In I2C mode, the ADAU1462/ADAU1466  
are always slaves on the bus, meaning that they cannot initiate a  
data transfer. Each slave device is recognized by a unique address.  
The address bit sequence and the format of the read/write byte  
is shown in Table 26. The address resides in the first seven bits  
of the I2C write. The two address bits that follow can be set to  
assign the I2C slave address of the device, as follows: Bit 1 can  
be set by pulling the SS/ADDR0 pin either to IOVDD (by setting  
it to 1) or to DGND (by setting it to 0); and Bit 2 can be set by  
pulling the MOSI/ADDR1 pin either to IOVDD (by setting it to 1)  
or to DGND (by setting it to 0). The LSB of the address (the  
W
R/ bit), MSB first. The device that recognizes the transmitted  
address responds by pulling the data line low during the ninth  
clock pulse. This ninth bit is known as an acknowledge bit. All  
other devices withdraw from the bus at this point and return to  
the idle condition.  
W
The R/ bit determines the direction of the data. A Logic 0 on  
the LSB of the first byte means that the master writes information  
to the peripheral, whereas a Logic 1 means that the master reads  
information from the peripheral after writing the subaddress and  
repeating the start address. A data transfer occurs until a stop  
condition is encountered. A stop condition occurs when SDA  
transitions from low to high while SCL is held high.  
Figure 28 shows the timing of an I2C single word write operation,  
Figure 29 shows the timing of an I2C burst mode write operation,  
and Figure 30 shows an I2C burst mode read operation.  
W
R/ bit) either specifies a read or write operation. Logic Level 1  
corresponds to a read operation; Logic Level 0 corresponds to a  
write operation.  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of sequence  
with normal read and write operations, the slave I2C port of the  
ADAU1462/ADAU1466 immediately jumps to the idle condition.  
During a given SCL high period, issue only one start condition  
and one stop condition, or a single stop condition followed by a  
single start condition. If the user issues an invalid subaddress,  
the ADAU1462/ADAU1466 do not issue an acknowledge and  
return to the idle condition.  
Table 26 describes the sequence of eight bits that define the I2C  
device address byte.  
Table 27 describes the relationship between the state of the address  
pins (0 represents logic low and 1 represents logic high) and the  
I2C slave address. Ensure that the address pins (SS/ADDR0 and  
MOSI/ADDR1) are hardwired in the design. Do not allow these  
pins to change states while the device is operating.  
Place a 2 kΩ pull-up resistor on each line connected to the SDA  
and SCL pins. Ensure that the voltage on these signal lines does  
not exceed IOVDD (1.8 V − 5% to 3.3 V + 10%).  
Note the following conditions:  
Do not issue an autoincrement (burst) write command that  
exceeds the highest subaddress in the memory.  
Addressing  
Initially, each device on the I2C bus is in an idle state and monitors  
the SDA and SCL lines for a start condition and the proper address.  
The I2C master initiates a data transfer by establishing a start  
Do not issue an autoincrement (burst) write command that  
writes to subaddresses that are not defined in the Global  
RAM and Control Register Map section.  
Table 26. Address Bit Sequence  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
1
1
0
ADDR1 (set by the  
MOSI/ADDR1 pin)  
ADDR0 (set by the  
SS/ADDR0 pin)  
R/W  
Table 27. I2C Slave Addresses  
Slave Address (Eight Bits,  
Including R/W Bit)  
Slave Address (Seven Bits,  
Excluding R/W Bit)  
Read/Write1  
MOSI/ADDR1  
SS/ADDR0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x38  
0x38  
0x39  
0x39  
0x3A  
0x3A  
0x3B  
0x3B  
1 0 means write, 1 means read.  
Rev. C | Page 39 of 202  
 
 
ADAU1462/ADAU1466  
Data Sheet  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
SCLK/SCL  
DEVICE ADDRESS BYTE  
SUBADDRESS BYTE 1  
SUBADDRESS BYTE 2  
[5] [4] [3] [2]  
MISO/SDA  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[7]  
[6]  
[1]  
[0]  
0
1
1
1
0
R/W  
START  
ACK  
(SLAVE)  
ACK  
(SLAVE)  
ACK  
(SLAVE)  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
SCLK/SCL  
MISO/SDA  
DATA BYTE 1  
[4] [3]  
DATA BYTE 2  
[4] [3] [2]  
[7]  
[6]  
[5]  
[2]  
[1]  
[0]  
[7]  
[6]  
[5]  
[1]  
[0]  
ACK STOP  
(SLAVE)  
ACK  
(SLAVE)  
Figure 28. I2C Slave Single Word Write Operation (Two Bytes)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
SCLK/SCL  
MISO/SDA  
DEVICE ADDRESS BYTE  
SUBADDRESS BYTE 1  
[7] [6] [5] [4] [3] [2] [1] [0]  
SUBADDRESS BYTE 2  
[7] [6] [5] [4] [3] [2] [1] [0]  
R/W  
ACK  
(SLAVE)  
0
1
1
1
0
START  
ACK  
ACK  
(SLAVE)  
(SLAVE)  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
SCLK/SCL  
MISO/SDA  
DATA BYTE N  
[7] [6] [5] [4] [3] [2] [1] [0]  
DATA BYTE 1  
[7] [6] [5] [4] [3] [2] [1] [0]  
DATA BYTE 2  
[7] [6] [5] [4] [3] [2] [1] [0]  
ACK  
(SLAVE)  
STOP  
ACK  
(SLAVE)  
ACK  
(SLAVE)  
Figure 29. I2C Slave Burst Mode Write Operation (N Bytes)  
0
1
2
3
4
5
6
7
8
9
10  
11 12  
13 14  
15  
16 17  
18 19  
20 21  
22 23  
24 25  
26  
SCLK/SCL  
MISO/SDA  
DEVICE ADDRESS BYTE  
SUBADDRESS BYTE 1  
[7] [6] [5] [4] [3] [2] [1] [0]  
SUBADDRESS BYTE 2  
[7] [6] [5] [4] [3] [2] [1] [0]  
R/W  
0
1
1
1
0
START  
ACK  
(SLAVE)  
ACK  
(SLAVE)  
ACK  
(SLAVE)  
27 28  
29 30  
31 32  
33 34  
35 36 37 38  
39 40  
41 42  
43 44  
SCLK/SCL  
MISO/SDA  
DATA BYTE 1 FROM SLAVE  
[7] [6] [5] [4] [3] [2] [1] [0]  
DATA BYTE N FROM SLAVE  
[7] [6] [5] [4] [3] [2] [1] [0]  
CHIP ADDRESS BYTE  
R/W  
0
1
1
1
0
ACK  
(SLAVE)  
STOP  
REPEATED  
START  
ACK  
(SLAVE)  
ACK  
(SLAVE)  
Figure 30. I2C Slave Burst Mode Read Operation (N Bytes)  
to reverse and begin driving data back to the master. The master  
then responds every ninth pulse with an acknowledge pulse to  
the device.  
I2C Read and Write Operations  
Figure 31 shows the format of a single word write operation.  
Every ninth clock pulse, the ADAU1462/ADAU1466 issue an  
acknowledge by pulling SDA low.  
Figure 34 shows the format of a burst mode read sequence. This  
figure shows an example of a read from sequential single byte  
registers. The ADAU1462/ADAU1466 increment the subaddress  
register after every byte because the requested subaddress  
corresponds to a register or memory area with a 1-byte word  
length. The ADAU1462/ADAU1466 always decode the  
Figure 32 shows the simplified format of a burst mode write  
sequence. This figure shows an example of a write to sequential  
single byte registers. The ADAU1462/ADAU1466 increment the  
subaddress register after every byte because the requested  
subaddress corresponds to a register or memory area with a  
1-byte word length.  
subaddress and set the auto-increment circuit such that the  
address increments after the appropriate number of bytes.  
Figure 33 shows the format of a single word read operation. The  
Figure 31 to Figure 34 use the following abbreviations:  
W
first R/ bit is 0, indicating a write operation. This is because  
S means start bit.  
P means stop bit.  
AM means acknowledge by master.  
AS means acknowledge by slave.  
the subaddress still needs to be written to set up the internal  
address. After the ADAU1462/ADAU1466 acknowledge the  
receipt of the subaddress, the master must issue a repeated start  
W
command followed by the chip address byte with the R/ bit set  
to 1 (read). The start command causes the SDA pin of the device  
Rev. C | Page 40 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
CHIP ADDRESS,  
R/W = 0  
SUBADDRESS,  
HIGH  
SUBADDRESS,  
LOW  
DATA  
BYTE 1  
DATA  
BYTE 2  
DATA  
BYTE N  
AS  
AS  
AS  
AS  
AS  
...  
AS  
P
S
S = START BIT, P = STOP BIT, AM = ACKNOWLEDGE BY MASTER, AS = ACKNOWLEDGE BY SLAVE.  
SHOWS A ONE-WORD WRITE, WHERE EACH WORD HAS N BYTES.  
Figure 31. Simplified Single Word I2C Write Sequence  
CHIP  
ADDRESS,  
R/W = 0  
SUBADDRESS,  
HIGH  
SUBADDRESS,  
LOW  
...  
P
S
AS  
AS  
AS  
AS  
AS  
AS  
AS  
AS  
AS  
DATA-WORD 1, DATA-WORD 1, DATA-WORD 2, DATA-WORD 2,  
BYTE 1 BYTE 2 BYTE 1 BYTE 2  
DATA-WORD N, DATA-WORD N,  
BYTE 1 BYTE 2  
S = START BIT, P = STOP BIT, AM = ACKNOWLEDGE BY MASTER, AS = ACKNOWLEDGE BY SLAVE.  
SHOWS AN N-WORD WRITE, WHERE EACH WORD HAS TWO BYTES. (OTHER WORD LENGTHS ARE POSSIBLE, RANGING FROM ONE TO FIVE BYTES.)  
Figure 32. Simplified Burst Mode I2C Write Sequence  
CHIP ADDRESS,  
R/W = 0  
SUBADDRESS,  
HIGH  
SUBADDRESS,  
LOW  
CHIP ADDRESS,  
R/W = 1  
DATA  
BYTE 1  
DATA  
BYTE 2  
DATA  
BYTE N  
...  
AS  
AS  
AS  
S
AS  
AM  
AM  
AM  
P
S
S = START BIT, P = STOP BIT, AM = ACKNOWLEDGE BY MASTER, AS = ACKNOWLEDGE BY SLAVE.  
SHOWS A ONE-WORD WRITE, WHERE EACH WORD HAS N BYTES.  
Figure 33. Simplified Single Word I2C Read Sequence  
CHIP  
ADDRESS,  
R/W = 0  
CHIP  
ADDRESS,  
R/W = 1  
SUBADDRESS,  
HIGH  
SUBADDRESS,  
LOW  
...  
P
S
S
AS  
AS  
AS  
AS  
AM  
AM  
AM  
AM  
DATA-WORD 1,  
BYTE 1  
DATA-WORD 1,  
BYTE 2  
DATA-WORD N, DATA-WORD N,  
BYTE 1 BYTE 2  
S = START BIT, P = STOP BIT, AM = ACKNOWLEDGE BY MASTER, AS = ACKNOWLEDGE BY SLAVE.  
SHOWS AN N-WORD WRITE, WHERE EACH WORD HAS TWO BYTES. (OTHER WORD LENGTHS ARE POSSIBLE, RANGING FROM ONE TO FIVE BYTES.)  
Figure 34. Simplified Burst Mode I2C Read Sequence  
Rev. C | Page 41 of 202  
 
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
There is only one chip address available in SPI mode. The 7-bit  
chip address is 0b0000000. The LSB of the first byte of an SPI  
SPI Slave Port  
By default, the slave port is in I2C mode; however, it can be  
placed into SPI control mode by pulling SS/ADDR0 low three  
times. This can be done either by toggling the SS/ADDR0  
successively between logic high and logic low states, or by  
performing three dummy writes to the SPI port, writing any  
arbitrary data to any arbitrary subaddress (the slave port does  
not acknowledge these three writes). After the SS/ADDR0 is  
toggled three times, data can be written to or read from the IC.  
An example of dummy writing is shown in Figure 35. After the  
being set in SPI slave mode, the only way to revert back to I2C  
slave mode is by executing a full hardware reset using the  
W
transaction is an R/ bit. This bit determines whether the  
communication is a read (Logic Level 1) or a write (Logic Level 0).  
This format is shown in Table 28.  
Write  
Bit 4  
0
Table 28. SPI Address and Read/  
Byte Format  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 5  
Bit 6  
Bit 7  
0
0
0
0
0
0
R/W  
The 16-bit subaddress word is decoded into a location in one of  
the registers. This subaddress is the location of the appropriate  
register. The MSBs of the subaddress are zero padded to bring  
the word to a full 2-byte length.  
RESET  
pin or by power cycling the power supplies.  
The SPI port uses a 4-wire interface, consisting of the SS, MOSI,  
MISO, and SCLK signals, and it is always a slave port. The SS signal  
goes low at the beginning of a transaction and high at the end of  
a transaction. The SCLK signal latches MOSI on a low to high  
transition. MISO data is shifted out of the device on the falling  
edge of SCLK and must be clocked into a receiving device, such  
as a microcontroller, on the SCLK rising edge. The MOSI signal  
carries the serial input data, and the MISO signal carries the  
serial output data. The MISO signal remains three-state until a  
read operation is requested, which allows other SPI-compatible  
peripherals to share the same MISO line. All SPI transactions have  
the same basic format shown in Table 29. A timing diagram is  
shown in Figure 8. Write all data MSB first.  
The format for the SPI communications slave port is commonly  
known as SPI Mode 3, where clock polarity (CPOL) = 1 and  
clock phase (CPHA) = 1 (see Figure 36). The base value of the  
clock is 1. Data is captured on the rising edge of the clock, and  
data is propagated on the falling edge.  
The maximum read and write speed for the SPI slave port is  
22 MHz, but this speed is valid only after the PLL is locked.  
Before the PLL locks, the maximum clock rate in the chip is  
limited to the frequency of the input clock to the PLL, which is  
nominally 3.072 MHz. Therefore, the SPI clock must not exceed  
3.072 MHz until the PLL lock completes.  
Figure 35. Example of SPI Slave Mode Initialization Sequence Using Dummy Writes  
Table 29. Generic Control Word Sequence  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 4 and Subsequent Bytes  
Chip Address[6:0], R/W  
Subaddress[15:8]  
Subaddress[7:0]  
Data  
Data  
CPOL = 0  
CPOL = 1  
SCLK  
SS  
1
1
1
2
2
2
1
3
3
2
4
4
1
5
5
2
6
6
1
7
7
2
8
8
CYCLE #  
Z
Z
Z
Z
MISO  
MOSI  
CPHA = 0  
CPHA = 1  
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
CYCLE #  
MISO  
Z
Z
Z
Z
MOSI  
Figure 36. Clock Polarity and Phase for SPI Slave Port  
Rev. C | Page 42 of 202  
 
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
A sample timing diagram for a multiple word SPI write operation  
to a register is shown in Figure 37. A sample timing diagram of  
a single word SPI read operation is shown in Figure 38. The  
MISO/SDA pin transitions from being three-state to being driven  
at the beginning of Byte 3. In this example, Byte 0 to Byte 2 contain  
W
the addresses and the R/ bit, and subsequent bytes carry the  
data. A sample timing diagram of a multiple word SPI read  
operation is shown in Figure 39. In Figure 37 to Figure 39,  
rising edges on SCLK/SCL are indicated with an arrow,  
signifying that the data lines are sampled on the rising edge.  
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
SS/ADDR0  
SCLK/SCL  
CHIP ADDRESS[6:0] SUBADDRESS BYTE 1 SUBADDRESS BYTE 2  
R/W  
DATA BYTE 1  
DATA BYTE 2  
DATA BYTE N  
MOSI/ADDR1  
Figure 37. SPI Slave Write Clocking (Burst Write Mode, N Bytes)  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
SS/ADDR0  
SCLK/SCL  
CHIP ADDRESS[6:0]  
SUBADDRESS BYTE 1  
SUBADDRESS BYTE 2  
MOSI/ADDR1  
MISO/SDA  
R/W  
DATA BYTE 2  
DATA BYTE 1  
Figure 38. SPI Slave Read Clocking (Single Word Mode, Two Bytes)  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
SS/ADDR0  
SCLK/SCL  
CHIP ADDRESS[6:0]  
SUBADDRESS BYTE 1  
SUBADDRESS BYTE 2  
MOSI/ADDR1  
MISO/SDA  
R/W  
DATA BYTE 1  
DATA BYTE 2  
DATA BYTE N  
Figure 39. SPI Slave Read Clocking (Burst Read Mode, N Bytes)  
Rev. C | Page 43 of 202  
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
8-bit aligned. By default, the SPI master port is in Mode 3  
MASTER CONTROL PORTS  
(CPOL = 1, CPHA = 1), which matches the mode of the SPI slave  
port. The SPI master port can be configured to operate in Mode 0  
(CPOL = 0, CPHA = 0) in the DSP program. No error detection  
or handling is implemented. Single master operation is assumed;  
therefore, no other master devices can exist on the same SPI bus.  
The device contains a combined I2C and SPI master control port  
that is accessible through a common interface. The master port  
can be enabled through a self boot operation or directly from  
the DSP core. The master control port can buffer up to 128 bits  
of data per single interrupt period. The smallest data transfer  
unit for both bus interfaces is one byte, and all transfers are 8-bit  
aligned. No error detection is supported, and single master  
operation is assumed. Only one bus interface protocol (I2C or  
SPI) can be used at a time.  
The SPI master interface was tested with EEPROM, flash, and  
serial RAM devices and was confirmed to work in all cases.  
When the data rate is very high on the SPI master interface (at  
10 MHz or higher), a condition may arise where there is a high  
level of current draw on the IOVDD supply, which can lead to  
sagging of the internal IOVDD supply. To avoid potential issues,  
design the PCB such that the traces connecting the SPI master  
interface to external devices are kept as short as possible, and the  
slew rate and drive strength for SPI master interface pins are kept  
to a minimum to keep current draw as low as possible. Keeping  
IOVDD low (2.5 V or 1.8 V) also reduces the IOVDD current  
draw.  
The master control port can be used for several purposes:  
Self boot the ADAU1462/ADAU1466 from an external  
serial EEPROM.  
Boot and control external slave devices such as codecs and  
amplifiers.  
Read from and write to an external SPI RAM or flash  
memory.  
SPI Master Interface  
SigmaStudio generates EEPROM images for self boot systems,  
requiring no manual SPI master port configuration or program-  
ming on the part of the user.  
I2C Master Interface  
The I2C master is 7-bit addressable and supports standard and  
fast mode operation with speeds between 20 kHz and 400 kHz.  
The serial camera control bus (SCCB) and power management  
bus (PMBus) protocols are not supported. Data transfers are  
8-bit aligned. No error detection or correction is implemented.  
The I2C master interface uses two general-purpose input/output  
pins, MP2 and MP3. See Table 31 for more information.  
The SPI master supports up to seven slave devices (via the MPx  
pins) and speeds between 2.3 kHz and 20 MHz. SPI Mode 0  
(CPOL = 0, CPHA = 0) and SPI Mode 3 (CPOL = 1, CPHA = 1)  
are supported. Communication is assumed to be half duplex,  
and the SPI master does not support a 3-wire interface. There is  
no JTAG or SGPIO support. The SPI interface uses a minimum  
of four general-purpose input/output (GPIO) pins of the  
processor and up to six additional MPx pins for additional slave  
select signals (SS). See Table 30 for more information.  
The SPI master clock frequency can range between 2.3 kHz and  
20 MHz. JTAG and SGPIO are not supported. Data transfers are  
Table 30. SPI Master Interface Pin Functionality  
SPI Master  
Function  
Pin Name  
Description  
MOSI_M/MP1  
MOSI  
SPI master port data output. This pin sends data from the SPI master port to slave devices on the SPI  
master bus.  
SCL_M/SCLK_M/MP2  
SDA_M/MISO_M/MP3 MISO  
SCLK  
SPI master port serial clock. This pin drives the clock signal to slave devices on the SPI master bus.  
SPI master port data input. This pin receives data from slave devices on the SPI master bus.  
SS_M/MP0  
SS  
SPI master port slave select. This pin acts as the primary slave select signal to slave device on the SPI  
master bus.  
MP4 to MP13  
SS  
SPI master port slave select. These additional multipurpose pins can be configured to act as secondary  
slave select signals to additional slave devices on the SPI master bus. Up to seven slave devices, one  
per pin, are supported.  
Table 31. I2C Master Interface Pin Functionality  
I2C Master  
Function  
Pin Name  
Description  
SCL_M/SCLK_M/MP2  
SCL  
I2C master port serial clock. This pin functions as an open collector output and drives a serial clock to  
slave devices on the I2C bus. The line connected to this pin must have a 2.0 kΩ pull-up resistor to IOVDD.  
SDA_M/MISO_M/MP3 SDA  
I2C master port serial data. This pin functions as a bidirectional open collector data line between the  
I2C master port and slave devices on the I2C bus. The line connected to this pin must have a 2.0 kΩ  
pull-up resistor to IOVDD.  
Rev. C | Page 44 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
When self booting from I2C, the chip assumes the following:  
SELF BOOT  
The master control port is capable of booting the device from  
a single EEPROM by connecting the SELFBOOT pin to logic  
high (IOVDD) and powering up the power supplies while the  
The slave EEPROM has I2C Address 0x50.  
The slave EEPROM has 16-bit addressing, giving it a size of  
between 16 kb and 512 kb.  
The slave EEPROM supports standard mode clock  
frequencies of 100 kHz and lower (a majority of the self boot  
operation uses a much higher clock frequency, but the  
initial transactions are performed at a slower frequency).  
The data stored in the slave EEPROM follows the format  
described in the EEPROM Self Boot Data Format section.  
The slave EEPROM can be accessed immediately after it is  
powered, with no manual configuration required.  
RESET  
pin is pulled high. This initiates a self boot operation, in  
which the master control port downloads all required memory  
and register settings and automatically starts executing the DSP  
program without requiring external intervention or supervision.  
A self boot operation can also be triggered while the device is  
RESET  
already in operation by initiating a rising edge of the  
while the SELFBOOT pin is held high. When the self boot  
pin  
operation begins, the state of the SS_M/MP0 pin determines  
whether the SPI master or the I2C master carries out the self  
boot operation. If the SS_M/MP0 pin is connected to logic low,  
the I2C master port carries out the self boot operation. Otherwise,  
connect this pin to the slave select pin of the external slave device.  
The SPI master port then carries out the self boot operation.  
Self Boot Failure  
The SPI or I2C master port attempts to self boot from the  
EEPROM three times. If all three self boot attempts fail, the  
SigmaDSP core issues a software panic and then enters a sleep  
state. During a self boot operation, the panic manager is unable  
to output a panic flag on a multipurpose pin. Therefore, the  
only way to debug a self boot failure is by reading back the  
status of Register 0xF427 (PANIC_FLAG) and Register 0xF428  
(PANIC_CODE). The contents of Register 0xF428 indicate the  
nature of the failure.  
When self booting from SPI, the chip assumes the following:  
The slave EEPROM is selected via the SS_M/MP0 pin.  
The slave EEPROM has 16-bit or 24-bit addressing, giving  
it a total memory size of between 4 kb and 64 Mb.  
The slave EEPROM supports serial clock frequencies down  
to 1 MHz or lower (a majority of the self boot operation uses  
a much higher clock frequency, but the initial transactions  
are performed at a slower frequency).  
The data stored in the slave EEPROM follows the format  
described in the EEPROM Self Boot Data Format section.  
The data is stored in the slave EEPROM with the MSB first.  
The slave EEPROM supports SPI Mode 3.  
The slave EEPROM sequential read operation has the  
command of 0x03.  
The slave EEPROM can be accessed immediately after it is  
powered up, with no manual configuration required.  
Rev. C | Page 45 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
EEPROM Self Boot Data Format  
Data Block Format  
The self boot EEPROM image is generated using the SigmaStudio  
software; therefore, the user does not need to manually create the  
data that is stored in the EEPROM. However, for reference, the  
details of the data format are described in this section.  
Following the header, several data blocks are stored in the  
EEPROM memory (see Figure 41).  
Each data block consists of eight bytes that configure the length  
and address of the data, followed by a series of 4-byte data packets.  
The EEPROM self boot format consists of a fixed header, an  
arbitrary number of variable length blocks, and a fixed footer.  
The blocks themselves consist of a fixed header and a block of  
data with a variable length. Each data block can be placed anywhere  
in the DSP memory through configuration of the block header.  
Each block consists of the following:  
One LST bit, which signals the last block before the footer.  
LST = 0b1 indicates the last block; LST = 0b0 indicates that  
additional blocks are still to follow.  
13 bits that are reserved for future use. Set these bits to 0b0.  
Two MEM bits that select the target data memory bank  
(0x0 = Data Memory 0, 0x1 = Data Memory 1, 0x2 =  
program memory).  
Header Format  
The self boot EEPROM header consists of 16 bytes of data, starting  
at the beginning of the internal memory of the slave EEPROM  
(Address 0). The header format (see Figure 40) consists of the  
following:  
A 16-bit base address that sets the memory address at  
which the master port starts writing when loading data  
from the block into memory.  
8-bit Sentinel 0xAA (shown in Figure 40 as 0b10101010)  
24-bit address indicating the byte address of the header of  
the first block (normally this is 0x000010, which is the  
address immediately following the header)  
A 16-bit data length that defines the number of 4-byte  
data-words to be written.  
A 16-bit jump address that tells the DSP core at which  
address in program memory to begin execution when the  
self boot operation is complete. The jump address bits are  
ignored unless the LST bit is set to 0b1.  
64-bit PLL configuration (PLL_CHECKSUM =  
PLL_FB_DIV + MCLK_OUT + PLL_DIV)  
An arbitrary number of packets of 32-bit data. The number  
of packets is defined by the 16-bit data length.  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE 3  
1
0
1
0
1
0
1
0
ADDRESS OF FIRST BOOT BLOCK  
BYTE 4  
0x00  
BYTE 5  
BYTE 6  
0x00  
BYTE 7  
PLL_DIV  
PLL_FB_DIV  
BYTE 8  
0x00  
BYTE 9  
BYTE 10  
0x00  
BYTE 11  
PLL_CHECKSUM  
MCLK_OUT  
BYTE 12  
BYTE 13  
BYTE 14  
BYTE 15  
EEPROM SPEED CONFIGURATION  
Figure 40. Self Boot EEPROM Header Format  
BYTE 0  
BYTE 4  
BYTE 8  
BYTE 12  
BYTE 1  
MEM  
BYTE 2  
BYTE 6  
BYTE 3  
LST  
RESERVED  
BASE ADDRESS  
BYTE 5  
BYTE 7  
BYTE 11  
BYTE 15  
DATA LENGTH  
JUMP ADDRESS  
BYTE 9  
BYTE 10  
BYTE 14  
DATA-WORD 1  
BYTE 13  
DATA-WORD 2  
CONTINUED UNTIL LAST WORD IS REACHED…  
FOURTH TO LAST BYTE  
THIRD TO LAST BYTE  
DATA-WORD N  
SECOND TO LAST BYTE  
LAST BYTE  
Figure 41. Self Boot EEPROM Data Block Format  
Rev. C | Page 46 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
Considerations when Using a 1 Mb I2C Self Boot EEPROM  
Footer Format  
Because of the way I2C addressing works, 1 Mb of I2C EEPROM  
memory can be divided, with a portion of its address space at  
Chip Address 0x50; another portion of the memory can be located  
at a different address (for example, Chip Address 0x51). The  
memory allocation varies, depending on the EEPROM design.  
When the EEPROM memory is divided, the memory portion that  
resides at a different chip address must be handled as though it  
exists in a separate EEPROM.  
After all the data blocks, a footer signifies the end of the self boot  
EEPROM memory (see Figure 42). The footer consists of a 64-bit  
checksum, which is the sum of the header and all blocks and all  
data as 32-bit words.  
After the self boot operation completes, the checksum of the  
downloaded data is calculated and the panic manager signals  
if it does not match the checksum in the EEPROM. If the  
checksum is set to 0 (decimal), the checksum checking is  
disabled.  
Considerations when Using Multiple EEPROMs on the SPI  
Master Bus  
When multiple EEPROMs are connected on the same SPI master  
bus, the self boot mechanism works only with the first EEPROM.  
BYTE 0  
BYTE 4  
BYTE 1  
BYTE 2  
BYTE 3  
FIRST FOUR BYTES OF CHECKSUM  
BYTE 5 BYTE 6  
LAST FOUR BYTES OF CHECKSUM  
BYTE 7  
Figure 42. Self Boot EEPROM Footer Format  
Rev. C | Page 47 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
data from a number of sources, including the DSP core, ASRCs,  
PDM microphones, S/PDIF receiver, or directly from the serial  
inputs.  
AUDIO SIGNAL ROUTING  
A large number of audio inputs and outputs are available in the  
device, and control registers are available for configuring how  
the audio is routed between different functional blocks.  
See Figure 43 for an overview of the audio routing matrix with  
its available audio data connections.  
All input channels are accessible by both the DSP core and the  
ASRCs. Each ASRC can connect to a pair of audio channels  
from any of the input sources or from the DSP to ASRC  
channels of the DSP core. The serial outputs can obtain their  
To route audio to and from the DSP core, select the appropriate  
input and output cells in SigmaStudio. These cells can be found  
in the IO folder of the SigmaStudio algorithm toolbox.  
DSP CORE  
S/PDIF OUT  
ADAU1462/ADAU1466  
2 CH  
DSP CORE  
S/PDIF  
INPUT 0 TO  
SPDIFOUT  
Tx  
16 CH  
16 CH  
8 CH  
8 CH  
4 CH  
SERIAL  
INPUT  
PORT 0  
INPUT 15  
SDATA_IN0  
(2 CH TO 16 CH)  
OUTPUT 0 TO  
OUTPUT 15  
16 CH  
16 CH  
8 CH  
INPUT 16 TO  
INPUT 31  
SERIAL  
INPUT  
PORT 1  
SDATA_IN1  
(2 CH TO 16 CH)  
SERIAL  
OUTPUT  
PORT 0  
SDATA_OUT0  
(2 CH TO 16 CH)  
INPUT 32 TO  
INPUT 39  
OUTPUT 16 TO  
OUTPUT 31  
SERIAL  
INPUT  
PORT 2  
SDATA_IN2  
(2 CH TO 8 CH)  
SERIAL  
OUTPUT  
PORT 1  
SDATA_OUT1  
(2 CH TO 16 CH)  
INPUT 40 TO  
INPUT 47  
SERIAL  
INPUT  
PORT 3  
SDATA_IN3  
(2 CH TO 8 CH)  
OUTPUT 32 TO  
OUTPUT 39  
SERIAL  
OUTPUT  
PORT 2  
SDATA_OUT2  
(2 CH TO 8 CH)  
MP6  
MP7  
PDM  
MIC  
INPUT  
OUTPUT 40 TO  
OUTPUT 47  
8 CH  
2 CH  
SERIAL  
OUTPUT  
PORT 3  
S/PDIF  
Rx  
SDATA_OUT3  
(2 CH TO 8 CH)  
SPDIFIN  
ASRCs  
(×8)  
INPUT 0 TO INPUT 15  
INPUT 16 TO INPUT 31  
INPUT 32 TO INPUT 39  
INPUT 40 TO INPUT 47  
16 CH  
16 CH  
8 CH  
8 CH  
ASRC OUTPUTS  
(16 CHANNELS)  
16 CH  
(2 CH × 8 ASRCS)  
PDM MICROPHONE  
INPUTS  
4 CH  
2 CH  
S/PDIF RECEIVER  
Figure 43. Audio Routing Overview  
Rev. C | Page 48 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
Serial Audio Inputs to DSP Core  
Figure 44 shows how the input pins map to the input cells in  
SigmaStudio, including their graphical appearance in the software.  
The 48 serial input channels are mapped to four audio input  
cells in SigmaStudio. Each input cell corresponds to one of the  
serial input pins (see Table 32).  
Table 32. Serial Input Pin Mapping to SigmaStudio Input Cells  
Serial Input Pin  
SDATA_IN0  
SDATA_IN1  
SDATA_IN2  
SDATA_IN3  
Channels in SigmaStudio  
0 to 15  
16 to 31  
32 to 39  
40 to 47  
Depending on whether the serial port is configured in 2-channel,  
4-channel, 8-channel, or 16-channel mode, the available channels  
in SigmaStudio change. The channel count for each serial port  
is configured in the SERIAL_BYTE_x_0 registers, Bits[2:0]  
(TDM_MODE), at Address 0xF200 to Address 0xF21C (in  
increments of 0x4).  
Table 33. Detailed Serial Input Mapping to SigmaStudio Input Channels  
Position in I2S  
Stream (2-Channel)  
Position in  
TDM4 Stream  
Position in  
TDM8 Stream  
Position in  
TDM16 Stream  
Input Channel in  
SigmaStudio  
Serial Input Pin  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN0  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN1  
SDATA_IN2  
SDATA_IN2  
SDATA_IN2  
SDATA_IN2  
SDATA_IN2  
SDATA_IN2  
SDATA_IN2  
SDATA_IN2  
Left  
Right  
0
1
2
3
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Left  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
1
2
3
4
5
6
7
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
1
2
3
4
5
6
7
8
9
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Right  
1
2
3
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Left  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
Right  
1
2
3
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
5
6
7
Rev. C | Page 49 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Position in I2S  
Stream (2-Channel)  
Position in  
TDM4 Stream  
Position in  
TDM8 Stream  
Position in  
TDM16 Stream  
Input Channel in  
SigmaStudio  
Serial Input Pin  
SDATA_IN3  
SDATA_IN3  
SDATA_IN3  
SDATA_IN3  
SDATA_IN3  
SDATA_IN3  
SDATA_IN3  
SDATA_IN3  
Left  
Right  
0
1
2
3
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
40  
41  
42  
43  
44  
45  
46  
47  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
16 CH  
SERIAL  
INPUT 0 TO INPUT 15  
SDATA_IN0  
(2 CH TO 16 CH)  
INPUT  
PORT 0  
16 CH  
8 CH  
8 CH  
SERIAL  
INPUT  
INPUT 16 TO INPUT 31  
SDATA_IN1  
(2 CH TO 16 CH)  
PORT 1  
SERIAL  
INPUT  
PORT 2  
INPUT 32 TO INPUT 39  
INPUT 40 TO INPUT 47  
SDATA_IN2  
(2 CH TO 8 CH)  
SERIAL  
INPUT  
PORT 3  
SDATA_IN3  
(2 CH TO 8 CH)  
Figure 44. Serial Port Audio Input Mapping to DSP in SigmaStudio  
Rev. C | Page 50 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
PDM Microphone Inputs to DSP Core  
S/PDIF Receiver Inputs to DSP Core  
The PDM microphone inputs are mapped to a single digital micro-  
phone input cell in SigmaStudio (see Table 34 and Figure 45). The  
corresponding hardware pins are configured in Register 0xF560  
(DMIC_CTRL0) and Register 0xF561 (DMIC_CTRL1).  
The S/PDIF receiver can be accessed directly in the DSP core by  
using the S/PDIF input cell. However, in most applications, the  
S/PDIF receiver input is asynchronous to the DSP core, so an  
ASRC is typically required; in such cases, the S/PDIF input cell  
must not be used.  
Table 34. PDM Microphone Input Mapping to SigmaStudio  
Channels  
Table 35. S/PDIF Input Mapping to SigmaStudio Channels  
PDM Microphone Input Channel  
in SigmaStudio  
Channel in S/PDIF Receiver  
Data Stream  
S/PDIF Input Channels  
in SigmaStudio  
PDM Data Channel  
Left (DMIC_CTRL0)  
Right (DMIC_CTRL0)  
Left (DMIC_CTRL1)  
Right (DMIC_CTRL1)  
0
1
2
3
Left  
Right  
0
1
2 CH  
S/PDIF  
Rx  
SPDIFIN  
4 CH  
MP6  
MP7  
PDM  
MIC  
INPUT  
Figure 45. PDM Microphone Input Mapping to DSP in SigmaStudio  
Figure 46. S/PDIF Receiver Direct Input Mapping to DSP in SigmaStudio  
Rev. C | Page 51 of 202  
 
 
ADAU1462/ADAU1466  
Data Sheet  
Serial Audio Outputs from DSP Core  
the SDATA_OUT0 pin. The next 16 channels are mapped to the  
SDATA_OUT1 pin. The following eight channels are mapped to  
the SDATA_OUT2 pin. The last eight channels are mapped to  
the SDATA_OUT3 pin (see Table 36 and Figure 47).  
The 48 serial output channels are mapped to 48 separate audio  
output cells in SigmaStudio. Each audio output cell corresponds  
to a single output channel. The first 16 channels are mapped to  
Table 36. Serial Output Pin Mapping from SigmaStudio Channels  
Channel in  
SigmaStudio  
Position in I2S Stream  
(2-Channel)  
Position in  
TDM4 Stream  
Position in  
TDM8 Stream  
Position in  
TDM16 Stream  
Serial Output Pin  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT0  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT1  
SDATA_OUT2  
SDATA_OUT2  
SDATA_OUT2  
SDATA_OUT2  
SDATA_OUT2  
SDATA_OUT2  
SDATA_OUT2  
SDATA_OUT2  
SDATA_OUT3  
SDATA_OUT3  
SDATA_OUT3  
SDATA_OUT3  
SDATA_OUT3  
SDATA_OUT3  
SDATA_OUT3  
SDATA_OUT3  
0
1
2
3
4
5
6
7
Left  
Right  
0
1
2
3
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Left  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
8
9
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
1
2
3
4
5
6
7
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
10  
11  
12  
13  
14  
15  
0
1
2
3
4
Right  
1
2
3
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Left  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
0
1
2
3
4
Right  
1
2
3
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Left  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0
1
2
3
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Right  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
5
6
7
Rev. C | Page 52 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
OUTPUT 0 TO  
OUTPUT 15  
16 CH  
SERIAL  
OUTPUT  
PORT 0  
SDATA_OUT0  
(2 CH TO 16 CH)  
OUTPUT 16 TO  
OUTPUT 31  
16 CH  
SERIAL  
OUTPUT  
PORT 1  
SDATA_OUT1  
(2 CH TO 16 CH)  
OUTPUT 32 TO  
OUTPUT 39  
8 CH  
SERIAL  
OUTPUT  
PORT 2  
SDATA_OUT2  
(2 CH TO 8 CH)  
OUTPUT 40 TO  
OUTPUT 47  
8 CH  
SERIAL  
OUTPUT  
PORT 3  
SDATA_OUT3  
(2 CH TO 8 CH)  
FROM SERIAL INPUTS, PDM MICS,  
S/PDIF RECEIVER, AND ASRCS  
Figure 47. DSP to Serial Output Mapping in SigmaStudio  
The data that is output from each serial output pin is also  
configurable, via the SOUT_SOURCEx registers, to originate  
from one of the following sources: the DSP, the serial inputs, the  
PDM microphone inputs, the S/PDIF receiver, or the ASRCs.  
These registers can be configured graphically in SigmaStudio, as  
shown in Figure 48.  
S/PDIF Audio Outputs from DSP Core to S/PDIF Transmitter  
The output signal of the S/PDIF transmitter can come from the  
DSP core or directly from the S/PDIF receiver. The selection is  
controlled by Register 0xF1C0 (SPDIFTX_INPUT).  
DSP S/PDIF OUT 0  
DSP S/PDIF OUT 1  
S/PDIF Tx 0  
SERIAL OUTPUT PORT 0  
S/PDIF  
SPDIFOUT  
S/PDIF Tx 1  
Tx  
S/PDIF Rx 0  
S/PDIF Rx 1  
SOUT SOURCE 0  
SOUT SOURCE 1  
SOUT SOURCE 2  
SOUT SOURCE 3  
SOUT SOURCE 4  
SOUT SOURCE 5  
SOUT SOURCE 6  
SOUT SOURCE 7  
Figure 49. S/PDIF Transmitter Source Selection  
When the signal comes from the DSP core, use the S/PDIF  
output cells in SigmaStudio.  
Table 37. S/PDIF Output Mapping from SigmaStudio Channels  
S/PDIF Output Channel in  
SigmaStudio  
Channel in S/PDIF Transmitter  
Data Stream  
0
1
Left  
Right  
SDATA_OUT0  
Figure 48. Configuring the Serial Output Data Channels (SOUT_SOURCEx  
Registers) Graphically in SigmaStudio  
DSP CORE  
S/PDIF OUT  
2 CH  
S/PDIF  
Tx  
SPDIFOUT  
FROM S/PDIF RECEIVER  
Figure 50. DSP to S/PDIF Transmitter Output Mapping in SigmaStudio  
Rev. C | Page 53 of 202  
 
