ADADC80-Z-12 [ADI]

12-Bit Successive-Approximation Integrated Circuit ADC;
ADADC80-Z-12
型号: ADADC80-Z-12
厂家: ADI    ADI
描述:

12-Bit Successive-Approximation Integrated Circuit ADC

CD 转换器
文件: 总17页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit Successive-Approximation  
Integrated Circuit ADC  
ADADC80  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
1
2
3
32  
31  
30  
True 12-bit operation: maximum nonlinearity 0.012ꢀ  
Low gain temperature coefficient (TC): 30 ppm/°C  
maximum  
Low power: 800 mW  
Fast conversion time: 25 μs  
BIT 6  
BIT 5  
BIT 7  
BIT 8  
BIT 9  
BIT 4  
12-BIT  
SAR  
BIT 3  
4
5
6
7
29 BIT 10  
28  
27  
26  
BIT 2  
BIT 11  
Precision 6.3 V reference for external application  
Short-cycle capability  
BIT 1 (MSB)  
NC  
BIT 12 (LSB)  
NC  
Parallel data output  
8
25  
–15V OR –12V  
BIT 1 (MSB)  
Monolithic DAC with scaling resistors for stability  
Low chip count, high reliability  
Industry-standard pin configuration  
“Z” models for 12 V supplies  
5V DIGITAL  
SUPPLY  
CLOCK  
AND  
CONTROL  
CIRCUITS  
9
24 REF OUT (6.3V)  
12-BIT DAC  
10  
11  
12  
13  
14  
15  
16  
23  
DIGITAL GND  
CLOCK OUT  
COMPARATOR  
IN  
BIPOLAR  
OFFSET OUT  
22  
21  
20  
19  
18  
17  
STATUS  
SHORT CYCLE  
COMP  
10V SPAN IN  
CLOCK INHIBIT  
EXTERNAL  
CLOCK IN  
20V SPAN IN  
REFERENCE  
CONVERT  
START  
ANALOG GND  
ADADC80  
GAIN ADJUST  
15V OR 12V  
NC = NO CONNECT  
Figure 1.  
PRODUCT DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADADC801 is a complete 12-bit successive-approximation  
analog-to-digital converter (ADC) that includes an internal  
clock, reference, and comparator. Its hybrid IC design uses MSI  
digital and linear monolithic chips in conjunction with a 12-bit  
monolithic digital-to-analog converter (DAC) to provide  
modular performance and versatility with IC size, price, and  
reliability.  
1. The ADADC80 is a complete 12-bit ADC. No external  
components are required to perform a conversion.  
2. A monolithic 12-bit feedback DAC is used for reduced chip  
count and higher reliability.  
3. The internal buried Zener reference is laser trimmed to  
6.3 . The reference voltage is available externally and can  
supply up to 1.5 mA beyond the current required for the  
reference and bipolar offset.  
Important performance characteristics of the ADADC80  
include a maximum linearity error of 0.012ꢀ at 25°C,  
maximum gain TC of 30 ppm/°C, typical power dissipation of  
800 mW, and maximum conversion time of 25 μs. Monotonic  
operation of the feedback DAC guarantees no missing codes  
over the temperature range of −25°C to +85°C.  
4. The scaling resistors are included on the monolithic DAC  
for exceptional thermal tracking.  
5. The ADADC80 directly replaces other devices of this type,  
providing significant increases in performance.  
6. The fast conversion rate of the ADADC80 makes it an  
excellent choice for applications requiring high system  
throughput rates.  
7. The short cycle and external clock options are provided  
for applications requiring faster conversion speed or  
lower resolution.  
The design of the ADADC80 includes scaling resistors that  
provide an analog signal range of 2.5 , 5.0 , 10 , 0 ꢁ to  
+5.0 , or 0 ꢁ to +10.0 . The 6.3 ꢁ precision reference can be  
used for external applications. All digital signals are fully DTL  
and TTL compatible; output data is in parallel form.  
The ADADC80 is available in grades specified for use over the  
−25°C to +85°C temperature range and is available in a 32-lead  
ceramic DIP.  
1 The serial output function is no longer supported on this product after  
Date Code 9616.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.  
 