 
ADAU1462/ADAU1466  
Data Sheet  
Asynchronous Sample Rate Converter Input Routing  
Any asynchronous input can be routed to the ASRCs to be  
resynchronized to a desired target sample rate (see Figure 51).  
The source signals for any ASRC can come from any of the  
serial inputs, any of the DSP to ASRC channels, the S/PDIF  
receiver, or the digital PDM microphone inputs. There are eight  
ASRCs, each with two input channels and two output channels,  
for a total of 16 channels can pass through the ASRCs.  
Asynchronous input signals (either serial inputs, PDM microphone  
inputs, or the S/PDIF input) typically need to be routed to an ASRC  
and then synchronized to the DSP core rate. They are then available  
for input to the DSP core for processing.  
DSP CORE  
Figure 53. Location of ASRC to DSP Input Cell in SigmaStudio Toolbox  
ASRC OUT 0  
ASRC0  
ASRC OUT 1  
ASRC OUT 2  
ASRCs  
ASRC1  
ASRC OUT3  
ASRC OUT4  
INPUT 0 TO INPUT 15  
16 CH  
INPUT 16 TO INPUT 31  
16 CH  
ASRC2  
ASRC OUT 5  
ASRC OUT 6  
ASRC OUTPUTS  
(16 CHANNELS)  
INPUT 32 TO INPUT 39  
8 CH  
8 CH  
(×8)  
ASRC3  
INPUT 40 TO INPUT 47  
16 CH  
ASRC OUT 7  
ASRC OUT 8  
(2 CH × 8 ASRCS)  
PDM MICROPHONE  
INPUTS  
4 CH  
2 CH  
ASRC4  
ADAU1462/  
ADAU1466  
S/PDIF RECEIVER  
ASRC OUT 9  
ASRC OUT 10  
ASRC5  
ASRC OUT 11  
ASRC OUT 12  
Figure 51. Channel Routing to ASRC Inputs  
ASRC6  
In the example shown in Figure 52, the two channels from the  
S/PDIF receiver are routed to one of the ASRCs and then to the  
DSP core. For this example, the corresponding ASRC input selector  
register (Register 0xF100 to Register 0xF107, ASRC_INPUTx),  
Bits[2:0] (ASRC_SOURCE) is set to 0b011 to take the input from  
the S/PDIF receiver. Likewise, the corresponding ASRC output  
rate selector register (Register 0xF140 to Register 0xF147, ASRC_  
OUT_RATEx, Bits[3:0] (ASRC_RATE)) is set to 0b0101 to  
synchronize the ASRC output data to the DSP core sample rate.  
ASRC OUT 13  
ASRC OUT 14  
ASRC7  
ASRC OUT 15  
Figure 54. Routing of ASRC Outputs to ASRC to DSP Input Cell in SigmaStudio  
Asynchronous output signals (for example, serial outputs that  
are slaves to an external, asynchronous device) typically are routed  
from the DSP core into the ASRCs, where they are synchronized  
to the serial output port that is acting as a slave to the external  
asynchronous master device.  
DSP CORE  
In the example shown in Figure 55, two (or more) audio channels  
from the DSP core are routed to one (or more) of the ASRCs  
and then to the serial outputs. For this example, the corresponding  
ASRC input selector register (Address 0xF100 to Address 0xF107  
(ASRC_INPUTx), Bits[2:0] (ASRC_SOURCE)) is set to 0b010 to  
take the data from the DSP core, and the corresponding ASRC  
output rate selector register (Address 0xF140 to Address 0xF147  
(ASRC_OUT_RATEx), Bits[3:0] (ASRC_RATE)) is set to one of  
the following:  
ASRCs  
(×8)  
2 CH  
S/PDIF RECEIVER  
Figure 52. Example ASRC Routing for Asynchronous Input to the DSP Core  
0b0001 to synchronize the ASRC output data to SDATA_OUT0  
0b0010 to synchronize the ASRC output data to SDATA_OUT1  
0b0011 to synchronize the ASRC output data to SDATA_OUT2  
0b0100 to synchronize the ASRC output data to SDATA_OUT3  
When the outputs of the ASRCs are required for processing in  
the SigmaDSP core, the ASRC input block must be selected in  
SigmaStudio (see Figure 53 and Figure 54).  
Rev. C | Page 54 of 202  
 
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
Next, the corresponding serial output port data source register  
(Address 0xF180 to Address 0xF197 (SOUT_SOURCEx), Bits[2:0]  
(SOUT_SOURCE)) must be set to 0b011 to receive the data  
from the ASRC outputs, and Bits[5:3] (SOUT_ASRC_SELECT)  
must be configured to select the correct ASRC from which to  
receive the output data.  
DSP CORE  
ASRCs  
(×8)  
ASRC OUTPUTS  
(16 CHANNELS)  
16 CH  
(2 CH × 8 ASRCS)  
Figure 55. Example ASRC Routing for Asynchronous Serial Output from  
the DSP Core  
Figure 57. Routing of DSP to ASRC Output Cells in SigmaStudio to  
ASRC Inputs  
When signals must route from the DSP core to the ASRCs, use  
the DSP to ASRC output cell in SigmaStudio (see Figure 56).  
The ASRCs can also take asynchronous inputs and convert  
them to a different sample rate without doing any processing in  
the DSP core.  
ASRCs  
INPUT 0 TO INPUT 15  
16 CH  
ASRC OUTPUTS  
(16 CHANNELS)  
(×8)  
16 CH  
(2 CH × 8 ASRCs)  
Figure 58. Example ASRC Routing, Bypassing DSP Core  
Configure the ASRC routing registers using a graphical interface  
in the SigmaStudio software (see Figure 59).  
Figure 56. Location of DSP to ASRC Output Cell in SigmaStudio Toolbox  
Figure 59. Configuring the ASRC Input Source and Target Rate in SigmaStudio  
Rev. C | Page 55 of 202  
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
DSP CORE  
16 CH  
Asynchronous Sample Rate Converter Output Routing  
The outputs of the ASRCs are always available at both the DSP  
core and the serial outputs. No manual routing is necessary. To  
route ASRC output data to serial output channels, configure  
Register 0xF180 to Register 0xF197 (SOUT_SOURCEx)  
accordingly. For more information, see Figure 60 and Table 38.  
ASRCs  
(×8)  
Audio Signal Routing Registers  
ASRC OUTPUTS  
(16 CHANNELS)  
An overview of the registers related to audio routing is listed in  
Table 38. For more detailed information, see the Audio Signal  
Routing section.  
16 CH  
(2 CH × 8 ASRCs)  
Figure 60. ASRC Outputs  
Table 38. Audio Routing Matrix Registers  
Address  
0xF100  
0xF101  
0xF102  
0xF103  
0xF104  
0xF105  
0xF106  
0xF107  
0xF140  
0xF141  
0xF142  
0xF143  
0xF144  
0xF145  
0xF146  
0xF147  
0xF180  
0xF181  
0xF182  
0xF183  
0xF184  
0xF185  
0xF186  
0xF187  
0xF188  
0xF189  
0xF18A  
0xF18B  
0xF18C  
0xF18D  
0xF18E  
0xF18F  
0xF190  
0xF191  
0xF192  
0xF193  
0xF194  
0xF195  
0xF196  
0xF197  
0xF1C0  
Register  
Description  
ASRC_INPUT0  
ASRC_INPUT1  
ASRC_INPUT2  
ASRC_INPUT3  
ASRC_INPUT4  
ASRC_INPUT5  
ASRC_INPUT6  
ASRC_INPUT7  
ASRC input selector (ASRC 0, Channel 0 and Channel 1)  
ASRC input selector (ASRC 1, Channel 2 and Channel 3)  
ASRC input selector (ASRC 2, Channel 4 and Channel 5)  
ASRC input selector (ASRC 3, Channel 6 and Channel 7)  
ASRC input selector (ASRC 4, Channel 8 and Channel 9)  
ASRC input selector (ASRC 5, Channel 10 and Channel 11)  
ASRC input selector (ASRC 6, Channel 12 and Channel 13)  
ASRC input selector (ASRC 7, Channel 14 and Channel 15)  
ASRC output rate (ASRC 0, Channel 0 and Channel 1)  
ASRC output rate (ASRC 1, Channel 2 and Channel 3)  
ASRC output rate (ASRC 2, Channel 4 and Channel 5)  
ASRC output rate (ASRC 3, Channel 6 and Channel 7)  
ASRC output rate (ASRC 4, Channel 8 and Channel 9)  
ASRC output rate (ASRC 5, Channel 10 and Channel 11)  
ASRC output rate (ASRC 6, Channel 12 and Channel 13)  
ASRC output rate (ASRC 7, Channel 14 and Channel 15)  
Source of data for serial output port (Channel 0 and Channel 1)  
Source of data for serial output port (Channel 2 and Channel 3)  
Source of data for serial output port (Channel 4 and Channel 5)  
Source of data for serial output port (Channel 6 and Channel 7)  
Source of data for serial output port (Channel 8 and Channel 9)  
Source of data for serial output port (Channel 10 and Channel 11)  
Source of data for serial output port (Channel 12 and Channel 13)  
Source of data for serial output port (Channel 14 and Channel 15)  
Source of data for serial output port (Channel 16 and Channel 17)  
Source of data for serial output port (Channel 18 and Channel 19)  
Source of data for serial output port (Channel 20 and Channel 21)  
Source of data for serial output port (Channel 22 and Channel 23)  
Source of data for serial output port (Channel 24 and Channel 25)  
Source of data for serial output port (Channel 26 and Channel 27)  
Source of data for serial output port (Channel 28 and Channel 29)  
Source of data for serial output port (Channel 30 and Channel 31)  
Source of data for serial output port (Channel 32 and Channel 33)  
Source of data for serial output port (Channel 34 and Channel 35)  
Source of data for serial output port (Channel 36 and Channel 37)  
Source of data for serial output port (Channel 38 and Channel 39)  
Source of data for serial output port (Channel 40 and Channel 41)  
Source of data for serial output port (Channel 42 and Channel 43)  
Source of data for serial output port (Channel 44 and Channel 45)  
Source of data for serial output port (Channel 46 and Channel 47)  
S/PDIF transmitter data selector  
ASRC_OUT_RATE0  
ASRC_OUT_RATE1  
ASRC_OUT_RATE2  
ASRC_OUT_RATE3  
ASRC_OUT_RATE4  
ASRC_OUT_RATE5  
ASRC_OUT_RATE6  
ASRC_OUT_RATE7  
SOUT_SOURCE0  
SOUT_SOURCE1  
SOUT_SOURCE2  
SOUT_SOURCE3  
SOUT_SOURCE4  
SOUT_SOURCE5  
SOUT_SOURCE6  
SOUT_SOURCE7  
SOUT_SOURCE8  
SOUT_SOURCE9  
SOUT_SOURCE10  
SOUT_SOURCE11  
SOUT_SOURCE12  
SOUT_SOURCE13  
SOUT_SOURCE14  
SOUT_SOURCE15  
SOUT_SOURCE16  
SOUT_SOURCE17  
SOUT_SOURCE18  
SOUT_SOURCE19  
SOUT_SOURCE20  
SOUT_SOURCE21  
SOUT_SOURCE22  
SOUT_SOURCE23  
SPDIFTX_INPUT  
Rev. C | Page 56 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
There are 48 channels of serial audio data inputs and 48 channels  
of serial audio data outputs. The 48 audio input channels and  
48 audio output channels are distributed among the four serial  
data input pins and the four serial data output pins. This  
distribution is described in Table 40.  
SERIAL DATA INPUT/OUTPUT  
There are four serial data input pins (SDATA_IN3 to SDATA_IN0)  
and four serial data output pins (SDATA_OUT3 to SDATA_  
OUT0). Each pin is capable of 2-channel, 4-channel, or 8-channel  
mode. In addition, SDATA_IN0, SDATA_IN1, SDATA_OUT0,  
and SDATA_OUT1 are capable of 16-channel mode.  
The maximum sample rate for the serial audio data on the serial  
ports is 192 kHz. The minimum sample rate is 6 kHz.  
The serial ports have a very flexible configuration scheme that  
allows completely independent and orthogonal configuration  
of clock pin assignment, clock waveform type, clock polarity,  
channel count, position of the data bits within the stream, audio  
word length, slave or master operation, and sample rate. A detailed  
description of all possible serial port settings is included in the  
Serial Port Configuration Registers section.  
SDATA_IN2, SDATA_IN3, SDATA_OUT2, and SDATA_OUT3  
are capable of operating in a special mode called flexible TDM  
mode, which allows custom byte addressable configuration,  
where the data for each channel is located in the serial data stream.  
Flexible TDM mode is not a standard audio interface. Use it only  
in cases where a customized serial data format is desired. See the  
Flexible TDM Interface section for more information.  
The physical serial data input and output pins are connected to  
functional blocks called serial ports, which deal with handling  
the audio data and clocks as they pass in and out of the device.  
Table 39 describes this relationship.  
Serial Audio Data Format  
The serial data input and output ports are designed to work with  
audio data that is encoded in a linear PCM format, based on the  
common IꢀS standard. Audio data-words can be 16, 24, or 32 bits  
in length. The serial ports can handle TDM formats with channel  
counts ranging from two channels to 16 channels on a single  
data line.  
Table 39. Relationship Between Hardware Serial Data Pins  
and Serial Input/Output Ports  
Serial Data Pin  
Serial Port  
SDATA_IN0  
SDATA_IN1  
SDATA_IN2  
SDATA_IN3  
SDATA_OUT0  
SDATA_OUT1  
SDATA_OUT2  
SDATA_OUT3  
Serial Input Port 0  
Serial Input Port 1  
Serial Input Port 2  
Serial Input Port 3  
Serial Output Port 0  
Serial Output Port 1  
Serial Output Port 2  
Serial Output Port 3  
Almost every aspect of the serial audio data format can be  
configured using the SERIAL_BYTE_x_0 and SERIAL_  
BYTE_x_1 registers, and every setting can be configured  
independently. As a result, there are more than 70,000 valid  
configurations for each serial audio port.  
Serial Audio Data Timing Diagrams  
Because it is impractical to show timing diagrams for each possible  
combination, timing diagrams for the more common  
configurations are shown in Figure 61 to Figure 66. Explanatory  
text accompanies each figure.  
Table 40. Relationship Between Data Pin, Audio Channels, Clock Pins, and TDM Options  
Corresponding Clock Pins  
in Master Mode  
Maximum  
TDM Channels  
Flexible  
TDM Mode  
Serial Data Pin  
SDATA_IN0  
SDATA_IN1  
SDATA_IN2  
SDATA_IN3  
SDATA_OUT0  
SDATA_OUT1  
SDATA_OUT2  
SDATA_OUT3  
Channel Numbering  
Channel 0 to Channel 15  
Channel 16 to Channel 31  
Channel 32 to Channel 39  
Channel 40 to Channel 47  
Channel 0 to Channel 15  
Channel 16 to Channel 31  
Channel 32 to Channel 39  
Channel 40 to Channel 47  
BCLK_IN0, LRCLK_IN0  
BCLK_IN1, LRCLK_IN1  
BCLK_IN2, LRCLK_IN2  
BCLK_IN3, LRCLK_IN3  
BCLK_OUT0, LRCLK_OUT0  
BCLK_OUT1, LRCLK_OUT1  
BCLK_OUT2, LRCLK_OUT2  
BCLK_OUT3, LRCLK_OUT3  
16 channels  
16 channels  
8 channels  
8 channels  
16 channels  
16 channels  
8 channels  
8 channels  
No  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
Rev. C | Page 57 of 202  
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
Figure 61 shows timing diagrams for possible serial port  
configurations in 2-channel mode, with 32 cycles of the bit  
clock signal per channel, for a total of 64 bit clock cycles per  
frame (see the SERIAL_BYTE_x_0 registers, Bits[2:0]  
(TDM_MODE) = 0b000). Different bit clock polarities are  
illustrated in Figure 61 (SERIAL_BYTE_x_0, Bit 7 (BCLK_POL)),  
as well as different frame clock waveforms and polarities  
(SERIAL_BYTE_x_0, Bit 9 (LRCLK_MODE) and Bit 8  
(LRCLK_POL)). Excluding flexible TDM mode, there are 12  
possible combinations of settings for the audio word length  
(SERIAL_BYTE_x_0, Bits[6:5] (WORD_LEN)) and MSB position  
(SERIAL_BYTE_x_0, Bits[4:3] (DATA_FMT)), all of which are  
shown in Figure 61.  
5 0 9 - 8 1 1 0 4  
Figure 61. Serial Audio Formats; Two Channels, 32 Bits per Channel  
Rev. C | Page 58 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Figure 62 shows timing diagrams for possible serial port  
configurations in 4-channel mode, with 32 bit clock cycles per  
channel, for a total of 128 bit clock cycles per frame (refer to the  
SERIAL_BYTE_x_0 registers, Bits[2:0] (TDM_MODE) = 0b001).  
The bit clock signal is omitted from the figure.  
Excluding flexible TDM mode, there are 12 possible combinations  
of settings for the audio word length (SERIAL_BYTE_x_0, Bits[6:5]  
(WORD_LEN)) and MSB position (SERIAL_BYTE_x_0, Bits[4:3]  
(DATA_FMT)), all of which are shown in Figure 62.  
0 6 0 0 - 1 4 8 1  
Figure 62. Serial Audio Data Formats; Four Channels, 32 Bits per Channel  
Rev. C | Page 59 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Figure 63 shows timing diagrams for possible serial port  
configurations in 8-channel mode, with 32 bit clock cycles per  
channel, for a total of 256 bit clock cycles per frame (refer to the  
SERIAL_BYTE_x_0 registers, Bits[2:0] (TDM_MODE) = 0b010).  
The bit clock signal is omitted from the figure.  
Excluding flexible TDM mode, there are 12 possible combinations  
of settings for the audio word length (SERIAL_BYTE_x_0, Bits[6:5]  
(WORD_LEN)) and MSB position (SERIAL_BYTE_x_0, Bits[4:3]  
(DATA_FMT)), all of which are shown in Figure 63.  
6 1 0 0 - 4 8 1 1  
Figure 63. Serial Audio Data Formats; Eight Channels, 32 Bits per Channel  
Rev. C | Page 60 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Figure 64 shows some timing diagrams for possible serial port  
configurations in 16-channel mode, with 32 bit clock cycles per  
channel, for a total of 512 bit clock cycles per frame (refer to the  
SERIAL_BYTE_x_0 registers, Bits[2:0] (TDM_MODE) = 0b011).  
The bit clock signal is omitted from the figure.  
Excluding flexible TDM mode, there are 12 possible combinations  
of settings for the audio word length (SERIAL_BYTE_x_0, Bits[6:5]  
(WORD_LEN)) and MSB position (SERIAL_BYTE_x_0, Bits[4:3]  
(DATA_FMT)), all of which are shown in Figure 64.  
6 0 2  
1 4 8 1 0 -  
Figure 64. Serial Audio Data Formats; 16 Channels, 32 Bits per Channel  
Rev. C | Page 61 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Figure 65 shows some timing diagrams for possible serial port  
configurations in 4-channel mode, with 16 bit clock cycles per  
channel, for a total of 64 bit clock cycles per frame (refer to the  
SERIAL_BYTE_x_0 registers, Bits[2:0] (TDM_MODE) = 0b100).  
Different bit clock polarities are shown (refer to the SERIAL_  
BYTE_x_0 registers, Bit 7 (BCLK_POL)). The audio word length  
is fixed at 16 bits (refer to the SERIAL_BYTE_x_0 registers,  
Bits[6:5] (WORD_LEN) = 0b01), and there are four possible  
configurations for MSB position (SERIAL_BYTE_x_0, Bits[4:3]  
(DATA_FMT)), all of which are shown in Figure 65.  
0 6 3 1 4 8 1 0 -  
Figure 65. Serial Audio Data Formats; Four Channels, 16 Bits per Channel  
Rev. C | Page 62 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Different bit clock polarities are illustrated (SERIAL_BYTE_x_0,  
Bit 7 (BCLK_POL)). The audio word length is fixed at 16 bits  
(SERIAL_BYTE_x_0, Bits[6:5] (WORD_LEN) = 0b01), and  
there are four possible configurations for MSB position (SERIAL_  
BYTE_x_0, Bits[4:3] (DATA_FMT)), all of which are shown in  
Figure 66 shows some timing diagrams for possible serial port  
configurations in two channel mode, with 16 bit clock cycles per  
channel, for a total of 32 bit clock cycles per frame (refer to the  
SERIAL_BYTE_x_0 registers, Register 0xF200 to Register 0xF21C,  
Bits[2:0] (TDM_MODE) = 0b101).  
Figure 66.  
6 0 4 0 - 4 1 8 1  
Figure 66. Serial Audio Data Formats; Two Channels, 16 Bits per Channel  
Rev. C | Page 63 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Serial Clock Domains  
Any serial data input can be clocked by any input clock  
domains when it is configured in slave mode (refer to the  
SERIAL_BYTE_x_0 registers, Bits[15:13] (LRCLK_  
There are four input clock domains and four output clock  
domains. A clock domain consists of a pair of LRCLK_OUTx  
and LRCLK_INx (frame clock) and BCLK_OUTx and BCLK_INx  
(bit clock) pins, which are used to synchronize the transmission  
of audio data to and from the device. There are eight total clock  
domains. Four of them are input domains and four of them are  
output domains. In master mode (refer to the SERIAL_BYTE_x_0  
registers, Register 0xF200 to Register 0xF21C, Bits[15:13] (LRCLK_  
SRC) = 0b100 and Bits[12:10] (BCLK_SRC) = 0b100), each clock  
domain corresponds to exactly one serial data pin, one frame clock  
pin, and one bit clock pin.  
SRC), which can be set to 0b000, 0b001, 0b010, or 0b011; and  
Bits[12:10] (BCLK_SRC), which can be set to 0b000, 0b001, 0b010,  
or 0b011). Any serial data output can be clocked by any output  
clock domain when it is configured in slave mode (see the  
SERIAL_BYTE_x_0 registers, Bits[15:13] (LRCLK_SRC), which  
can be set to 0b000, 0b001, 0b010, or 0b011; and Bits[12:10]  
(BCLK_SRC), which can be set to 0b000, 0b001, 0b010, or 0b011).  
Table 41. Relationship Between Serial Data Pins and Clock Pins in Master or Slave Mode  
Serial Data Pin  
Corresponding Clock Pins in Master Mode  
Corresponding Clock Pins in Slave Mode  
BCLK_IN0, LRCLK_IN0 or  
BCLK_IN1, LRCLK_IN1 or  
BCLK_IN2, LRCLK_IN2 or  
BCLK_IN3, LRCLK_IN3  
SDATA_IN0  
BCLK_IN0, LRCLK_IN0 (LRCLK_IN0/MP10)  
SDATA_IN1  
BCLK_IN1, LRCLK_IN1 (LRCLK_IN1/MP11)  
BCLK_IN2, LRCLK_IN2 (LRCLK_IN2/MP12)  
BCLK_IN3, LRCLK_IN3 (LRCLK_IN3/MP13)  
BCLK_OUT0, LRCLK_OUT0 (LRCLK_OUT0/MP4)  
BCLK_OUT1, LRCLK_OUT1 (LRCLK_OUT1/MP5)  
BCLK_OUT2, LRCLK_OUT2 (LRCLK_OUT2/MP8)  
BCLK_OUT3, LRCLK_OUT3 (LRCLK_OUT3/MP9)  
BCLK_IN0, LRCLK_IN0 or  
BCLK_IN1, LRCLK_IN1 or  
BCLK_IN2, LRCLK_IN2 or  
BCLK_IN3, LRCLK_IN3  
SDATA_IN2  
BCLK_IN0, LRCLK_IN0 or  
BCLK_IN1, LRCLK_IN1 or  
BCLK_IN2, LRCLK_IN2 or  
BCLK_IN3, LRCLK_IN3  
SDATA_IN3  
BCLK_IN0, LRCLK_IN0 or  
BCLK_IN1, LRCLK_IN1 or  
BCLK_IN2, LRCLK_IN2 or  
BCLK_IN3, LRCLK_IN3  
SDATA_OUT0  
SDATA_OUT1  
SDATA_OUT2  
SDATA_OUT3  
BCLK_OUT0, LRCLK_OUT0 or  
BCLK_OUT1, LRCLK_OUT1 or  
BCLK_OUT2, LRCLK_OUT2 or  
BCLK_OUT3, LRCLK_OUT3  
BCLK_OUT0, LRCLK_OUT0 or  
BCLK_OUT1, LRCLK_OUT1 or  
BCLK_OUT2, LRCLK_OUT2 or  
BCLK_OUT3, LRCLK_OUT3  
BCLK_OUT0, LRCLK_OUT0 or  
BCLK_OUT1, LRCLK_OUT1 or  
BCLK_OUT2, LRCLK_OUT2 or  
BCLK_OUT3, LRCLK_OUT3  
BCLK_OUT0, LRCLK_OUT0 or  
BCLK_OUT1, LRCLK_OUT1 or  
BCLK_OUT2, LRCLK_OUT2 or  
BCLK_OUT3, LRCLK_OUT3  
Rev. C | Page 64 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Serial Input Ports  
Serial Output Ports  
There is a one to one mapping between the serial input ports  
and the audio input channels in the DSP and the ASRC input  
selectors, which is described in Table 42.  
There is a one-to-one mapping between the serial output ports  
and the output audio channels in the DSP (see Table 43).  
Table 43. Relationship Between Serial Input Port and  
Corresponding DSP Output Channel Numbers  
Table 42. Relationship Between Serial Input Port and  
Corresponding Channel Numbers on the DSP and ASRC Inputs  
Serial Input Port Audio Output Channels from the DSP  
Serial Port  
Audio Input Channels in the DSP and ASRC  
Serial Output 0  
Serial Output 1  
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15  
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,  
28, 29, 30, 31  
32, 33, 34, 35, 36, 37, 38, 39  
40, 41, 42, 43, 44, 45, 46, 47  
Serial Input 0  
Serial Input 1  
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15  
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,  
29, 30, 31  
32, 33, 34, 35, 36, 37, 38, 39  
40, 41, 42, 43, 44, 45, 46, 47  
Serial Output 2  
Serial Output 3  
Serial Input 2  
Serial Input 3  
If a serial output port is configured using the SERIAL_BYTE_x_0  
registers, Bits[2:0] (TDM_MODE), for a number of channels that  
is less than its maximum channel count, the unused channels  
are ignored. For example, if Serial Output Port 0 is set in 8-channel  
(TDM8) mode, and data is routed to it from the DSP, the first  
eight DSP output channels (Channel 0 through Channel 7) are  
output on SDATA_OUT0, but the remaining channels (Channel 8  
through Channel 15) are not output from the device.  
If a serial input port is configured using the SERIAL_BYTE_x_0  
registers, Bits[2:0] (TDM_MODE) for a number of channels that  
is less than its maximum channel count, the unused channels carry  
zero data. For example, if Serial Input 0 is set in 8-channel (TDM8)  
mode, the first eight channels (Channel 0 to Channel 7) carry data,  
and the unused channels (Channel 8 to Channel 15) carry no data.  
There are four options for the word length of each serial input port:  
24 bits, 16 bits, 32 bits, or flexible TDM. The flexible TDM option  
is described in the Flexible TDM Input section.  
There are four options for the word length of each serial output  
port: 24 bits, 16 bits, 32 bits, or flexible TDM. See the Flexible  
TDM Output section for more information.  
In 32-bit mode (see Figure 67), the 32 bits received on the serial  
input are mapped directly to a 32-bit word in the DSP core.  
To use 32-bit mode, the 32-bit input cells must be used in  
SigmaStudio.  
In 32-bit mode (see Figure 68), all 32 bits from the 8.24 word in  
the DSP core are copied directly to the serial output. To use 32-bit  
mode, the 32-bit output cells must be used in SigmaStudio.  
MSB  
MSB  
MSB  
AUDIO MSB  
AUDIO MSB  
AUDIO MSB  
AUDIO MSB  
AUDIO MSB  
AUDIO MSB  
24-BIT  
AUDIO  
SAMPLE  
24-BIT  
AUDIO  
SAMPLE  
24-BIT  
AUDIO  
SAMPLE  
32-BIT  
WORD  
ROUTING  
MATRIX  
32-BIT  
WORD  
32-BIT  
WORD  
ROUTING  
MATRIX  
8-BIT DATA  
AUDIO LSB  
8-BIT DATA  
AUDIO LSB  
8-BIT DATA  
AUDIO LSB  
AUDIO LSB  
AUDIO LSB  
32-BIT  
AUDIO LSB  
32-BIT  
LSB  
LSB  
LSB  
32-BIT  
SERIAL AUDIO  
INPUT STREAM  
32-BIT  
INPUT PORT  
DSP CORE  
OUTPUT PORT SERIAL AUDIO  
OUTPUT STREAM  
Figure 67. 32-Bit Serial Input Example  
Figure 68. 32-Bit Serial Output Example  
In 24-bit mode, the top 7 MSBs of the 8.24 audio word in the  
DSP core are saturated, and the resulting 1.23 word is output  
from the serial port, with 8 zeros padded under the LSB (see  
Figure 70).  
In 24-bit mode (see Figure 69), the 24-bit audio sample (in 1.23  
format) is padded with eight zeros below its LSB (in 1.31 format) as  
it is input to the routing matrix. Then, the audio data is shifted  
such that the audio sample has 7 sign-extended zeros on top,  
1 padded zero on the bottom, and 24 bits of data in the middle  
(8.24 format).  
In 16-bit mode, the top 7 MSBs of the 8.24 audio word in the  
DSP core are saturated, and the resulting 1.23 word is then  
truncated to a 1.15 word by removing the 8 LSBs. The resulting  
1.15 word is then zero padded with 16 zeros under the LSB and  
output from the serial port.  
Whereas 16-bit mode is similar to 24-bit mode, the 16-bit audio  
data has 16 zeros below its LSB instead of just 8 zeros (in the 24-bit  
case). The resulting 8.24 sample, therefore, has 7 sign-extended  
zeros on top, 9 padded zeros on the bottom, and 16 bits of data  
in the middle (8.24 format).  
Rev. C | Page 65 of 202  
 
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
MSB  
MSB  
MSB  
AUDIO MSB  
AUDIO MSB  
SIGN  
EXTENDED  
AUDIO MSB  
1.23  
AUDIO  
SAMPLE  
1.23  
AUDIO  
SAMPLE  
ROUTING  
MATRIX  
1.23  
AUDIO  
SAMPLE  
AUDIO LSB  
AUDIO LSB  
ZEROS  
LSB  
24-BIT SERIAL  
AUDIO INPUT  
STREAM  
AUDIO LSB  
DSP CORE  
LSB  
ZERO  
LSB  
24-BIT  
INPUT PORT  
Figure 69. 24-Bit Serial Input Example  
+1  
–1  
+127.999...  
MSB  
+1  
–128  
x: DSP CORE OUTPUT  
y: SERIAL PORT OUTPUT  
–1  
MSB  
MSB  
AUDIO MSB  
AUDIO MSB  
7 MSBs  
SATURATED  
TO ±1 IF  
AUDIO MSB  
OUTPUT IS >1  
1.23  
AUDIO  
SAMPLE  
1.23  
AUDIO  
SAMPLE  
SATURATOR/  
CLIPPER  
ROUTING  
MATRIX  
24-BITS  
AUDIO LSB  
AUDIO LSB  
8 ZEROS  
LSB  
24-BIT  
SERIAL AUDIO  
OUTPUT STREAM  
1 LSB  
TRUNCATED  
AUDIO LSB  
DSP CORE  
LSB  
LSB  
24-BIT  
OUTPUT PORT  
Figure 70. 24-Bit Serial Output Example  
Rev. C | Page 66 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
Serial Port Registers  
An overview of the registers related to the serial ports is shown in Table 44. For a more detailed description, see the Serial Port Configuration  
Registers section.  
Table 44. Serial Port Registers  
Address  
0xF200  
0xF201  
0xF204  
0xF205  
0xF208  
0xF209  
0xF20C  
0xF20D  
0xF210  
0xF211  
0xF214  
0xF215  
0xF218  
0xF219  
0xF21C  
0xF21D  
Register  
Description  
SERIAL_BYTE_0_0  
SERIAL_BYTE_0_1  
SERIAL_BYTE_1_0  
SERIAL_BYTE_1_1  
SERIAL_BYTE_2_0  
SERIAL_BYTE_2_1  
SERIAL_BYTE_3_0  
SERIAL_BYTE_3_1  
SERIAL_BYTE_4_0  
SERIAL_BYTE_4_1  
SERIAL_BYTE_5_0  
SERIAL_BYTE_5_1  
SERIAL_BYTE_6_0  
SERIAL_BYTE_6_1  
SERIAL_BYTE_7_0  
SERIAL_BYTE_7_1  
Serial Port Control 0 (SDATA_IN0 pin)  
Serial Port Control 1 (SDATA_IN0 pin)  
Serial Port Control 0 (SDATA_IN1 pin)  
Serial Port Control 1 (SDATA_IN1 pin)  
Serial Port Control 0 (SDATA_IN2 pin)  
Serial Port Control 1 (SDATA_IN2 pin)  
Serial Port Control 0 (SDATA_IN3 pin)  
Serial Port Control 1 (SDATA_IN3 pin)  
Serial Port Control 0 (SDATA_OUT0 pin)  
Serial Port Control 1 (SDATA_OUT0 pin)  
Serial Port Control 0 (SDATA_OUT1 pin)  
Serial Port Control 1 (SDATA_OUT1 pin)  
Serial Port Control 0 (SDATA_OUT2 pin)  
Serial Port Control 1 (SDATA_OUT2 pin)  
Serial Port Control 0 (SDATA_OUT3 pin)  
Serial Port Control 1 (SDATA_OUT3 pin)  
Rev. C | Page 67 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
There are a total of 64 control registers (FTDM_INx) that can  
be configured to set up the mapping of input data bytes to the  
corresponding bytes in the serial input channels. Each byte in  
each serial input channel has a corresponding control register,  
which selects the incoming data byte on the serial input pins  
that must be mapped to it. Figure 71 shows, from left to right,  
the data streams entering the serial input pins, the serial input  
channels, and the registers (see FTDM_INx, Register 0xF300 to  
Register 0xF33F) that correspond to each byte in the serial input  
channels.  
FLEXIBLE TDM INTERFACE  
The flexible TDM interface is available as an optional mode of  
operation on the SDATA_IN2 and SDATA_IN3 serial input ports,  
as well as on the SDATA_OUT2 and SDATA_OUT3 serial output  
ports. To use flexible TDM mode, the corresponding serial ports  
must be set in flexible TDM mode (SERIAL_BYTE_x_0 register,  
Bits[6:5] (WORD_LEN) = 0b11 and SERIAL_BYTE_x_0 register,  
Bits[2:0] = 0b010). Flexible TDM input mode requires that both  
SDATA_IN2 and SDATA_IN3 be configured for flexible TDM  
mode. Likewise, flexible TDM output mode requires that both  
SDATA_OUT2 and SDATA_OUT3 pins be configured for  
flexible TDM mode.  
Flexible TDM Output  
In flexible TDM output mode, two 256-bit data streams are output  
from the SDATA_OUT2 and SDATA_OUT3 pins. These 256 bits  
of data compose eight channels of four bytes each, for a total of  
32 bytes on each pin, and a total of 64 bytes when both input  
pins are combined. The flexible TDM output functional block  
routes the desired byte from the desired serial output channel to  
a given byte in the output streams. The serial output channels  
originate from the audio routing matrix, which is configured  
using the SOUT_SOURCEx control registers.  
The flexible TDM interface provides byte addressable data place-  
ment in the input and output data streams on the corresponding  
serial data input/output pins. Each data stream is configured  
like a standard 8-channel TDM interface, with a total of 256 data  
bits (or 32 bytes) in the span of an audio frame. Because flexible  
TDM mode runs on two pins simultaneously, and each pin has  
32 bytes of data, this means that there are a total of 64 data bytes. In  
flexible TDM input mode, each input channel inside the device can  
select its source data from any of the 64 input data bytes. In flexible  
TDM output mode, any serial output channel can be routed to any  
of the 64 output data bytes.  
There are a total of 64 control registers (see FTDM_OUTx,  
Register 0xF388 to Register 0xF3BF) that can be configured  
to set up the mapping of the bytes in the serial output channels  
and the bytes in the data streams exiting the serial output pins.  
Each byte in the data streams being output from the serial output  
pins has a corresponding control register, which selects the  
desired byte from the desired serial output channel. Figure 72  
shows, from left to right, the serial output channels originating  
from the routing matrix, the serial output pins and data streams,  
and the control registers (FTDM_OUTx) that correspond to  
each byte in the serial output data streams.  
Flexible TDM Input  
In flexible TDM input mode, two 256-bit data streams are input  
to the SDATA_IN2 and SDATA_IN3 pins. These 256 bits of data  
compose eight channels of four bytes each, for a total of 32 bytes  
on each pin, and a total of 64 bytes when both input pins are  
combined. The flexible TDM input functional block routes the  
desired input byte to a given byte in the serial input channels.  
Those serial input channels are then available as normal audio  
data in the audio routing matrix. The data can be passed to the  
DSP core, the ASRC inputs, or the serial outputs as needed.  
Rev. C | Page 68 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
0 - 6 9 8 1 1 0 4  
K C O L B M D E L T B E L X F I  
Figure 71. Flexible TDM Input Mapping  
Rev. C | Page 69 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
0 7 0 4 8 1 1 0 -  
1 3 U T O _ D M F T  
0 3 U T O _ D M F T  
9 2 U T O _ D M F T  
8 2 U T O _ D M F T  
7 2 U T O _ D M F T  
6 2 U T O _ D M F T  
5 2 U T O _ D M F T  
4 2 U T O _ D M F T  
3 2 U T O _ D M F T  
2 2 U T O _ D M F T  
1 2 U T O _ D M F T  
0 2 U T O _ D M F T  
9 1 U T O _ D M F T  
8 1 U T O _ D M F T  
7 1 U T O _ D M F T  
6 1 U T O _ D M F T  
5 1 U T O _ D M F T  
4 1 U T O _ D M F T  
3 1 U T O _ D M F T  
2 1 U T O _ D M F T  
1 1 U T O _ D M F T  
0 1 U T O _ D M F T  
3 6 U T O _ D M F T  
2 6 U T O _ D M F T  
1 6 U T O _ D M F T  
0 6 U T O _ D M F T  
9 5 U T O _ D M F T  
8 5 U T O _ D M F T  
7 5 U T O _ D M F T  
6 5 U T O _ D M F T  
5 5 U T O _ D M F T  
4 5 U T O _ D M F T  
3 5 U T O _ D M F T  
2 5 U T O _ D M F T  
1 5 U T O _ D M F T  
0 5 U T O _ D M F T  
9 4 U T O _ D M F T  
8 4 U T O _ D M F T  
7 4 U T O _ D M F T  
6 4 U T O _ D M F T  
5 4 U T O _ D M F T  
4 4 U T O _ D M F T  
3 4 U T O _ D M F T  
2 4 U T O _ D M F T  
1 4 U T O _ D M F T  
0 4 U T O _ D M F T  
9 3 U T O _ D M F T  
8 3 U T O _ D M F T  
7 3 U T O _ D M F T  
6 3 U T O _ D M F T  
5 3 U T O _ D M F T  
4 3 U T O _ D M F T  
3 3 U T O _ D M F T  
2 3 U T O _ D M F T  
9
8
7
6
5
4
3
2
1
0
U T O _ D T M F  
U T O _ D T M F  
U T O _ D T M F  
U T O _ D T M F  
U T O _ D T M F  
U T O _ D T M F  
U T O _ D T M F  
U T O _ D T M F  
U T O _ D T M F  
U T O _ D T M F  
K C L O B M T D L E I B X F L E  
Figure 72. Flexible TDM Output Mapping  
Rev. C | Page 70 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Flexible TDM Registers  
An overview of the registers related to the flexible TDM interface is shown in Table 45. For a more detailed description, see the Flexible  
TDM Interface Registers section.  
Table 45. Flexible TDM Registers  
Address  
0xF300  
0xF301  
0xF302  
0xF303  
0xF304  
0xF305  
0xF306  
0xF307  
0xF308  
0xF309  
0xF30A  
0xF30B  
0xF30C  
0xF30D  
0xF30E  
0xF30F  
0xF310  
0xF311  
0xF312  
0xF313  
0xF314  
0xF315  
0xF316  
0xF317  
0xF318  
0xF319  
0xF31A  
0xF31B  
0xF31C  
0xF31D  
0xF31E  
0xF31F  
0xF320  
0xF321  
0xF322  
0xF323  
0xF324  
0xF325  
0xF326  
0xF327  
0xF328  
0xF329  
0xF32A  
0xF32B  
0xF32C  
0xF32D  
0xF32E  
0xF32F  
Register  
Description  
FTDM_IN0  
FTDM_IN1  
FTDM_IN2  
FTDM_IN3  
FTDM_IN4  
FTDM_IN5  
FTDM_IN6  
FTDM_IN7  
FTDM_IN8  
FTDM_IN9  
FTDM_IN10  
FTDM_IN11  
FTDM_IN12  
FTDM_IN13  
FTDM_IN14  
FTDM_IN15  
FTDM_IN16  
FTDM_IN17  
FTDM_IN18  
FTDM_IN19  
FTDM_IN20  
FTDM_IN21  
FTDM_IN22  
FTDM_IN23  
FTDM_IN24  
FTDM_IN25  
FTDM_IN26  
FTDM_IN27  
FTDM_IN28  
FTDM_IN29  
FTDM_IN30  
FTDM_IN31  
FTDM_IN32  
FTDM_IN33  
FTDM_IN34  
FTDM_IN35  
FTDM_IN36  
FTDM_IN37  
FTDM_IN38  
FTDM_IN39  
FTDM_IN40  
FTDM_IN41  
FTDM_IN42  
FTDM_IN43  
FTDM_IN44  
FTDM_IN45  
FTDM_IN46  
FTDM_IN47  
FTDM mapping for the serial inputs (Channel 32, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 32, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 32, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 32, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 33, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 33, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 33, Bits[15:8])  
FTDM mapping for the serial inputs Channel 33, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 34, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 34, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 34, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 34, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 35, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 35, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 35, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 35, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 36, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 36, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 36, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 36, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 37, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 37, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 37, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 37, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 38, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 38, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 38, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 38, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 39, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 39, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 39, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 39, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 40, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 40, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 40, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 40, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 41, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 41, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 41, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 41, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 42, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 42, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 42, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 42, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 43, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 43, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 43, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 43, Bits[7:0])  
Rev. C | Page 71 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Address  
0xF330  
0xF331  
0xF332  
0xF333  
0xF334  
0xF335  
0xF336  
0xF337  
0xF338  
0xF339  
0xF33A  
0xF33B  
0xF33C  
0xF33D  
0xF33E  
0xF33F  
0xF380  
0xF381  
0xF382  
0xF383  
0xF384  
0xF385  
0xF386  
0xF387  
0xF388  
0xF389  
0xF38A  
0xF38B  
0xF38C  
0xF38D  
0xF38E  
0xF38F  
0xF390  
0xF391  
0xF392  
0xF393  
0xF394  
0xF395  
0xF396  
0xF397  
0xF398  
0xF399  
0xF39A  
0xF39B  
0xF39C  
0xF39D  
0xF39E  
0xF39F  
0xF3A0  
0xF3A1  
0xF3A2  
0xF3A3  
0xF3A4  
Register  
Description  
FTDM_IN48  
FTDM_IN49  
FTDM_IN50  
FTDM_IN51  
FTDM_IN52  
FTDM_IN53  
FTDM_IN54  
FTDM_IN55  
FTDM_IN56  
FTDM_IN57  
FTDM_IN58  
FTDM_IN59  
FTDM_IN60  
FTDM_IN61  
FTDM_IN62  
FTDM_IN63  
FTDM_OUT0  
FTDM_OUT1  
FTDM_OUT2  
FTDM_OUT3  
FTDM_OUT4  
FTDM_OUT5  
FTDM_OUT6  
FTDM_OUT7  
FTDM_OUT8  
FTDM_OUT9  
FTDM_OUT10  
FTDM_OUT11  
FTDM_OUT12  
FTDM_OUT13  
FTDM_OUT14  
FTDM_OUT15  
FTDM_OUT16  
FTDM_OUT17  
FTDM_OUT18  
FTDM_OUT19  
FTDM_OUT20  
FTDM_OUT21  
FTDM_OUT22  
FTDM_OUT23  
FTDM_OUT24  
FTDM_OUT25  
FTDM_OUT26  
FTDM_OUT27  
FTDM_OUT28  
FTDM_OUT29  
FTDM_OUT30  
FTDM_OUT31  
FTDM_OUT32  
FTDM_OUT33  
FTDM_OUT34  
FTDM_OUT35  
FTDM_OUT36  
FTDM mapping for the serial inputs (Channel 44, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 44, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 44, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 44, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 45, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 45, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 45, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 45, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 46, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 46, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 46, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 46, Bits[7:0])  
FTDM mapping for the serial inputs (Channel 47, Bits[31:24])  
FTDM mapping for the serial inputs (Channel 47, Bits[23:16])  
FTDM mapping for the serial inputs (Channel 47, Bits[15:8])  
FTDM mapping for the serial inputs (Channel 47, Bits[7:0])  
FTDM mapping for the serial outputs (Port 2, Channel 0, Bits[31:24])  
FTDM mapping for the serial outputs (Port 2, Channel 0, Bits[23:16])  
FTDM mapping for the serial outputs (Port 2, Channel 0, Bits[15:8])  
FTDM mapping for the serial outputs (Port 2, Channel 0, Bits[7:0])  
FTDM mapping for the serial outputs (Port 2, Channel 1, Bits[31:24])  
FTDM mapping for the serial outputs (Port 2, Channel 1, Bits[23:16])  
FTDM mapping for the serial outputs (Port 2, Channel 1, Bits[15:8])  
FTDM mapping for the serial outputs (Port 2, Channel 1, Bits[7:0])  
FTDM mapping for the serial outputs (Port 2, Channel 2, Bits[31:24])  
FTDM mapping for the serial outputs (Port 2, Channel 2, Bits[23:16])  
FTDM mapping for the serial outputs (Port 2, Channel 2, Bits[15:8])  
FTDM mapping for the serial outputs (Port 2, Channel 2, Bits[7:0])  
FTDM mapping for the serial outputs (Port 2, Channel 3, Bits[31:24])  
FTDM mapping for the serial outputs (Port 2, Channel 3, Bits[23:16])  
FTDM mapping for the serial outputs (Port 2, Channel 3, Bits[15:8])  
FTDM mapping for the serial outputs (Port 2, Channel 3, Bits[7:0])  
FTDM mapping for the serial outputs (Port 2, Channel 4, Bits[31:24])  
FTDM mapping for the serial outputs (Port 2, Channel 4, Bits[23:16])  
FTDM mapping for the serial outputs (Port 2, Channel 4, Bits[15:8])  
FTDM mapping for the serial outputs (Port 2, Channel 4, Bits[7:0])  
FTDM mapping for the serial outputs (Port 2, Channel 5, Bits[31:24])  
FTDM mapping for the serial outputs (Port 2, Channel 5, Bits[23:16])  
FTDM mapping for the serial outputs (Port 2, Channel 5, Bits[15:8])  
FTDM mapping for the serial outputs (Port 2, Channel 5, Bits[7:0])  
FTDM mapping for the serial outputs (Port 2, Channel 6, Bits[31:24])  
FTDM mapping for the serial outputs (Port 2, Channel 6, Bits[23:16])  
FTDM mapping for the serial outputs (Port 2, Channel 6, Bits[15:8])  
FTDM mapping for the serial outputs (Port 2, Channel 6, Bits[7:0])  
FTDM mapping for the serial outputs (Port 2, Channel 7, Bits[31:24])  
FTDM mapping for the serial outputs (Port 2, Channel 7, Bits[23:16])  
FTDM mapping for the serial outputs (Port 2, Channel 7, Bits[15:8])  
FTDM mapping for the serial outputs (Port 2, Channel 7, Bits[7:0])  
FTDM mapping for the serial outputs (Port 3, Channel 0, Bits[31:24])  
FTDM mapping for the serial outputs (Port 3, Channel 0, Bits[23:16])  
FTDM mapping for the serial outputs (Port 3, Channel 0, Bits[15:8])  
FTDM mapping for the serial outputs (Port 3, Channel 0, Bits[7:0])  
FTDM mapping for the serial outputs (Port 3, Channel 1, Bits[31:24])  
Rev. C | Page 72 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Address  
0xF3A5  
0xF3A6  
0xF3A7  
0xF3A8  
0xF3A9  
0xF3AA  
0xF3AB  
0xF3AC  
0xF3AD  
0xF3AE  
0xF3AF  
0xF3B0  
0xF3B1  
0xF3B2  
0xF3B3  
0xF3B4  
0xF3B5  
0xF3B6  
0xF3B7  
0xF3B8  
0xF3B9  
0xF3BA  
0xF3BB  
0xF3BC  
0xF3BD  
0xF3BE  
0xF3BF  
Register  
Description  
FTDM_OUT37  
FTDM_OUT38  
FTDM_OUT39  
FTDM_OUT40  
FTDM_OUT41  
FTDM_OUT42  
FTDM_OUT43  
FTDM_OUT44  
FTDM_OUT45  
FTDM_OUT46  
FTDM_OUT47  
FTDM_OUT48  
FTDM_OUT49  
FTDM_OUT50  
FTDM_OUT51  
FTDM_OUT52  
FTDM_OUT53  
FTDM_OUT54  
FTDM_OUT55  
FTDM_OUT56  
FTDM_OUT57  
FTDM_OUT58  
FTDM_OUT59  
FTDM_OUT60  
FTDM_OUT61  
FTDM_OUT62  
FTDM_OUT63  
FTDM mapping for the serial outputs (Port 3, Channel 1, Bits[23:16])  
FTDM mapping for the serial outputs (Port 3, Channel 1, Bits[15:8])  
FTDM mapping for the serial outputs (Port 3, Channel 1, Bits[7:0])  
FTDM mapping for the serial outputs (Port 3, Channel 2, Bits[31:24])  
FTDM mapping for the serial outputs (Port 3, Channel 2, Bits[23:16])  
FTDM mapping for the serial outputs (Port 3, Channel 2, Bits[15:8])  
FTDM mapping for the serial outputs (Port 3, Channel 2, Bits[7:0])  
FTDM mapping for the serial outputs (Port 3, Channel 3, Bits[31:24])  
FTDM mapping for the serial outputs (Port 3, Channel 3, Bits[23:16])  
FTDM mapping for the serial outputs (Port 3, Channel 3, Bits[15:8])  
FTDM mapping for the serial outputs (Port 3, Channel 3, Bits[7:0])  
FTDM mapping for the serial outputs (Port 3, Channel 4, Bits[31:24])  
FTDM mapping for the serial outputs (Port 3, Channel 4, Bits[23:16])  
FTDM mapping for the serial outputs (Port 3, Channel 4, Bits[15:8])  
FTDM mapping for the serial outputs (Port 3, Channel 4, Bits[7:0])  
FTDM mapping for the serial outputs (Port 3, Channel 5, Bits[31:24])  
FTDM mapping for the serial outputs (Port 3, Channel 5, Bits[23:16])  
FTDM mapping for the serial outputs (Port 3, Channel 5, Bits[15:8])  
FTDM mapping for the serial outputs (Port 3, Channel 5, Bits[7:0])  
FTDM mapping for the serial outputs (Port 3, Channel 6, Bits[31:24])  
FTDM mapping for the serial outputs (Port 3, Channel 6, Bits[23:16])  
FTDM mapping for the serial outputs (Port 3, Channel 6, Bits[15:8])  
FTDM mapping for the serial outputs (Port 3, Channel 6, Bits[7:0])  
FTDM mapping for the serial outputs (Port 3, Channel 7, Bits[31:24])  
FTDM mapping for the serial outputs (Port 3, Channel 7, Bits[23:16])  
FTDM mapping for the serial outputs (Port 3, Channel 7, Bits[15:8])  
FTDM mapping for the serial outputs (Port 3, Channel 7, Bits[7:0])  
Rev. C | Page 73 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Asynchronous Sample Rate Converters Registers  
ASYNCHRONOUS SAMPLE RATE CONVERTERS  
An overview of the registers related to the ASRCs is shown in  
Table 46. For a more detailed description, refer to the ASRC  
Status and Control Registers section.  
Sixteen channels of integrated asynchronous sample rate converters  
are available in the ADAU1462/ADAU1466. These sample rate  
converters are capable of receiving audio data input signals,  
along with their corresponding clocks, and resynchronizing the  
data stream to an arbitrary target sample rate. The sample rate  
converters use some filtering to accomplish this task; therefore,  
the data output from the sample rate converter is not a bit-  
accurate representation of the data input.  
Table 46. Asynchronous Sample Rate Converters Registers  
Address Register  
Description  
0xF580  
0xF581  
0xF582  
ASRC_LOCK  
ASRC_MUTE  
ASRC lock status  
ASRC mute  
ASRC0_RATIO ASRC ratio (ASRC 0, Channel 0 and  
Channel 1)  
The 16 channels of sample rate converters are grouped into eight  
stereo sets. These eight stereo sample rate converters are  
individually configurable and are referred to as ASRC 0 through  
ASRC 7. Channel 0 and Channel 1 belong to ASRC 0; Channel 2  
and Channel 3 belong to ASRC 1; Channel 4 and Channel 5  
belong to ASRC 2; Channel 6 and Channel 7 belong to ASRC 3;  
Channel 8 and Channel 9 belong to ASRC 4; Channel 10 and  
Channel 11 belong to ASRC 5; Channel 12 and Channel 13 belong  
to ASRC 6; and Channel 14 and Channel 15 belong to ASRC 7.  
0xF583  
0xF584  
0xF585  
0xF586  
0xF587  
0xF588  
0xF589  
ASRC1_RATIO ASRC ratio (ASRC 1, Channel 2 and  
Channel 3)  
ASRC2_RATIO ASRC ratio (ASRC 2, Channel 4 and  
Channel 5)  
ASRC3_RATIO ASRC ratio (ASRC 3, Channel 6 and  
Channel 7)  
ASRC4_RATIO ASRC ratio (ASRC 4, Channel 8 and  
Channel 9)  
ASRC5_RATIO ASRC ratio (ASRC 5, Channel 10 and  
Channel 11)  
ASRC6_RATIO ASRC ratio (ASRC 6, Channel 12 and  
Channel 13)  
ASRC7_RATIO ASRC ratio (ASRC 7, Channel 14 and  
Channel 15)  
Audio is routed to the sample rate converters using the  
ASRC_INPUTx registers, and the target sample rate of each  
ASRC is configured using the ASRC_OUT_RATEx registers.  
A complete description of audio routing is included in the  
Audio Signal Routing section.  
S/PDIF INTERFACE  
Asynchronous Sample Rate Converter Group Delay  
To simplify interfacing at the system level, wire the on-chip S/PDIF  
receiver and transmitter data ports directly to other S/PDIF-  
compatible equipment. The S/PDIF receiver consists of two  
audio channels input on one hardware pin (SPDIFIN). The  
clock signal is embedded in the data using biphase mark code.  
The S/PDIF transmitter consists of two audio channels output  
on one hardware pin (SPDIFOUT). The clock signal is embedded  
in the data using biphase mark code. The S/PDIF input and output  
word lengths can be independently set to 16, 20, or 24 bits.  
The group delay of the sample rate converter is dependent on  
the input and output sampling frequencies as described in the  
following equations:  
For fS_OUT > fS_IN  
,
16  
32  
GDS   
fS _ IN fS _ IN  
For fS_OUT < fS_IN  
,
The S/PDIF interface meets the S/PDIF consumer performance  
specification. It does not meet the AES3 professional specification.  
   
fS _ IN  
16  
fS _ IN  
32  
fS _ IN  
   
GDS  
   
fS _OUT  
   
S/PDIF Receiver  
where GDS is the group delay in seconds.  
The S/PDIF input port is designed to accept both transistor-  
transistor logic (TTL) and bipolar signals, provided there is an ac  
coupling capacitor on the input pin of the chip. Because the  
S/PDIF input data is most likely asynchronous to the DSP core, it  
must be routed through an ASRC.  
ASRC Lock  
Each ASRC monitors the incoming signal and attempts to lock  
on to the clock and data signals. When a valid signal is detected  
and several consecutive valid samples are received, and there is  
a valid output target sample rate, the corresponding bit in  
Register 0xF580 (ASRC_LOCK) signifies that the ASRC has  
successfully locked to the incoming signal.  
The S/PDIF receiver works over a wide range of sampling  
frequencies between 18 kHz and 192 kHz.  
The S/PDIF receiver input is a comparator that is centered at  
IOVDD/2 and requires an input signal level of at least 200 mV p-p  
to operate properly.  
ASRC Muting  
The ASRC outputs can be manually muted at any time using the  
corresponding bits in Register 0xF581 (ASRC_MUTE). However,  
for creating a smooth volume ramp when muting audio signals,  
more options are available in the DSP core; therefore, in most  
cases, using the DSP program to manually mute signals is  
preferable to using Register 0xF581.  
In addition to audio data, S/PDIF streams contain user data,  
channel status, validity bit, virtual LRCLK, and block start  
information. The receiver decodes audio data and sends it to  
the corresponding registers in the control register map, where  
the information can be read over the I2C or SPI slave port.  
Rev. C | Page 74 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
For improved jitter performance, the S/PDIF clock recovery  
implementation is completely digital. The S/PDIF ports are  
designed to meet the following AES and EBU specifications:  
a jitter of 0.25 UI p-p at 8 kHz and above, a jitter of 10 UI p-p  
below 200 Hz, and a minimum signal voltage of 200 mV.  
The selected BCLK_OUTx signal has a frequency of 256× the  
recovered sample rate, and the LRCLK_OUTx signal is a 50%  
duty cycle square wave that has the same frequency as the audio  
sample rate (see Table 138).  
Table 47. S/PDIF Auxiliary Output Mode, TDM8 Data Format  
TDM8  
S/PDIF Transmitter  
Channel  
Description of Data Format  
The S/PDIF transmitter outputs two channels of audio data directly  
from the DSP core at the core rate. The extra nonaudio data bits  
on the transmitted signal can be copied directly from the S/PDIF  
receiver or programmed manually, using the corresponding  
registers in the control register map.  
0
8 zero bits followed by 24 audio bits, recovered  
from the left audio channel of the S/PDIF stream  
28 zero bits followed by the left parity bit, left  
validity bit, left user data, and left channel status  
30 zero bits followed by the compression type bit  
(0b0 = AC3, 0b1 = DTS) and the audio type bit  
(0 = PCM, 1 = compressed)  
1
2
Auxiliary Output Mode  
The received data on the S/PDIF receiver can be converted to  
a TDM8 stream, bypass the SigmaDSP core, and be output  
directly on a serial data output pin. This mode of operation  
is called auxiliary output mode. Configure this mode using  
Register 0xF608 (SPDIF_AUX_EN). The TDM8 output from  
the S/PDIF receiver regroups the recovered data in a TDM-like  
format, as shown in Table 47.  
3
4
No data  
8 zero bits followed by 24 audio bits, recovered  
from the right audio channel of the S/PDIF stream  
28 zero bits followed by the right parity bit, right  
validity bit, right user data, and right channel status  
5
6
7
No data  
31 zero bits followed by the block start signal  
The S/PDIF receiver, when operating in auxiliary output mode,  
also recovers the embedded BCLK_OUTx and LRCLK_OUTx  
signals in the S/PDIF stream and outputs them on the  
corresponding BCLK_OUTx and LRCLK_OUTx pins in master  
mode when Register 0xF608 (SPDIF_AUX_EN), Bits[3:0]  
(TDMOUT) are configured to enable auxiliary output mode.  
S/PDIF Interface Registers  
An overview of the registers related to the S/PDIF interface is  
shown in Table 48. For a more detailed description, refer to the  
S/PDIF Interface Registers section.  
Table 48. S/PDIF Interface Registers  
Address  
Register  
Description  
0xF600  
SPDIF_LOCK_DET  
S/PDIF receiver lock bit detection  
0xF601  
SPDIF_RX_CTRL  
S/PDIF receiver control  
0xF602  
0xF603  
0xF604  
0xF605  
0xF608  
0xF60F  
0xF610 to 0xF61B  
0xF620 to 0xF62B  
0xF630 to 0xF63B  
0xF640 to 0xF64B  
0xF650 to 0xF65B  
0xF660 to 0xF66B  
0xF670 to 0xF67B  
0xF680 to 0xF68B  
0xF690  
SPDIF_RX_DECODE  
SPDIF_RX_COMPRMODE  
SPDIF_RESTART  
SPDIF_LOSS_OF_LOCK  
SPDIF_AUX_EN  
SPDIF_RX_AUXBIT_READY  
SPDIF_RX_CS_LEFT_x  
SPDIF_RX_CS_RIGHT_x  
SPDIF_RX_UD_LEFT_x  
SPDIF_RX_UD_RIGHT_x  
SPDIF_RX_VB_LEFT_x  
SPDIF_RX_VB_RIGHT_x  
SPDIF_RX_PB_LEFT_x  
SPDIF_RX_PB_RIGHT_x  
SPDIF_TX_EN  
Decoded signals from the S/PDIF receiver  
Compression mode from the S/PDIF receiver  
Automatically resume S/PDIF receiver audio input  
S/PDIF receiver loss of lock detection  
S/PDIF receiver auxiliary outputs enable  
S/PDIF receiver auxiliary bits ready flag  
S/PDIF receiver channel status bits (left)  
S/PDIF receiver channel status bits (right)  
S/PDIF receiver user data bits (left)  
S/PDIF receiver user data bits (right)  
S/PDIF receiver validity bits (left)  
S/PDIF receiver validity bits (right)  
S/PDIF receiver parity bits (left)  
S/PDIF receiver parity bits (right)  
S/PDIF transmitter enable  
0xF691  
SPDIF_TX_CTRL  
S/PDIF transmitter control  
0xF69F  
SPDIF_TX_AUXBIT_SOURCE  
SPDIF_TX_CS_LEFT_x  
SPDIF_TX_CS_RIGHT_x  
SPDIF_TX_UD_LEFT_x  
SPDIF_TX_UD_RIGHT_x  
SPDIF_TX_VB_LEFT_x  
SPDIF_TX_VB_RIGHT_x  
SPDIF_TX_PB_LEFT_x  
SPDIF_TX_PB_RIGHT_x  
S/PDIF transmitter auxiliary bits source select  
S/PDIF transmitter channel status bits (left)  
S/PDIF transmitter channel status bits (right)  
S/PDIF transmitter user data bits (left)  
S/PDIF transmitter user data bits (right)  
S/PDIF transmitter validity bits (left)  
S/PDIF transmitter validity bits (right)  
S/PDIF transmitter parity bits (left)  
S/PDIF transmitter parity bits (right)  
0xF6A0 to 0xF6AB  
0xF6B0 to 0xF6BB  
0xF6C0 to 0xF6CB  
0xF6D0 to 0xF6DB  
0xF6E0 to 0xF6EB  
0xF6F0 to 0xF6FB  
0xF700 to 0xF70B  
0xF710 to 0xF71B  
Rev. C | Page 75 of 202  
 
 
ADAU1462/ADAU1466  
Data Sheet  
a clock signal to the microphones, and the data output of the  
microphones can be connected to any MPx pin that has been  
configured as a PDM microphone data input.  
1.8V TO 3.3V  
DIGITAL PDM MICROPHONE INTERFACE  
Up to four pulse density modulation (PDM) microphones can  
be connected as audio inputs. Each pair of microphones can  
share a single data line; therefore, using four PDM microphones  
requires two GPIO pins. Any multipurpose pin can be used as a  
microphone data input, with up to two microphones connected  
to each pin. This configuration is set up using the corresponding  
MPx_MODE and DMIC_CTRLx registers.  
IOVDD  
CLK  
ICS-41350  
A bit clock pin from one of the serial input clock domains  
(BCLK_INx) or one of the serial output clock domains (BCLK_  
OUTx) must be a master clock source, and its output signal  
must be connected to the PDM microphones to provide them  
with a clock.  
V
DATA  
GND  
DD  
0.1µF  
L/R SELECT  
BCLK_INx  
OR  
BCLK_OUTx  
PDM microphones, such as the ICS-41350 from InvenSense,  
typically require a bit clock frequency in the range of 1 MHz to  
3.3 MHz, corresponding to audio sample rates of 15.625 kHz  
to 51.5625 kHz. This means that the serial port corresponding  
to the BCLK_INx pin or BCLK_OUTx pin driving the PDM  
microphones must operate in 2-channel mode at a sample rate  
between 16 kHz and 48 kHz.  
CLK  
ICS-41350  
MPx  
GND  
V
DATA  
GND  
DD  
0.1µF  
L/R SELECT  
Figure 73. Example Stereo PDM Microphone Input Circuit  
PDM microphone inputs are automatically routed through  
decimation filters and then are available for use at the DSP core,  
the ASRCs, and the serial output ports.  
Digital PDM Microphone Interface Registers  
An overview of the registers related to the digital microphone  
interface is shown in Table 49. For a more detailed description,  
see the Digital PDM Microphone Control Register.  
Figure 73 shows an example circuit with two ICS-41350 PDM  
output MEMS microphones connected to the ADAU1466. Any of  
the BCLK_INx pins or BCLK_OUTx pins can be used to provide  
Table 49. Digital PDM Microphone Interface Registers  
Address  
0xF560  
0xF561  
Register  
Description  
DMIC_CTRL0  
DMIC_CTRL1  
Digital PDM microphone control (Channel 0 and Channel 1)  
Digital PDM microphone control (Channel 2 and Channel 3)  
Rev. C | Page 76 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
MULTIPURPOSE PINS  
A total of 14 pins are available for use asGPIOs that are multiplexed  
with other functions, such as clock inputs/outputs. Because these  
pins have multiple functions, they are referred to as multipurpose  
pins, or MPx pins.  
Multipurpose pins can be configured in several modes using the  
MPx_MODE registers:  
Hardware input from pin  
Software input (written via I2C or SPI slave control port)  
Hardware output with internal pull-up resistor  
Hardware output without internal pull-up resistor  
PDM microphone data input  
Flag output from panic manager  
Slave select line for master SPI port  
Figure 74. General-Purpose Input in the SigmaStudio Toolbox  
When configured in hardware input mode, a debounce circuit  
is available to avoid data glitches.  
General-Purpose Outputs from the DSP Core  
When a multipurpose pin is configured as a general-purpose  
output, a Boolean value is output from the DSP program to the  
corresponding multipurpose pin. Figure 75 shows the location  
of the general-purpose input cell within the SigmaStudio toolbox.  
When operating in GPIO mode, pin status is updated once per  
sample, which means that the state of a GPIO (MPx pin) cannot  
change more than once in a sample period.  
General-Purpose Inputs to the DSP Core  
When a multipurpose pin is configured as a general-purpose  
input, its value can be used as a control logic signal in the DSP  
program, which is configured using SigmaStudio. Figure 74  
shows the location of the general-purpose input cell within the  
SigmaStudio toolbox.  
The 14 available general-purpose inputs in SigmaStudio map  
to the corresponding 14 multipurpose pins; however, their data  
is valid only if the corresponding multipurpose pin has been  
configured as an input using the MPx_MODE registers. Figure 76  
shows all of the general-purpose inputs as they appear in the  
SigmaStudio signal flow.  
Figure 75. General-Purpose Output in the SigmaStudio Toolbox  
Figure 76. Complete Set of General-Purpose Inputs in SigmaStudio  
Rev. C | Page 77 of 202  
 
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
The 14 available general-purpose outputs in SigmaStudio map  
to the corresponding 14 multipurpose pins; however, their data  
is output to the pin only if the corresponding multipurpose pin  
is configured as an output using the MPx_MODE registers.  
Figure 77 shows all of the general-purpose inputs as they appear  
in the SigmaStudio signal flow.  
Figure 77. Complete Set of General-Purpose Outputs in SigmaStudio  
Rev. C | Page 78 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Multipurpose Pin Registers  
An overview of the registers related to GPIO is shown in Table 50. For a more detailed description, refer to the Multipurpose Pin  
Configuration Registers section.  
Table 50. Multipurpose Pins Registers  
Address  
0xF510  
0xF511  
0xF512  
0xF513  
0xF514  
0xF515  
0xF516  
0xF517  
0xF518  
0xF519  
0xF51A  
0xF51B  
0xF51C  
0xF51D  
0xF520  
0xF521  
0xF522  
0xF523  
0xF524  
0xF525  
0xF526  
0xF527  
0xF528  
0xF529  
0xF52A  
0xF52B  
0xF52C  
0xF52D  
0xF530  
0xF531  
0xF532  
0xF533  
0xF534  
0xF535  
0xF536  
0xF537  
0xF538  
0xF539  
0xF53A  
0xF53B  
0xF53C  
0xF53D  
Register  
Description  
MP0_MODE  
MP1_MODE  
MP2_MODE  
MP3_MODE  
MP4_MODE  
MP5_MODE  
MP6_MODE  
MP7_MODE  
MP8_MODE  
MP9_MODE  
MP10_MODE  
MP11_MODE  
MP12_MODE  
MP13_MODE  
MP0_WRITE  
MP1_WRITE  
MP2_WRITE  
MP3_WRITE  
MP4_WRITE  
MP5_WRITE  
MP6_WRITE  
MP7_WRITE  
MP8_WRITE  
MP9_WRITE  
MP10_WRITE  
MP11_WRITE  
MP12_WRITE  
MP13_WRITE  
MP0_READ  
MP1_READ  
MP2_READ  
MP3_READ  
MP4_READ  
MP5_READ  
MP6_READ  
MP7_READ  
MP8_READ  
MP9_READ  
MP10_READ  
MP11_READ  
MP12_READ  
MP13_READ  
Multipurpose pin mode (SS_M/MP0)  
Multipurpose pin mode (MOSI_M/MP1)  
Multipurpose pin mode (SCL_M/SCLK_M/MP2)  
Multipurpose pin mode (SDA_M/MISO_M/MP3)  
Multipurpose pin mode (LRCLK_OUT0/MP4)  
Multipurpose pin mode (LRCLK_OUT1/MP5)  
Multipurpose pin mode (MP6)  
Multipurpose pin mode (MP7)  
Multipurpose pin mode (LRCLK_OUT2/MP8)  
Multipurpose pin mode (LRCLK_OUT3/MP9)  
Multipurpose pin mode (LRCLK_IN0/MP10)  
Multipurpose pin mode (LRCLK_IN1/MP11)  
Multipurpose pin mode (LRCLK_IN2/MP12)  
Multipurpose pin mode (LRCLK_IN3/MP13)  
Multipurpose pin write value (SS_M/MP0)  
Multipurpose pin write value (MOSI_M/MP1)  
Multipurpose pin write value (SCL_M/SCLK_M/MP2)  
Multipurpose pin write value (SDA_M/MISO_M/MP3)  
Multipurpose pin write value (LRCLK_OUT0/MP4)  
Multipurpose pin write value (LRCLK_OUT1/MP5)  
Multipurpose pin write value (MP6)  
Multipurpose pin write value (MP7)  
Multipurpose pin write value (LRCLK_OUT2/MP8)  
Multipurpose pin write value (LRCLK_OUT3/MP9)  
Multipurpose pin write value (LRCLK_IN0/MP10)  
Multipurpose pin write value (LRCLK_IN1/MP11)  
Multipurpose pin write value (LRCLK_IN2/MP12)  
Multipurpose pin write value (LRCLK_IN3/MP13)  
Multipurpose pin read value (SS_M/MP0)  
Multipurpose pin read value (MOSI_M/MP1)  
Multipurpose pin read value (SCL_M/SCLK_M/MP2)  
Multipurpose pin read value (SDA_M/MISO_M/MP3)  
Multipurpose pin read value (LRCLK_OUT0/MP4)  
Multipurpose pin read value (LRCLK_OUT1/MP5)  
Multipurpose pin read value (MP6)  
Multipurpose pin read value (MP7)  
Multipurpose pin read value (LRCLK_OUT2/MP8)  
Multipurpose pin read value (LRCLK_OUT3/MP9)  
Multipurpose pin read value (LRCLK_IN0/MP10)  
Multipurpose pin read value (LRCLK_IN1/MP11)  
Multipurpose pin read value (LRCLK_IN2/MP12)  
Multipurpose pin read value (LRCLK_IN3/MP13)  
Rev. C | Page 79 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
AUXILIARY ADC  
There are six auxiliary ADC inputs with 10 bits of accuracy.  
They are intended to be used as control signal inputs, such as  
potentiometer outputs or battery monitor signals.  
The auxiliary ADC samples each channel at a frequency of the  
core system clock divided by 6144. In the case of a default clocking  
scheme, the system clock is 294.912 MHz; therefore, the  
auxiliary ADC sample rate is 48 kHz. If the system clock is  
scaled down by configuring the PLL to generate a lower output  
frequency, the auxiliary ADC sample rate is scaled down  
proportionately.  
Figure 79. Complete Set of Auxiliary ADC Inputs in SigmaStudio  
The auxiliary ADC is referenced so that a full-scale input is  
achieved when the input voltage is equal to AVDD, and an input  
of zero is achieved when the input is connected to ground.  
Auxiliary ADC Registers  
An overview of the registers related to the auxiliary ADC is  
shown in Table 51. For a more detailed description, see the  
Auxiliary ADC Registers section.  
The input impedance of the auxiliary ADC is approximately  
200 kΩ at dc (0 Hz).  
Auxiliary ADC inputs can be used directly in the DSP program  
(as configured in the SigmaStudio software). The instantaneous  
value of each ADC is also available in the ADC_READx registers,  
which are accessible via the I2C or SPI slave control port.  
Table 51. Auxiliary ADC Registers  
Address Register  
Description  
0xF5A0  
0xF5A1  
0xF5A2  
0xF5A3  
0xF5A4  
0xF5A5  
ADC_READ0  
Auxiliary ADC read value (AUXADC0)  
Auxiliary ADC read value (AUXADC1)  
Auxiliary ADC read value (AUXADC2)  
Auxiliary ADC read value (AUXADC3)  
Auxiliary ADC read value (AUXADC4)  
Auxiliary ADC read value (AUXADC5)  
ADC_READ1  
ADC_READ2  
ADC_READ3  
ADC_READ4  
ADC_READ5  
Auxiliary ADC Inputs to the DSP Core  
Auxiliary ADC inputs can be used as control signals in the DSP  
program as configured by SigmaStudio. Figure 78 shows the  
location of the auxiliary ADC input cell in the SigmaStudio  
toolbox.  
SigmaDSP CORE  
The SigmaDSP core operates at a maximum frequency of  
294.912 MHz (or 147.456 MHz), which is equivalent to 6144  
clock cycles per sample at a sample rate of 48 kHz. For a sample  
rate of 48 kHz, the largest program possible consists of 6144  
program instructions per sample (or 3072 clock cycles per  
sample in the nominal 150 MHz speed grade). If the system  
clock remains at 294.912 MHz but the audio frame rate of the DSP  
core is decreased, programs consisting of more clock cycles per  
sample are possible.  
The core consists of four multipliers and two accumulators.  
At an operating frequency of 294.912 MHz, the core performs  
1.2 billion MAC operations per second. At maximum efficiency,  
the core processes 3072 IIR biquad filters (single or double  
precision) per sample at a sample rate of 48 kHz. At maximum  
efficiency, the core processes approximately 24,000 FIR filter  
taps per sample at a sample rate of 48 kHz. The instruction set is  
a single instruction, multiple data (SIMD) computing model. The  
DSP core is 32-bit fixed point, with an 8.24 data format for audio.  
Figure 78. Auxiliary ADC Input Cell in the SigmaStudio Toolbox  
The six auxiliary input pins map to the corresponding six  
auxiliary ADC input cells. Figure 79 shows the complete set of  
auxiliary ADC input cells in SigmaStudio.  
Rev. C | Page 80 of 202  
 
 
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
The four multipliers are 64-bit double precision, capable of  
multiplying an 8.56 format number by an 8.24 number. The  
multiply accumulators consist of 16 registers, with a depth of  
80 bits. The core can access RAM with a load/store width of  
256 bits (eight 32-bit words per frame). The two ALUs have an  
80-bit width and operate on numbers in 24.56 format. The  
24.56-bit format provides more than 42 dB of headroom.  
Numeric Formats  
DSP systems commonly use a standard numeric format.  
Fractional number systems are specified by an A.B format,  
where A is the number of bits to the left of the decimal point  
and B is the number of bits to the right of the decimal point.  
The same numeric format is used for both the parameter and  
data values.  
It is possible to create combinations of time domain and  
frequency domain processing, using block and sample frame  
interrupts. Sixteen data address generator (DAG) registers are  
available, and circular buffer addressing is possible.  
A digital clipper circuit is used within the DSP core before  
outputting to the serial port outputs, ASRCs, and S/PDIF. This  
circuit clips the top seven bits (and the least significant bit) of the  
signal to produce a 24-bit output with a range of +1.0 (minus  
1 LSB) to −1.0. Figure 80 shows the maximum signal levels at  
each point in the data flow in both binary and decibel levels.  
Many of the signal processing functions are coded using full,  
64-bit, double precision arithmetic. The serial port input and  
output word lengths are 24 bits; however, eight extra headroom  
bits are used in the processor to allow internal gains of up to  
48 dB without clipping. Additional gains can be achieved by  
initially scaling down the input signal in the DSP signal flow.  
DSP CORE  
8.24 FORMAT  
42dB OF HEADROOM  
DYNAMIC RANGE = 192dB  
SERIAL INPUT PORT  
1.23 FORMAT  
SERIAL OUTPUT PORT  
1.23 FORMAT  
(HEADROOM)  
MAXIMUM 0dBFS  
MAXIMUM 0dBFS  
DYNAMIC RANGE = 144dB  
DYNAMIC RANGE = 144dB  
24-BITS  
32-BITS  
24-BITS  
(HEADROOM)  
Figure 80. Signal Range for 1.23 Format (Serial Ports, ASRCs) and 8.24 Format (DSP Core)  
Rev. C | Page 81 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Numerical Format: 8.24  
The linear range is −128.0 to (+128.0 − 1 LSB). The dynamic range (ratio of the largest possible signal level to the smallest possible  
nonzero signal level) is 192 dB.  
The following are examples of this numerical format:  
0b 1000 0000 0000 0000 0000 0000 0000 0000 = 0x80000000 = 128.0  
0b 1110 0000 0000 0000 0000 0000 0000 0000 = 0xE0000000 = 32.0  
0b 1111 1000 0000 0000 0000 0000 0000 0000 = 0xF8000000 = 8.0  
0b 1111 1110 0000 0000 0000 0000 0000 0000 = 0xFE000000 = 2  
0b 1111 1111 0000 0000 0000 0000 0000 0000 = 0xFF000000 = 1  
0b 1111 1111 1000 0000 0000 0000 0000 0000 = 0xFF800000 = 0.5  
0b 1111 1111 1110 0110 0110 0110 0110 0110 = 0xFFE66666 = 0.1  
0b 1111 1111 1111 1111 1111 1111 1111 1111 = 0xFFFFFFFF = 0.00000005 (1 LSB below 0.0)  
0b 0000 0000 0000 0000 0000 0000 0000 0000 = 0x00000000 = 0.0  
0b 0000 0000 0000 0000 0000 0000 0000 0001 = 0x00000001 = 0.00000005 (1 LSB above 0.0)  
0b 0000 0000 0001 1001 1001 1001 1001 1001 = 0x00199999 = 0.1  
0b 0000 0000 0100 0000 0000 0000 0000 0000 = 0x00400000 = 0.25  
0b 0000 0000 1000 0000 0000 0000 0000 0000 = 0x00800000 = 0.5  
0b 0000 0001 0000 0000 0000 0000 0000 0000 = 0x01000000 = 1.0  
0b 0000 0010 0000 0000 0000 0000 0000 0000 = 0x02000000 = 2.0  
0b 0111 1111 1111 1111 1111 1111 1111 1111 = 0x7FFFFFFF = 127.99999994 (1 LSB below 128.0)  
Rev. C | Page 82 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Numerical Format: 32.0  
The 32.0 format is used for logic signals in the DSP program flow that are integers. The linear range is −2,147,483,648 to +2,147,483,647.  
The dynamic range (ratio of the largest possible signal level to the smallest possible nonzero signal level) is 192 dB.  
The following are examples of this numerical format:  
0b 1000 0000 0000 0000 0000 0000 0000 0000 = 0x80000000 = 2147483648  
0b 1000 0000 0000 0000 0000 0000 0000 0001 = 0x80000001 = 2147483647  
0b 1000 0000 0000 0000 0000 0000 0000 0010 = 0x80000002 = 2147483646  
0b 1100 0000 0000 0000 0000 0000 0000 0000 = 0xC0000000 = 1073741824  
0b 1110 0000 0000 0000 0000 0000 0000 0000 = 0xE0000000 = 536870912  
0b 1111 1111 1111 1111 1111 1111 1111 1100 = 0xFFFFFFFC = 4  
0b 1111 1111 1111 1111 1111 1111 1111 1110 = 0xFFFFFFFE = 2  
0b 1111 1111 1111 1111 1111 1111 1111 1111 = 0xFFFFFFFF = 1  
0b 0000 0000 0000 0000 0000 0000 0000 0000 = 0x00000000 = 0  
0b 0000 0000 0000 0000 0000 0000 0000 0001 = 0x00000001 = 1  
0b 0000 0000 0000 0000 0000 0000 0000 0010 = 0x00000002 = 2  
0b 0000 0000 0000 0000 0000 0000 0000 0011 = 0x00000003 = 3  
0b 0000 0000 0000 0000 0000 0000 0000 0100 = 0x00000004 = 4  
0b 0111 1111 1111 1111 1111 1111 1111 1110 = 0x7FFFFFFE = 2147483646  
0b 0111 1111 1111 1111 1111 1111 1111 1111 = 0x7FFFFFFF = 2147483647  
Rev. C | Page 83 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Hardware Accelerators  
The following sequence of steps is appropriate for programming  
the memories at boot time, or reprogramming the memories  
during operation:  
The core includes accelerators like division, square root, barrel  
shifters, Base 2 logarithm, Base 2 exponential, slew, and a  
pseudorandom number generator. These hardware accelerators  
reduce the number of instructions required for complex audio  
processing algorithms.  
1. Enable soft reset (Register 0xF890 (SOFT_RESET), Bit 0  
(SOFT_RESET) = 0b0), then disable soft reset (Register 0xF890  
(SOFT_RESET), Bit 0 (SOFT_RESET) = 0b1).  
The division accelerator enables efficient processing for audio  
algorithms like compression and limiting. The square root  
accelerator enables efficient processing for audio algorithms  
such as loudness, rms envelopes, and filter coefficient  
calculations. The logarithm and exponent accelerators enable  
efficient processing for audio algorithms involving decibel  
conversion. The slew accelerators provide click free updates of  
parameters that must change slowly over time, allowing audio  
processing algorithms such as mixers, crossfaders, dynamic  
filters, and dynamic volume controls. The pseudorandom  
number generator can efficiently produce white noise, pink  
noise, and dither.  
2. If the DSP is in the process of executing a program, wait for  
the current sample or block to finish processing. For programs  
with no block processing elements in the signal flow, use the  
length of one sample. For example, at a sample rate of 48 kHz,  
one sample is 1/48000 sec, or 20.83 μs. For programs with  
block processing elements in the signal flow, use the length  
of one block. For example, at a sample rate of 48 kHz, with  
a block size of 256 samples, one block is 256/48,000 sec, or  
53.3 ms.  
3. After waiting the appropriate amount of time, as defined in  
the previous step, download the new program and data  
memory contents to the corresponding memory locations  
using the I2C/SPI slave control port.  
Programming the SigmaDSP Core  
4. Start the DSP core (Register 0xF402 (START_CORE), Bit 0  
(START_CORE) = 0b1).  
5. Wait at least two audio samples for the DSP initialization to  
execute. For example, at a sample rate of 48 kHz, two samples  
are equal to 2/48,000 sec, or 41.66 μs.  
The SigmaDSP is programmable via the SigmaStudio graphical  
development tools.  
When the SigmaDSP core is running a program and the user needs  
to reprogram the program and data memories during operation  
of the device, the core must be stopped while the memory is  
being updated to avoid undesired noises on the DSP outputs.  
Rev. C | Page 84 of 202  
Data Sheet  
ADAU1462/ADAU1466  
If a memory corruption is detected, the appropriate flag is signaled  
in the panic manager. The program running in the DSP core  
can monitor the state of the panic manager and can mute the  
audio outputs if an error is encountered, and external devices, such  
as microcontrollers, can poll the panic manager registers or  
monitor the multipurpose pins to perform some  
Reliability Features  
Several reliability features are controlled by a panic manager  
subsystem that monitors the state of the SigmaDSP core and  
memories and generates alerts if error conditions are encountered.  
The panic manager indicates error conditions to the user via  
register flags and GPIO outputs. The origin of the error can be  
traced to different functional blocks such as the watchdog,  
memory, stack, software program, and core op codes.  
preprogrammed action, if necessary.  
DSP Core and Reliability Registers  
Although designed mostly as an aid for software development,  
the panic manager is also useful in monitoring the state of the  
memories over long periods of time, such as in applications  
where the system operates unattended for an extended period,  
and resets are infrequent. The memories in the device have a  
built in self test feature that runs automatically while the device  
is in operation.  
An overview of the registers related to the DSP core is shown in  
Table 52. For a more detailed description, see the DSP Core  
Control Registers section and Debug and Reliability Registers  
section.  
Table 52. DSP Core and Reliability Registers  
Address  
0xF400  
0xF401  
0xF402  
0xF403  
0xF404  
0xF405  
0xF421  
0xF422  
0xF423  
0xF424  
0xF425  
0xF426  
0xF427  
0xF428  
0xF432  
0xF443  
0xF444  
0xF450  
0xF451  
0xF460  
0xF461  
0xF462  
0xF463  
0xF464  
0xF465  
Register  
Description  
HIBERNATE  
START_PULSE  
START_CORE  
KILL_CORE  
START_ADDRESS  
CORE_STATUS  
PANIC_CLEAR  
PANIC_PARITY_MASK  
PANIC_SOFTWARE_MASK  
PANIC_WD_MASK  
PANIC_STACK_MASK  
PANIC_LOOP_MASK  
PANIC_FLAG  
Hibernate setting  
Start pulse selection  
Instruction to start the core  
Instruction to stop the core  
Start address of the program  
Core status  
Clear the panic manager  
Panic parity  
Panic Mask 0  
Panic Mask 1  
Panic Mask 2  
Panic Mask 3  
Panic flag  
Panic code  
Execute stage error program count  
Watchdog maximum count  
Watchdog prescale  
Enable block interrupts  
Value for the block interrupt counter  
Program counter, Bits[23:16]  
Program counter, Bits[15:0]  
Program counter clear  
Program counter length, Bits[23:16]  
Program counter length, Bits[15:0]  
Program counter maximum length, Bits[23:16]  
PANIC_CODE  
EXECUTE_COUNT  
WATCHDOG_MAXCOUNT  
WATCHDOG_PRESCALE  
BLOCKINT_EN  
BLOCKINT_VALUE  
PROG_CNTR0  
PROG_CNTR1  
PROG_CNTR_CLEAR  
PROG_CNTR_LENGTH0  
PROG_CNTR_LENGTH1  
PROG_CNTR_MAXLENGTH0  
Rev. C | Page 85 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Because the slave port cannot access all of the core data memory  
from a single 16-bit address space, the safeload subroutine needs to  
know whether to write to the lower (Page 1) or upper (Page 2)  
section of memory. If the first parameter is to be place on Page 1  
(lower memory), write the number of parameters to be atomically  
written (1 to 5) to num_SafeLoad_Lower and write 0 to num_  
SafeLoad_Upper. Conversely, if the first parameter is to be placed  
on Page 2 (upper memory), write 0 to num_SafeLoad_Lower and  
write the number of parameters to be atomically written (1 to 5) to  
num_SafeLoad_Upper. One of these values passed must always  
be a number between one and five inclusive, and the other value  
must be zero. The second write triggers the safeload operation.  
SOFTWARE FEATURES  
Software Safeload  
To avoid from making the filter unstable during coefficient  
transitions, the SigmaStudio compiler implements a software  
safeload mechanism that is enabled by default. The safeload  
mechanism is also helpful for reducing pops and clicks during  
parameter updates. SigmaStudio automatically sets up the  
necessary code and parameters for all new projects. The safeload  
code, together with other initialization code, fills the beginning  
section of program RAM. Several data memory locations are  
reserved by the compiler for use with the software safeload  
feature. The exact parameter addresses are not fixed; therefore,  
the addresses must be obtained by reading the log file generated  
by the compiler. In most cases, the addresses for software safeload  
parameters match the defaults shown in Table 53.  
The safeload mechanism is software based and executes once  
per audio frame. Therefore, system designers must take care when  
designing the communication protocol. A delay that is equal to or  
greater than the sampling period (the inverse of the sampling  
frequency) is required between each safeload write. At a sample  
rate of 48 kHz, the delay is equal to ≥20.83 μs. Not observing this  
delay corrupts the downloaded data.  
Table 53. Software Safeload Memory Address Defaults  
Address  
(Hex)  
Parameter  
Function  
0x6000  
0x6001  
0x6002  
0x6003  
0x6004  
0x6005  
data_SafeLoad[0]  
data_SafeLoad[1]  
data_SafeLoad[2]  
data_SafeLoad[3]  
data_SafeLoad[4]  
address_SafeLoad  
Safeload Data Slot 0  
Safeload Data Slot 1  
Safeload Data Slot 2  
Safeload Data Slot 3  
Safeload Data Slot 4  
Because the compiler has control over the addresses used for soft-  
ware safeload, the addresses assigned to each parameter may  
differ from the default values in Table 53. The compiler generates  
a file named compiler_output.log in the project folder where the  
SigmaStudio project is stored on the hard drive. In this file, the  
addresses assigned to the software safeload parameters can be  
confirmed.  
Target address for safeload  
transfer  
0x6006  
0x6007  
num_SafeLoad_Lower Number of words to  
write/safeload trigger  
Figure 81 shows an example of the software safeload parameter  
definitions in an excerpt from the compiler_output.log file.  
if on Page 1 lower memory  
num_SafeLoad_Upper Number of words to  
write/safeload trigger  
The following steps are necessary for executing a software safeload:  
if on Page 2 upper memory  
1. Confirm that no safeload operation has been executed in  
the span of the last audio sample.  
2. Write the desired data to the data_SafeLoad, Bit x  
parameters, starting at data_SafeLoad, Bit 0, and  
incrementing, as needed, up to a maximum of five  
parameters.  
The first five addresses in Table 53 are the five data_SafeLoad  
parameters, which are slots for storing the data that is going to  
be transferred into another target memory location. The safeload  
parameter space contains five data slots, by default, because most  
standard signal processing algorithms have five parameters or  
fewer.  
3. Write the desired starting target address to the  
address_SafeLoad parameter.  
The address_SafeLoad parameter is the target address in parameter  
RAM. This designates the first address to be written in the  
safeload transfer. If more than one word is written, the address  
increments automatically for each data-word.  
4. Write the number of words to be transferred to the  
num_SafeLoad parameter. The minimum write length is  
one word, and the maximum write length is five words.  
5. Wait one audio frame for the safeload operation to complete.  
The num_SafeLoad parameters designates the number of words  
to be written. For a biquad filter algorithm, the number of words  
to be written is five because there are five coefficients in a biquad  
IIR filter. For a simple mono gain algorithm, the number of words  
to be written is one. This parameter also serves as the trigger;  
when it is written, a safeload write is triggered on the next frame.  
Rev. C | Page 86 of 202  
 
 
 
Data Sheet  
ADAU1462/ADAU1466  
Figure 81. Compiler Log Output Excerpt with SafeLoad Module Definitions  
PIN DRIVE STRENGTH, SLEW RATE, AND PULL  
CONFIGURATION  
Soft Reset Function  
The soft reset function allows the device to enter a state similar to  
Every digital output pin has configurable drive strength and  
slew rate. This allows the current sourcing ability of the driver  
to be modified to fit the application circuit. In general, higher  
drive strength is needed to improve signal integrity when driving  
high frequency clocks over long distances. Lower drive strength  
can be used for lower frequency clock signals, shorter traces, or  
when reduced system electromagnetic interference (EMI) is  
desired. Slew rate can be increased if the edges of the clock  
signal have rise or fall times that are too long. To achieve adequate  
signal integrity and minimize electromagnetic emissions, use  
the drive strength and slew rate settings in combination with  
good mixed-signal PCB design practices.  
RESET  
when the hardware  
pin is connected to ground. All control  
registers are reset to their default values, except the PLL registers,  
as follows: Register 0xF000 (PLL_CTRL0), Register 0xF001  
(PLL_CTRL1), Register 0xF002 (PLL_CLK_SRC), Register 0xF003  
(PLL_ENABLE), Register 0xF004 (PLL_LOCK), Register 0xF005  
(MCLK_OUT), and Register 0xF006 (PLL_WATCHDOG), as  
well as the registers related to the panic manager.  
Table 54 shows an overview of the register related to the soft reset  
function. For more details, see the Soft Reset Register section.  
Table 54. Soft Reset Register  
Address  
Name  
Description  
0xF890  
SOFT_RESET  
Software reset  
Pin Drive Strength, Slew Rate, and Pull Configuration  
Registers  
An overview of the registers related to pin drive strength, slew rate,  
and pull configuration is shown in Table 55. For a more detailed  
description, see the Hardware Interfacing Registers section.  
Rev. C | Page 87 of 202  
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
Table 55. Pin Drive Strength, Slew Rate, and Pull Configuration Registers  
Address  
0xF780  
0xF781  
0xF782  
0xF783  
0xF784  
0xF785  
0xF786  
0xF787  
0xF788  
0xF789  
0xF78A  
0xF78B  
0xF78C  
0xF78D  
0xF78E  
0xF78F  
0xF790  
0xF791  
0xF792  
0xF793  
0xF794  
0xF795  
0xF796  
0xF797  
0xF798  
0xF799  
0xF79A  
0xF79B  
0xF79C  
0xF79D  
0xF79E  
0xF79F  
0xF7A0  
0xF7A1  
0xF7A2  
0xF7A3  
Register  
Description  
BCLK_IN0_PIN  
BCLK_IN1_PIN  
BCLK_IN2_PIN  
BCLK_IN3_PIN  
BCLK_OUT0_PIN  
BCLK_OUT1_PIN  
BCLK_OUT2_PIN  
BCLK_OUT3_PIN  
LRCLK_IN0_PIN  
LRCLK_IN1_PIN  
LRCLK_IN2_PIN  
LRCLK_IN3_PIN  
LRCLK_OUT0_PIN  
LRCLK_OUT1_PIN  
LRCLK_OUT2_PIN  
LRCLK_OUT3_PIN  
SDATA_IN0_PIN  
SDATA_IN1_PIN  
SDATA_IN2_PIN  
SDATA_IN3_PIN  
SDATA_OUT0_PIN  
SDATA_OUT1_PIN  
SDATA_OUT2_PIN  
SDATA_OUT3_PIN  
SPDIF_TX_PIN  
SCLK_SCL_PIN  
MISO_SDA_PIN  
SS_PIN  
BCLK input pin drive strength and slew rate (BCLK_IN0)  
BCLK input pin drive strength and slew rate (BCLK_IN1)  
BCLK input pin drive strength and slew rate (BCLK_IN2)  
BCLK input pin drive strength and slew rate (BCLK_IN3)  
BCLK output pin drive strength and slew rate (BCLK_OUT0)  
BCLK output pin drive strength and slew rate (BCLK_OUT1)  
BCLK output pin drive strength and slew rate (BCLK_OUT2)  
BCLK output pin drive strength and slew rate (BCLK_OUT3)  
LRCLK input pin drive strength and slew rate (LRCLK_IN0)  
LRCLK input pin drive strength and slew rate (LRCLK_IN1)  
LRCLK input pin drive strength and slew rate (LRCLK_IN2)  
LRCLK input pin drive strength and slew rate (LRCLK_IN3)  
LRCLK output pin drive strength and slew rate (LRCLK_OUT0)  
LRCLK output pin drive strength and slew rate (LRCLK_OUT1)  
LRCLK output pin drive strength and slew rate (LRCLK_OUT2)  
LRCLK output pin drive strength and slew rate (LRCLK_OUT3)  
SDATA input pin drive strength and slew rate (SDATA_IN0)  
SDATA input pin drive strength and slew rate (SDATA_IN1)  
SDATA input pin drive strength and slew rate (SDATA_IN2)  
SDATA input pin drive strength and slew rate (SDATA_IN3)  
SDATA output pin drive strength and slew rate (SDATA_OUT0)  
SDATA output pin drive strength and slew rate (SDATA_OUT1)  
SDATA output pin drive strength and slew rate (SDATA_OUT2)  
SDATA output pin drive strength and slew rate (SDATA_OUT3)  
S/PDIF transmitter pin drive strength and slew rate  
SCLK/SCL pin drive strength and slew rate  
MISO/SDA pin drive strength and slew rate  
SS/ADDR0 pin drive strength and slew rate  
MOSI/ADDR1 pin drive strength and slew rate  
SCL_M/SCLK_M/MP2 pin drive strength and slew rate  
SDA_M/MISO_M/MP3 pin drive strength and slew rate  
SS_M/MP0 pin drive strength and slew rate  
MOSI_M/MP1 pin drive strength and slew rate  
MP6 pin drive strength and slew rate  
MOSI_ADDR1_PIN  
SCLK_SCL_M_PIN  
MISO_SDA_M_PIN  
SS_M_PIN  
MOSI_M_PIN  
MP6_PIN  
MP7_PIN  
CLKOUT_PIN  
MP7 pin drive strength and slew rate  
CLKOUT pin drive strength and slew rate  
Rev. C | Page 88 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
GLOBAL RAM AND CONTROL REGISTER MAP  
The complete set of addresses accessible via the slave I2C/SPI  
control port is described in this section. The addresses are  
divided into two main parts: memory and registers.  
has parity bit protection. The panic manager flags parity errors  
when they are detected. Modulo memory addressing is used in  
several audio processing algorithms. The boundaries between  
the fixed and rotating memories are set in SigmaStudio by the  
compiler, and they require no action on the part of the user.  
RANDOM ACCESS MEMORY  
The ADAU1466 has 1.28 Mb of data memory (40 kWords  
storing 32-bit data). The ADAU1462 has 512 kb of data  
(16 kWords storing 32-bit data).  
Data and parameters assignment to the different memory spaces  
are handled in software. The modulo boundary locations are  
flexible.  
The ADAU1462/ADAU1466 have 8 kWords of program memory.  
Program memory consists of 32-bit words. Op codes for the DSP  
core are either 32 bits or 64 bits; therefore, program instructions  
can take up one or two addresses in memory. The program  
memory has parity bit protection. The panic manager flags  
parity errors when they are detected.  
A ROM table (of over 7 kWords), containing a set of commonly  
used constants, can be accessed by the DSP core. This memory  
increases the efficiency of audio processing algorithm development.  
The table includes information such as trigonometric tables,  
including sine, cosine, tangent, and hyperbolic tangent, twiddle  
factors for frequency domain processing, real mathematical  
constants, such as pi and factors of 2, and complex constants.  
The ROM table is not accessible from the I2C or SPI slave  
control port.  
Program memory can only be written or read when the core is  
stopped. The program memory is hardware protected so that it  
cannot be accidentally overwritten or corrupted at run time.  
The DSP core is able to access directly all memory and registers.  
All memory addresses store 32 bits (4 bytes) of data. The  
memory spaces for the ADAU1466 are defined in Table 56. The  
memory spaces for the ADAU1462 are defined in Table 57.  
Data memory acts as a storage area for both audio data and signal  
processing parameters, such as filter coefficients. The data memory  
Table 56. ADAU1466 Memory Map  
Address Range  
0x0000 to 0x4FFF  
0x0000 to 0x4FFF  
0x6000 to 0xAFFF  
0x6000 to 0xAFFF  
0xC000 to 0xEFFF  
0xC000 to 0xEFFF  
Length  
Memory  
Data-Word Size  
20480 words  
20480 words  
20480 words  
20480 words  
12288 words  
12288 words  
DM0 (Data Memory 0)—lower (Page 1)  
DM0 (Data Memory 0)—upper (Page 2)  
DM1 (Data Memory 1)—lower (Page 1)  
DM1 (Data Memory 1)—upper (Page 2)  
Program memory—lower (Page 1)  
Program memory—upper (Page 2)  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
32 bits  
Table 57. ADAU1462 Memory Map  
Address Range  
0x0000 to 0x2FFF  
0x0000 to 0x2FFF  
0x6000 to 0x8FFF  
0x6000 to 0x8FFF  
0xC000 to 0xDFFF  
0xC000 to 0xDFFF  
Length  
Memory  
Data-Word Size  
32 bits  
32 bits  
32 bits  
32 bits  
12288 words  
12288 words  
12288 words  
12288 words  
8192 words  
8192 words  
DM0 (Data Memory 0)—lower (Page 1)  
DM0 (Data Memory 0)—upper (Page 2)  
DM1 (Data Memory 1)—lower (Page 1)  
DM1 (Data Memory 1)—lower (Page 2)  
Program memory—lower (Page 1)  
Program memory—lower (Page 2)  
32 bits  
32 bits  
Rev. C | Page 89 of 202  
 
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
PM BUS  
DM0 BUS  
DM1 BUS  
CORE  
ADDRESS  
SLAVE CONTROL PORT  
ADDRESS/MAPPING  
CORE  
ADDRESS  
SLAVE CONTROL PORT  
ADDRESS/MAPPING  
CORE  
ADDRESS  
SLAVE CONTROL PORT  
ADDRESS/MAPPING  
0x0000  
0x0000  
0xC000  
0x0000  
0x0000  
0x6000  
PM LOWER  
(PAGE 1)  
DM1 LOWER  
(PAGE 1)  
DM0 LOWER  
(PAGE 1)  
0x1FFF  
0x2000  
0xDFFF  
0xC000  
0x2FFF  
0x3000  
0x2FFF 0x2FFF  
0x8FFF  
0x6000  
PM UPPER  
(PAGE 2)  
0x3000  
0x0000  
0x3FFF  
0x4000  
0xDFFF  
DM0 UPPER  
(PAGE 2)  
DM1 UPPER  
(PAGE 2)  
0x5FFF 0x2FFF  
0x6000  
0x5FFF  
0x6000  
0x8FFF  
0xBFFF  
0xC000  
0xBFFF  
0xC000  
0xBFFF  
0xC000  
BOOT  
ROM  
DATA  
ROM 0  
DATA  
ROM 1  
0xEFFF  
0xF000  
0xEFFF  
0xEFFF  
0xF000  
0xF000  
0xF000  
REGISTERS  
0xFBFF 0xFBFF  
0xF000  
REGISTERS  
0xFBFF  
0xFBFF 0xFBFF  
Figure 82. ADAU1462 Slave Port Memory Map and the Mapping onto the SigmaDSP Core Memory  
Rev. C | Page 90 of 202  
Data Sheet  
ADAU1462/ADAU1466  
PM BUS  
DM0 BUS  
DM1 BUS  
CORE  
SLAVE CONTROL PORT  
CORE  
SLAVE CONTROL PORT  
CORE  
SLAVE CONTROL PORT  
ADDRESS ADDRESS/MAPPING  
ADDRESS ADDRESS/MAPPING  
ADDRESS ADDRESS/MAPPING  
0x0000 0xC000  
0x0000  
0x0000  
0x0000  
0x6000  
PM LOWER  
(PAGE 1)  
DM0 LOWER  
(PAGE 1)  
DM1 LOWER  
(PAGE 1)  
0x2FFF 0xEFFF  
0x3000 0xC000  
PM UPPER  
(PAGE 2)  
0x4FFF 0x4FFF  
0x4FFF  
0x5000  
0xAFFF  
0x6000  
0x5000  
0x0000  
0x5FFF 0xEFFF  
0x6000  
DM0 UPPER  
(PAGE 2)  
DM1 UPPER  
(PAGE 2)  
0x9FFF  
0xA000  
0x4FFF  
0x9FFF  
0xA000  
0xAFFF  
0xBFFF  
0xC000  
0xBFFF  
0xC000  
0xBFFF  
0xC000  
BOOT  
ROM  
DATA  
ROM 0  
DATA  
ROM 1  
0xEFFF  
0xF000  
0xEFFF  
0xF000  
0xEFFF  
0xF000  
0xF000  
REGISTERS  
0xFBFF 0xFBFF  
0xF000  
REGISTERS  
0xFBFF  
0xFBFF  
0xFBFF  
Figure 83. ADAU1466 Slave Port Memory Map and the Mapping onto the SigmaDSP Core Memory  
Rev. C | Page 91 of 202  
ADAU1462/ADAU1466  
Data Sheet  
CONTROL REGISTERS  
All control registers store 16 bits (two bytes) of data. The register map is defined in Table 58.  
Table 58. Control Register Summary  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0xF000 PLL_CTRL0  
0xF001 PLL_CTRL1  
0xF002 PLL_CLK_SRC  
0xF003 PLL_ENABLE  
0xF004 PLL_LOCK  
0xF005 MCLK_OUT  
[15:8]  
[7:0]  
RESERVED[8:1]  
0x0060 RW  
RESERVED[0]  
PLL_FBDIVIDER  
[15:8]  
[7:0]  
RESERVED[13:6]  
0x0000 RW  
0x0000 RW  
RESERVED[5:0]  
PLL_DIV  
[15:8]  
[7:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
CLKSRC  
PLL_ENABLE  
[15:8]  
[7:0]  
0x0000 RW  
[15:8]  
[7:0]  
0x0000  
0x0000  
R
R
PLL_LOCK  
[15:8]  
[7:0]  
RESERVED[12:5]  
RESERVED[4:0]  
CLKOUT_RATE  
CLKOUT_  
ENABLE  
0xF006 PLL_WATCHDOG  
[15:8]  
[7:0]  
RESERVED[14:7]  
RESERVED[14:7]  
0x0001  
R
RESERVED[6:0]  
PLL_WATCHDOG  
0xF00A DISABLE_AUTOLOCK  
[15:8]  
[7:0]  
0x0000 RW  
0x0006 RW  
0x0001 RW  
0x0009 RW  
0x0001 RW  
RESERVED[6:0]  
DISABLE_  
AUTOLOCK  
0xF020 CLK_GEN1_M  
0xF021 CLK_GEN1_N  
0xF022 CLK_GEN2_M  
0xF023 CLK_GEN2_N  
[15:8]  
RESERVED  
CLOCKGEN1_  
M[8]  
[7:0]  
CLOCKGEN1_M[7:0]  
RESERVED  
[15:8]  
CLOCKGEN1_  
N[8]  
[7:0]  
CLOCKGEN1_N[7:0]  
RESERVED  
[15:8]  
CLOCKGEN2_  
M[8]  
[7:0]  
CLOCKGEN2_M[7:0]  
RESERVED  
[15:8]  
CLOCKGEN2_  
N[8]  
[7:0]  
CLOCKGEN2_N[7:0]  
0xF024 CLK_GEN3_M  
0xF025 CLK_GEN3_N  
0xF026 CLK_GEN3_SRC  
0xF027 CLK_GEN3_LOCK  
0xF050 POWER_ENABLE0  
[15:8]  
[7:0]  
CLOCKGEN3_M[15:8]  
CLOCKGEN3_M[7:0]  
CLOCKGEN3_N[15:8]  
CLOCKGEN3_N[7:0]  
RESERVED[10:3]  
0x0000 RW  
0x0000 RW  
0x000E RW  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
RESERVED[2:0]  
RESERVED  
CLK_GEN3_SRC  
RESERVED[14:7]  
RESERVED[6:0]  
FREF_PIN  
[15:8]  
[7:0]  
0x0000 R  
GEN3_LOCK  
[15:8]  
ASRCBANK0_  
0x0000 RW  
PWR  
[7:0] SOUT3_PWR
[15:8]  
SIN0_PWR  
0xF051 POWER_ENABLE1  
RESERVED[10:3]  
0x0000 RW  
0x0000 RW  
[7:0]  
[15:8]  
[7:0]  
RESERVED[2:0]  
ADC_PWR  
0xF100 ASRC_INPUTx  
...  
0xF107  
RESERVED  
ASRC_SIN_CHANNEL  
ASRC_SOURCE  
0xF140 ASRC_OUT_RATEx  
...  
0xF147  
[15:8]  
[7:0]  
RESERVED[11:4]  
RESERVED[9:2]  
0x0000 RW  
0x0000 RW  
RESERVED[3:0]  
ASRC_RATE  
0xF180 SOUT_SOURCEx  
...  
0xF197  
[15:8]  
[7:0]  
RESERVED[1:0]  
SOUT_ASRC_SELECT  
SOUT_SOURCE  
0xF1C0 SPDIFTX_INPUT  
[15:8]  
RESERVED[13:6]  
0x0000 RW  
0x0000 RW  
[7:0]  
RESERVED[5:0]  
SPDIFTX_SOURCE  
LRCLK_MODE LRCLK_POL  
TDM_MODE  
0xF200 SERIAL_BYTE_x_0  
...  
0xF21C  
[15:8]  
LRCLK_SRC  
BCLK_SRC  
[7:0] BCLK_POL  
0xF201 SERIAL_BYTE_x_1  
...  
0xF21D  
[15:8]  
RESERVED[9:2]  
0x0002 RW  
0x0000 RW  
[7:0]  
RESERVED[1:0]  
FS  
0xF300 FTDM_INx  
[15:8]  
RESERVED  
...  
[7:0] SLOT_  
BYTE_IN_POS  
0xF33F  
ENABLE_IN  
Rev. C | Page 92 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0xF380 FTDM_OUTx  
[15:8]  
RESERVED  
0x0000 RW  
...  
[7:0] SLOT_  
BYTE_OUT_POS  
0xF3BF  
ENABLE_OUT
0xF400 HIBERNATE  
[15:8]  
[7:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[10:3]  
0x0000 RW  
0x0002 RW  
0x0000 RW  
0x0000 RW  
0x0000 RW  
HIBERNATE  
0xF401 START_PULSE  
0xF402 START_CORE  
0xF403 KILL_CORE  
[15:8]  
[7:0]  
RESERVED[2:0]  
START_PULSE  
[15:8]  
[7:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
START_CORE  
KILL_CORE  
[15:8]  
[7:0]  
0xF404 START_ADDRESS  
0xF405 CORE_STATUS  
0xF420 DEBUG_MODE  
0xF421 PANIC_CLEAR  
0xF422 PANIC_PARITY_MASK  
[15:8]  
[7:0]  
START_ADDRESS[15:8]  
START_ADDRESS[7:0]  
RESERVED[12:5]  
[15:8]  
[7:0]  
0x0000 R  
RESERVED[4:0]  
CORE_STATUS  
[15:8]  
[7:0]  
RESERVED[14:7]  
0x0000 RW  
0x0000 RW  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
DEBUG_MODE  
PANIC_CLEAR  
[15:8]  
[7:0]  
[15:8]  
RESERVED  
DM1_BANK0_ 0x0003 RW  
MASK  
[7:0] DM0_BANK3_ 
ASRC0_MASK  
MASK  
0xF423 PANIC_SOFTWARE_  
MASK  
[15:8]  
[7:0]  
RESERVED[14:7]  
0x0000 RW  
RESERVED[6:0]  
PANIC_  
SOFTWARE  
0xF424 PANIC_WD_MASK  
0xF425 PANIC_STACK_MASK  
0xF426 PANIC_LOOP_MASK  
0xF427 PANIC_FLAG  
[15:8]  
[7:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
0x0000 RW  
0x0000 RW  
0x0000 RW  
PANIC_WD  
[15:8]  
[7:0]  
PANIC_STACK  
PANIC_LOOP  
PANIC_FLAG  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
0x0000  
0x0000  
R
R
RESERVED[6:0]  
0xF428 PANIC_CODE  
[15:8] ERR_SOFT  
ERR_DM1B0  
[7:0] ERR_DM0B3  
[15:8]  
[7:0]  
ERR_ASRC0  
0xF429 DECODE_OP0  
0xF42A DECODE_OP1  
0xF42B DECODE_OP2  
0xF42C DECODE_OP3  
0xF42D EXECUTE_OP0  
0xF42E EXECUTE_OP1  
0xF42F EXECUTE_OP2  
0xF430 EXECUTE_OP3  
0xF431 DECODE_COUNT  
0xF432 EXECUTE_COUNT  
0xF433 SOFTWARE_VALUE_0  
0xF434 SOFTWARE_VALUE_1  
DECODE_OP0[15:8]  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R
R
R
R
R
R
R
R
R
R
R
R
DECODE_OP0[7:0]  
DECODE_OP1[15:8]  
DECODE_OP1[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
DECODE_OP2[15:8]  
DECODE_OP2[7:0]  
[15:8]  
[7:0]  
DECODE_OP3[15:8]  
DECODE_OP3[7:0]  
[15:8]  
[7:0]  
DECODE_EX0[15:8]  
DECODE_EX0[7:0]  
[15:8]  
[7:0]  
DECODE_EX1[15:8]  
DECODE_EX1[7:0]  
[15:8]  
[7:0]  
DECODE_EX2[15:8]  
DECODE_EX2[7:0]  
[15:8]  
[7:0]  
DECODE_EX3[15:8]  
DECODE_EX3[7:0]  
[15:8]  
[7:0]  
DECODE_COUNT[15:8]  
DECODE_COUNT[7:0]  
EXECUTE_COUNT[15:8]  
EXECUTE_COUNT[7:0]  
SOFTWARE_VALUE_0[15:8]  
SOFTWARE_VALUE_0[7:0]  
SOFTWARE_VALUE_1[15:8]  
SOFTWARE_VALUE_1[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
0xF443 WATCHDOG_  
MAXCOUNT  
[15:8]  
[7:0]  
RESERVED  
WD_MAXCOUNT[12:8]  
0x0000 RW  
WD_MAXCOUNT[7:0]  
Rev. C | Page 93 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0xF444 WATCHDOG_  
PRESCALE  
[15:8]  
[7:0]  
RESERVED[11:4]  
0x0000 RW  
RESERVED[3:0]  
WD_PRESCALE  
0xF450 BLOCKINT_EN  
0xF451 BLOCKINT_VALUE  
0xF460 PROG_CNTR0  
0xF461 PROG_CNTR1  
0xF462 PROG_CNTR_CLEAR  
[15:8]  
[7:0]  
RESERVED[14:7]  
0x0000 RW  
RESERVED[6:0]  
BLOCKINT_VALUE[15:8]  
BLOCKINT_EN  
[15:8]  
[7:0]  
0x0000 RW  
BLOCKINT_VALUE[7:0]  
RESERVED  
[15:8]  
[7:0]  
0x0000  
0x0000  
R
R
PROG_CNTR_MSB  
PROG_CNTR_LSB[15:8]  
PROG_CNTR_LSB[7:0]  
RESERVED[14:7]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
0x0000 RW  
RESERVED[6:0]  
PROG_CNTR_  
CLEAR  
0xF463 PROG_CNTR_LENGTH0 [15:8]  
RESERVED  
0x0000  
0x0000  
0x0000  
0x0000  
R
R
R
R
[7:0]  
0xF464 PROG_CNTR_LENGTH1 [15:8]  
[7:0]  
PROG_LENGTH_MSB  
PROG_LENGTH_LSB[15:8]  
PROG_LENGTH_LSB[7:0]  
RESERVED  
0xF465 PROG_CNTR_  
MAXLENGTH0  
[15:8]  
[7:0]  
PROG_MAXLENGTH_MSB  
PROG_MAXLENGTH_LSB[15:8]  
PROG_MAXLENGTH_LSB[7:0]  
0xF466 PROG_CNTR_  
MAXLENGTH1  
[15:8]  
[7:0]  
0xF467 PANIC_PARITY_MASK1 [15:8]  
RESERVED  
DM0_BANK1_ 0x0000 RW  
SUBBANK0_  
MASK  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DM0_BANK0_  
SUBBANK0_  
MASK  
0xF468 PANIC_PARITY_MASK2 [15:8]  
DM0_BANK3_ 0x0000 RW  
SUBBANK0_  
MASK  
[7:0]  
DM0_BANK2_  
SUBBANK0_  
MASK  
0xF469 PANIC_PARITY_MASK3 [15:8]  
DM1_BANK1_ 0x0000 RW  
SUBBANK0_  
MASK  
[7:0]  
DM1_BANK0_  
SUBBANK0_  
MASK  
0xF46A PANIC_PARITY_MASK4 [15:8]  
DM1_BANK3_ 0x0000 RW  
SUBBANK0_  
MASK  
[7:0]  
0xF46B PANIC_PARITY_MASK5 [15:8]  
[7:0]  
DM1_BANK2_  
SUBBANK0_  
MASK  
RESERVED  
PM_BANK1_  
0x0000 RW  
SUBBANK0_  
MASK  
RESERVED  
PM_BANK0_  
SUBBANK0_  
MASK  
0xF46C PANIC_CODE1  
0xF46D PANIC_CODE2  
0xF46E PANIC_CODE3  
0xF46F PANIC_CODE4  
0xF470 PANIC_CODE5  
[15:8]  
[7:0]  
RESERVED  
ERR_  
DM0B1SB0  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R
R
R
R
R
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ERR_  
DM0B0SB0  
[15:8]  
[7:0]  
ERR_  
DM0B3SB0  
ERR_  
DM0B2SB0  
[15:8]  
[7:0]  
ERR_  
DM1B1SB0  
ERR_  
DM1B0SB0  
[15:8]  
[7:0]  
ERR_  
DM1B3SB0  
ERR_  
DM1B2SB0  
[15:8]  
[7:0]  
RESERVED  
RESERVED  
ERR_PM_  
B1SB0  
ERR_PM_  
B0SB0  
Rev. C | Page 94 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
SS_SELECT  
Bit 0  
Reset RW  
0xF510 MPx_MODE  
...  
0xF51D  
[15:8]  
[7:0]  
RESERVED  
0x0000 RW  
DEBOUNCE_VALUE  
MP_MODE  
MP_ENABLE  
0xF520 MPx_WRITE  
...  
0xF52D  
[15:8]  
[7:0]  
RESERVED[14:7]  
0x0000 RW  
RESERVED[6:0]  
MP_REG_WRITE  
MP_REG_READ  
DMIC_EN  
0xF530 MPx_READ  
...  
0xF53D  
[15:8]  
[7:0]  
RESERVED[14:7]  
RESERVED[6:0]  
0x0000 R  
0xF560 DMIC_CTRLn  
...  
0xF561  
[15:8] RESERVED  
[7:0] RESERVED  
CUTOFF  
MIC_DATA_SRC  
0x4000 RW  
0xF580 ASRC_LOCK  
0xF581 ASRC_MUTE  
[15:8]  
RESERVED  
0x0000  
0x0000 RW  
0x0000  
R
[7:0] ASRC7L  
[15:8]  
ASRC0L  
RESERVED  
LOCKMUTE  
ASRC_RAMP1 ASRC_RAMP0  
ASRC0M  
[7:0] ASRC7M  
[15:8]  
0xF582 ASRCx_RATIO  
...  
0xF589  
ASRC_RATIO[15:8]  
ASRC_RATIO[7:0]  
R
[7:0]  
0xF590 ASRC_RAMPMAX_OVR [15:8]  
[7:0]  
ASRC_RAMPMAX_OVR[15:12]  
OVERRIDE  
OVR_RAMPMAX_VALUE[10:8]  
RAMPMAX_VALUE[10:8]  
0x07FF RW  
0x07FF RW  
OVR_RAMPMAX_VALUE[7:0]  
0xF591 ASRCx_RAMPMAX  
[15:8]  
[7:0]  
ASRCx_RAMPMAX[15:11]  
...  
RAMPMAX_VALUE[7:0]  
0xF598  
0xF5A0 ADC_READx  
...  
0xF5A5  
[15:8]  
[7:0]  
ADC_VALUE[15:8]  
ADC_VALUE[7:0]  
0x0000  
0x0000  
R
R
0xF600 SPDIF_LOCK_DET  
0xF601 SPDIF_RX_CTRL  
[15:8]  
[7:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[11:4]  
LOCK  
[15:8]  
[7:0]  
0x0000 RW  
RESERVED[3:0]  
RX_LENGTHCTRL  
0xF602 SPDIF_RX_DECODE  
[15:8]  
[7:0]  
RESERVED  
RX_WORDLENGTH_R[3:2]  
0x0000  
0x0000  
R
R
RX_WORDLENGTH_R[1:0]  
RX_WORDLENGTH_L  
COMPR_MODE[15:8]  
COMPR_MODE[7:0]  
RESERVED[14:7]  
COMPR_TYPE AUDIO_TYPE  
0xF603 SPDIF_RX_  
COMPRMODE  
[15:8]  
[7:0]  
0xF604 SPDIF_RESTART  
[15:8]  
[7:0]  
0x0000 RW  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[10:3]  
TDMOUT_CLK  
RESERVED[14:7]  
RESERVED[6:0]  
RESTART_AUDIO  
LOSS_OF_LOCK  
RX_MCLKSPEED  
TX_MCLKSPEED  
0xF605 SPDIF_LOSS_OF_LOCK [15:8]  
0x0000 R  
[7:0]  
0xF606 SPDIF_RX_MCLKSPEED [15:8]  
0x0001 RW  
0x0001 RW  
0x0000 RW  
[7:0]  
0xF607 SPDIF_TX_MCLKSPEED [15:8]  
[7:0]  
0xF608 SPDIF_AUX_EN  
[15:8]  
[7:0]  
RESERVED[2:0]  
TDMOUT  
0xF60F SPDIF_RX_AUXBIT_  
READY  
[15:8]  
[7:0]  
0x0000  
0x0000  
R
R
AUXBITS_READY  
0xF610 SPDIF_RX_CS_LEFT_x  
...  
0xF61B  
[15:8]  
[7:0]  
SPDIF_RX_CS_LEFT[15:8]  
SPDIF_RX_CS_LEFT[7:0]  
0xF620 SPDIF_RX_CS_RIGHT_x [15:8]  
SPDIF_RX_CS_RIGHT[15:8]  
SPDIF_RX_CS_RIGHT[7:0]  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
R
R
R
R
R
R
...  
[7:0]  
0xF62B  
0xF630 SPDIF_RX_UD_LEFT_x [15:8]  
SPDIF_RX_UD_LEFT[15:8]  
SPDIF_RX_UD_LEFT[7:0]  
...  
[7:0]  
0xF63B  
0xF640 SPDIF_RX_UD_RIGHT_x [15:8]  
SPDIF_RX_UD_RIGHT[15:8]  
SPDIF_RX_UD_RIGHT[7:0]  
...  
[7:0]  
0xF64B  
0xF650 SPDIF_RX_VB_LEFT_x  
...  
0xF65B  
[15:8]  
[7:0]  
SPDIF_RX_VB_LEFT[15:8]  
SPDIF_RX_VB_LEFT[7:0]  
0xF660 SPDIF_RX_VB_RIGHT_x [15:8]  
SPDIF_RX_VB_RIGHT[15:8]  
SPDIF_RX_VB_RIGHT[7:0]  
...  
[7:0]  
0xF66B  
0xF670 SPDIF_RX_PB_LEFT_x  
...  
0xF67B  
[15:8]  
[7:0]  
SPDIF_RX_PB_LEFT[15:8]  
SPDIF_RX_PB_LEFT[7:0]  
Rev. C | Page 95 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0xF680 SPDIF_RX_PB_RIGHT_x [15:8]  
SPDIF_RX_PB_RIGHT[15:8]  
SPDIF_RX_PB_RIGHT[7:0]  
0x0000 R  
...  
[7:0]  
0xF68B  
0xF690 SPDIF_TX_EN  
0xF691 SPDIF_TX_CTRL  
[15:8]  
[7:0]  
RESERVED[14:7]  
RESERVED[6:0]  
0x0000 RW  
0x0000 RW  
TXEN  
[15:8]  
[7:0]  
RESERVED[13:6]  
RESERVED[5:0]  
TX_  
LENGTHCTRL  
0xF69F SPDIF_TX_AUXBIT_SOU [15:8]  
RESERVED[14:7]  
RESERVED[6:0]  
0x0000 RW  
RCE  
[7:0]  
TX_AUXBITS_  
SOURCE  
0xF6A0 SPDIF_TX_CS_LEFT_x  
...  
0xF6AB  
[15:8]  
[7:0]  
SPDIF_TX_CS_LEFT[15:8]  
SPDIF_TX_CS_LEFT[7:0]  
0x0000 RW  
0x0000 RW  
0x0000 RW  
0x0000 RW  
0x0000 RW  
0x0000 RW  
0x0000 RW  
0x0000 RW  
0x0018 RW  
0x0018 RW  
0xF6B0 SPDIF_TX_CS_RIGHT_x [15:8]  
...  
0xF6BB  
SPDIF_TX_CS_RIGHT[15:8]  
SPDIF_TX_CS_RIGHT[7:0]  
[7:0]  
0xF6C0 SPDIF_TX_UD_LEFT_x  
...  
0xF6CB  
[15:8]  
[7:0]  
SPDIF_TX_UD_LEFT[15:8]  
SPDIF_TX_UD_LEFT[7:0]  
0xF6D0 SPDIF_TX_UD_RIGHT_x [15:8]  
...  
0xF6DB  
SPDIF_TX_UD_RIGHT[15:8]  
SPDIF_TX_UD_RIGHT[7:0]  
[7:0]  
0xF6E0 SPDIF_TX_VB_LEFT_x  
...  
0xF6EB  
[15:8]  
[7:0]  
SPDIF_TX_VB_LEFT[15:8]  
SPDIF_TX_VB_LEFT[7:0]  
0xF6F0 SPDIF_TX_VB_RIGHT_x [15:8]  
...  
0xF6FB  
SPDIF_TX_VB_RIGHT[15:8]  
SPDIF_TX_VB_RIGHT[7:0]  
[7:0]  
0xF700 SPDIF_TX_PB_LEFT_x  
...  
0xF70B  
[15:8]  
[7:0]  
SPDIF_TX_PB_LEFT[15:8]  
SPDIF_TX_PB_LEFT[7:0]  
0xF710 SPDIF_TX_PB_RIGHT_x [15:8]  
...  
0xF71B  
SPDIF_TX_PB_RIGHT[15:8]  
SPDIF_TX_PB_RIGHT[7:0]  
[7:0]  
0xF780 BCLK_INx_PIN  
...  
0xF783  
[15:8]  
[7:0]  
RESERVED[10:3]  
RESERVED[2:0]  
RESERVED[2:0]  
BCLK_IN_DRIVE  
0xF784 BCLK_OUTx_PIN  
...  
0xF787  
[15:8]  
[7:0]  
RESERVED[10:3]  
BCLK_OUT_DRIVE  
0xF788 LRCLK_INx_PIN  
...  
0xF78B  
[15:8]  
[7:0]  
RESERVED[10:3]  
0x0018 RW  
0x0018 RW  
RESERVED[2:0]  
RESERVED[2:0]  
LRCLK_IN_DRIVE  
0xF78C LRCLK_OUTx_PIN  
...  
0xF78F  
[15:8]  
[7:0]  
RESERVED[10:3]  
LRCLK_OUT_DRIVE  
0xF790 SDATA_INx_PIN  
...  
0xF793  
[15:8]  
[7:0]  
RESERVED[10:3]  
0x0018 RW  
0x0008 RW  
RESERVED[2:0]  
RESERVED[2:0]  
SDATA_IN_DRIVE  
0xF794 SDATA_OUTx_PIN  
...  
0xF797  
[15:8]  
[7:0]  
RESERVED[10:3]  
SDATA_OUT_DRIVE  
0xF798 SPDIF_TX_PIN  
0xF799 SCLK_SCL_PIN  
0xF79A MISO_SDA_PIN  
[15:8]  
[7:0]  
RESERVED[10:3]  
SPDIF_TX_PULL  
RESERVED[10:3]  
SCLK_SCL_PULL  
RESERVED[10:3]  
0x0008 RW  
0x0008 RW  
0x0008 RW  
RESERVED[2:0]  
RESERVED[2:0]  
RESERVED[2:0]  
SPDIF_TX_SLEW  
SCLK_SCL_SLEW  
SPDIF_TX_DRIVE  
SCLK_SCL_DRIVE  
MISO_SDA_DRIVE  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
0xF79B SS_PIN  
[15:8]  
[7:0]  
RESERVED[10:3]  
0x0018 RW  
0x0018 RW  
RESERVED[2:0]  
RESERVED[2:0]  
SS_PULL  
SS_SLEW  
SS_DRIVE  
0xF79C MOSI_ADDR1_PIN  
[15:8]  
[7:0]  
RESERVED[10:3]  
MOSI_ADDR1_DRIVE  
0xF79D SCLK_SCL_M_PIN  
[15:8]  
[7:0]  
RESERVED[10:3]  
0x0008 RW  
RESERVED[2:0]  
SCLK_SCL_M_  
PULL  
SCLK_SCL_M_SLEW  
SCLK_SCL_M_DRIVE  
Rev. C | Page 96 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0xF79E MISO_SDA_M_PIN  
[15:8]  
[7:0]  
RESERVED[10:3]  
0x0008 RW  
RESERVED[2:0]  
MISO_SDA_M_DRIVE  
0xF79F SS_M_PIN  
0xF7A0 MOSI_M_PIN  
0xF7A1 MP6_PIN  
0xF7A2 MP7_PIN  
0xF7A3 CLKOUT_PIN  
[15:8]  
[7:0]  
RESERVED[10:3]  
0x0018 RW  
0x0018 RW  
0x0018 RW  
0x0018 RW  
0x0008 RW  
0x0000 RW  
0x0000 RW  
RESERVED[2:0]  
RESERVED[2:0]  
RESERVED[2:0]  
RESERVED[2:0]  
RESERVED[2:0]  
SS_M_PULL  
SS_M_SLEW  
MOSI_M_SLEW  
MP6_SLEW  
SS_M_DRIVE  
MOSI_M_DRIVE  
MP6_DRIVE  
MP7_DRIVE  
CLKOUT_DRIVE  
PAGE  
[15:8]  
[7:0]  
RESERVED[10:3]  
MOSI_M_PULL  
RESERVED[10:3]  
MP6_PULL  
RESERVED[10:3]  
MP7_PULL  
RESERVED[10:3]  
CLKOUT_PULL  
RESERVED[14:7]  
RESERVED[6:0]  
RESERVED[14:7]  
[15:8]  
[7:0]  
[15:8]  
[7:0]  
MP7_SLEW  
[15:8]  
[7:0]  
CLKOUT_SLEW  
0xF899 SECONDPAGE_ENABLE [15:8]  
[7:0]  
0xF890 SOFT_RESET  
[15:8]  
[7:0]  
RESERVED[6:0]  
SOFT_RESET  
Rev. C | Page 97 of 202  
ADAU1462/ADAU1466  
Data Sheet  
CONTROL REGISTER DETAILS  
PLL CONFIGURATION REGISTERS  
PLL Feedback Divider Register  
Address: 0xF000, Reset: 0x0060, Name: PLL_CTRL0  
This register is the value of the feedback divider in the PLL. This value effectively multiplies the frequency of the input clock to the PLL,  
creating the output system clock, which clocks the DSP core and other digital circuit blocks. The format of the value stored in this register  
is binary integer in 7.0 format. For example, the default feedback divider value of 96 is stored as 0x60. The value written to this register  
does not take effect until Register 0xF003 (PLL_ENABLE), Bit 0 (PLL_ENABLE) changes state from 0b0 to 0b1.  
Table 59. Bit Descriptions for PLL_CTRL0  
Bits  
Bit Name  
Settings Description  
Reset  
0x0  
Access  
RW  
[15:7]  
[6:0]  
RESERVED  
PLL_FBDIVIDER  
PLL feedback divider. This is the value of the feedback divider in the PLL, which  
0x60  
RW  
effectively multiplies the frequency of the input clock to the PLL, creating the  
output system clock, which clocks the DSP core and other digital circuit  
blocks. The format of the value stored in this register is binary integer in 7.0  
format. For example, the default feedback divider value of 96 is stored as 0x60.  
PLL Prescale Divider Register  
Address: 0xF001, Reset: 0x0000, Name: PLL_CTRL1  
This register sets the input prescale divider for the PLL. The value written to this register does not take effect until Register 0xF003  
(PLL_ENABLE), Bit 0 (PLL_ENABLE) changes state from 0b0 to 0b1.  
Table 60. Bit Descriptions for PLL_CTRL1  
Bits  
Bit Name  
RESERVED  
PLL_DIV  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:2]  
[1:0]  
PLL input clock divider. This prescale clock divider creates the PLL input  
clock from the externally input master clock. The nominal frequency of  
the PLL input is 3.072 MHz. Therefore, if the input master clock frequency  
is 3.072 MHz, set the prescale clock divider to divide by 1. If the input clock is  
12.288 MHz, set the prescale clock divider to divide by 4. The goal is to  
make the input to the PLL as close to 3.072 MHz as possible.  
0x0  
RW  
00 Divide by 1  
01 Divide by 2  
10 Divide by 4  
11 Divide by 8  
Rev. C | Page 98 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
PLL Clock Source Register  
Address: 0xF002, Reset: 0x0000, Name: PLL_CLK_SRC  
This register selects the source of the clock used for input to the core and the clock generators. The clock can either be taken directly from  
the signal on the XTALIN/MCLK pin or from the output of the PLL. In almost every case, it is recommended to use the PLL clock. The value  
written to this register does not take effect until Register 0xF003 (PLL_ENABLE), Bit 0 (PLL_ENABLE) changes state from 0b0 to 0b1.  
Table 61. Bit Descriptions for PLL_CLK_SRC  
Bits  
[15:1]  
0
Bit Name  
RESERVED  
CLKSRC  
Settings  
Description  
Reset  
Access  
RW  
0x0  
Clock source select. The PLL output is nominally 294.912 MHz, which is the 0x0  
nominal operating frequency of the core and the clock generator inputs.  
In most use cases, do not use the direct XTALIN/MCLK input option because  
the range of allowable frequencies on the XTALIN/MCLK pin is has an upper  
limit that is significantly lower in frequency than the nominal system clock  
frequency.  
RW  
0
1
Direct from XTALIN/MCLK pin  
PLL clock  
PLL Enable Register  
Address: 0xF003, Reset: 0x0000, Name: PLL_ENABLE  
This register enables or disables the PLL. The PLL does not attempt to lock to an incoming clock until Bit 0 (PLL_ENABLE) is enabled. When  
Bit 0 (PLL_ENABLE) is set to 0b0, the PLL does not output a clock signal, causing all other clock circuits in the device that rely on the PLL to  
become idle. When Bit 0 (PLL_ENABLE) transitions from 0b0 to 0b1, the settings in Register 0xF000 (PLL_CTRL0), Register 0xF001  
(PLL_CTRL1), Register 0xF002 (PLL_CLK_SRC), and Register 0xF005 (MCLK_OUT) are activated.  
Table 62. Bit Descriptions for PLL_ENABLE  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
PLL_ENABLE  
PLL enable. Load the values of Register 0xF000, Register 0xF001,  
Register 0xF002, and Register 0xF005 when this bit transitions from 0b0 to  
0b1.  
0x0  
RW  
0
1
PLL disabled  
PLL enabled  
Rev. C | Page 99 of 202  
ADAU1462/ADAU1466  
Data Sheet  
PLL Lock Register  
Address: 0xF004, Reset: 0x0000, Name: PLL_LOCK  
This register contains a flag that represents the lock status of the PLL. Lock status has four prerequisites: a stable input clock is being  
routed to the PLL, the related PLL registers (Register 0xF000 (PLL_CTRL0), Register 0xF001 (PLL_CTRL1), and Register 0xF002  
(PLL_CLK_SRC)) are set appropriately, the PLL is enabled (Register 0xF003 (PLL_ENABLE), Bit 0 (PLL_ENABLE) = 0b1), and the PLL  
has had adequate time to adjust its feedback path and provide a stable output clock to the rest of the device. The amount of time required  
to achieve lock to a new input clock signal varies based on system conditions, so Bit 0 (PLL_LOCK) provides a clear indication of when  
lock has been achieved.  
Table 63. Bit Descriptions for PLL_LOCK  
Bits  
[15:1]  
0
Bit Name  
RESERVED  
PLL_LOCK  
Settings  
Description  
Reset  
0x0  
Access  
RW  
PLL lock flag (read only).  
PLL unlocked  
PLL locked  
0x0  
R
0
1
Rev. C | Page 100 of 202  
Data Sheet  
ADAU1462/ADAU1466  
CLKOUT Control Register  
Address: 0xF005, Reset: 0x0000, Name: MCLK_OUT  
This register enables and configures the signal output from the CLKOUT pin. The value written to this register does not take effect until  
Register 0xF003 (PLL_ENABLE), Bit 0 (PLL_ENABLE), changes state from 0b0 to 0b1.  
Table 64. Bit Descriptions for MCLK_OUT  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:3]  
[2:1]  
RESERVED  
CLKOUT_RATE  
Frequency of CLKOUT. Frequency of the signal output from the CLKOUT pin.  
These bits set the frequency of the signal on the CLKOUT pin. The frequencies  
documented in Table 64 are examples that are valid for a master clock input  
that is a binary multiple of 3.072 MHz. In this case, the options for output  
rates are 3.072 MHz, 6.144 MHz, 12.288 MHz, or 24.576 MHz. If the input  
master clock is scaled down (for example, to a binary multiple of 2.8224  
MHz), the possible output rates are 2.8224 MHz, 5.6448 MHz, 11.2896  
MHz, or 22.5792 MHz).  
0x0  
RW  
00 Predivider output. This is 3.072 MHz for a nominal system clock of  
294.912 MHz.  
01 Double the predivider output. This is 6.144 MHz for a nominal system  
clock of 294.912 MHz.  
10 Four times the predivider output. This is 12.288 MHz for a nominal system  
clock of 294.912 MHz.  
11 Eight times the predivider output. This is 24.576 MHz for a nominal system  
clock of 294.912 MHz.  
0
CLKOUT_ENABLE  
CLKOUT enable. When this bit is enabled, a clock signal is output from the  
CLKOUT pin of the device. When disabled, the CLKOUT pin is high impedance.  
0x0  
RW  
0
1
CLKOUT pin disabled  
CLKOUT pin enabled  
Rev. C | Page 101 of 202  
 
 
ADAU1462/ADAU1466  
Data Sheet  
Analog PLL Watchdog Control Register  
Address: 0xF006, Reset: 0x0001, Name: PLL_WATCHDOG  
The PLL watchdog is a feature that monitors the PLL and automatically resets it in the event that it reaches an unstable condition. The  
PLL resets itself and automatically attempts to lock to the incoming clock signal again, with the same settings as before. This functionality  
requires no interaction on the part of the user. Ensure that the PLL watchdog is enabled at all times.  
Table 65. Bit Descriptions for PLL_WATCHDOG  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
PLL_WATCHDOG  
PLL watchdog.  
0x1  
RW  
0
1
PLL watchdog disabled  
PLL watchdog enabled  
Rev. C | Page 102 of 202  
Data Sheet  
ADAU1462/ADAU1466  
CLOCK GENERATOR REGISTERS  
Denominator (M) for Clock Generator 1 Register  
Address: 0xF020, Reset: 0x0006, Name: CLK_GEN1_M  
This register contains the denominator (M) for Clock Generator 1.  
Table 66. Bit Descriptions for CLK_GEN1_M  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:9]  
[8:0]  
RESERVED  
CLOCKGEN1_M  
Clock Generator 1 M (denominator). Format is binary integer.  
0x006  
RW  
Numerator (N) for Clock Generator 1 Register  
Address: 0xF021, Reset: 0x0001, Name: CLK_GEN1_N  
This register contains the numerator (N) for Clock Generator 1.  
Table 67. Bit Descriptions for CLK_GEN1_N  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:9]  
[8:0]  
RESERVED  
CLOCKGEN1_N  
Clock Generator 1 N (numerator). Format is binary integer.  
0x001  
RW  
Denominator (M) for Clock Generator 2 Register  
Address: 0xF022, Reset: 0x0009, Name: CLK_GEN2_M  
This register contains the denominator (M) for Clock Generator 2.  
Table 68. Bit Descriptions for CLK_GEN2_M  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:9]  
[8:0]  
RESERVED  
CLOCKGEN2_M  
Clock Generator 2 M (denominator). Format is binary integer.  
0x009  
RW  
Rev. C | Page 103 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Numerator (N) for Clock Generator 2 Register  
Address: 0xF023, Reset: 0x0001, Name: CLK_GEN2_N  
This register contains the numerator (N) for Clock Generator 2.  
Table 69. Bit Descriptions for CLK_GEN2_N  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:9]  
[8:0]  
RESERVED  
CLOCKGEN2_N  
Clock Generator 2 N (numerator). Format is binary integer.  
0x001  
RW  
Denominator (M) for Clock Generator 3 Register  
Address: 0xF024, Reset: 0x0000, Name: CLK_GEN3_M  
This register contains the denominator (M) for Clock Generator 3.  
Table 70. Bit Descriptions for CLK_GEN3_M  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
CLOCKGEN3_M  
Clock Generator 3 M (denominator). Format is binary integer.  
0x0000 RW  
Numerator for (N) Clock Generator 3 Register  
Address: 0xF025, Reset: 0x0000, Name: CLK_GEN3_N  
This register contains the numerator (N) for Clock Generator 3.  
Table 71. Bit Descriptions for CLK_GEN3_N  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
CLOCKGEN3_N  
Clock Generator 3 N (numerator). Format is binary integer.  
0x0000 RW  
Rev. C | Page 104 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Input Reference for Clock Generator 3 Register  
Address: 0xF026, Reset: 0x000E, Name: CLK_GEN3_SRC  
Clock Generator 3 can generate audio clocks using the PLL output (system clock) as a reference, or it can optionally use a reference clock  
entering the device from an external source either on a multipurpose pin (MPx) or the S/PDIF receiver. This register determines the source of  
the reference signal.  
Rev. C | Page 105 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Table 72. Bit Descriptions for CLK_GEN3_SRC  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
CLK_GEN3_SRC  
Reference source for Clock Generator 3. This bit selects the reference of  
Clock Generator 3. If set to use an external reference clock, Bits[3:0] define  
the source pin. Otherwise, the PLL output is used as the reference clock.  
When an external reference clock is used for Clock Generator 3, the resulting  
base output frequency of Clock Generator 3 is the frequency of the input  
reference clock multiplied by the Clock Generator 3 numerator, divided by  
1024. For example: if Bit 4 (CLK_GEN3_SRC) = 0b1 (an external reference  
clock is used); Bits[3:0] (FREF_PIN) = 0b1110 (the input signal of the S/PDIF  
receiver is used as the reference source); the sample rate of the S/PDIF input  
signal = 48 kHz; and the numerator of Clock Generator 3 = 2048; the resulting  
base output sample rate of Clock Generator 3 is 48 kHz × 2048/1024 = 96 kHz.  
0x0  
RW  
0
1
Reference signal provided by PLL output; multiply the frequency of that  
signal by N and divide it by M.  
Reference signal provided by the signal input to the hardware pin defined  
by Bits[3:0] (FREF_PIN); multiply the frequency of that signal by N (and  
then divide by 1024) to get the resulting sample rate. M is ignored.  
[3:0]  
FREF_PIN  
Input reference for Clock Generator 3. If Clock Generator 3 is set up to lock 0xE  
to an external reference clock (Bit 4 (CLK_GEN3_SRC) = 0b1), these bits  
allow the user to specify which pin is receiving the reference clock. The  
signal input to the corresponding pin must be a 50% duty cycle square  
wave clock representing the reference sample rate.  
RW  
0000 Input reference source is SS_M/MP0  
0001 Input reference source is MOSI_M/MP1  
0010 Input reference source is SCL_M/SCLK_M/MP2  
0011 Input reference source is SDA_M/MISO_M/MP3  
0100 Input reference source is LRCLK_OUT0/MP4  
0101 Input reference source is LRCLK_OUT1/MP5  
0110 Input reference source is MP6  
0111 Input reference source is MP7  
1000 Input reference source is LRCLK_OUT2/MP8  
1001 Input reference source is LRCLK_OUT3/MP9  
1010 Input reference source is LRCLK_IN0/MP10  
1011 Input reference source is LRCLK_IN1/MP11  
1100 Input reference source is LRCLK_IN2/MP12  
1101 Input reference source is LRCLK_IN3/MP13  
1110 Input reference source is S/PDIF receiver (recovered frame clock)  
Rev. C | Page 106 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Lock Bit for Clock Generator 3 Input Reference Register  
Address: 0xF027, Reset: 0x0000, Name: CLK_GEN3_LOCK  
This register monitors whether or not Clock Generator 3 has locked to its reference clock source, regardless of whether it is coming from  
the PLL output or from an external reference signal, which is configured in Register 0xF026, Bit 4 (CLK_GEN3_SRC).  
Table 73. Bit Descriptions for CLK_GEN3_LOCK  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
GEN3_LOCK  
Lock bit.  
Not locked  
Locked  
0x0  
R
0
1
Rev. C | Page 107 of 202  
ADAU1462/ADAU1466  
Data Sheet  
POWER REDUCTION REGISTERS  
Power Enable 0 Register  
Address: 0xF050, Reset: 0x0000, Name: POWER_ENABLE0  
For the purpose of power savings, this register allows the clock generators, ASRCs, and serial ports to be disabled when not in use. When  
these functional blocks are disabled, the current draw on the corresponding supply pins decreases.  
Table 74. Bit Descriptions for POWER_ENABLE0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
12  
CLK_GEN3_PWR  
High precision clock generator (Clock Generator 3) power enable. When  
this bit is disabled, Clock Generator 3 is disabled and ceases to output  
audio clocks. Any functional block in hardware, including the DSP core,  
that has been configured to be clocked by Clock Generator 3 ceases to  
function while this bit is disabled.  
0x0  
RW  
0
1
Power disabled  
Power enabled  
11  
CLK_GEN2_PWR  
Clock Generator 2 power enable. When this bit is disabled, Clock Generator 2  
is disabled and ceases to output audio clocks. Any LRCLK_OUTx, LRCLK_INx  
or BCLK_OUTx, BCLK_INx pins that have been configured to output clocks  
generated by Clock Generator 2 output a logic low signal while Clock  
Generator 2 is disabled. Any functional block in hardware, including the  
DSP core, that has been configured to be clocked by Clock Generator 2  
ceases to function while this bit is disabled.  
0x0  
RW  
0
1
Power disabled  
Power enabled  
Rev. C | Page 108 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
10  
CLK_GEN1_PWR  
Clock Generator 1 power enable. When this bit is disabled, Clock Generator 1  
is disabled and ceases to output audio clocks. Any LRCLK_OUTx, LRCLK_INx  
or BCLK_OUTx, BCLK_INx pins that are configured to output clocks  
generated by Clock Generator 1 output a logic low signal while Clock  
Generator 1 is disabled. Any functional block in hardware, including the DSP  
core, that is configured to be clocked by Clock Generator 1 ceases to function  
when this bit is disabled.  
0x0  
RW  
0
1
Power disabled  
Power enabled  
9
8
7
ASRCBANK1_PWR  
ASRCBANK0_PWR  
SOUT3_PWR  
ASRC 4, ASRC 5, ASRC 6, ASRC 7 power enable. When this bit is disabled, ASRC 0x0  
Channel 8 to Channel 15 are disabled, and their output data streams cease.  
Power disabled  
Power enabled  
RW  
RW  
RW  
0
1
ASRC 0, ASRC 1, ASRC 2, ASRC 3 power enable. When this bit is disabled, ASRC 0x0  
Channel 0 to Channel 7 are disabled, and their output data streams cease.  
Power disabled  
Power enabled  
0
1
SDATA_OUT3 power enable. When this bit is disabled, the SDATA_OUT3  
pin and associated serial port circuitry are also disabled. LRCLK_OUT3 and  
BCLK_OUT3 are not affected.  
Power disabled  
Power enabled  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0
1
6
5
4
3
2
1
0
SOUT2_PWR  
SOUT1_PWR  
SOUT0_PWR  
SIN3_PWR  
SIN2_PWR  
SIN1_PWR  
SIN0_PWR  
SDATA_OUT2 power enable. When this bit is disabled, the SDATA_OUT2  
pin and associated serial port circuitry is disabled. LRCLK_OUT2 and  
BCLK_OUT2 are not affected.  
Power disabled  
Power enabled  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
SDATA_OUT1 power enable. When this bit is disabled, the SDATA_OUT1  
pin and associated serial port circuitry are also disabled. LRCLK_OUT1 and  
BCLK_OUT1 are not affected.  
Power disabled  
Power enabled  
0
1
SDATA_OUT0 power enable. When this bit is disabled, the SDATA_OUT0  
pin and associated serial port circuitry are disabled. LRCLK_OUT0 and  
BCLK_OUT0 are not affected.  
Power disabled  
Power enabled  
0
1
SDATA_IN3 power enable. When this bit is disabled, the SDATA_IN3 pin  
and associated serial port circuitry are disabled. LRCLK_IN3 and BCLK_IN3  
are not affected.  
Power disabled  
Power enabled  
0
1
SDATA_IN2 power enable. When this bit is disabled, the SDATA_IN2 pin  
and associated serial port circuitry are disabled. LRCLK_IN2 and BCLK_IN2  
are not affected.  
Power disabled  
Power enabled  
0
1
SDATA_IN1 power enable. When this bit is disabled, the SDATA_IN1 pin  
and associated serial port circuitry are disabled. The LRCLK_IN1 and  
BCLK_IN1 pins are not affected.  
Power disabled  
Power enabled  
0
1
SDATA_IN0 power enable. When this bit is disabled, the SDATA_IN0 pin  
and associated serial port circuitry are disabled. The LRCLK_IN0 and  
BCLK_IN0 pins are not affected.  
0
1
Power disabled  
Power enabled  
Rev. C | Page 109 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Power Enable 1 Register  
Address: 0xF051, Reset: 0x0000, Name: POWER_ENABLE1  
For the purpose of power savings, this register allows the PDM microphone interfaces, S/PDIF interfaces, and auxiliary ADCs to be disabled  
when not in use. When these functional blocks are disabled, the current draw on the corresponding supply pins decreases.  
Table 75. Bit Descriptions for POWER_ENABLE1  
Bits  
[15:5]  
4
Bit Name  
RESERVED  
PDM1_PWR  
Settings  
Description  
Reset  
0x0  
Access  
RW  
PDM Microphone Channel 2 and PDM Microphone Channel 3 power enable.  
When this bit is disabled, PDM Microphone Channel 2 and PDM Microphone  
Channel 3 and their associated circuitry are disabled, and their data values  
cease to update.  
0x0  
RW  
0
1
Power disabled  
Power enabled  
3
PDM0_PWR  
PDM Microphone Channel 0 and PDM Microphone Channel 1 power enable.  
When this bit is disabled, PDM Microphone Channel 0 and PDM Microphone  
Channel 1 and their associated circuitry are disabled, and their data values  
cease to update.  
0x0  
RW  
0
1
Power disabled  
Power enabled  
2
1
0
TX_PWR  
RX_PWR  
ADC_PWR  
S/PDIF transmitter power enable. This bit disables the S/PDIF transmitter  
circuit. Clock and data ceases to output from the S/PDIF transmitter pin,  
and the output is held at logic low as long as this bit is disabled.  
Power disabled  
Power enabled  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
S/PDIF receiver power enable. This bit disables the S/PDIF receiver circuit.  
Clock and data recovery from the S/PDIF input stream ceases until this bit  
is reenabled.  
Power disabled  
Power enabled  
0
1
Auxiliary ADC power enable. When this bit is disabled, the auxiliary ADCs are  
powered down, their outputs cease to update, and they hold their last value.  
0
1
Power disabled  
Power enabled  
Rev. C | Page 110 of 202  
Data Sheet  
ADAU1462/ADAU1466  
AUDIO SIGNAL ROUTING REGISTERS  
ASRC Input Selector Register  
Address: 0xF100 to Address 0xF107 (Increments of 0x1), Reset: 0x0000, Name: ASRC_INPUTx  
These eight registers configure the input signal to the corresponding eight stereo ASRCs on the ADAU1466 and ADAU1462.  
ASRC_INPUT0 configures ASRC Channel 0 and ASRC Channel 1, ASRC_INPUT1 configures ASRC Channel 2 and ASRC Channel 3,  
and so on. Valid input signals to the ASRCs include Serial Input Channel 0 to Serial Input Channel 47, the PDM Microphone Input  
Channel 0 to PDM Microphone Input Channel 3, and the S/PDIF Receiver Channel 0 to S/PDIF Receiver Channel 1.  
Rev. C | Page 111 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Table 76. Bit Descriptions for ASRC_INPUTx  
Bits  
[15:8] RESERVED  
[7:3] ASRC_SIN_CHANNEL  
Bit Name  
Settings Description  
Reset  
0x0  
Access  
RW  
If Bits[2:0] (ASRC_SOURCE) = 0b001, these bits select which serial input  
0x00  
RW  
channel is routed to the ASRC.  
00000 Serial Input Channel 0 and Serial Input Channel 1  
00001 Serial Input Channel 2 and Serial Input Channel 3  
00010 Serial Input Channel 4 and Serial Input Channel 5  
00011 Serial Input Channel 6 and Serial Input Channel 7  
00100 Serial Input Channel 8 and Serial Input Channel 9  
00101 Serial Input Channel 10 and Serial Input Channel 11  
00110 Serial Input Channel 12 and Serial Input Channel 13  
00111 Serial Input Channel 14 and Serial Input Channel 15  
01000 Serial Input Channel 16 and Serial Input Channel 17  
01001 Serial Input Channel 18 and Serial Input Channel 19  
01010 Serial Input Channel 20 and Serial Input Channel 21  
01011 Serial Input Channel 22 and Serial Input Channel 23  
01100 Serial Input Channel 24 and Serial Input Channel 25  
01101 Serial Input Channel 26 and Serial Input Channel 27  
01110 Serial Input Channel 28 and Serial Input Channel 29  
01111 Serial Input Channel 30 and Serial Input Channel 31  
10000 Serial Input Channel 32 and Serial Input Channel 33  
10001 Serial Input Channel 34 and Serial Input Channel 35  
10010 Serial Input Channel 36 and Serial Input Channel 37  
10011 Serial Input Channel 38 and Serial Input Channel 39  
10100 Serial Input Channel 40 and Serial Input Channel 41  
10101 Serial Input Channel 42 and Serial Input Channel 43  
10110 Serial Input Channel 44 and Serial Input Channel 45  
10111 Serial Input Channel 46 and Serial Input Channel 47  
ASRC source select.  
[2:0]  
ASRC_SOURCE  
0x0  
RW  
000 Not used  
001 From serial input ports; select channels using Bits[7:3] (ASRC_SIN_CHANNEL)  
010 From DSP core outputs  
011 From S/PDIF receiver  
100 From digital PDM Microphone Input Channel 0 and PDM Microphone Input  
Channel 1  
101 From digital PDM Microphone Input Channel 2 and PDM Microphone Input  
Channel 3  
Rev. C | Page 112 of 202  
Data Sheet  
ADAU1462/ADAU1466  
ASRC Output Rate Selector Register  
Address: 0xF140 to Address 0xF147 (Increments of 0x1), Reset: 0x0000, Name: ASRC_OUT_RATEx  
These eight registers configure the target output sample rates of the corresponding eight stereo ASRCs on the ADAU1466 and ADAU1462.  
The ASRC takes any arbitrary input sample rate and automatically attempts to resample the data in that signal and output it at the target  
sample rate as configured by these registers. Each of the eight registers corresponds to one of the eight stereo ASRCs. ASRC_OUT_RATE0  
configures ASRC Channel 0 and ASRC Channel 1, ASRC_INPUT1 configures ASRC Channel 2 and ASRC Channel 3, ASRC_OUT_  
RATE2 configures ASRC Channel 4 and ASRC Channel 5, ASRC_OUT_RATE3 configures ASRC Channel 6 and ASRC Channel 7,  
ASRC_OUT_RATE4 configures ASRC Channel 8 and ASRC Channel 9, ASRC_OUT_RATE5 configures ASRC Channel 10 and ASRC  
Channel 11, ASRC_OUT_RATE6 configures ASRC Channel 12 and ASRC Channel 13, and ASRC_OUT_RATE7 configures ASRC  
Channel 14 and ASRC Channel 15. The ASRCs lock their output frequencies to the audio sample rates of any of the serial output ports,  
the DSP start pulse rate of the core, or one of several internally generated sample rates coming from the clock generators.  
Rev. C | Page 113 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Table 77. Bit Descriptions for ASRC_OUT_RATEx  
Bits  
[15:4] RESERVED  
[3:0] ASRC_RATE  
Bit Name  
Settings  
Description  
Reset  
Access  
RW  
0x0  
ASRC target audio output sample rate. The corresponding ASRC can lock its output 0x0  
to a serial output port, the DSP core, or an internally generated rate.  
RW  
0000 No output rate selected  
0001 Use sample rate of SDATA_OUT0 (Register 0xF211 (SERIAL_BYTE_4_1), Bits[4:0])  
0010 Use sample rate of SDATA_OUT1 (Register 0xF215 (SERIAL_BYTE_5_1), Bits[4:0])  
0011 Use sample rate of SDATA_OUT2 (Register 0xF219 (SERIAL_BYTE_6_1), Bits[4:0])  
0100 Use sample rate of SDATA_OUT3 (Register 0xF21D (SERIAL_BYTE_7_1), Bits[4:0])  
0101 Use DSP core audio sampling rate (Register 0xF401 (START_PULSE), Bits[4:0])  
0110 Internal rate (the base output rate of Clock Generator 1); see Register 0xF020  
(CLK_GEN1_M) and Register 0xF021 (CLK_GEN1_N)  
0111 Internal rate × 2 (the doubled output rate of Clock Generator 1); see Register 0xF020  
(CLK_GEN1_M) and Register 0xF021 (CLK_GEN1_N)  
1000 Internal rate × 4 (the quadrupled output rate of Clock Generator 1); see Register 0xF020  
(CLK_GEN1_M) and Register 0xF021 (CLK_GEN1_N)  
1001 Internal rate × (1/2) the halved output rate of Clock Generator 1); see Register 0xF020  
(CLK_GEN1_M) and Register 0xF021 (CLK_GEN1_N)  
1010 Internal rate × (1/3) (one-third output of Clock Generator 2); see Register 0xF022  
(CLK_GEN2_M) and Register 0xF023 (CLK_GEN2_N)  
1011 Internal rate × (1/4) (quartered output of Clock Generator 1); see Register 0xF020  
(CLK_GEN1_M) and Register 0xF021 (CLK_GEN1_N)  
1100 Internal rate × (1/6) (one-sixth output of Clock Generator 2); see Register 0xF022  
(CLK_GEN2_M) and Register 0xF023 (CLK_GEN2_N)  
Rev. C | Page 114 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Source of Data for Serial Output Ports Register  
Address: 0xF180 to 0xF197 (Increments of 0x1), Reset: 0x0000, Name: SOUT_SOURCEx  
These 24 registers correspond to the 24 pairs of output channels used by the serial output ports. Each register corresponds to two audio channels.  
SOUT_SOURCE0 corresponds to Channel 0 and Channel 1, SOUT_SOURCE1 corresponds to Channel 2 and Channel 3, and so on.  
SOUT_SOURCE0 to SOUT_SOURCE7 map to the 16 total channels (Channel 0 to Channel 15) that are fed to SDATA_OUT0.  
SOUT_SOURCE8 to SOUT_SOURCE15 map to the 16 total channels (Channel 16 to Channel 31) that are fed to SDATA_OUT1.  
SOUT_SOURCE16 to SOUT_SOURCE19 map to the eight total channels (Channel 32 to Channel 39) that are fed to SDATA_OUT2.  
SOUT_SOURCE20 to SOUT_SOURCE23 map to the eight total channels (Channel 40 to Channel 47) that are fed to SDATA_OUT3.  
Data originates from several places, including directly from the corresponding input audio channels from the serial input ports, from the  
corresponding audio output channels of the DSP core, from an ASRC output pair, or directly from the PDM microphone inputs.  
Table 78. Bit Descriptions for SOUT_SOURCEx  
Bits  
[15:6] RESERVED  
[5:3] SOUT_ASRC_SELECT  
Bit Name  
Settings  
Description  
Reset  
0x000 RW  
0x0 RW  
Access  
ASRC output channels. If Bits[2:0] (SOUT_SOURCE) are set to 0b011, these bits  
select which ASRC channels are routed to the serial output channels.  
000 ASRC 0 (Channel 0 and Channel 1)  
001 ASRC 1 (Channel 2 and Channel 3)  
010 ASRC 2 (Channel 4 and Channel 5)  
011 ASRC 3 (Channel 6 and Channel 7)  
100 ASRC 4 (Channel 8 and Channel 9)  
101 ASRC 5 (Channel 10 and Channel 11)  
110 ASRC 6 (Channel 12 and Channel 13)  
111 ASRC 7 (Channel 14 and Channel 15)  
Rev. C | Page 115 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[2:0]  
SOUT_SOURCE  
Audio data source for these serial audio output channels. If these bits are set to 0x0  
0b001, the corresponding output channels output a copy of the data from the  
corresponding input channels. For example, if Address 0xF180, Bits[2:0] are set  
to 0b001, Serial Input Channel 0 and Serial Input Channel 1 copy to Serial Out-  
put Channel 0 and Serial Output Channel 1, respectively. If these bits are set to  
0b010, DSP Output Channel 0 and DSP Output Channel 1 copy to Serial Out-  
put Channel 0 and Serial Output Channel 1, respectively. If these bits are set to  
0b011, Bits[5:3] (SOUT_ASRC_SELECT) must be configured to select the  
desired ASRC output.  
RW  
000 Disabled; these output channels are not used  
001 Direct copy of data from corresponding serial input channels  
010 Data from corresponding DSP core output channels  
011 From ASRC (select channel using Bits[5:3], SOUT_ASRC_SELECT)  
100 Digital PDM Microphone Input Channel 0 and Digital PDM Microphone  
Input Channel 1  
101 Digital PDM Microphone Input Channel 2 and Digital PDM Microphone  
Input Channel 3  
S/PDIF Transmitter Data Selector Register  
Address: 0xF1C0, Reset: 0x0000, Name: SPDIFTX_INPUT  
This register configures which data source feeds the S/PDIF transmitter on the ADAU1466 and ADAU1462. Data can originate from the  
S/PDIF outputs of the DSP core or directly from the S/PDIF receiver.  
Table 79. Bit Descriptions for SPDIFTX_INPUT  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:2]  
[1:0]  
RESERVED  
SPDIFTX_SOURCE  
S/PDIF transmitter source.  
0x0  
RW  
00 Disables S/PDIF transmitter  
01 Data originates from S/PDIF Output Channel 0 and S/PDIF Output Channel 1  
of the DSP core, as configured in the DSP program  
10 Data copied directly from S/PDIF Receiver Channel 0 and S/PDIF Receiver  
Channel 1 to S/PDIF Transmitter Channel 0 and S/PDIF Transmitter Channel 1,  
respectively  
Rev. C | Page 116 of 202  
Data Sheet  
ADAU1462/ADAU1466  
SERIAL PORT CONFIGURATION REGISTERS  
Serial Port Control 0 Register  
Address: 0xF200 to 0xF21C (Increments of 0x4), Reset: 0x0000, Name: SERIAL_BYTE_x_0  
These eight registers configure several settings for the corresponding serial input and serial output ports. Channel count, MSB position,  
data-word length, clock polarity, clock sources, and clock type are configured using these registers. On the input side, Register 0xF200  
(SERIAL_BYTE_0_0) corresponds to SDATA_IN0; Register 0xF204 (SERIAL_BYTE_1_0) corresponds to SDATA_IN1; Register 0xF208  
(SERIAL_BYTE_2_0) corresponds to SDATA_IN2; and Register 0xF20C (SERIAL_BYTE_3_0) corresponds to SDATA_IN3. On the output  
side, Register 0xF210 (SERIAL_BYTE_4_0) corresponds to SDATA_OUT0; Register 0xF214 (SERIAL_BYTE_5_0) corresponds to  
SDATA_OUT1; Register 0xF218 (SERIAL_BYTE_6_0) corresponds to SDATA_OUT2; and Register 0xF21C (SERIAL_BYTE_7_0)  
corresponds to SDATA_OUT3.  
Rev. C | Page 117 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Table 80. Bit Descriptions for SERIAL_BYTE_x_0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:13] LRCLK_SRC  
LRCLK pin selection. These bits configure whether the corresponding  
serial port is a frame clock master or slave. When configured as a master,  
the corresponding LRCLK pin (LRCLK_INx for SDATA_INx pins and  
LRCLK_OUTx for SDATA_OUTx pins) with the same number as the serial  
port (for example, LRCLK_OUT0 for SDATA_OUT0) actively drives out a  
clock signal. When configured as a slave, the serial port can receive its  
clock signal from any of the four corresponding LRCLK pins (LRCLK_INx  
pins for SDATA_INx pins or LRCLK_OUTx pins for SDATA_OUTx pins).  
0x0  
RW  
000 Slave from LRCLK_IN0 or LRCLK_OUT0  
001 Slave from LRCLK_IN1 or LRCLK_OUT1  
010 Slave from LRCLK_IN2 or LRCLK_OUT2  
011 Slave from LRCLK_IN3 or LRCLK_OUT3  
100 Master mode; corresponding LRCLK pin actively outputs a clock signal  
[12:10] BCLK_SRC  
BCLK pin selection. These bits configure whether the corresponding serial 0x0  
port is a bit clock master or slave. When configured as a master, the  
corresponding BCLK pin (BCLK_INx for SDATA_INx pins and BCLK_OUTx  
for SDATA_OUTx pins) with the same number as the serial port (for example,  
BCLK_OUT0 for SDATA_OUT0) actively drives out a clock signal. When  
configured as a slave, the serial port can receive its clock signal from any  
of the four corresponding BCLK pins (BCLK_INx pins for SDATA_INx pins or  
BCLK_OUTx pins for SDATA_OUTx pins).  
RW  
000 Slave from BCLK_IN0 or BCLK_OUT0  
001 Slave from BCLK_IN1 or BCLK_OUT1  
010 Slave from BCLK_IN2 or BCLK_OUT2  
011 Slave from BCLK_IN3 or BCLK_OUT3  
100 Master mode; corresponding BCLK pin actively outputs a clock signal  
9
8
LRCLK_MODE  
LRCLK_POL  
LRCLK waveform type. The frame clock can be a 50/50 duty cycle square  
wave or a short pulse.  
50% duty cycle clock (square wave)  
0x0  
RW  
RW  
0
1
Pulse with a width equal to one bit clock cycle  
LRCLK polarity. This bit sets the frame clock polarity on the corresponding 0x0  
serial port. Negative polarity means that the frame starts on the falling  
edge of the frame clock. This conforms to the I2S standard audio format.  
0
1
Negative polarity; frame starts on falling edge of frame clock  
Positive polarity; frame starts on rising edge of frame clock  
7
BCLK_POL  
BCLK polarity. This bit sets the bit clock polarity on the corresponding  
serial port. Negative polarity means that the data signal transitions on the  
falling edge of the bit clock. This conforms to the I2S standard audio format.  
Negative polarity; data transitions on falling edge of bit clock  
Positive polarity; data transitions on rising edge of bit clock  
0x0  
0x0  
RW  
RW  
0
1
[6:5]  
WORD_LEN  
Audio data-word length. These bits set the word length of the audio data  
channels on the corresponding serial port. For serial input ports, if the  
input data has more words than the length as configured by these bits,  
the extra data bits are ignored. For output serial ports, if the word length,  
as configured by these bits, is shorter than the data length coming from  
the data source (the DSP, ASRCs, S/PDIF receiver, PDM inputs, or serial  
inputs), the extra data bits are truncated and output as 0s. If Bits[6:5]  
(WORD_LEN) are set to 0b10 for 32-bit mode, the corresponding 32-bit  
input or output cells are required in SigmaStudio.  
00 24 bits  
01 16 bits  
10 32 bits  
11 Flexible TDM mode (configure using Register 0xF300 to Register 0xF33F,  
FTDM_INx, and Register 0xF380 to Register 0xF3BF, FTDM_OUTx)  
Rev. C | Page 118 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:3]  
DATA_FMT  
MSB position. These bits set the positioning of the data in the frame on  
the corresponding serial port.  
00 I2S (delay data by one BCLK cycle)  
0x0  
RW  
01 Left justified (delay data by zero BCLK cycles)  
10 Right justified for 24-bit data (delay data by 8 BCLK cycles)  
11 Right justified for 16-bit data (delay data by 16 BCLK cycles)  
[2:0]  
TDM_MODE  
Channels per frame and BCLK cycles per channel. These bits set the number  
of channels per frame and the number of bit clock cycles per frame on the  
corresponding serial port.  
0x0  
RW  
000 2 channels, 32 bit clock cycles per channel, 64 bit clock cycles per frame  
001 4 channels, 32 bit clock cycles per channel, 128 bit clock cycles per frame  
010 8 channels, 32 bit clock cycles per channel, 256 bit clock cycles per frame  
011 16 channels, 32 bit clock cycles per channel, 512 bit clock cycles per frame  
100 4 channels, 16 bit clock cycles per channel, 64 bit clock cycles per frame  
101 2 channels, 16 bit clock cycles per channel, 32 bit clock cycles per frame  
Serial Port Control 1 Register  
Address: 0xF201 to 0xF21D (Increments of 0x4), Reset: 0x0002, Name: SERIAL_BYTE_x_1  
These eight registers configure several settings for the corresponding serial input and serial output ports. Clock generator, sample rate,  
and behavior during inactive channels are configured with these registers. On the input side, Register 0xF201 (SERIAL_BYTE_0_1)  
corresponds to SDATA_IN0; Register 0xF205 (SERIAL_BYTE_1_1) corresponds to SDATA_IN1; Register 0xF209 (SERIAL_BYTE_2_1)  
corresponds to SDATA_IN2; and Register 0xF20D (SERIAL_BYTE_3_1) corresponds to SDATA_IN3. On the output side, Register 0xF211  
(SERIAL_BYTE_4_1) corresponds to SDATA_OUT0; Register 0xF215 (SERIAL_BYTE_5_1) corresponds to SDATA_OUT1; Register 0xF219  
(SERIAL_BYTE_6_1) corresponds to SDATA_OUT2; and Register 0xF21D (SERIAL_BYTE_7_1) corresponds to SDATA_OUT3.  
Table 81. Bit Descriptions for SERIAL_BYTE_x_1  
Bits  
[15:6]  
5
Bit Name  
RESERVED  
TRISTATE  
Settings  
Description  
Reset  
0x000  
0x0  
Access  
RW  
Tristate unused output channels. This bit has no effect on serial input ports.  
RW  
1
0
The corresponding serial data output pin is high impedance during  
unused output channels  
Drive every output channel  
Rev. C | Page 119 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:3]  
CLK_DOMAIN  
Selects the clock generator to use for the serial port. These bits select the  
clock generator to use for this serial port when it is configured as a clock  
master. This setting is valid only when Bits[15:13] (LRCLK_SRC) of the  
corresponding SERIAL_BYTE_x_0 register are set to 0b100 (master mode)  
and Bits[12:10] (BCLK_SRC) are set to 0b100 (master mode).  
0x0  
RW  
00 Clock Generator 1  
01 Clock Generator 2  
10 Clock Generator 3 (high precision clock generator)  
[2:0]  
FS  
Sample rate. These bits set the sample rate to use for the serial port when  
it is configured as a clock master. This setting is valid only when Bits[15:13]  
(LRCLK_SRC) of the corresponding SERIAL_BYTE_x_0 register are set to  
0b100 (master mode) and Bits[12:10] BCLK_SRC are set to 0b100 (master  
mode). Bits[4:3] (CLK_DOMAIN) select which clock generator to use, and  
Bits[2:0] (FS) select which of the five clock generator outputs to use.  
0x2  
RW  
000 Quarter rate of selected clock generator  
001 Half rate of selected clock generator  
010 Base rate of selected clock generator  
011 Double rate of selected clock generator  
100 Quadruple rate of selected clock generator  
Rev. C | Page 120 of 202  
Data Sheet  
ADAU1462/ADAU1466  
FLEXIBLE TDM INTERFACE REGISTERS  
FTDM Mapping for the Serial Inputs Register  
Address: 0xF300 to 0xF33F (Increments of 0x1), Reset: 0x0000, Name: FTDM_INx  
These 64 registers correspond to the 64 bytes of data that combine to form the 16 audio channels derived from the data streams being  
input to the SDATA_IN2 and SDATA_IN3 pins.  
Table 82. Bit Descriptions for FTDM_INx  
Bits  
[15:8]  
7
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
SLOT_ENABLE_IN  
Enables the corresponding input byte. This bit determines whether or  
not the slot is active. If active, valid data is input from the corresponding  
data slot on the selected channel of the selected input pin. If disabled,  
input data from the corresponding data slot on the selected channel of  
the selected input pin is ignored.  
0x0  
RW  
0
1
Disable byte  
Enable byte  
6
5
REVERSE_IN_BYTE  
SERIAL_IN_SEL  
Reverses the order of bits in the byte (big endian or little endian). This bit  
changes the endianness of the data bits within the byte by optionally  
reversing the order of the bits from MSB to LSB.  
Do not reverse bits (big endian)  
Reverse bits (little endian)  
0x0  
0x0  
RW  
RW  
0
1
Serial input pin selector (SDATA_IN2 or SDATA_IN3). If this bit = 0b0, the  
slot is mapped to Audio Channel 32 to Audio Channel 39. If this bit = 0b1,  
the slot is mapped to Audio Channel 40 to Audio Channel 47. The exact  
channel assignment is determined by Bits[4:2] (CHANNEL_IN_POS).  
0
1
Select data from the flexible TDM stream on the SDATA_IN2 pin  
Select data from the flexible TDM stream on the SDATA_IN3 pin  
Rev. C | Page 121 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[4:2]  
CHANNEL_IN_POS  
Source channel selector. These bits map the slot to an audio input  
channel. If Bit 5 (SERIAL_IN_SEL) = 0b0, Position 0 maps to Channel 32,  
Position 1 maps to Channel 33, and so on. If Bit 5 (SERIAL_IN_SEL) = 0b1,  
Position 0 maps to Channel 40, Position 1 maps to Channel 41, and so on.  
0x0  
RW  
000 Channel 0 (in the TDM8 stream)  
001 Channel 1 (in the TDM8 stream)  
010 Channel 2 (in the TDM8 stream)  
011 Channel 3 (in the TDM8 stream)  
100 Channel 4 (in the TDM8 stream)  
101 Channel 5 (in the TDM8 stream)  
110 Channel 6 (in the TDM8 stream)  
111 Channel 7 (in the TDM8 stream)  
[1:0]  
BYTE_IN_POS  
Byte selector for source channel. These bits determine which byte the  
slot fills in the channel selected by Bit 5 (SERIAL_IN_SEL) and Bits[4:2]  
(CHANNEL_IN_POS). Each channel consists of four bytes that are selectable  
by the four options available in this bit field.  
0x0  
RW  
00 Byte 0; Bits[31:24]  
01 Byte 1; Bits[23:16]  
10 Byte 2; Bits[15:8]  
11 Byte 3; Bits[7:0]  
FTDM Mapping for the Serial Outputs Register  
Address: 0xF380 to 0xF3BF (Increments of 0x1), Reset: 0x0000, Name: FTDM_OUTx  
These 64 registers correspond to the 64 data slots for the flexible TDM output modes on the SDATA_OUT2 and SDATA_OUT3 pins. Slot 0  
to Slot 31 are available for use on SDATA_OUT2, and Slot 32 to Slot 63 are available for use on SDATA_OUT3. Each slot can potentially  
hold one byte of data. Slots are mapped to corresponding audio channels in the serial ports by Bits[5:0] in these registers.  
Rev. C | Page 122 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Table 83. Bit Descriptions for FTDM_OUTx  
Bits  
[15:8]  
7
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
SLOT_ENABLE_OUT  
Enables the corresponding output byte. This bit determines whether or  
not the slot is active. If Bit 7 (SLOT_ENABLE_OUT) = 0b0 and Bit 5 (TRISTATE)  
of the corresponding serial output port = 0b1, the corresponding output  
pin is high impedance during the period in which the corresponding  
flexible TDM slot is output. If Bit 7 (SLOT_ENABLE_OUT) = 0b0, and Bit 5  
(TRISTATE) of the corresponding serial output port = 0b0, the corre-  
sponding output pin drives logic low during the period in which the  
corresponding flexible TDM slot is output. If Bit 7 (SLOT_ENABLE_OUT) =  
0b1, the corresponding serial output pin outputs valid data during the  
period in which the corresponding flexible TDM slot is output.  
0x0  
RW  
0
1
Disable byte  
Enable byte  
6
REVERSE_OUT_BYTE  
SERIAL_OUT_SEL  
Reverses the bits in the byte (big endian or little endian). This bit changes  
the endianness of the data bits within the corresponding flexible TDM  
slot by optionally reversing the order of the bits from MSB to LSB.  
Do not reverse byte (big endian)  
Reverse byte (little endian)  
0x0  
0x0  
RW  
RW  
RW  
0
1
5
Source serial output channel group. This bit, together with Bits[4:2]  
(CHANNEL_OUT_POS), selects which serial output channel is the source  
of data for the corresponding flexible TDM output slot.  
Serial Output Channel 32 to Serial Output Channel 39  
Serial Output Channel 40 to Serial Output Channel 47  
0
1
[4:2]  
CHANNEL_OUT_POS  
Source serial output channel. These bits, along with Bit 5 (SERIAL_OUT_SEL), 0x0  
select which serial output channel is the source of data for the corre-  
sponding flexible TDM output slot. If Bit 5 (SERIAL_OUT_SEL) = 0b0, Bits[4:2]  
(CHANNEL_OUT_POS) select serial output channels between Serial Output  
Channel 32 and Serial Output Channel 39. If Bit 5 (SERIAL_OUT_SEL) = 0b1,  
Bits[4:2] (CHANNEL_OUT_POS) selects serial output channels between  
Serial Output Channel 40 and Serial Output Channel 47.  
000 Serial Output Channel 32 or Serial Output Channel 40  
001 Serial Output Channel 33 or Serial Output Channel 41  
010 Serial Output Channel 34 or Serial Output Channel 42  
011 Serial Output Channel 35 or Serial Output Channel 43  
100 Serial Output Channel 36 or Serial Output Channel 44  
101 Serial Output Channel 37 or Serial Output Channel 45  
110 Serial Output Channel 38 or Serial Output Channel 46  
111 Serial Output Channel 39 or Serial Output Channel 47  
[1:0]  
BYTE_OUT_POS  
Source data byte. These bits determine which data byte is used from the 0x0  
corresponding serial output channel (selected by setting Bit 5 (SERIAL_  
OUT_SEL) and Bits[4:2] (CHANNEL_OUT_POS)). Because there can be up  
to 32 bits in the data-word, four bytes are available.  
RW  
00 Byte 0; Bits[31:24]  
01 Byte 1; Bits[23:16]  
10 Byte 2; Bits[15:8]  
11 Byte 3; Bits[7:0]  
Rev. C | Page 123 of 202  
ADAU1462/ADAU1466  
Data Sheet  
DSP CORE CONTROL REGISTERS  
Hibernate Setting Register  
Address: 0xF400, Reset: 0x0000, Name: HIBERNATE  
When hibernation mode is activated, the DSP core continues processing the current audio sample or block, and then enters a low power  
hibernation state. If Bit 0 (HIBERNATE) is set to 0b1 when the DSP core is processing audio, wait at least the duration of one sample before  
attempting to modify any other control registers. If Bit 0 (HIBERNATE) is set to 0b1 when the DSP core is processing audio, and block  
processing is used in the signal flow, wait at least the duration of one block plus the duration of one sample before attempting to modify  
any other control registers. During hibernation, interrupts to the core are disabled. This prevents audio from flowing into or out of the DSP core.  
Because DSP processing ceases when hibernation is active, there is a significant drop in the current consumption on the DVDD supply.  
Table 84. Bit Descriptions for Hibernate  
Bits  
[15:1]  
0
Bit Name  
RESERVED  
HIBERNATE  
Settings  
Description  
Reset  
Access  
RW  
0x0  
Enter hibernation mode. This bit disables incoming interrupts and tells the 0x0  
DSP core to go to a low power sleep mode after the next audio sample or  
block has finished processing. It causes the DSP to enter hibernation mode  
by masking all interrupts.  
RW  
0
1
Not hibernating; interrupts enabled.  
Enter hibernation; interrupts disabled.  
Rev. C | Page 124 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Start Pulse Selection Register  
Address: 0xF401, Reset: 0x0002, Name: START_PULSE  
This register selects the start pulse that marks the beginning of each audio frame in the DSP core. This effectively sets the sample rate of  
the audio going through the DSP. This start pulse can originate from either an internally generated pulse (from Clock Generator 1 or  
Clock Generator 2) or from an external clock that is received on one of the LRCLK pins of one of the serial ports. Any audio input or  
output from the DSP core that is asynchronous to this DSP start pulse rate must go through an ASRC. If asynchronous audio signals (that  
is, signals that are not synchronized to whatever start pulse is selected) are input to the DSP without first going through an ASRC, samples  
are skipped or doubled, leading to distortion and audible artifacts in the audio signal.  
Rev. C | Page 125 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Table 85. Bit Descriptions for START_PULSE  
Bits  
[15:5] RESERVED  
[4:0] START_PULSE  
Bit Name  
Settings Description  
Reset Access  
0x0  
RW  
RW  
Start pulse selection.  
0x02  
00000 Base sample rate ÷ 4 (12 kHz for 48 kHz base sample rate) (1/4 output of Clock Generator 1)  
00001 Base sample rate ÷ 2 (24 kHz for 48 kHz base sample rate) (1/2 output of Clock Generator 1)  
00010 Base sample rate (48 kHz for 48 kHz base sample rate) (×1 output of Clock Generator 1)  
00011 Base sample rate × 2 (96 kHz for 48 kHz base sample rate) (×2 output of Clock Generator 1)  
00100 Base sample rate × 4 (192 kHz for 48 kHz base sample rate) (×4 output of Clock  
Generator 1)  
00101 Base sample rate ÷ 6 (8 kHz for 48 kHz base sample rate) (1/4 output of Clock Generator 2)  
00110 Base sample rate ÷ 3 (16 kHz for 48 kHz base sample rate) (1/2 output of Clock Generator 2)  
00111 2× base sample rate ÷ 3 (32 kHz for 48 kHz base sample rate) (×1 output of Clock  
Generator 2)  
01000 Serial Input Port 0 sample rate (Register 0xF201 (SERIAL_BYTE_0_1), Bits[4:0])  
01001 Serial Input Port 1 sample rate (Register 0xF205 (SERIAL_BYTE_1_1), Bits[4:0])  
01010 Serial Input Port 2 sample rate (Register 0xF209 (SERIAL_BYTE_2_1), Bits[4:0])  
01011 Serial Input Port 3 sample rate (Register 0xF20D (SERIAL_BYTE_3_1), Bits[4:0])  
01100 Serial Output Port 0 sample rate (Register 0xF211 (SERIAL_BYTE_4_1), Bits[4:0])  
01101 Serial Output Port 1 sample rate (Register 0xF215 (SERIAL_BYTE_5_1), Bits[4:0])  
01110 Serial Output Port 2 sample rate (Register 0xF219 (SERIAL_BYTE_6_1), Bits[4:0])  
01111 Serial Output Port 3 sample rate (Register 0xF21D (SERIAL_BYTE_7_1), Bits[4:0])  
10000 S/PDIF receiver sample rate (derived from the S/PDIF input stream)  
Instruction to Start the Core Register  
Address: 0xF402, Reset: 0x0000, Name: START_CORE  
Enables the DSP core and initiates the program counter, which then begins incrementing through the program memory and executing  
instruction codes. This register is edge triggered, meaning that a rising edge on Bit 0 (START_CORE), that is, a transition from 0b0 to 0b1,  
initiates the program counter. A falling edge on Bit 0 (START_CORE), that is, a transition from 0b1 to 0b0, has no effect. To stop the DSP  
core, use Register 0xF400 (HIBERNATE), Bit 0 (HIBERNATE).  
Table 86. Bit Descriptions for START_CORE  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
START_CORE  
A transition of this bit from 0b0 to 0b1 enables the DSP core to start executing  
its program. A transition from 0b1 to 0b0 does not affect the DSP core.  
0x0  
RW  
0
1
A transition from 0b0 to 0b1 enables the DSP core to start program execution  
A transition from 0b1 to 0b0 does not affect the DSP core  
Rev. C | Page 126 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Instruction to Stop the Core Register  
Address: 0xF403, Reset: 0x0000, Name: KILL_CORE  
Bit 0 (KILL_CORE) halts the DSP core immediately, even when it is in an undefined state. Because halting the DSP core immediately can  
lead to memory corruption, and it must be used only in debugging situations. This register is edge triggered, meaning that a rising edge  
on Bit 0 (KILL_CORE), that is, a transition from 0b0 to 0b1, halts the core. A falling edge on Bit 0 (KILL_CORE), that is, a transition  
from 0b1 to 0b0, has no effect. To stop the DSP core after the next audio frame or block, use Register 0xF400 (HIBERNATE), Bit 0  
(HIBERNATE).  
Table 87. Bit Descriptions for KILL_CORE  
Bits  
[15:1]  
0
Bit Name  
RESERVED  
KILL_CORE  
Settings  
Description  
Reset  
0x0  
Access  
RW  
Immediately halts the core. When this bit transitions from 0b0 to 0b1, the  
core immediately halts. This can bring about undesired effects and, therefore,  
must be used only in debugging. To stop the core while it is running, use  
Register 0xF400 (HIBERNATE) to halt the core in a controlled manner.  
0x0  
RW  
0
1
A transition from 0b0 to 0b1 immediately halts the core  
A transition from 0b1 to 0b0 has no effect  
Start Address of the Program Register  
Address: 0xF404, Reset: 0x0000, Name: START_ADDRESS  
This register sets the program address where the program counter begins after the DSP core is enabled, using Register 0xF402, Bit 0  
(START_CORE). The SigmaStudio compiler automatically sets the program start address; therefore, the user is not required to manually  
modify the value of this register.  
Table 88. Bit Descriptions for START_ADDRESS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
START_ADDRESS  
Program start address.  
0x0000 RW  
Rev. C | Page 127 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Core Status Register  
Address: 0xF405, Reset: 0x0000, Name: CORE_STATUS  
This read only register allows the user to check the status of the DSP core. To manually modify the core status, use Register 0xF400  
(HIBERNATE), Register 0xF402 (START_CORE), and Register 0xF403 (KILL_CORE).  
Table 89. Bit Descriptions for CORE_STATUS  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:3]  
[2:0]  
RESERVED  
CORE_STATUS  
DSP core status. These bits display the status of the DSP core at the  
moment the value is read.  
0x0  
RW  
000 Core is not running. This is the default state when the device boots. When  
the core is manually stopped using Register 0xF403 (KILL_CORE), the core  
returns to this state.  
001 Core is running normally.  
010 Core is paused. The clock signal is cut off from the core, preserving its state  
until the clock resumes. This state occurs only if a pause instruction is  
explicitly defined in the DSP program.  
011 Core is in sleep mode (the core may be actively running a program, but it  
has finished executing instructions and is waiting in an idle state for the  
next audio sample to arrive). This state occurs only if a sleep instruction  
is explicitly called in the DSP program.  
100 Core is stalled. This occurs when the DSP core is attempting to service  
more than one request, and it must stop execution for a few cycles to do  
so in a timely manner. The core continues execution immediately after the  
requests are serviced.  
Rev. C | Page 128 of 202  
Data Sheet  
ADAU1462/ADAU1466  
DEBUG AND RELIABILITY REGISTERS  
Clear the Panic Manager Register  
Address: 0xF421, Reset: 0x0000, Name: PANIC_CLEAR  
When Register 0xF427 (PANIC_FLAG) signals that an error has occurred, use Register 0xF421 (PANIC_CLEAR) to reset it. Toggle Bit 0  
(PANIC_CLEAR) of this register from 0b0 to 0b1 and then back to 0b0 again to clear the flag and reset the state of the panic manager.  
Table 90. Bit Descriptions for PANIC_CLEAR  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
PANIC_CLEAR  
Clear the panic manager. To reset the PANIC_FLAG register, toggle this bit  
on and then off again.  
0x0  
RW  
0
1
Panic manager is not cleared  
Clear panic manager (on a rising edge of this bit)  
Rev. C | Page 129 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Panic Parity Register  
Address: 0xF422, Reset: 0x0003, Name: PANIC_PARITY_MASK  
The panic manager checks and reports memory parity mask errors. Register 0xF422 (PANIC_PARITY_MASK) allows the user to  
configure which memories, if any, are subject to error reporting.  
Table 91. Bit Descriptions for PANIC_PARITY_MASK  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:12] RESERVED  
11  
10  
9
DM1_BANK3_MASK  
DM1 Bank 3 mask.  
0x0  
RW  
0
1
Report DM1_BANK3 parity mask errors  
Do not report DM1_BANK3 parity mask errors  
DM1 Bank 2 mask.  
Report DM1_BANK2 parity mask errors  
Do not report DM1_BANK2 parity mask errors  
DM1 Bank 1 mask.  
Report DM1_BANK1 parity mask errors  
Do not report DM1_BANK1 parity mask errors  
DM1 Bank 0 mask.  
Report DM1_BANK0 parity mask errors  
Do not report DM1_BANK0 parity mask errors  
DM0 Bank 3 mask.  
DM1_BANK2_MASK  
DM1_BANK1_MASK  
DM1_BANK0_MASK  
DM0_BANK3_MASK  
DM0_BANK2_MASK  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
8
0
1
7
0
1
Report DM0_BANK3 parity mask errors  
Do not report DM0_BANK3 parity mask errors  
DM0 Bank 2 mask.  
6
0
1
Report DM0_BANK2 parity mask errors  
Do not report DM0_BANK2 parity mask errors  
Rev. C | Page 130 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
5
DM0_BANK1_MASK  
DM0 Bank 1 mask.  
0x0  
RW  
0
1
Report DM0_BANK1 parity mask errors  
Do not report DM0_BANK1 parity mask errors  
DM0 Bank 0 mask.  
4
3
2
1
0
DM0_BANK0_MASK  
PM1_MASK  
0x0  
0x0  
0x0  
0x1  
0x1  
RW  
RW  
RW  
RW  
RW  
0
1
Report DM0_BANK0 parity mask errors  
Do not report DM0_BANK0 parity mask errors  
PM1 parity mask.  
Report PM1 parity mask errors  
Do not report PM1 parity mask errors  
PM0 parity mask.  
Report PM0 parity mask errors  
Do not report PM0 parity mask errors  
ASRC 1 parity mask.  
Report ASRC 1 parity mask errors  
Do not report ASRC 1 parity mask errors  
ASRC 0 parity mask.  
0
1
PM0_MASK  
0
1
ASRC1_MASK  
ASRC0_MASK  
0
1
0
1
Report ASRC 0 parity mask errors  
Do not report ASRC 0 parity mask errors  
Panic Mask 0 Register  
Address: 0xF423, Reset: 0x0000, Name: PANIC_SOFTWARE_MASK  
The panic manager checks and reports software errors. Register 0xF423 (PANIC_SOFTWARE_MASK) allows the user to configure  
whether software errors are reported to the panic manager or ignored.  
Table 92. Bit Descriptions for PANIC_SOFTWARE_MASK  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
PANIC_SOFTWARE  
Software mask.  
0x0  
RW  
0
1
Report parity errors  
Do not report parity errors  
Rev. C | Page 131 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Panic Mask 1 Register  
Address: 0xF424, Reset: 0x0000, Name: PANIC_WD_MASK  
The panic manager checks and reports watchdog errors. Register 0xF424 (PANIC_WD_MASK) allows the user to configure whether  
watchdog errors are reported to the panic manager or ignored.  
Table 93. Bit Descriptions for PANIC_WD_MASK  
Bits  
[15:1]  
0
Bit Name  
RESERVED  
PANIC_WD  
Settings  
Description  
Reset  
0x0  
Access  
RW  
Watchdog mask.  
0x0  
RW  
0
1
Report watchdog errors  
Do not report watchdog errors  
Panic Mask 2 Register  
Address: 0xF425, Reset: 0x0000, Name: PANIC_STACK_MASK  
The panic manager checks and reports stack errors. Register 0xF425 (PANIC_STACK_MASK) allows the user to configure whether stack  
errors are reported to the panic manager or ignored.  
Table 94. Bit Descriptions for PANIC_STACK_MASK  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
PANIC_STACK  
Stack mask.  
0x0  
RW  
0
1
Report stack errors  
Do not report stack errors  
Rev. C | Page 132 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Panic Mask 3 Register  
Address: 0xF426, Reset: 0x0000, Name: PANIC_LOOP_MASK  
The panic manager checks and reports software errors related to looping code sections. Register 0xF426 (PANIC_LOOP_MASK) allows  
the user to configure whether loop errors are reported to the panic manager or ignored.  
Table 95. Bit Descriptions for PANIC_LOOP_MASK  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
PANIC_LOOP  
Loop mask.  
0x0  
RW  
0
1
Report loop errors  
Do not report loop errors  
Panic Flag Register  
Address: 0xF427, Reset: 0x0000, Name: PANIC_FLAG  
This register acts as the master error flag for the panic manager. If any error is encountered in any functional block whose panic manager  
mask is disabled, this register logs that an error has occurred. Individual functional block masks are configured using Register 0xF422  
(PANIC_PARITY_MASK), Register 0xF423 (PANIC_SOFTWARE_MASK), Register 0xF424 (PANIC_WD_MASK), Register 0xF425  
(PANIC_STACK_MASK), and Register 0xF426 (PANIC_LOOP_MASK).  
Table 96. Bit Descriptions for PANIC_FLAG  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
PANIC_FLAG  
Error flag from panic manager. This error flag bit is sticky. When an error is  
reported, this bit goes high, and it stays high until the user resets it using  
Register 0xF421 (PANIC_CLEAR).  
0x0  
R
0
1
No error  
Error  
Rev. C | Page 133 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Panic Code Register  
Address: 0xF428, Reset: 0x0000, Name: PANIC_CODE  
When Register 0xF427 (PANIC_FLAG) indicates that an error has occurred, this register provides details revealing which subsystem is  
reporting an error. If several errors occur, this register reports only the first error that occurs. Subsequent errors are ignored until the  
register is cleared by toggling Register 0xF421 (PANIC_CLEAR).  
Table 97. Bit Descriptions for PANIC_CODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
ERR_SOFT  
Error from software panic.  
No error from the software panic  
Error from the software panic  
Error from loop overrun.  
No error from the loop overrun  
Error from the loop overrun  
Error from stack overrun.  
No error from the stack overrun  
Error from the stack overrun  
Error from the watchdog counter.  
No error from the watchdog counter  
Error from the watchdog counter  
Error in DM1 Bank 3.  
0x0  
R
0
1
14  
13  
12  
11  
ERR_LOOP  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
ERR_STACK  
0
1
ERR_WATCHDOG  
ERR_DM1B3  
0
1
0
1
No error in DM1 Bank 3  
Error in DM1 Bank 3  
Rev. C | Page 134 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
10  
ERR_DM1B2  
Error in DM1 Bank 2.  
No error in DM1 Bank 2  
Error in DM1 Bank 2  
Error in DM1 Bank 1.  
No error in DM1 Bank 1  
Error in DM1 Bank 1  
Error in DM1 Bank 0.  
No error in DM1 Bank 0  
Error in DM1 Bank 0  
Error in DM0 Bank 3.  
No error in DM0 Bank 3  
Error in DM0 Bank 3  
Error in DM0 Bank 2.  
No error in DM0 Bank 2  
Error in DM0 Bank 2  
Error in DM0 Bank 1.  
No error in DM0 Bank 1  
Error in DM0 Bank 1  
Error in DM0 Bank 0.  
No error in DM0 Bank 0  
Error in DM0 Bank 0  
Error in PM1.  
0x0  
R
0
1
9
8
7
6
5
4
3
2
1
0
ERR_DM1B1  
ERR_DM1B0  
ERR_DM0B3  
ERR_DM0B2  
ERR_DM0B1  
ERR_DM0B0  
ERR_PM1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No error in PM1  
Error in PM1  
ERR_PM0  
Error in PM0.  
No error in PM0  
Error in PM0  
0
1
ERR_ASRC1  
ERR_ASRC0  
Error in ASRC 1.  
No error in ASRC 1  
Error in ASRC 1  
0
1
Error in ASRC 0.  
0
1
No error in ASRC 0  
Error in ASRC 0  
Execute Stage Error Program Count Register  
Address: 0xF432, Reset: 0x0000, Name: EXECUTE_COUNT  
When a software error occurs, this register logs the program instruction count at the time when the error occurred for software  
debugging purposes.  
Table 98. Bit Descriptions for EXECUTE_COUNT  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
EXECUTE_COUNT  
Program count in the execute stage when the error occurred.  
0x0000 RW  
Rev. C | Page 135 of 202  
ADAU1462/ADAU1466  
Data Sheet  
SOFTWARE PANIC VALUE 0 REGISTER  
Address: 0xF433, Reset: 0x0000, Name: SOFTWARE_VALUE_0  
When a software error occurs, this register the lower 16 bits of the instruction at the time when the error occurred for software debugging  
purposes.  
Table 99. Bit Descriptions for SOFTWARE_VALUE_0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SOFTWARE_VALUE_0  
Software panic value 0.  
0x0000  
RW  
SOFTWARE PANIC VALUE 1 REGISTER  
Address: 0xF434, Reset: 0x0000, Name: SOFTWARE_VALUE_1  
When a software error occurs, this register the upper 16 bits of the instruction at the time when the error occurred for software  
debugging purposes.  
Table 100. Bit Descriptions for SOFTWARE_VALUE_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SOFTWARE_VALUE_1  
Software panic value 1.  
0x0000  
RW  
Rev. C | Page 136 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
Watchdog Maximum Count Register  
Address: 0xF443, Reset: 0x0000, Name: WATCHDOG_MAXCOUNT  
This register is designed to start counting at a specified number and decrement by 1 for each clock cycle of the system clock in the core.  
The counter is reset to the maximum value each time the program counter jumps to the beginning of the program to begin processing another  
audio frame (this is implemented in the DSP program code generated by SigmaStudio). If the counter reaches 0, a watchdog error flag is  
raised in the panic manager. The watchdog is typically set to begin counting from a number slightly larger than the maximum number of  
instructions expected to execute in the program, such that an error occurs if the program does not finish in time for the next incoming sample.  
Table 101. Bit Descriptions for WATCHDOG_MAXCOUNT  
Bits  
[15:13] RESERVED  
[12:0] WD_MAXCOUNT  
Bit Name  
Settings  
Description  
Reset  
Access  
0x0  
RW  
Value from which the watchdog counter begins counting down.  
0x0000 RW  
Rev. C | Page 137 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Watchdog Prescale Register  
Address: 0xF444, Reset: 0x0000, Name: WATCHDOG_PRESCALE  
The watchdog prescaler is a number that is multiplied by the setting in Register 0xF443 (WATCHDOG_MAXCOUNT) to achieve very  
large counts for the watchdog, if necessary. Using the largest prescale factor of 128 × 1024 and the largest watchdog maximum count of 64 ×  
1024, a very large watchdog counter, on the order of 8.5 billion clock cycles, can be achieved.  
Table 102. Bit Descriptions for WATCHDOG_PRESCALE  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:4]  
[3:0]  
RESERVED  
WD_PRESCALE  
Watchdog counter prescale setting.  
0x0  
RW  
0000 Increment every 64 clock cycles  
0001 Increment every 128 clock cycles  
0010 Increment every 256 clock cycles  
0011 Increment every 512 clock cycles  
0100 Increment every 1024 clock cycles  
0101 Increment every 2048 clock cycles  
0110 Increment every 4096 clock cycles  
0111 Increment every 8192 clock cycles  
1000 Increment every 16,384 clock cycles  
1001 Increment every 32,768 clock cycles  
1010 Increment every 65,536 clock cycles  
1011 Increment every 131,072 clock cycles  
Rev. C | Page 138 of 202  
Data Sheet  
ADAU1462/ADAU1466  
DSP PROGRAM EXECUTION REGISTERS  
Enable Block Interrupts Register  
Address: 0xF450, Reset: 0x0000, Name: BLOCKINT_EN  
This register enables block interrupts, which are necessary when frequency domain processing is required in the audio processing program.  
If block processing algorithms are used in SigmaStudio, SigmaStudio automatically sets this register accordingly. The user does not need  
to manually change the value of this register after SigmaStudio has configured it.  
Table 103. Bit Descriptions for BLOCKINT_EN  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
BLOCKINT_EN  
Enable block interrupts.  
Disable block interrupts  
Enable block interrupts  
0x0  
RW  
0
1
Value for the Block Interrupt Counter Register  
Address: 0xF451, Reset: 0x0000, Name: BLOCKINT_VALUE  
This 16-bit register controls the duration in audio frames of a block. A counter increments each time a new frame start pulse is received  
by the DSP core. When the counter reaches the value determined by this register, a block interrupt is generated and the counter is reset.  
If block processing algorithms are used in SigmaStudio, SigmaStudio automatically sets this register accordingly. The user does not need  
to manually change the value of this register after SigmaStudio has configured it.  
Table 104. Bit Descriptions for BLOCKINT_VALUE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
BLOCKINT_VALUE  
Value for the block interrupt counter.  
0x0000 RW  
Program Counter, Bits[23:16] Register  
Address: 0xF460, Reset: 0x0000, Name: PROG_CNTR0  
This register, in combination with Register 0xF461 (PROG_CNTR1), stores the current value of the program counter.  
Table 105. Bit Descriptions for PROG_CNTR0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
[15:8]  
[7:0]  
RESERVED  
RW  
R
PROG_CNTR_MSB  
Program counter, Bits[23:16].  
0x00  
Rev. C | Page 139 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Program Counter, Bits[15:0] Register  
Address: 0xF461, Reset: 0x0000, Name: PROG_CNTR1  
This register, in combination with Register 0xF460 (PROG_CNTR0), stores the current value of the program counter.  
Table 106. Bit Descriptions for PROG_CNTR1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
PROG_CNTR_LSB  
Program counter, Bits[15:0].  
0x0000  
R
Program Counter Clear Register  
Address: 0xF462, Reset: 0x0000, Name: PROG_CNTR_CLEAR  
Enabling and disabling Bit 0 (PROG_CNTR_CLEAR) resets Register 0xF465 (PROG_CNTR_MAXLENGTH0) and Register 0xF466  
(PROG_CNTR_MAXLENGTH1).  
Table 107. Bit Descriptions for PROG_CNTR_CLEAR  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
PROG_CNTR_CLEAR  
Clears the program counter.  
0x0  
RW  
0
1
Allow the program counter to update itself  
Clear the program counter and disable it from updating itself  
Program Counter Length, Bits[23:16] Register  
Address: 0xF463, Reset: 0x0000, Name: PROG_CNTR_LENGTH0  
This register, in combination with Register 0xF464 (PROG_CNTR_LENGTH1), keeps track of the peak value reached by the program  
counter during the last audio frame or block. It can be cleared using Register 0xF462 (PROG_CNTR_CLEAR).  
Table 108. Bit Descriptions for PROG_CNTR_LENGTH0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:8]  
[7:0]  
RESERVED  
PROG_LENGTH_MSB  
Program counter length, Bits[23:16]  
0x00  
R
Rev. C | Page 140 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Program Counter Length, Bits[15:0] Register  
Address: 0xF464, Reset: 0x0000, Name: PROG_CNTR_LENGTH1  
This register, in combination with Register 0xF463 (PROG_CNTR_LENGTH0), keeps track of the peak value reached by the program  
counter during the last audio frame or block. It can be cleared using Register 0xF462 (PROG_CNTR_CLEAR).  
Table 109. Bit Descriptions for PROG_CNTR_LENGTH1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
PROG_LENGTH_LSB  
Program counter length, Bits[15:0]  
0x0000  
R
Program Counter Maximum Length, Bits[23:16] Register  
Address: 0xF465, Reset: 0x0000, Name: PROG_CNTR_MAXLENGTH0  
This register, in combination with Register 0xF466 (PROG_CNTR_MAXLENGTH1), keeps track of the highest peak value reached by  
the program counter since the DSP core started. It can be cleared using Register 0xF462 (PROG_CNTR_CLEAR).  
Table 110. Bit Descriptions for PROG_CNTR_MAXLENGTH0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:8]  
[7:0]  
RESERVED  
PROG_MAXLENGTH_MSB  
Program counter maximum length, Bits[23:16]  
0x00  
R
Program Counter Maximum Length, Bits[15:0] Register  
Address: 0xF466, Reset: 0x0000, Name: PROG_CNTR_MAXLENGTH1  
This register, in combination with Register 0xF465 (PROG_CNTR_MAXLENGTH0), keeps track of the highest peak value reached by  
the program counter since the DSP core started. It can be cleared using Register 0xF462 (PROG_CNTR_CLEAR).  
Table 111. Bit Descriptions for PROG_CNTR_MAXLENGTH1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
PROG_MAXLENGTH_LSB  
Program counter maximum length, Bits[15:0]  
0x0000  
R
Rev. C | Page 141 of 202  
ADAU1462/ADAU1466  
Data Sheet  
PANIC MASK REGISTERS  
Panic Mask Parity DM0 Bank [1:0] Register  
Address: 0xF467, Reset: 0x0000, Name: PANIC_PARITY_MASK1  
Table 112. Bit Descriptions for PANIC_PARITY_MASK1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
Reserved.  
12  
11  
10  
9
DM0_BANK1_SUBBANK4_MASK  
Bank 1 Subbank 4 mask.  
0x0  
RW  
0
1
Report Bank 1 Subbank 4 parity errors  
Ignore Bank 1 Subbank 4 parity errors  
Bank 1 Subbank 3 mask.  
Report Bank 1 Subbank 3 parity errors  
Ignore Bank 1 Subbank 3 parity errors  
Bank 1 Subbank 2 mask.  
Report Bank 1 Subbank 2 parity errors  
Ignore Bank 1 Subbank 2 parity errors  
Bank 1 Subbank 1 mask.  
Report Bank 1 Subbank 1 parity errors  
Ignore Bank 1 Subbank 1 parity errors  
Bank 1 Subbank 0 mask.  
DM0_BANK1_SUBBANK3_MASK  
DM0_BANK1_SUBBANK2_MASK  
DM0_BANK1_SUBBANK1_MASK  
DM0_BANK1_SUBBANK0_MASK  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
8
0
1
Report Bank 1 Subbank 0 parity errors  
Ignore Bank 1 Subbank 0 parity errors  
Reserved.  
[7:5]  
4
RESERVED  
0x0  
0x0  
RW  
RW  
DM0_BANK0_SUBBANK4_MASK  
Bank 0 Subbank 4 mask.  
0
1
Report Bank 0 Subbank 4 parity errors  
Ignore Bank 0 Subbank 4 parity errors  
Bank 0 Subbank 3 mask.  
3
2
1
DM0_BANK0_SUBBANK3_MASK  
DM0_BANK0_SUBBANK2_MASK  
DM0_BANK0_SUBBANK1_MASK  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
Report Bank 0 Subbank 3 parity errors  
Ignore Bank 0 Subbank 3 parity errors  
Bank 0 Subbank 2 mask.  
Report Bank 0 Subbank 2 parity errors  
Ignore Bank 0 Subbank 2 parity errors  
Bank 0 Subbank 1 mask.  
0
1
0
1
Report Bank 0 Subbank 1 parity errors  
Ignore Bank 0 Subbank 1 parity errors  
Rev. C | Page 142 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
DM0_BANK0_SUBBANK0_MASK  
Bank 0 Subbank 0 mask.  
0x0  
RW  
0
1
Report Bank 0 Subbank 0 parity errors  
Ignore Bank 0 Subbank 0 parity errors  
Panic Mask Parity DM0 Bank [3:2] Register  
Address: 0xF468, Reset: 0x0000, Name: PANIC_PARITY_MASK2  
Table 113. Bit Descriptions for PANIC_PARITY_MASK2  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
Reserved.  
12  
11  
10  
9
DM0_BANK3_SUBBANK4_MASK  
Bank 3 Subbank 4 mask.  
0x0  
RW  
0
1
Report Bank 3 Subbank 4 parity errors  
Ignore Bank 3 Subbank 4 parity errors  
Bank 3 Subbank 3 mask.  
Report Bank 3 Subbank 3 parity errors  
Ignore Bank 3 Subbank 3 parity errors  
Bank 3 subbank 2 mask.  
Report Bank 3 Subbank 2 parity errors  
Ignore Bank 3 Subbank 2 parity errors  
Bank 3 Subbank 1 mask.  
Report Bank 3 Subbank 1 parity errors  
Ignore Bank 3 Subbank 1 parity errors  
Bank 3 Subbank 0 mask.  
DM0_BANK3_SUBBANK3_MASK  
DM0_BANK3_SUBBANK2_MASK  
DM0_BANK3_SUBBANK1_MASK  
DM0_BANK3_SUBBANK0_MASK  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
8
0
1
Report Bank 3 Subbank 0 parity errors  
Ignore Bank 3 Subbank 0 parity errors  
Reserved.  
[7:5]  
4
RESERVED  
0x0  
0x0  
RW  
RW  
DM0_BANK2_SUBBANK4_MASK  
Bank 2 Subbank 4 mask.  
0
1
Report Bank 2 Subbank 4 parity errors  
Ignore Bank 2 Subbank 4 parity errors  
Bank 2 Subbank 3 mask.  
3
DM0_BANK2_SUBBANK3_MASK  
0x0  
RW  
0
1
Report Bank 2 Subbank 3 parity errors  
Ignore Bank 2 Subbank 3 parity errors  
Rev. C | Page 143 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
2
DM0_BANK2_SUBBANK2_MASK  
Bank 2 Subbank 2 mask.  
0x0  
RW  
0
1
Report Bank 2 Subbank 2 parity errors  
Ignore Bank 2 Subbank 2 parity errors  
Bank 2 Subbank 1 mask.  
1
0
DM0_BANK2_SUBBANK1_MASK  
DM0_BANK2_SUBBANK0_MASK  
0x0  
0x0  
RW  
RW  
0
1
Report Bank 2 Subbank 1 parity errors  
Ignore Bank 2 Subbank 1 parity errors  
Bank 2 Subbank 0 mask.  
0
1
Report Bank 2 Subbank 0 parity errors  
Ignore Bank 2 Subbank 0 parity errors  
Panic Mask Parity DM1 Bank [1:0] Register  
Address: 0xF469, Reset: 0x0000, Name: PANIC_PARITY_MASK3  
Table 114. Bit Descriptions for PANIC_PARITY_MASK3  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
Reserved.  
12  
11  
10  
9
DM1_BANK1_SUBBANK4_MASK  
Bank 1 Subbank 4 mask.  
0x0  
RW  
0
1
Report Bank 1 Subbank 4 parity errors  
Ignore Bank 1 Subbank 4 parity errors  
Bank 1 Subbank 3 mask.  
Report Bank 1 Subbank 3 parity errors  
Ignore Bank 1 Subbank 3 parity errors  
Bank 1 Subbank 2 mask.  
Report Bank 1 Subbank 2 parity errors  
Ignore Bank 1 Subbank 2 parity errors  
Bank 1 Subbank 1 mask.  
Report Bank 1 Subbank 1 parity errors  
Ignore Bank 1 Subbank 1 parity errors  
Bank 1 Subbank 0 mask.  
DM1_BANK1_SUBBANK3_MASK  
DM1_BANK1_SUBBANK2_MASK  
DM1_BANK1_SUBBANK1_MASK  
DM1_BANK1_SUBBANK0_MASK  
RESERVED  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
8
0
1
Report Bank 1 Subbank 0 parity errors  
Ignore Bank 1 Subbank 0 parity errors  
Reserved.  
[7:5]  
Rev. C | Page 144 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
DM1_BANK0_SUBBANK4_MASK  
Bank 0 Subbank 4 mask.  
0x0  
RW  
0
1
Report Bank 0 Subbank 4 parity errors  
Ignore Bank 0 Subbank 4 parity errors  
Bank 0 Subbank 3 mask.  
3
2
1
0
DM1_BANK0_SUBBANK3_MASK  
DM1_BANK0_SUBBANK2_MASK  
DM1_BANK0_SUBBANK1_MASK  
DM1_BANK0_SUBBANK0_MASK  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
Report Bank 0 Subbank 3 parity errors  
Ignore Bank 0 Subbank 3 parity errors  
Bank 0 Subbank 2 mask.  
Report Bank 0 Subbank 2 parity errors  
Ignore Bank 0 Subbank 2 parity errors  
Bank 0 Subbank 1 mask.  
Report Bank 0 Subbank 1 parity errors  
Ignore Bank 0 Subbank 1 parity errors  
Bank 0 Subbank 0 mask.  
0
1
0
1
0
1
Report Bank 0 Subbank 0 parity errors  
Ignore Bank 0 Subbank 0 parity errors  
Panic Mask Parity DM1 Bank [3:2] Register  
Address: 0xF46A, Reset: 0x0000, Name: PANIC_PARITY_MASK4  
Table 115. Bit Descriptions for PANIC_PARITY_MASK4  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
Reserved.  
12  
11  
10  
9
DM1_BANK3_SUBBANK4_MASK  
Bank 3 Subbank 4 mask.  
0x0  
RW  
0
1
Report Bank 3 Subbank 4 parity errors  
Ignore Bank 3 Subbank 4 parity errors  
Bank 3 Subbank 3 mask.  
Report Bank 3 Subbank 3 parity errors  
Ignore Bank 3 Subbank 3 parity errors  
Bank 3 Subbank 2 mask.  
Report Bank 3 Subbank 2 parity errors  
Ignore Bank 3 Subbank 2 parity errors  
Bank 3 Subbank 1 mask.  
DM1_BANK3_SUBBANK3_MASK  
DM1_BANK3_SUBBANK2_MASK  
DM1_BANK3_SUBBANK1_MASK  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
0
1
0
1
Report Bank 3 Subbank 1 parity errors  
Ignore Bank 3 Subbank 1 parity errors  
Rev. C | Page 145 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
8
DM1_BANK3_SUBBANK0_MASK  
Bank 3 Subbank 0 mask.  
0x0  
RW  
0
1
Report Bank 3 Subbank 0 parity errors  
Ignore Bank 3 Subbank 0 parity errors  
Reserved.  
[7:5]  
4
RESERVED  
0x0  
0x0  
RW  
RW  
DM1_BANK2_SUBBANK4_MASK  
Bank 2 Subbank 4 mask.  
0
1
Report Bank 2 Subbank 4 parity errors  
Ignore Bank 2 Subbank 4 parity errors  
Bank 2 Subbank 3 mask.  
3
2
1
0
DM1_BANK2_SUBBANK3_MASK  
DM1_BANK2_SUBBANK2_MASK  
DM1_BANK2_SUBBANK1_MASK  
DM1_BANK2_SUBBANK0_MASK  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
Report Bank 2 Subbank 3 parity errors  
Ignore Bank 2 Subbank 3 parity errors  
Bank 2 Subbank 2 mask.  
Report Bank 2 Subbank 2 parity errors  
Ignore Bank 2 Subbank 2 parity errors  
Bank 2 Subbank 1 mask.  
Report Bank 2 Subbank 1 parity errors  
Ignore Bank 2 Subbank 1 parity errors  
Bank 2 Subbank 0 mask.  
0
1
0
1
0
1
Report Bank 2 Subbank 0 parity errors  
Ignore Bank 2 Subbank 0 parity errors  
Panic Mask Parity PM Bank [1:0] Register  
Address: 0xF46B, Reset: 0x0000, Name: PANIC_PARITY_MASK5  
Table 116. Bit Descriptions for PANIC_PARITY_MASK5  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:14] RESERVED  
Reserved.  
13  
12  
PM_BANK1_SUBBANK5_MASK  
Bank 1 Subbank 5 mask.  
0x0  
RW  
0
1
Report Bank 1 Subbank 5 parity errors  
Ignore Bank 1 Subbank 5 parity errors  
Bank 1 Subbank 4 mask.  
PM_BANK1_SUBBANK4_MASK  
0x0  
RW  
0
1
Report Bank 1 Subbank 4 parity errors  
Ignore Bank 1 Subbank 4 parity errors  
Rev. C | Page 146 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
11  
PM_BANK1_SUBBANK3_MASK  
Bank 1 Subbank 3 mask.  
0x0  
RW  
0
1
Report Bank 1 Subbank 3 parity errors  
Ignore Bank 1 Subbank 3 parity errors  
Bank 1 Subbank 2 mask.  
10  
9
PM_BANK1_SUBBANK2_MASK  
PM_BANK1_SUBBANK1_MASK  
PM_BANK1_SUBBANK0_MASK  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
Report Bank 1 Subbank 2 parity errors  
Ignore Bank 1 Subbank 2 parity errors  
Bank 1 Subbank 1 mask.  
Report Bank 1 Subbank 1 parity errors  
Ignore Bank 1 Subbank 1 parity errors  
Bank 1 Subbank 0 mask.  
0
1
8
0
1
Report Bank 1 Subbank 0 parity errors  
Ignore Bank 1 Subbank 0 parity errors  
Reserved.  
[7:6]  
5
RESERVED  
0x0  
0x0  
RW  
RW  
PM_BANK0_SUBBANK5_MASK  
Bank 0 Subbank 5 mask.  
0
1
Report Bank 0 Subbank 5 parity errors  
Ignore Bank 0 Subbank 5 parity errors  
Bank 0 Subbank 4 mask.  
4
3
2
1
0
PM_BANK0_SUBBANK4_MASK  
PM_BANK0_SUBBANK3_MASK  
PM_BANK0_SUBBANK2_MASK  
PM_BANK0_SUBBANK1_MASK  
PM_BANK0_SUBBANK0_MASK  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
0
1
Report Bank 0 Subbank 4 parity errors  
Ignore Bank 0 Subbank 4 parity errors  
Bank 0 Subbank 3 mask.  
Report Bank 0 Subbank 3 parity errors  
Ignore Bank 0 Subbank 3 parity errors  
Bank 0 Subbank 2 mask.  
Report Bank 0 Subbank 2 parity errors  
Ignore Bank 0 Subbank 2 parity errors  
Bank 0 Subbank 1 mask.  
Report Bank 0 Subbank 1 parity errors  
Ignore Bank 0 Subbank 1 parity errors  
Bank 0 Subbank 0 mask.  
0
1
0
1
0
1
0
1
Report Bank 0 Subbank 0 parity errors  
Ignore Bank 0 Subbank 0 parity errors  
Rev. C | Page 147 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Panic Parity Error DM0 Bank [1:0] Register  
Address: 0xF46C, Reset: 0x0000, Name: PANIC_CODE1  
Table 117. Bit Descriptions for PANIC_CODE1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
Reserved.  
12  
11  
10  
9
ERR_DM0B1SB4  
Error in Bank 1 Subbank 4.  
No error in Bank 1 Subbank 4  
Error in Bank 1 Subbank 4  
Error in Bank 1 Subbank 3.  
No error in Bank 1 Subbank 3  
Error in Bank 1 Subbank 3  
Error in Bank 1 subbank 2.  
No error in Bank 1 Subbank 2  
Error in Bank 1 Subbank 2  
Error in Bank 1 Subbank 1.  
No error in Bank 1 Subbank 1  
Error in Bank 1 Subbank 1  
Error in Bank 1 Subbank 0.  
No error in Bank 1 Subbank 0  
Error in Bank 1 Subbank 0  
Reserved.  
0x0  
R
0
1
ERR_DM0B1SB3  
ERR_DM0B1SB2  
ERR_DM0B1SB1  
ERR_DM0B1SB0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
0
1
0
1
8
0
1
[7:5]  
4
RESERVED  
0x0  
0x0  
RW  
R
ERR_DM0B0SB4  
Error in Bank 0 Subbank 4.  
No error in Bank 0 Subbank 4  
Error in Bank 0 Subbank 4  
Error in Bank 0 Subbank 3.  
No error in Bank 0 Subbank 3  
Error in Bank 0 Subbank 3  
Error in Bank 0 Subbank 2.  
No error in Bank 0 Subbank 2  
Error in Bank 0 Subbank 2  
0
1
3
2
ERR_DM0B0SB3  
ERR_DM0B0SB2  
0x0  
0x0  
R
R
0
1
0
1
Rev. C | Page 148 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
1
ERR_DM0B0SB1  
Error in Bank 0 Subbank 1.  
No error in Bank 0 Subbank 1  
Error in Bank 0 Subbank 1  
Error in Bank 0 Subbank 0.  
No error in Bank 0 Subbank 0  
Error in Bank 0 Subbank 0  
0x0  
R
0
1
0
ERR_DM0B0SB0  
0x0  
R
0
1
Panic Parity Error DM0 Bank [3:2] Register  
Address: 0xF46D, Reset: 0x0000, Name: PANIC_CODE2  
Table 118. Bit Descriptions for PANIC_CODE2  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
Reserved.  
12  
11  
10  
9
ERR_DM0B3SB4  
Error in Bank 3 Subbank 4.  
No error in Bank 3 Subbank 4  
Error in Bank 3 Subbank 4  
Error in Bank 3 Subbank 3.  
No error in Bank 3 Subbank 3  
Error in Bank 3 Subbank 3  
Error in Bank 3 Subbank 2.  
No error in Bank 3 Subbank 2  
Error in Bank 3 Subbank 2  
Error in Bank 3 Subbank 1.  
No error in Bank 3 Subbank 1  
Error in Bank 3 Subbank 1  
Error in Bank 3 Subbank 0.  
No error in Bank 3 Subbank 0  
Error in Bank 3 Subbank 0  
Reserved.  
0x0  
R
0
1
ERR_DM0B3SB3  
ERR_DM0B3SB2  
ERR_DM0B3SB1  
ERR_DM0B3SB0  
RESERVED  
0x0  
0x0  
0x0  
0x0  
0x0  
R
0
1
R
0
1
R
0
1
8
R
0
1
[7:5]  
RW  
Rev. C | Page 149 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
ERR_DM0B2SB4  
Error in Bank 2 Subbank 4.  
No error in Bank 2 Subbank 4  
Error in Bank 2 Subbank 4  
Error in Bank 2 Subbank 3.  
No error in Bank 2 Subbank 3  
Error in Bank 2 Subbank 3  
Error in Bank 2 Subbank 2.  
No error in Bank 2 Subbank 2  
Error in Bank 2 Subbank 2  
Error in Bank 2 Subbank 1.  
No error in Bank 2 Subbank 1  
Error in Bank 2 Subbank 1  
Error in Bank 2 Subbank 0.  
No error in Bank 2 Subbank 0  
Error in Bank 2 Subbank 0  
0x0  
R
0
1
3
2
1
0
ERR_DM0B2SB3  
ERR_DM0B2SB2  
ERR_DM0B2SB1  
ERR_DM0B2SB0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
0
1
0
1
0
1
Panic Parity Error DM1 Bank [1:0] Register  
Address: 0xF46E, Reset: 0x0000, Name: PANIC_CODE3  
Table 119. Bit Descriptions for PANIC_CODE3  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
Reserved.  
12  
11  
10  
ERR_DM1B1SB4  
Error in Bank 1 Subbank 4.  
No error in Bank 1 Subbank 4  
Error in Bank 1 Subbank 4  
Error in Bank 1 Subbank 3.  
No error in Bank 1 Subbank 3  
Error in Bank 1 Subbank 3  
Error in Bank 1 Subbank 2.  
No error in Bank 1 Subbank 2  
Error in Bank 1 Subbank 2  
0x0  
R
0
1
ERR_DM1B1SB3  
ERR_DM1B1SB2  
0x0  
0x0  
R
R
0
1
0
1
Rev. C | Page 150 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
9
ERR_DM1B1SB1  
Error in Bank 1 Subbank 1.  
No error in Bank 1 Subbank 1  
Error in Bank 1 Subbank 1  
Error in Bank 1 Subbank 0.  
No error in Bank 1 Subbank 0  
Error in Bank 1 Subbank 0  
Reserved.  
0x0  
R
0
1
8
ERR_DM1B1SB0  
0x0  
R
0
1
[7:5]  
4
RESERVED  
0x0  
0x0  
RW  
R
ERR_DM1B0SB4  
Error in Bank 0 Subbank 4.  
No error in Bank 0 Subbank 4  
Error in Bank 0 Subbank 4  
Error in Bank 0 Subbank 3.  
No error in Bank 0 Subbank 3  
Error in Bank 0 Subbank 3  
Error in Bank 0 Subbank 2.  
No error in Bank 0 Subbank 2  
Error in Bank 0 Subbank 2  
Error in Bank 0 Subbank 1.  
No error in Bank 0 Subbank 1  
Error in Bank 0 Subbank 1  
Error in Bank 0 Subbank 0.  
No error in Bank 0 Subbank 0  
Error in Bank 0 Subbank 0  
0
1
3
2
1
0
ERR_DM1B0SB3  
ERR_DM1B0SB2  
ERR_DM1B0SB1  
ERR_DM1B0SB0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
0
1
0
1
0
1
Panic Parity Error DM1 Bank [3:2] Register  
Address: 0xF46F, Reset: 0x0000, Name: PANIC_CODE4  
Rev. C | Page 151 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Table 120. Bit Descriptions for PANIC_CODE4  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:13] RESERVED  
Reserved.  
12  
11  
10  
9
ERR_DM1B3SB4  
Error in Bank 3 Subbank 4.  
No error in Bank 3 Subbank 4  
Error in Bank 3 Subbank 4  
Error in Bank 3 Subbank 3.  
No error in Bank 3 Subbank 3  
Error in Bank 3 Subbank 3  
Error in Bank 3 Subbank 2.  
No error in Bank 3 Subbank 2  
Error in Bank 3 Subbank 2  
Error in Bank 3 Subbank 1.  
No error in Bank 3 Subbank 1  
Error in Bank 3 Subbank 1  
Error in Bank 3 Subbank 0.  
No error in Bank 3 Subbank 0  
Error in Bank 3 Subbank 0  
Reserved.  
0x0  
R
0
1
ERR_DM1B3SB3  
ERR_DM1B3SB2  
ERR_DM1B3SB1  
ERR_DM1B3SB0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
0
1
0
1
8
0
1
[7:5]  
4
RESERVED  
0x0  
0x0  
RW  
R
ERR_DM1B2SB4  
Error in Bank 2 Subbank 4.  
No error in Bank 2 Subbank 4  
Error in Bank 2 Subbank 4  
Error in Bank 2 Subbank 3.  
No error in Bank 2 Subbank 3  
Error in Bank 2 Subbank 3  
Error in Bank 2 Subbank 2.  
No error in Bank 2 Subbank 2  
Error in Bank 2 Subbank 2  
Error in Bank 2 Subbank 1.  
No error in Bank 2 Subbank 1  
Error in Bank 2 Subbank 1  
Error in Bank 2 Subbank 0.  
No error in Bank 2 Subbank 0  
Error in Bank 2 Subbank 0  
0
1
3
2
1
0
ERR_DM1B2SB3  
ERR_DM1B2SB2  
ERR_DM1B2SB1  
ERR_DM1B2SB0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
0
1
0
1
0
1
Rev. C | Page 152 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Panic Parity Error PM Bank [1:0] Register  
Address: 0xF470, Reset: 0x0000, Name: PANIC_CODE5  
Table 121. Bit Descriptions for PANIC_CODE5  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:14] RESERVED  
Reserved.  
13  
12  
11  
10  
9
ERR_PM_B1SB5  
Error in Bank 1 Subbank 5.  
No error in Bank 0 Subbank 4  
Error in Bank 0 Subbank 4  
Error in Bank 1 Subbank 4.  
No error in Bank 1 Subbank 4  
Error in Bank 1 Subbank 4  
Error in Bank 1 Subbank 3.  
No error in Bank 1 Subbank 3  
Error in Bank 1 Subbank 3  
Error in Bank 1 Subbank 2.  
No error in Bank 1 Subbank 2  
Error in Bank 1 Subbank 2  
Error in Bank 1 Subbank 1.  
No error in Bank 1 Subbank 1  
Error in Bank 1 Subbank 1  
Error in Bank 1 Subbank 0.  
No error in Bank 1 Subbank 0  
Error in Bank 1 Subbank 0  
Reserved.  
0x0  
R
0
1
ERR_PM_B1SB4  
ERR_PM_B1SB3  
ERR_PM_B1SB2  
ERR_PM_B1SB1  
ERR_PM_B1SB0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
0
1
0
1
0
1
0
1
8
0
1
[7:6]  
5
RESERVED  
0x0  
0x0  
RW  
R
ERR_PM_B0SB5  
Error in Bank 0 Subbank 5.  
No error in Bank 0 Subbank 4  
Error in Bank 0 Subbank 4  
0
1
Rev. C | Page 153 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
ERR_PM_B0SB4  
Error in Bank 0 Subbank 4.  
No error in Bank 0 Subbank 4  
Error in Bank 0 Subbank 4  
Error in Bank 0 Subbank 3.  
No error in Bank 0 Subbank 3  
Error in Bank 0 Subbank 3  
Error in Bank 0 Subbank 2.  
No error in Bank 0 Subbank 2  
Error in Bank 0 Subbank 2  
Error in Bank 0 Subbank 1.  
No error in Bank 0 Subbank 1  
Error in Bank 0 Subbank 1  
Error in Bank 0 Subbank 0.  
No error in Bank 0 Subbank 0  
Error in Bank 0 Subbank 0  
0x0  
R
0
1
3
2
1
0
ERR_PM_B0SB3  
ERR_PM_B0SB2  
ERR_PM_B0SB1  
ERR_PM_B0SB0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
0
1
0
1
0
1
0
1
Rev. C | Page 154 of 202  
Data Sheet  
ADAU1462/ADAU1466  
MULTIPURPOSE PIN CONFIGURATION REGISTERS  
Multipurpose Pin Mode Register  
Address: 0xF510 to 0xF51D (Increments of 0x1), Reset: 0x0000, Name: MPx_MODE  
These 14 registers configure the multipurpose pins. Certain multipurpose pins can function as audio clock pins, control bus pins, or  
GPIO pins.  
Table 122. Bit Descriptions for MPx_MODE  
Bits  
[15:11] RESERVED  
[10:8] SS_SELECT  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
Master port slave select channel selection. If the pin is configured as a slave  
select line (Bits[3:1] (MP_MODE) = 0b110), these bits configure which slave  
select channel the pin corresponds to. This allows multiple slave devices to  
be connected to the SPI master port, all using different slave select lines.  
The first slave select signal (Slave Select 0) is always routed to the SS_M/  
MP0 pin. The remaining six slave select lines can be routed to any  
multipurpose pin that has been configured as a slave select output.  
0x0  
RW  
000 Slave Select Channel 1  
001 Slave Select Channel 2  
010 Slave Select Channel 3  
011 Slave Select Channel 4  
100 Slave Select Channel 5  
101 Slave Select Channel 6  
Rev. C | Page 155 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
DEBOUNCE_VALUE  
Debounce circuit setting. These bits configure the duration of the debounce  
circuitry when the corresponding pin is configured as an input (Bits[3:1]  
(MP_MODE) = 0b000).  
0x0  
RW  
0001 0.3 ms debounce  
0010 0.6 ms debounce  
0011 0.9 ms debounce  
0100 5.0 ms debounce  
0101 10.0 ms debounce  
0110 20.0 ms debounce  
0111 40.0 ms debounce  
0000 No debounce  
[3:1]  
MP_MODE  
Pin mode (when multipurpose function is enabled). These bits select the  
0x0  
RW  
function of the corresponding pin if it is enabled in multipurpose mode  
(Bit 0 (MP_ENABLE) = 0b1).  
000 General-purpose digital input  
001 General-purpose input, driven by control port; sends its value to the DSP  
core, but that value can be overwritten by a direct register write  
010 General-purpose output with pull-up  
011 General-purpose output without pull-up  
100 PDM microphone data input  
101 Panic manager error flag output  
110 Slave select line for the master SPI port  
0
MP_ENABLE  
Function selection (multipurpose or clock/control). This bit selects  
whether the corresponding pin is used as a multipurpose pin or as its  
primary function (which could be either an audio clock or control bus pin).  
0x0  
RW  
0
1
Audio clock or control port function enabled; the settings of the MPx_MODE,  
MPx_WRITE, and MPx_READ registers are ignored  
Multipurpose function enabled  
Rev. C | Page 156 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Multipurpose Pin Write Value Register  
Address: 0xF520 to 0xF52D (Increments of 0x1), Reset: 0x0000, Name: MPx_WRITE  
If a multipurpose pin is configured as an output driven by the control port (the corresponding Bits[3:1] (MP_MODE) = 0b001), the value  
that is output from the DSP core can be configured by directly writing to these registers.  
Table 123. Bit Descriptions for MPx_WRITE  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
W
RESERVED  
MP_REG_WRITE  
Multipurpose pin output state when pin is configured as an output written  
by the control port. This register configures the value seen by the DSP core  
for the corresponding multipurpose pin input. The pin can have two states:  
logic low (off) or logic high (on).  
0x0  
W
0
1
Multipurpose pin output low  
Multipurpose pin output high  
Multipurpose Pin Read Value Registers  
Address: 0xF530 to 0xF53D (Increments of 0x1), Reset: 0x0000, Name: MPx_READ  
These registers log the current state of the multipurpose pins when they are configured as inputs. The pins can have two states: logic low  
(off) or logic high (on).  
Table 124. Bit Descriptions for MPx_READ  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RESERVED  
R
R
MP_REG_READ  
Multipurpose pin read value.  
Multipurpose pin input low  
Multipurpose pin input high  
0x0  
0
1
Rev. C | Page 157 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Digital PDM Microphone Control Register  
Address: 0xF560 to 0xF561 (Increments of 0x1), Reset: 0x4000, Name: DMIC_CTRLx  
These registers configure the digital PDM microphone interface. Two registers are used to control up to four PDM microphones:  
Register 0xF560 (DMIC_CTRL0) configures PDM Microphone Channel 0 and PDM Microphone Channel 1, and Register 0xF561  
(DMIC_CTRL1) configures PDM Microphone Channel 2 and PDM Microphone Channel 3.  
Table 125. Bit Descriptions for DMIC_CTRLx  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
RW  
15  
RESERVED  
0x0  
[14:12] CUTOFF  
High-pass filter cutoff frequency. These bits configure the cutoff frequency of 0x4  
an optional high-pass filter designed to remove dc components from the  
microphone data signal(s). To use these bits, Bit 3 (HPF), must be enabled.  
RW  
000 59.9 Hz  
001 29.8 Hz  
010 14.9 Hz  
011 7.46 Hz  
100 3.73 Hz  
101 1.86 Hz  
110 0.93 Hz  
Rev. C | Page 158 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[11:8]  
MIC_DATA_SRC  
Digital PDM microphone data source pin. These bits configure which hardware  
pin acts as a data input from the PDM microphone(s). Up to two microphones  
can be connected to a single pin.  
0x0  
RW  
0000 SS_M/MP0  
0001 MOSI_M/MP1  
0010 SCL_M/SCLK_M/MP2  
0011 SDA_M/MISO_M/MP3  
0100 LRCLK_OUT0/MP4  
0101 LRCLK_OUT1/MP5  
0110 MP6  
0111 MP7  
1000 LRCLK_OUT2/MP8  
1001 LRCLK_OUT3/MP9  
1010 LRCLK_IN0/MP10  
1011 LRCLK_IN1/MP11  
1100 LRCLK_IN2/MP12  
1101 LRCLK_IN3/MP13  
7
RESERVED  
DMIC_CLK  
0x0  
0x0  
RW  
RW  
[6:4]  
Digital PDM microphone clock select. A valid bit clock signal must be  
assigned to the PDM microphones. Any of the four BCLK_INPUTx or four  
BCLK_OUTPUTx signals can be used. A trace must connect the selected pin  
to the clock input pin on the corresponding PDM microphone(s). If the  
corresponding BCLK_x pin is not configured in master mode, use an external  
clock source, with the BCLK_x pin and the PDM microphone acting as slaves.  
000 BCLK_IN0  
001 BCLK_IN1  
010 BCLK_IN2  
011 BCLK_IN3  
100 BCLK_OUT0  
101 BCLK_OUT1  
110 BCLK_OUT2  
111 BCLK_OUT3  
3
2
HPF  
High-pass filter enable. This bit enables or disables a high-pass filter to  
remove dc components from the microphone data signals. The cutoff of  
the filter is controlled by Bits[14:12] (CUTOFF).  
HPF disabled  
HPF enabled  
0x0  
0x0  
RW  
RW  
0
1
DMPOL  
Data polarity swap. When this bit is set to 0b0, a logic high data input is  
treated as logic high, and a logic low data input is treated as logic low.  
When this bit is set to 0b1, the opposite is true: a logic high data input is  
treated as a logic low, and a logic low data input is treated as logic high.  
This effectively inverts the amplitude of the incoming audio data.  
0
1
Data polarity normal  
Data polarity inverted  
1
0
DMSW  
Digital PDM microphone channel swap. In DMIC_CTRL0, this bit swaps PDM  
Microphone Channel 0 and PDM Microphone Channel 1. In the DMIC_CTRL1  
register, this bit swaps PDM Microphone Channel 2 and PDM Microphone  
Channel 3.  
Normal  
Swap left and right channels  
0x0  
0x0  
RW  
RW  
0
1
DMIC_EN  
Digital PDM microphone enable. This bit enables or disables the data input  
from the PDM microphones.  
0
1
Digital PDM microphone disabled  
Digital PDM microphone enabled  
Rev. C | Page 159 of 202  
ADAU1462/ADAU1466  
Data Sheet  
ASRC STATUS AND CONTROL REGISTERS  
ASRC Lock Status Register  
Address: 0xF580, Reset: 0x0000, Name: ASRC_LOCK  
This register contains eight bits that represent the lock status of each ASRC stereo pair on the ADAU1466 and ADAU1462. Lock status  
requires three conditions: the output target rate is set, the input rate is steady and has been detected, and the ratio between input and  
output rates has been calculated. If all of these conditions are true for a given stereo ASRC, the corresponding lock bit is low. If any of these  
conditions is not true, the corresponding lock bit is high.  
Table 126. Bit Descriptions for ASRC_LOCK  
Bits  
[15:8]  
7
Bit Name  
RESERVED  
ASRC7L  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
RW  
R
ASRC 7 lock status.  
Locked  
Unlocked  
0
1
6
5
4
3
2
1
0
ASRC6L  
ASRC5L  
ASRC4L  
ASRC3L  
ASRC2L  
ASRC1L  
ASRC0L  
ASRC 6 lock status.  
Locked  
Unlocked  
ASRC 5 lock status.  
Locked  
Unlocked  
ASRC 4 lock status.  
Locked  
Unlocked  
ASRC 3 lock status.  
Locked  
Unlocked  
ASRC 2 lock status.  
Locked  
Unlocked  
ASRC 1 lock status.  
Locked  
Unlocked  
ASRC 0 lock status.  
Locked  
Unlocked  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Rev. C | Page 160 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
ASRC Mute Register  
Address: 0xF581, Reset: 0x0000, Name: ASRC_MUTE  
This register contains controls related to the muting of audio on ASRC channels. Bits[7:0] (ASRCxM) are individual mute controls for  
each stereo ASRC on the ADAU1466 and ADAU1462. Bit 8 (ASRC_RAMP0) and Bit 9 (ASRC_RAMP1) enable or disable an optional  
volume ramp-up and ramp-down to smoothly transition between muted and unmuted states. The mute and unmute ramps are linear. The  
duration of the ramp is determined by the sample rate of the DSP core, which is set by Register 0xF401 (START_PULSE). The ramp takes  
exactly 2048 input samples to complete. For example, if the sample rate of audio entering an ASRC channel is 48 kHz, the duration of the  
ramp is 2048/48,000 = 42.7 ms. If the sample rate of audio entering an ASRC channel is 6 kHz, the duration of the ramp is 2048/6000 =  
341.3 ms. Bit 10 (LOCKMUTE) allows the ASRCs to automatically mute themselves in the event that lock status is lost or not attained.  
Table 127. Bit Descriptions for ASRC_MUTE  
Bits  
[15:11] RESERVED  
10 LOCKMUTE  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
Mutes ASRCs when lock is lost. When this bit is enabled, individual stereo  
ASRCs automatically mute on the event that lock status is lost (for example,  
if the sample rate of the input suddenly changes and the ASRC needs to  
reattain lock), provided that the corresponding ASRC_RAMPx bit is set to  
0b0 (enabled). This automatic mute uses a volume ramp instead of an  
instantaneous mute to avoid click and pop noises on the output. When  
lock status is attained again (and the corresponding ASRC_RAMPx and  
ASRCxM bits are set to 0b0 (enabled) and 0b0 (unmuted), respectively),  
the ASRC automatically unmutes using a volume ramp. However, because  
there is a period of uncertainty when the ASRC is attaining lock, there still  
may be noise on the ASRC outputs when the input signal returns. Measures  
must be taken in the DSP program to delay the unmuting of the ASRC output  
signals if this noise is not desired. The individual ASRCxM mute bits override  
the automatic LOCKMUTE behavior.  
0x0  
RW  
0
1
Do not mute when lock is lost  
Mute when lock is lost, and unmute when lock is reattained  
Rev. C | Page 161 of 202  
ADAU1462/ADAU1466  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
9
ASRC_RAMP1  
ASRC 7 to ASRC 4 mute disable. ASRC 7 to ASRC 4 (Channel 15 to Channel 8)  
are defined as ASRC Block 1. This bit enables or disables mute ramping for  
all ASRCs in Block 1. If this bit is 0b1, Bit 7 (ASRC7M), Bit 6 (ASRC6M), Bit 5  
(ASRC5M), and Bit 4 (ASRC4M) are ignored, and the outputs of ASRC 7 to  
ASRC 4 are active at all times.  
0x0  
RW  
0
1
Enabled  
Disabled; ASRC 7 to ASRC 4 never mute automatically and cannot be  
muted manually  
8
ASRC_RAMP0  
ASRC 3 to ASRC 0 mute disable. ASRC 3 to ASRC 0 (Channel 7 to Channel 0)  
are defined as ASRC Block 0. This bit enables or disables mute ramping for  
all ASRCs in Block 0. If this bit is 0b1, Bit 3 (ASRC3M), Bit 2 (ASRC2M), Bit 1  
(ASRC1M), and Bit 0 (ASRC0M) are ignored, and the outputs of ASRC 3 to  
ASRC 0 are active at all times.  
0x0  
RW  
0
1
Enabled  
Disabled; ASRC 3 to ASRC 0 never mute automatically and cannot be  
muted manually  
7
6
5
4
3
2
1
0
ASRC7M  
ASRC6M  
ASRC5M  
ASRC4M  
ASRC3M  
ASRC2M  
ASRC1M  
ASRC0M  
ASRC 7 manual mute.  
Not muted  
Muted  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
ASRC 6 manual mute.  
Not muted  
Muted  
0
1
ASRC 5 manual mute.  
Not muted  
Muted  
0
1
ASRC 4 manual mute.  
Not muted  
Muted  
0
1
ASRC 3 manual mute.  
Not muted  
Muted  
0
1
ASRC 2 manual mute.  
Not muted  
Muted  
0
1
ASRC 1 manual mute.  
Not muted  
Muted  
0
1
ASRC 0 manual mute.  
Not muted  
Muted  
0
1
Rev. C | Page 162 of 202  
Data Sheet  
ADAU1462/ADAU1466  
ASRC Ratio Registers  
Address: 0xF582 to 0xF589 (Increments of 0x1), Reset: 0x0000, Name: ASRCx_RATIO  
These eight read only registers contain the sample rate conversion ratio of the corresponding ASRC on the ADAU1466 and ADAU1462,  
which is calculated as the ratio between the detected input rate and the selected target output rate. The format of the value stored in these  
registers is 4.12 format. For example, a ratio of 1 is shown as 0b0001000000000000 (0x1000). A ratio of 2 is shown as 0b0010000000000000  
(0x2000). A ratio of 0.5 is shown as 0b0000100000000000 (0x0800).  
Table 128. Bit Descriptions for ASRCx_RATIO  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
ASRC_RATIO  
Output rate of the ASRC in 4.12 format. The value of this register represents  
the input to output rate of the corresponding ASRC. It is stored in 4.12 format.  
0x0000 RW  
RAMPMAX Override Register  
Address: 0xF590, Reset: 0x07FF, Name: ASRC_RAMPMAX_OVR  
Table 129. Bit Descriptions for ASRC_RAMPMAX_OVR  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
11  
OVERRIDE  
RAMPMAX override enable.  
Disable RAMPMAX override  
Enable RAMPMAX override  
RAMPMAX override value.  
0x0  
RW  
0
1
[10:0]  
OVR_RAMPMAX_VALUE  
0x7FF  
RW  
ASRCx RAMPMAX Register  
Address: 0xF591 to 0xF598 (Increments of 0x1), Reset: 0x07FF, Name: ASRCx_RAMPMAX  
Table 130. Bit Descriptions for ASRCx_RAMPMAX  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[10:0]  
RAMPMAX_VALUE  
RAMPMAX value (per channel).  
0x7FF  
RW  
Rev. C | Page 163 of 202  
ADAU1462/ADAU1466  
Data Sheet  
AUXILIARY ADC REGISTERS  
Auxiliary ADC Read Value Register  
Address: 0xF5A0 to 0xF5A5 (Increments of 0x1), Reset: 0x0000, Name: ADC_READx  
These six register contains the output data of the auxiliary ADC for the corresponding channel. Each of the six channels of the ADC are updated  
once per audio frame. The format for the value in this register is 6.10 format, but the top six bits are always zero, meaning that the effective  
format is 0.10 format. If, for example, the input to the corresponding auxiliary ADC channel is equal to AVDD (the full-scale analog input  
voltage), this register reads its maximum value of 0b0000001111111111 (0x3FF). If the input to the auxiliary ADC channel is AVDD/2, this  
register reads 0b0000001000000000 (0x200). If the input to the auxiliary ADC channel is AVDD/4, this register reads 0b0000000100000000  
(0x100).  
Table 131. Bit Descriptions for ADC_READx  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
ADC_VALUE  
ADC input value in 0.10 format, as a proportion of AVDD. Instantaneous  
value of the sampled data on the ADC input. The top six bits are not used,  
and the least significant 10 bits contain the value of the ADC input. The  
minimum value of 0 maps to 0 V, and the maximum value of 1023 maps to  
3.3 V 10% (equal to the AVDD supply). Values between 0 and 1023 are  
linearly mapped to dc voltages between 0 V and AVDD.  
0x0000 RW  
Rev. C | Page 164 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
S/PDIF INTERFACE REGISTERS  
S/PDIF Receiver Lock Bit Detection Register  
Address: 0xF600, Reset: 0x0000, Name: SPDIF_LOCK_DET  
This register contains a flag that monitors the S/PDIF receiver and provides a way to check the validity of the input signal.  
Table 132. Bit Descriptions for SPDIF_LOCK_DET  
Bits  
[15:1]  
0
Bit Name  
RESERVED  
LOCK  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
RW  
R
S/PDIF input lock.  
0
1
No lock acquired; no valid input stream detected  
Successful lock to input stream  
S/PDIF Receiver Control Register  
Address: 0xF601, Reset: 0x0000, Name: SPDIF_RX_CTRL  
This register provides controls that govern the behavior of the S/PDIF receiver on the ADAU1466 and ADAU1462.  
Table 133. Bit Descriptions for SPDIF_RX_CTRL  
Bits  
[15:4]  
3
Bit Name  
RESERVED  
FASTLOCK  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
RW  
RW  
S/PDIF receiver locking speed.  
0
1
Normal (locks after 64 consecutive valid samples)  
Fast (locks after eight consecutive valid samples)  
2
FSOUTSTRENGTH  
RX_LENGTHCTRL  
S/PDIF receiver behavior in the event that lock is lost. FSOUTSTRENGTH  
applies to the output of the recovered frame clock from the S/PDIF receiver.  
Strong; output is continued as well as is possible when the receiver  
notices a loss of lock condition, which may result in some data corruption  
Weak; output is interrupted as soon as receiver notices a loss of lock condition  
S/PDIF receiver audio word length.  
0x0  
0x0  
RW  
RW  
0
1
[1:0]  
00 24 bits  
01 20 bits  
10 16 bits  
11 Automatic (determined by channel status bits detected in the input stream)  
Rev. C | Page 165 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
Decoded Signals From the S/PDIF Receiver Register  
Address: 0xF602, Reset: 0x0000, Name: SPDIF_RX_DECODE  
This register monitors the embedded nonaudio data bits in the incoming S/PDIF stream on the ADAU1466 and ADAU1462 and decodes  
them, providing insight into the data format of the S/PDIF input stream.  
Table 134. Bit Descriptions for SPDIF_RX_DECODE  
Bits  
[15:10] RESERVED  
RX_WORDLENGTH_R  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[9:6]  
[5:2]  
1
S/PDIF receiver detected word length in the right channel.  
0x0  
R
0010 16 bit word (maximum 20 bits)  
1100 17 bit word (maximum 20 bits)  
0100 18 bit word (maximum 20 bits)  
1000 19 bit word (maximum 20 bits)  
1010 20 bit word (maximum 20 bits)  
1101 21 bit word (maximum 24 bits)  
0101 22 bit word (maximum 24 bits)  
1001 23 bit word (maximum 24 bits)  
1011 24 bit word (maximum 24 bits)  
0011 20 bit word (maximum 24 bits)  
S/PDIF receiver detected word length in the left channel.  
0010 16 bit word (maximum 20 bits)  
1100 17 bit word (maximum 20 bits)  
0100 18 bit word (maximum 20 bits)  
1000 19 bit word (maximum 20 bits)  
1010 20 bit word (maximum 20 bits)  
1101 21 bit word (maximum 24 bits)  
0101 22 bit word (maximum 24 bits)  
1001 23 bit word (maximum 24 bits)  
1011 24 bit word (maximum 24 bits)  
0011 20 bit word (maximum 24 bits)  
RX_WORDLENGTH_L  
0x0  
R
COMPR_TYPE  
AC3 or DTS compression (valid only if Bit 0 (AUDIO_TYPE) = 0b1  
(compressed).  
0x0  
R
0
1
AC3  
DTS  
Rev. C | Page 166 of 202  
Data Sheet  
ADAU1462/ADAU1466  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
AUDIO_TYPE  
Linear PCM or compressed audio.  
Linear PCM  
Compressed  
0x0  
R
0
1
Compression Mode From the S/PDIF Receiver Register  
Address: 0xF603, Reset: 0x0000, Name: SPDIF_RX_COMPRMODE  
If the incoming S/PDIF data on the ADAU1466 and ADAU1462 has been encoded using a compression algorithm, this register displays  
the 16-bit code that represents the type of compression being used.  
Table 135. Bit Descriptions for SPDIF_RX_COMPRMODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
COMPR_MODE  
Compression mode detected by the S/PDIF receiver.  
0x0000  
R
Automatically Resume S/PDIF Receiver Audio Input Register  
Address: 0xF604, Reset: 0x0000, Name: SPDIF_RESTART  
When the S/PDIF receiver on the ADAU1466 and ADAU1462 loses lock on the incoming S/PDIF signal, which can occur due to issues  
with signal integrity, the receiver automatically mutes itself. This register determines whether the S/PDIF receiver then automatically  
resumes outputting data if the S/PDIF receiver subsequently begins to receive valid data and a lock condition is reattained. By default, the  
S/PDIF receiver does not automatically resume audio when lock is lost (Register 0xF604 (SPDIF_RESTART), Bit 0 (RESTART_AUDIO) =  
0b0); and, therefore, the user must manually reset the S/PDIF receiver by toggling Register 0xF604 (SPDIF_RESTART), Bit 0  
(RESTART_AUDIO), from 0b0 to 0b1 and then back to 0b0 again. To ensure that the S/PDIF receiver always begins outputting data when a  
valid input signal is detected, set Register 0xF604 (SPDIF_RESTART), Bit 0 (RESTART_AUDIO), to 0b1 at all times.  
Table 136. Bit Descriptions for SPDIF_RESTART  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
RESTART_AUDIO  
Allows the S/PDIF receiver to automatically resume outputting audio  
when it successfully recovers from a loss of lock.  
0x0  
RW  
0
1
Do not automatically restart the audio when a relock occurs  
Restarts the audio automatically when a relock occurs, and resets  
Register 0xF605 (SPDIF_LOSS_OF_LOCK), Bit 0 (LOSS_OF_LOCK)  
Rev. C | Page 167 of 202  
ADAU1462/ADAU1466  
Data Sheet  
S/PDIF Receiver Loss of Lock Detection Register  
Address: 0xF605, Reset: 0x0000, Name: SPDIF_LOSS_OF_LOCK  
This bit monitors the S/PDIF lock status and checks to see if the lock is lost during operation of the S/PDIF receiver on the ADAU1466  
and ADAU1462. This condition can arise when, for example, a valid S/PDIF input signal was present for an extended period of time, but  
signal integrity worsened for a brief period, causing the receiver to then lose its lock to the input signal. In this case, Bit 0  
(LOSS_OF_LOCK) transitions from 0b0 to 0b1 and remains set at 0b1 indefinitely. This indicates that, at some point during the  
operation of the device, lock to the input stream was lost. Bit 0 (LOSS_OF_LOCK) stays high at 0b1 until Register 0xF604  
(SPDIF_RESTART), Bit 0 (RESTART_AUDIO), is set to 0b1, which clears Bit 0 (LOSS_OF_LOCK) back to 0b0. At that point, Register  
0xF604 (SPDIF_RESTART), Bit 0 (RESTART_AUDIO), can be reset to 0b0 if required.  
Table 137. Bit Descriptions for SPDIF_LOSS_OF_LOCK  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
LOSS_OF_LOCK  
S/PDIF loss of lock detection (sticky bit).  
0x0  
R
0
1
S/PDIF receiver is locked to the input stream and has not lost lock since  
acquiring the input signal  
S/PDIF receiver acquired a lock on the input stream but then subsequently  
lost lock  
Rev. C | Page 168 of 202  
Data Sheet  
ADAU1462/ADAU1466  
S/PDIF Receiver Auxiliary Outputs Enable Register  
Address: 0xF608, Reset: 0x0000, Name: SPDIF_AUX_EN  
The S/PDIF receiver on the ADAU1466 and ADAU1462 decodes embedded nonaudio data bits on the incoming data stream, including  
channel status, user data, validity bits, and parity bits. This information, together with the decoded audio data, can optionally be output  
on one of the SDATA_OUTx pins using Register 0xF608 (SPDIF_AUX_EN). The serial output port selected by Bits[3:0] (TDMOUT)  
outputs an 8-channel TDM stream containing this decoded information.  
Channel 0 in the TDM8 stream contains the 24 audio bits from the left S/PDIF input channel, followed by eight zero bits.  
Channel 1 in the TDM8 stream contains 20 zero bits, the parity bit, validity bit, user data bit, and the channel status bit from the left  
S/PDIF input channel, followed by eight zero bits.  
Channel 2 in the TDM8 stream contains 22 zero bits, followed by the compression type bit (0b0 represents AC3 and 0b1 represents DTS)  
and the audio type bit (0b0 represents PCM and 0b1 represents compressed), followed by eight zero bits.  
Channel 3 in the TDM8 stream contains 32 zero bits.  
Channel 4 in the TDM8 stream contains the 24 audio bits from the right S/PDIF input channel, followed by eight zero bits.  
Channel 5 in the TDM8 stream contains 20 zero bits followed by the parity bit, validity bit, user data bit, and channel status bit from the  
right S/PDIF input channel, followed by eight zero bits.  
Channel 6 in the TDM8 stream contains 32 zero bits.  
Channel 7 in the TDM8 stream contains 23 zero bits, the block start bit, and eight zero bits.  
Table 138. Bit Descriptions for SPDIF_AUX_EN  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[15:5] RESERVED  
0x0  
0x0  
RW  
RW  
4
TDMOUT_CLK  
S/PDIF TDM clock source. When Bits[3:0] (TDMOUT) are configured to output S/PDIF  
receiver data on one of the SDATA_OUTx pins, the corresponding serial port must be  
set in master mode; and Bit 4 (TDMOUT_CLK) configures which clock signals are used  
on the corresponding BCLK_OUTx and LRCLK_OUTx pins. If Bit 4 (TDMOUT_CLK) =  
0b0, the clock signals recovered from the S/PDIF input signal are used to clock the  
serial output. If Bit 4 (TDMOUT_CLK) = 0b1, the output of Clock Generator 3 is used to  
clock serial output; and Register 0xF026 (CLK_GEN3_SRC), Bits[3:0] (FREF_PIN), must be  
0b1110, and Register 0xF026 (CLK_GEN3_SRC), Bit 4 (CLK_GEN3_SRC), must be 0b1.  
0
1
Use clocks derived from S/PDIF receiver stream  
Use filtered clocks from internal clock generator  
S/PDIF TDM output channel selection.  
[3:0]  
TDMOUT  
0x0  
RW  
0001 Output on SDATA_OUT0  
0010 Output on SDATA_OUT1  
0100 Output on SDATA_OUT2  
1000 Output on SDATA_OUT3  
0000 Disable S/PDIF TDM output  
Rev. C | Page 169 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
S/PDIF Receiver Auxiliary Bits Ready Flag Register  
Address: 0xF60F, Reset: 0x0000, Name: SPDIF_RX_AUXBIT_READY  
The decoded channel status, user data, validity, and parity bits are recovered from the input signal one frame at a time until a full block of  
192 frames is received on the ADAU1466 and ADAU1462. When all of the 192 frames are received and decoded, Bit 0 (AUXBITS_READY),  
changes state from 0b0 to 0b1, indicating that the full block of data has been recovered and is available to be read from the corresponding  
registers.  
Table 139. Bit Descriptions for SPDIF_RX_AUXBIT_READY  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
AUXBITS_READY  
Auxiliary bits are ready flag.  
0x0  
R
0
1
Auxiliary bits are not ready to be output  
Auxiliary bits are ready to be output  
S/PDIF Receiver Channel Status Bits (Left) Register  
Address: 0xF610 to 0xF61B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_RX_CS_LEFT_x  
These 12 registers store the 192 channel status bits decoded from the left channel of the S/PDIF input stream on the ADAU1466 and  
ADAU1462.  
Table 140. Bit Descriptions for SPDIF_RX_CS_LEFT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_RX_CS_LEFT  
S/PDIF receiver channel status bits (left).  
0x0000  
R
S/PDIF Receiver Channel Status Bits (Right) Register  
Address: 0xF620 to 0xF62B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_RX_CS_RIGHT_x  
These 12 registers store the 192 channel status bits decoded from the right channel of the S/PDIF input stream on the ADAU1466 and  
ADAU1462.  
Table 141. Bit Descriptions for SPDIF_RX_CS_RIGHT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_RX_CS_RIGHT  
S/PDIF receiver channel status bits (right).  
0x0000  
R
Rev. C | Page 170 of 202  
Data Sheet  
ADAU1462/ADAU1466  
S/PDIF Receiver User Data Bits (Left) Register  
Address: 0xF630 to 0xF63B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_RX_UD_LEFT_x  
These 12 registers store the 192 user data bits decoded from the left channel of the S/PDIF input stream on the ADAU1466 and  
ADAU1462.  
Table 142. Bit Descriptions for SPDIF_RX_UD_LEFT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_RX_UD_LEFT  
S/PDIF receiver user data bits (left).  
0x0000  
R
S/PDIF Receiver User Data Bits (Right) Register  
Address: 0xF640 to 0xF64B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_RX_UD_RIGHT_x  
These 12 registers store the 192 user data bits decoded from the right channel of the S/PDIF input stream on the ADAU1466 and  
ADAU1462.  
Table 143. Bit Descriptions for SPDIF_RX_UD_RIGHT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_RX_UD_RIGHT  
S/PDIF receiver user data bits (right).  
0x0000  
R
S/PDIF Receiver Validity Bits (Left) Register  
Address: 0xF650 to 0xF65B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_RX_VB_LEFT_x  
These 12 registers store the 192 validity bits decoded from the left channel of the S/PDIF input stream on the ADAU1466 and ADAU1462.  
Table 144. Bit Descriptions for SPDIF_RX_VB_LEFT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_RX_VB_LEFT  
S/PDIF receiver validity bits (left).  
0x0000  
R
Rev. C | Page 171 of 202  
ADAU1462/ADAU1466  
Data Sheet  
S/PDIF Receiver Validity Bits (Right) Register  
Address: 0xF660 to 0xF66B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_RX_VB_RIGHT_x  
These 12 registers store the 192 validity bits decoded from the left channel of the S/PDIF input stream on the ADAU1466 and ADAU1462.  
Table 145. Bit Descriptions for SPDIF_RX_VB_RIGHT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_RX_VB_RIGHT  
S/PDIF receiver validity bits (right).  
0x0000  
R
S/PDIF Receiver Parity Bits (Left) Register  
Address: 0xF670 to 0xF67B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_RX_PB_LEFT_x  
These 12 registers store the 192 parity bits decoded from the left channel of the S/PDIF input stream on the ADAU1466 and ADAU1462.  
Table 146. Bit Descriptions for SPDIF_RX_PB_LEFT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_RX_PB_LEFT  
S/PDIF receiver parity bits (left).  
0x0000  
R
S/PDIF Receiver Parity Bits (Right) Register  
Address: 0xF680 to 0xF68B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_RX_PB_RIGHT_x  
These 12 registers store the 192 parity bits decoded from the right channel of the S/PDIF input stream on the ADAU1466 and ADAU1462.  
Table 147. Bit Descriptions for SPDIF_RX_PB_RIGHT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_RX_PB_RIGHT  
S/PDIF receiver parity bits (right).  
0x0000  
R
Rev. C | Page 172 of 202  
Data Sheet  
ADAU1462/ADAU1466  
S/PDIF Transmitter Enable Register  
Address: 0xF690, Reset: 0x0000, Name: SPDIF_TX_EN  
This register enables or disables the S/PDIF transmitter on the ADAU1466 and ADAU1462. When the transmitter is disabled, it outputs a  
constant stream of zero data. When the S/PDIF transmitter is disabled, it still consumes power. To power down the S/PDIF transmitter for  
the purpose of power savings, set Register 0xF051 (POWER_ENABLE1), Bit 2 (TX_PWR) = 0b0.  
Table 148. Bit Descriptions for SPDIF_TX_EN  
Bits  
[15:1]  
0
Bit Name  
RESERVED  
TXEN  
Settings  
Description  
Reset  
0x0  
Access  
RW  
S/PDIF transmitter output enable.  
0x0  
RW  
0
1
Disabled  
Enabled  
S/PDIF Transmitter Control Register  
Address: 0xF691, Reset: 0x0000, Name: SPDIF_TX_CTRL  
This register controls the length of the audio data-words output by the S/PDIF transmitter on the ADAU1466 and ADAU1462. The  
maximum word length is 24 bits. If a shorter word length is selected using Bits[1:0] (TX_LENGTHCTRL), the extraneous bits are  
truncated, starting with the least significant bit. If Bits[1:0] (TX_LENGTHCTRL) = 0b11, the decoded channel status bits on the input  
stream of the S/PDIF receiver automatically set the word length on the S/PDIF transmitter.  
Table 149. Bit Descriptions for SPDIF_TX_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[15:2]  
[1:0]  
RESERVED  
TX_LENGTHCTRL  
S/PDIF transmitter audio word length.  
0x0  
RW  
00 24 bits  
01 20 bits  
10 16 bits  
11 Automatic (determined by channel status bits detected in the S/PDIF  
input stream)  
Rev. C | Page 173 of 202  
ADAU1462/ADAU1466  
Data Sheet  
S/PDIF Transmitter Auxiliary Bits Source Select Register  
Address: 0xF69F, Reset: 0x0000, Name: SPDIF_TX_AUXBIT_SOURCE  
This register configures whether the encoded nonaudio data bits in the output data stream of the S/PDIF transmitter on the ADAU1466  
and ADAU1462 are copied directly from the S/PDIF receiver or set manually using the corresponding control registers. If the data is  
configured manually, all channel status, parity, user data, and validity bits can be manually set using the following registers:  
SPDIF_TX_CS_LEFT_x, SPDIF_TX_CS_RIGHT_x, SPDIF_TX_UD_LEFT_x, SPDIF_TX_UD_RIGHT_x, SPDIF_TX_VB_LEFT_x,  
SPDIF_TX_VB_RIGHT_x, SPDIF_TX_PB_LEFT_x, and SPDIF_TX_PB_RIGHT_x.  
Table 150. Bit Descriptions for SPDIF_TX_AUXBIT_SOURCE  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
TX_AUXBITS_SOURCE  
Auxiliary bits source.  
0x0  
RW  
0
1
Source from register map (user programmable)  
Source from S/PDIF receiver (derived from input data stream)  
S/PDIF Transmitter Channel Status Bits (Left) Register  
Address: 0xF6A0 to 0xF6AB (Increments of 0x1), Reset: 0x0000, Name: SPDIF_TX_CS_LEFT_x  
These 12 registers allow the 192 channel status bits encoded on the left channel of the output data stream of the S/PDIF transmitter on the  
ADAU1466 and ADAU1462 to be manually configured. For these bits to be output properly on the S/PDIF transmitter, Register 0xF69F  
(SPDIF_TX_AUXBIT_SOURCE), Bit 0 (TX_AUXBITS_SOURCE), must be set to 0b0.  
Table 151. Bit Descriptions for SPDIF_TX_CS_LEFT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_TX_CS_LEFT  
S/PDIF transmitter channel status bits (left).  
0x0000 RW  
Rev. C | Page 174 of 202  
Data Sheet  
ADAU1462/ADAU1466  
S/PDIF Transmitter Channel Status Bits (Right) Register  
Address: 0xF6B0 to 0xF6BB (Increments of 0x1), Reset: 0x0000, Name: SPDIF_TX_CS_RIGHT_x  
These 12 registers allow the 192 channel status bits encoded on the right channel of the output data stream of the S/PDIF transmitter on the  
ADAU1466 and ADAU1462 to be manually configured. For these bits to be output properly on the S/PDIF transmitter, Register 0xF69F  
(SPDIF_TX_AUXBIT_SOURCE), Bit 0 (TX_AUXBITS_SOURCE), must be set to 0b0.  
Table 152. Bit Descriptions for SPDIF_TX_CS_RIGHT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_TX_CS_RIGHT  
S/PDIF receiver channel status bits (right).  
0x0000 RW  
S/PDIF Transmitter User Data Bits (Left) Register  
Address: 0xF6C0 to 0xF6CB (Increments of 0x1), Reset: 0x0000, Name: SPDIF_TX_UD_LEFT_x  
These 12 registers allow the 192 user data bits encoded on the left channel of the output data stream of the S/PDIF transmitter on the ADAU1466  
and ADAU1462 to be manually configured. For these bits to be output properly on the S/PDIF transmitter, Register 0xF69F  
(SPDIF_TX_AUXBIT_SOURCE), Bit 0 (TX_AUXBITS_SOURCE), must be set to 0b0.  
Table 153. Bit Descriptions for SPDIF_TX_UD_LEFT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_TX_UD_LEFT  
S/PDIF transmitter user data bits (left).  
0x0000 RW  
S/PDIF Transmitter User Data Bits (Right) Register  
Address: 0xF6D0 to 0xF6DB (Increments of 0x1), Reset: 0x0000, Name: SPDIF_TX_UD_RIGHT_x  
These 12 registers allow the 192 user data bits encoded on the right channel of the output data stream of the S/PDIF transmitter on the  
ADAU1466 and ADAU1462 to be manually configured. For these bits to be output properly on the S/PDIF transmitter, Register 0xF69F  
(SPDIF_TX_AUXBIT_SOURCE), Bit 0 (TX_AUXBITS_SOURCE), must be set to 0b0.  
Table 154. Bit Descriptions for SPDIF_TX_UD_RIGHT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_TX_UD_RIGHT  
S/PDIF transmitter user data bits (right).  
0x0000 RW  
Rev. C | Page 175 of 202  
ADAU1462/ADAU1466  
Data Sheet  
S/PDIF Transmitter Validity Bits (Left) Register  
Address: 0xF6E0 to 0xF6EB (Increments of 0x1), Reset: 0x0000, Name: SPDIF_TX_VB_LEFT_x  
These 12 registers allow the 192 validity bits encoded on the left channel of the output data stream of the S/PDIF transmitter on the  
ADAU1466 and ADAU1462 to be manually configured. For these bits to be output properly on the S/PDIF transmitter, Register 0xF69F  
(SPDIF_TX_AUXBIT_SOURCE), Bit 0 (TX_AUXBITS_SOURCE), must be set to 0b0.  
Table 155. Bit Descriptions for SPDIF_TX_VB_LEFT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_TX_VB_LEFT  
S/PDIF transmitter validity bits (left).  
0x0000 RW  
S/PDIF Transmitter Validity Bits (Right) Register  
Address: 0xF6F0 to 0xF6FB (Increments of 0x1), Reset: 0x0000, Name: SPDIF_TX_VB_RIGHT_x  
These 12 registers allow the 192 validity bits encoded on the right channel of the output data stream of the S/PDIF transmitter on the  
ADAU1466 and ADAU1462 to be manually configured. For these bits to be output properly on the S/PDIF transmitter, Register 0xF69F  
(SPDIF_TX_AUXBIT_SOURCE), Bit 0 (TX_AUXBITS_SOURCE), must be set to 0b0.  
Table 156. Bit Descriptions for SPDIF_TX_VB_RIGHT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_TX_VB_RIGHT  
S/PDIF transmitter validity bits (right).  
0x0000 RW  
S/PDIF Transmitter Parity Bits (Left) Register  
Address: 0xF700 to Address 0xF70B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_TX_PB_LEFT_x  
These 12 registers allow the 192 parity bits encoded on the left channel of the output data stream of the S/PDIF transmitter on the  
ADAU1466 and ADAU1462 to be manually configured. For these bits to be output properly on the S/PDIF transmitter, Register 0xF69F  
(SPDIF_TX_AUXBIT_SOURCE), Bit 0 (TX_AUXBITS_SOURCE), must be set to 0b0.  
Table 157. Bit Descriptions for SPDIF_TX_PB_LEFT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_TX_PB_LEFT  
S/PDIF transmitter parity bits (left).  
0x0000 RW  
Rev. C | Page 176 of 202  
Data Sheet  
ADAU1462/ADAU1466  
S/PDIF Transmitter Parity Bits (Right) Register  
Address: 0xF710 to Address 0xF71B (Increments of 0x1), Reset: 0x0000, Name: SPDIF_TX_PB_RIGHT_x  
These 12 registers allow the 192 parity bits encoded on the right channel of the output data stream of the S/PDIF transmitter on the  
ADAU1466 and ADAU1462 to be manually configured. For these bits to be output properly on the S/PDIF transmitter, Register 0xF69F  
(SPDIF_TX_AUXBIT_SOURCE), Bit 0 (TX_AUXBITS_SOURCE), must be set to 0b0.  
Table 158. Bit Descriptions for SPDIF_TX_PB_RIGHT_x  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
SPDIF_TX_PB_RIGHT  
S/PDIF transmitter parity bits (right).  
0x0000 RW  
Rev. C | Page 177 of 202  
ADAU1462/ADAU1466  
Data Sheet  
HARDWARE INTERFACING REGISTERS  
BCLK Input Pins Drive Strength and Slew Rate Register  
Address: 0xF780 to 0xF783 (Increments of 0x1), Reset: 0x0018, Name: BCLK_INx_PIN  
These registers configure the drive strength, slew rate, and pull resistors for the BCLK_INx pins. Register 0xF780 corresponds to BCLK_IN0,  
Register 0xF781 corresponds to BCLK_IN1, Register 0xF782 corresponds to BCLK_IN2, and Register 0xF783 corresponds to BCLK_IN3.  
Table 159. Bit Descriptions for BCLK_INx_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
BCLK_IN_PULL  
BCLK_INx pull-down.  
Pull-down disabled  
Pull-down enabled  
BCLK_INx slew rate.  
0x1  
RW  
0
1
[3:2]  
[1:0]  
BCLK_IN_SLEW  
BCLK_IN_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
BCLK_INx drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 178 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
BCLK Output Pins Drive Strength and Slew Rate Register  
Address: 0xF784 to 0xF787 (Increments of 0x1), Reset: 0x0018, Name: BCLK_OUTx_PIN  
These registers configure the drive strength, slew rate, and pull resistors for the BCLK_OUTx pins. Register 0xF784 corresponds to  
BCLK_OUT0, Register 0xF785 corresponds to BCLK_OUT1, Register 0xF786 corresponds to BCLK_OUT2, and Register 0xF787  
corresponds to BCLK_OUT3.  
Table 160. Bit Descriptions for BCLK_OUTx_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
BCLK_OUT_PULL  
BCLK_OUTx pull-down.  
Pull-down disabled  
Pull-down enabled  
BCLK_OUTx slew rate.  
0x1  
RW  
0
1
[3:2]  
[1:0]  
BCLK_OUT_SLEW  
BCLK_OUT_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
BCLK_OUTx drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 179 of 202  
ADAU1462/ADAU1466  
Data Sheet  
LRCLK Input Pins Drive Strength and Slew Rate Register  
Address: 0xF788 to 0xF78B (Increments of 0x1), Reset: 0x0018, Name: LRCLK_INx_PIN  
These registers configure the drive strength, slew rate, and pull resistors for the LRCLK_INx pins. Register 0xF788 corresponds to  
LRCLK_IN0/MP10, Register 0xF789 corresponds to LRCLK_IN1/MP11, Register 0xF78A corresponds to LRCLK_IN2/MP12, and  
Register 0xF78B corresponds to LRCLK_IN3/MP13.  
Table 161. Bit Descriptions for LRCLK_INx_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
LRCLK_IN_PULL  
LRCLK_INx pull-down.  
Pull-down disabled  
Pull-down enabled  
LRCLK_INx slew rate.  
0x1  
RW  
0
1
[3:2]  
[1:0]  
LRCLK_IN_SLEW  
LRCLK_IN_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
LRCLK_INx drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 180 of 202  
Data Sheet  
ADAU1462/ADAU1466  
LRCLK Output Pins Drive Strength and Slew Rate Register  
Address: 0xF78C to 0xF78F (Increments of 0x1), Reset: 0x0018, Name: LRCLK_OUTx_PIN  
These registers configure the drive strength, slew rate, and pull resistors for the LRCLK_OUTx pins. Register 0xF78C corresponds to  
LRCLK_OUT0/MP4, Register 0xF78D corresponds to LRCLK_OUT1/MP5, Register 0xF78E corresponds to LRCLK_OUT2/MP8, and  
Register 0xF78F corresponds to LRCLK_OUT3/MP9.  
Table 162. Bit Descriptions for LRCLK_OUTx_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
LRCLK_OUT_PULL  
LRCLK_OUTx pull-down.  
Pull-down disabled  
Pull-down enabled  
0x1  
RW  
0
1
[3:2]  
[1:0]  
LRCLK_OUT_SLEW  
LRCLK_OUT_DRIVE  
LRCLK_OUTx slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
LRCLK_OUTx drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 181 of 202  
ADAU1462/ADAU1466  
Data Sheet  
SDATA Input Pins Drive Strength and Slew Rate Register  
Address: 0xF790 to 0xF793 (Increments of 0x1), Reset: 0x0018, Name: SDATA_INx_PIN  
These registers configure the drive strength, slew rate, and pull resistors for the SDATA_INx pins. Register 0xF790 corresponds to SDATA_IN0,  
Register 0xF791 corresponds to SDATA_IN1, Register 0xF792 corresponds to SDATA_IN2, and Register 0xF793 corresponds to SDATA_IN3.  
Table 163. Bit Descriptions for SDATA_INx_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
SDATA_IN_PULL  
SDATA_INx pull-down.  
Pull-down disabled  
Pull-down enabled  
SDATA_INx slew rate.  
0x1  
RW  
0
1
[3:2]  
[1:0]  
SDATA_IN_SLEW  
SDATA_IN_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
SDATA_INx drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 182 of 202  
Data Sheet  
ADAU1462/ADAU1466  
SDATA Output Pins Drive Strength and Slew Rate Register  
Address: 0xF794 to 0xF797 (Increments of 0x1), Reset: 0x0008, Name: SDATA_OUTx_PIN  
These registers configure the drive strength, slew rate, and pull resistors for the SDATA_OUTx pins. Register 0xF794 corresponds to  
SDATA_OUT0, Register 0xF795 corresponds to SDATA_OUT1, Register 0xF796 corresponds to SDATA_OUT2, and Register 0xF797  
corresponds to SDATA_OUT3.  
Table 164. Bit Descriptions for SDATA_OUTx_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
SDATA_OUT_PULL  
SDATA_OUTx pull-down.  
Pull-down disabled  
Pull-down enabled  
0x0  
RW  
0
1
[3:2]  
[1:0]  
SDATA_OUT_SLEW  
SDATA_OUT_DRIVE  
SDATA_OUTx slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
SDATA_OUTx drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 183 of 202  
ADAU1462/ADAU1466  
Data Sheet  
S/PDIF Transmitter Pin Drive Strength and Slew Rate Register  
Address: 0xF798, Reset: 0x0008, Name: SPDIF_TX_PIN  
This register configures the drive strength, slew rate, and pull resistors for the SPDIFOUT pin on the ADAU1466 and ADAU1462.  
Table 165. Bit Descriptions for SPDIF_TX_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
SPDIF_TX_PULL  
SPDIFOUT pull-down.  
Pull-down disabled  
Pull-down enabled  
SPDIFOUT slew rate.  
0x0  
RW  
0
1
[3:2]  
[1:0]  
SPDIF_TX_SLEW  
SPDIF_TX_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
SPDIFOUT drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 184 of 202  
Data Sheet  
ADAU1462/ADAU1466  
SCLK/SCL Pin Drive Strength and Slew Rate Register  
Address: 0xF799, Reset: 0x0008, Name: SCLK_SCL_PIN  
This register configures the drive strength, slew rate, and pull resistors for the SCLK/SCL pin.  
Table 166. Bit Descriptions for SCLK_SCL_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
SCLK_SCL_PULL  
SCLK/SCL pull-up.  
Pull-up disabled  
Pull-up enabled  
SCLK/SCL slew rate.  
0x0  
RW  
0
1
[3:2]  
[1:0]  
SCLK_SCL_SLEW  
SCLK_SCL_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
SCLK/SCL drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 185 of 202  
ADAU1462/ADAU1466  
Data Sheet  
MISO/SDA Pin Drive Strength and Slew Rate Register  
Address: 0xF79A, Reset: 0x0008, Name: MISO_SDA_PIN  
This register configures the drive strength, slew rate, and pull resistors for the MISO/SDA pin.  
Table 167. Bit Descriptions for MISO_SDA_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
MISO_SDA_PULL  
MISO/SDA pull-up.  
Pull-up disabled  
Pull-up enabled  
0x0  
RW  
0
1
[3:2]  
[1:0]  
MISO_SDA_SLEW  
MISO_SDA_DRIVE  
MISO/SDA slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
MISO/SDA drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 186 of 202  
Data Sheet  
ADAU1462/ADAU1466  
SS/ADDR0 Pin Drive Strength and Slew Rate Register  
Address: 0xF79B, Reset: 0x0018, Name: SS_PIN  
This register configures the drive strength, slew rate, and pull resistors for the SS/ADDR0 pin.  
Table 168. Bit Descriptions for SS_PIN  
Bits  
[15:5]  
4
Bit Name  
RESERVED  
SS_PULL  
Settings  
Description  
Reset  
0x0  
Access  
RW  
SS/ADDR0 pull-up.  
Pull-up disabled  
Pull-up enabled  
0x1  
RW  
0
1
[3:2]  
[1:0]  
SS_SLEW  
SS_DRIVE  
SS/ADDR0 slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
SS/ADDR0 drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 187 of 202  
ADAU1462/ADAU1466  
Data Sheet  
MOSI/ADDR1 Pin Drive Strength and Slew Rate Register  
Address: 0xF79C, Reset: 0x0018, Name: MOSI_ADDR1_PIN  
This register configures the drive strength, slew rate, and pull resistors for the MOSI/ADDR1 pin.  
Table 169. Bit Descriptions for MOSI_ADDR1_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
MOSI_ADDR1_PULL  
MOSI/ADDR1 pull-up.  
Pull-up disabled  
Pull-up enabled  
0x1  
RW  
0
1
[3:2]  
[1:0]  
MOSI_ADDR1_SLEW  
MOSI_ADDR1_DRIVE  
MOSI/ADDR1 slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
MOSI/ADDR1 drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 188 of 202  
Data Sheet  
ADAU1462/ADAU1466  
SCL_M/SCLK_M/MP2 Pin Drive Strength and Slew Rate Register  
Address: 0xF79D, Reset: 0x0008, Name: SCLK_SCL_M_PIN  
This register configures the drive strength, slew rate, and pull resistors for the SCL_M/SCLK_M/MP2 pin.  
Table 170. Bit Descriptions for SCLK_SCL_M_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
SCLK_SCL_M_PULL  
SCL_M/SCLK_M/MP2 pull-up.  
Pull-up disabled  
Pull-up enabled  
0x0  
RW  
0
1
[3:2]  
[1:0]  
SCLK_SCL_M_SLEW  
SCLK_SCL_M_DRIVE  
SCL_M/SCLK_M/MP2 slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
SCL_M/SCLK_M/MP2 drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 189 of 202  
ADAU1462/ADAU1466  
Data Sheet  
SDA_M/MISO_M/MP3 Pin Drive Strength and Slew Rate Register  
Address: 0xF79E, Reset: 0x0008, Name: MISO_SDA_M_PIN  
This register configures the drive strength, slew rate, and pull resistors for the SDA_M/MISO_M/MP3 pin.  
Table 171. Bit Descriptions for MISO_SDA_M_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
MISO_SDA_M_PULL  
SDA_M/MISO_M/MP3 pull-up.  
Pull-up disabled  
Pull-up enabled  
0x0  
RW  
0
1
[3:2]  
[1:0]  
MISO_SDA_M_SLEW  
MISO_SDA_M_DRIVE  
SDA_M/MISO_M/MP3 slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
SDA_M/MISO_M/MP3 drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 190 of 202  
Data Sheet  
ADAU1462/ADAU1466  
SS_M/MP0 Pin Drive Strength and Slew Rate Register  
Address: 0xF79F, Reset: 0x0018, Name: SS_M_PIN  
This register configures the drive strength, slew rate, and pull resistors for the SS_M/MP0 pin.  
Table 172. Bit Descriptions for SS_M_PIN  
Bits  
[15:5]  
4
Bit Name  
RESERVED  
SS_M_PULL  
Settings  
Description  
Reset  
0x0  
Access  
RW  
SS_M/MP0 pull-up.  
Pull-up disabled  
Pull-up enabled  
0x1  
RW  
0
1
[3:2]  
[1:0]  
SS_M_SLEW  
SS_M_DRIVE  
SS_M/MP0 slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
SS_M/MP0 drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 191 of 202  
ADAU1462/ADAU1466  
Data Sheet  
MOSI_M/MP1 Pin Drive Strength and Slew Rate Register  
Address: 0xF7A0, Reset: 0x0018, Name: MOSI_M_PIN  
This register configures the drive strength, slew rate, and pull resistors for the MOSI_M/MP1 pin.  
Table 173. Bit Descriptions for MOSI_M_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
MOSI_M_PULL  
MOSI_M/MP1 pull-up.  
Pull-up disabled  
Pull-up enabled  
0x1  
RW  
0
1
[3:2]  
[1:0]  
MOSI_M_SLEW  
MOSI_M_DRIVE  
MOSI_M/MP1 slew rate.  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
0x2  
0x0  
RW  
RW  
MOSI_M/MP1 drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 192 of 202  
Data Sheet  
ADAU1462/ADAU1466  
MP6 Pin Drive Strength and Slew Rate Register  
Address: 0xF7A1, Reset: 0x0018, Name: MP6_PIN  
This register configures the drive strength, slew rate, and pull resistors for the MP6 pin.  
Table 174. Bit Descriptions for MP6_PIN  
Bits  
[15:5]  
4
Bit Name  
RESERVED  
MP6_PULL  
Settings  
Description  
Reset  
0x0  
Access  
RW  
MP6 pull-down.  
Pull-down disabled  
Pull-down enabled  
MP6 slew rate.  
0x1  
RW  
0
1
[3:2]  
[1:0]  
MP6_SLEW  
MP6_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
MP6 drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 193 of 202  
ADAU1462/ADAU1466  
Data Sheet  
MP7 Pin Drive Strength and Slew Rate Register  
Address: 0xF7A2, Reset: 0x0018, Name: MP7_PIN  
This register configures the drive strength, slew rate, and pull resistors for the MP7 pin.  
Table 175. Bit Descriptions for MP7_PIN  
Bits  
[15:5]  
4
Bit Name  
RESERVED  
MP7_PULL  
Settings  
Description  
Reset  
0x0  
Access  
RW  
MP7 pull-down.  
Pull-down disabled  
Pull-down enabled  
MP7 slew rate.  
0x1  
RW  
0
1
[3:2]  
[1:0]  
MP7_SLEW  
MP7_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
MP7 drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 194 of 202  
Data Sheet  
ADAU1462/ADAU1466  
CLKOUT Pin Drive Strength and Slew Rate Register  
Address: 0xF7A3, Reset: 0x0008, Name: CLKOUT_PIN  
This register configures the drive strength, slew rate, and pull resistors for the CLKOUT pin.  
Table 176. Bit Descriptions for CLKOUT_PIN  
Bits  
[15:5]  
4
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
CLKOUT_PULL  
CLKOUT pull-down.  
Pull-down disabled  
Pull-down enabled  
CLKOUT slew rate.  
0x0  
RW  
0
1
[3:2]  
[1:0]  
CLKOUT_SLEW  
CLKOUT_DRIVE  
0x2  
0x0  
RW  
RW  
00 Slowest  
01 Slow  
10 Fast  
11 Fastest  
CLKOUT drive strength.  
00 Lowest  
01 Low  
10 High  
11 Highest  
Rev. C | Page 195 of 202  
ADAU1462/ADAU1466  
Data Sheet  
SOFT RESET REGISTER  
Address: 0xF890, Reset: 0x0001, Name: SOFT_RESET  
SOFT_RESET provides the capability to reset all control registers in the device or put it into a state similar to a hardware reset, where the  
RESET  
pin is pulled low to ground. All control registers are reset to their default values, except for the PLL registers: Register 0xF000  
(PLL_CTRL0), Register 0xF001 (PLL_CTRL1), Register 0xF002 (PLL_CLK_SRC), Register 0xF003 (PLL_ENABLE), Register 0xF004  
(PLL_LOCK), Register 0xF005 (MCLK_OUT), and Register 0xF006 (PLL_WATCHDOG), as well as registers related to the panic manager.  
The I2C and SPI slave ports remain operational, and the user can write new values to the PLL registers while the soft reset is active. If SPI  
slave mode is enabled, the device remains in SPI slave mode during and after the soft reset state. To reset the device to I2C slave mode, the  
RESET  
device must undergo a hardware reset by pulling the  
pin low to ground. Bit 0 (SOFT_RESET) is active low, meaning that setting  
it to 0b1 enables normal operation and setting it to 0b0 enables the soft reset state.  
Table 177. Bit Descriptions for SOFT_RESET  
Bits  
[15:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
RESERVED  
SOFT_RESET  
Soft reset.  
0x1  
RW  
0
1
Soft reset enabled  
Soft reset disabled; normal operation  
Rev. C | Page 196 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
APPLICATIONS INFORMATION  
Component Placement  
PCB DESIGN CONSIDERATIONS  
Place all 100 nF bypass capacitors, which are recommended for  
every analog, digital, and PLL power ground pair, as near as  
possible to theADAU1462/ADAU1466. Bypass each of the  
AVDD, DVDD, PVDD, and IOVDD supply signals on the board  
with an additional single bulk capacitor (10 μF to 47 μF).  
A solid ground plane is necessary for maintaining signal  
integrity and minimizing EMI radiation. If the PCB has two  
ground planes, they can be stitched together using vias that are  
spread evenly throughout the board.  
Power Supply Bypass Capacitors  
Keep all traces in the crystal resonator circuit (see Figure 14) as  
short as possible to minimize stray capacitance. Do not connect  
any long board traces to the crystal oscillator circuit components  
because such traces may affect crystal startup and operation.  
Bypass each power supply pin to its nearest appropriate ground  
pin with a single 100 nF capacitor and, optionally, with an  
additional 10 nF capacitor in parallel. Make the connections to  
each side of the capacitor as short as possible, and keep the trace  
on a single layer with no vias. For maximum effectiveness, place  
the capacitor either equidistant from the power and ground pins  
or, when equidistant placement is not possible, slightly nearer to  
the power pin (see Figure 84). Establish the thermal connections  
to the planes on the far side of the capacitor.  
Grounding  
Use a single ground plane in the application layout. Place all  
components in an analog signal path away from digital signals.  
Exposed Pad PCB Design  
The device package includes an exposed pad for improved heat  
dissipation. When designing a board for such a package,  
consider the following:  
POWER GROUND  
Place a copper layer, equal in size to the exposed pad, on all  
layers of the board, from top to bottom. Connect the copper  
layers to a dedicated copper board layer (see Figure 87).  
CAPACITOR  
TO POWER  
TO GROUND  
Figure 84. Recommended Power Supply Bypass Capacitor Layout  
Figure 87. Exposed Pad Layout Example—Side View  
Typically, a single 100 nF capacitor for each power ground pin  
pair is sufficient. However, if there is excessive high frequency  
noise in the system, use an additional 10 nF capacitor in parallel  
(see Figure 85). Place the 10 nF capacitor between the devices  
and the 100 nF capacitor, and establish the thermal connections  
on the far side of the 100 nF capacitor.  
Place vias such that all layers of copper are connected,  
allowing for efficient heat and energy conductivity. For an  
example, see Figure 88, which shows 49 vias arranged in  
a 7 × 7 grid in the pad area.  
VIA TO  
POWER PLANE  
VIA TO  
GROUND PLANE  
100nF  
10nF  
Figure 88. Exposed Pad Layout Example—Top View  
For detailed information, see the AN-772 Application Note,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP).  
Figure 85. Layout for Multiple Power Supply Bypass Capacitors  
To provide a current reservoir in case of sudden current spikes,  
use a 10 μF capacitor for each named supply (DVDD, AVDD,  
PVDD, and IOVDD) as shown in Figure 86.  
BULK BYPASS CAPACITORS  
PLL Filter  
To minimize jitter, connect the single resistor and two capacitors  
in the PLL filter to the PLLFILT and PVDD pins with short  
traces.  
3.3V  
AVDD PVDD IOVDD DVDD  
+
+
+
+
10µF  
10µF  
10µF  
10µF  
Figure 86. Bulk Bypass Capacitor Schematic  
Rev. C | Page 197 of 202  
 
 
 
 
 
 
 
 
 
 
ADAU1462/ADAU1466  
Data Sheet  
DGND  
1
IOVDD VDRIVE DVDD  
DGND  
72  
Power Supply Isolation with Ferrite Beads  
2
3
71  
Ferrite beads can be used for supply isolation. When using  
ferrite beads, always place the beads outside the local high  
frequency decoupling capacitors, as shown in Figure 89. If the  
ferrite beads are placed between the supply pin and the decoupling  
capacitor, high frequency noise is reflected back into the IC  
because there is no suitable return path to ground. As a result,  
EMI increases, creating noisy supplies.  
100nF  
(BYPASS)  
100nF  
(BYPASS)  
1k  
FERRITE  
BEAD  
MAIN  
3.3V SUPPLY  
10µF  
OR 4.7µF  
RESERVOIR  
10µF  
+
+
OR 4.7µF  
RESERVOIR  
IOVDD  
3.3V  
DVDD  
1.2V  
EOS/ESD Protection  
Figure 89. Ferrite Bead Power Supply Isolation Circuit Example  
Although the ADAU1462/ADAU1466 have robust internal  
protection circuitry against overvoltages and electrostatic  
discharge, an external transient voltage suppressor (TVS) is  
recommended for all systems to prevent damage to the IC. For  
examples, see the AN-311 Application Note.  
Rev. C | Page 198 of 202  
 
Data Sheet  
ADAU1462/ADAU1466  
TYPICAL APPLICATIONS BLOCK DIAGRAM  
ANALOG  
MICROPHONES  
ADAU1977  
MICROPHONE  
ADC  
HEAD  
UNIT  
CLASS AB/D  
4-CHANNEL  
AMPLIFIER  
2
SPI  
I C  
SPEAKERS  
ADAU1462/  
ADAU1466  
AD1938/  
AD1939  
CODEC  
8-CHANNEL  
DAC  
CAN  
TRANSCIEVER  
CLASS AB/D  
4-CHANNEL  
AMPLIFIER  
®
MICRO-  
CONTROLLER  
PDM  
MICROPHONES  
SPI  
SPI  
PDM  
eFLASH  
Figure 90. Automotive Infotainment Amplifier Block Diagram  
Rev. C | Page 199 of 202  
 
ADAU1462/ADAU1466  
Data Sheet  
The digital (DVDD) supply pins each have up to three local  
bypass capacitors, as follows:  
EXAMPLE PCB LAYOUT  
Several external components, such as capacitors, resistors, and  
a transistor, are required for proper operation of the device.  
An example of the connection and layout of these components  
is shown in Figure 91. Thick black lines represent traces, gray  
rectangles represent components, and white circles with a thick  
black ring represent thermal via connections to power or ground  
planes. If a 1.2 V supply is available in the system, the transistor  
circuit (including the associated 1 kΩ resistor) can be removed,  
and 1.2 V can be connected directly to the DVDD power net,  
with the VDRIVE pin left floating.  
The 10 nF bypass capacitor, placed closest to the pin, acts  
as a return path for very high frequency currents resulting  
from the nominal 294.912 MHz operating frequency of the  
DSP core.  
The 100 nF bypass capacitor acts as a return path for high  
frequency currents from the DSP and other digital circuitry.  
The 1 μF bypass capacitor is required to provide a local  
current supply for sudden spikes in current that occur at  
the beginning of each audio frame when the DSP core  
switches from idle mode to operating mode.  
The analog (AVDD), PLL (PVDD), and interface (IOVDD)  
supply pins each have local 100 nF bypass capacitors to provide  
high frequency return currents with a short path to ground.  
Of these three bypass capacitors, the most important is the 100 nF  
bypass capacitor, which is required for proper power supply  
bypassing. The 10 nF and 1 μF capacitors can optionally be used  
to improve the EMI/EMC performance of the system.  
1μF  
1μF  
BYPASS  
10μF IOVDD  
CURRENT  
100nF  
100nF  
10nF  
RESERVOIR  
BYPASS  
100nF  
100nF  
10nF  
BYPASS  
10μF  
BYPASS  
100nF  
BYPASS  
10μF  
DGND  
IOVDD  
DVDD  
10μF DVDD  
CURRENT  
RESERVOIR  
PIN 1  
VDRIVE  
DVDD REGULATOR  
AGND  
AVDD  
ADAU1462/  
ADAU1466  
100nF  
BYPASS  
(TOP VIEW)  
®
10μF PVDD  
CURRENT  
RESERVOIR  
100nF  
BYPASS  
10μF  
PGND  
PVDD  
100nF  
150pF  
100nF  
BYPASS  
PLLFILT  
DGND  
IOVDD  
4.3kꢀ  
PLL LOOP FILTER  
IOVDD  
DGND  
100nF  
BYPASS  
10nF  
10nF  
10nF  
100nF  
1μF  
10nF  
BYPASS  
BYPASS  
100nF  
BYPASS  
100nF  
BYPASS  
100nF  
1μF  
BYPASS  
1μF  
BYPASS  
1μF  
Figure 91. Supporting Component Placement and Layout  
Rev. C | Page 200 of 202  
 
 
Data Sheet  
ADAU1462/ADAU1466  
PCB MANUFACTURING GUIDELINES  
The soldering profile in Figure 92 is recommended for the LFCSP package. See the AN-772 Application Note for more information about  
PCB manufacturing guidelines.  
60 SECONDS  
RAMP UP  
TO  
3°C/SECOND MAX  
150 SECONDS  
260°C ± 5°C  
217°C  
150°C TO 200°C  
RAMP DOWN  
6°C/SECOND MAX  
60 SECONDS  
TO  
180 SECONDS  
TIME (Second)  
20 SECONDS  
TO  
40 SECONDS  
480 SECONDS MAX  
Figure 92. Soldering Profile  
ANALOG DEVICES  
LFCSP_VQ (CP-72-6)  
REV A  
Figure 93. PCB Decal Dimensions  
Rev. C | Page 201 of 202  
 
 
ADAU1462/ADAU1466  
OUTLINE DIMENSIONS  
Data Sheet  
10.10  
10.00 SQ  
9.90  
0.60  
0.42  
0.24  
0.30  
0.23  
0.18  
0.60  
0.42  
0.24  
PIN 1  
55  
54  
72  
INDICATOR  
1
PIN 1  
INDICATOR  
9.85  
0.50  
BSC  
9.75 SQ  
9.65  
5.45  
5.30 SQ  
5.15  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
18  
19  
37  
36  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
8.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-4  
Figure 94. 72-Lead Lead Frame Chip Scale Package [LFCSP]  
10 mm × 10 mm Body and 0.85 mm Package Height  
(CP-72-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +105°C  
Package Description  
Package Option  
CP-72-6  
CP-72-6  
CP-72-6  
CP-72-6  
ADAU1462WBCPZ150  
ADAU1462WBCPZ150RL  
ADAU1462WBCPZ300  
ADAU1462WBCPZ300RL  
ADAU1466WBCPZ300  
ADAU1466WBCPZ300RL  
EVAL-ADAU1466Z  
72-Lead Lead Frame Chip Scale Package [LFCSP]  
72-Lead Lead Frame Chip Scale Package [LFCSP]  
72-Lead Lead Frame Chip Scale Package [LFCSP]  
72-Lead Lead Frame Chip Scale Package [LFCSP]  
72-Lead Lead Frame Chip Scale Package [LFCSP]  
72-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
CP-72-6  
CP-72-6  
1 Z = RoHS Compliant Part.  
2 The EVAL-ADAU1466Z can be used to evaluate both the ADAU1462 and the ADAU1466.  
AUTOMOTIVE PRODUCTS  
The ADAU1462W/ADAU1466W models are available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2017–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14810-0-3/18(C)  
Rev. C | Page 202 of 202  
 
 
 

相关型号:

ADAU1462WBCPZ150

SigmaDSP Digital Audio Processor
ADI

ADAU1462WBCPZ150RL

SigmaDSP Digital Audio Processor
ADI

ADAU1462WBCPZ300

SigmaDSP Compact Digital Audio Processor
ADI

ADAU1462WBCPZ300RL

SigmaDSP Digital Audio Processor
ADI

ADAU1463

SigmaDSP Digital Audio Processor
ADI

ADAU1463WBCPZ150

SigmaDSP Digital Audio Processor
ADI

ADAU1463WBCPZ150RL

SigmaDSP Digital Audio Processor
ADI

ADAU1463WBCPZ300

SigmaDSP Digital Audio Processor
ADI

ADAU1463WBCPZ300RL

SigmaDSP Digital Audio Processor
ADI

ADAU1466

SigmaDSP Digital Audio Processor
ADI

ADAU1466WBCPZ300

SigmaDSP Compact Digital Audio Processor with Extended Internal Memory
ADI

ADAU1466WBCPZ300RL

SigmaDSP Compact Digital Audio Processor with Extended Internal Memory
ADI