ADADC80* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADADC80 Material Declaration  
PCN-PDN Information  
DOCUMENTATION  
Quality And Reliability  
Data Sheet  
Symbols and Footprints  
ADADC80: 12-Bit Successive Approximation Integrated  
Circuit A/D Converter Scanned Data Sheet  
DISCUSSIONS  
View all ADADC80 EngineerZone Discussions.  
SOFTWARE AND SYSTEMS REQUIREMENTS  
Military Part Cross-Reference Guide  
Military Products by Function  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
Military Products by GENERIC Part Number  
SMD to Generic Cross Reference  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE MATERIALS  
Technical Articles  
DOCUMENT FEEDBACK  
MS-2210: Designing Power Supplies for High Speed ADC  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADADC80  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Timing ............................................................................................8  
Digital Output Data ......................................................................9  
Input Scaling ..................................................................................9  
Offset Adjustment...................................................................... 10  
Gain Adjustment ........................................................................ 10  
Calibration................................................................................... 11  
Grounding................................................................................... 12  
Control Modes............................................................................ 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Functional Block Diagram .............................................................. 1  
Product Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ........................................................................ 8  
REVISION HISTORY  
2/08—Rev. D to Rev. E  
8/03—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Pin 7 Changed to NC .........................................................Universal  
Changes to Specifications Section.................................................. 3  
Added Absolute Maximum Ratings Section................................. 5  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
Changes to Specifications.................................................................2  
4/03—Rev. B to Rev. C  
Changes to General Description .....................................................1  
9/02—Rev. A to Rev. B  
Changes to Figure 1...........................................................................6  
Updated Outline Dimensions....................................................... 11  
Rev. E | Page 2 of 16  
 
ADADC80  
SPECIFICATIONS  
Typical @ 25°C, 15 , and +5 , unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
RESOLUTION  
ANALOG INPUTS  
Voltage Ranges  
Bipolar  
12  
Bits  
2.ꢀ or ꢀ or 10  
0 to +ꢀ or 0 to +10  
V
V
Unipolar  
Impedance (Direct Input)  
0 to +ꢀ, 2.ꢀ V  
0 to +10, ꢀ V  
10 V  
2.ꢀ  
10  
kΩ  
kΩ  
kΩ  
DIGITAL INPUTS1  
Positive Pulse During Conversion (CONVERT  
START)  
100  
ns  
Logic Loading  
External Clock (EXTERNAL CLOCK IN)  
1
1
TTL load  
TTL load  
TRANSFER CHARACTERISTICS ERROR  
Gain Error2  
0.1  
% of FSR3  
Offset2  
Bipolar  
Unipolar  
Linearity Error4  
Inherent Quantization Error  
0.1  
0.0ꢀ  
% of FSR  
% of FSR  
% of FSR  
LSB  
0.012  
½
½
Differential Linearity Error  
LSB  
No Missing Codes Temperature Range  
Power Supply Sensitivity  
1ꢀ V  
+ꢀ V  
−2ꢀ  
−2ꢀ  
+8ꢀ  
°C  
0.0030  
0.001ꢀ  
% of FSR/% VS  
% of FSR/% VS  
DRIFT  
Specification Temperature Rangeꢀ  
+8ꢀ  
30  
°C  
ppm/°C  
Gain  
Offset  
Bipolar  
Unipolar  
Linearity  
1ꢀ  
3
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR/°C  
3
Monotonicity  
Guaranteed  
22  
CONVERSION SPEED6  
DIGITAL OUTPUTS (ALL CODES COMPLEMENTARY)  
Parallel, BIT 1 (MSB) to BIT 12 (LSB)  
Output Codes7  
17  
2ꢀ  
μs  
Bipolar  
COB, CTC  
Unipolar  
CSB  
Output Drive  
2
TTL loads  
TTL loads  
Status (STATUS)  
Status Output Drive  
Internal Clock (CLOCK OUT)  
Clock Output Drive  
Frequency8  
Logic 1 during conversion  
2
2
ꢀ7ꢀ  
TTL loads  
kHz  
Rev. E | Page 3 of 16  
 
ADADC80  
Parameter  
Min  
Typ  
Max  
Unit  
INTERNAL REFERENCE VOLTAGE  
+6.3 V  
10  
mV  
Maximum External Current  
(With No Degradation of Specifications)  
Temperature Coefficient of Driftꢀ  
1.ꢀ  
10  
mA  
ppm/°C  
20  
POWER REQUIREMENTS  
Rated Voltages  
Range for Rated Accuracyꢀ  
1ꢀ, +ꢀ  
V
+ꢀ V  
1ꢀ V  
“Z” Models, 9  
+4.7ꢀ  
14.0  
+ꢀ.2ꢀ  
16.0  
V
V
+ꢀ V  
1ꢀ V  
+4.7ꢀ  
11.4  
+ꢀ.2ꢀ  
16.0  
V
V
Supply Drain  
+1ꢀ V  
−1ꢀ V  
+ꢀ V  
+10  
−20  
+70  
mA  
mA  
mA  
TEMPERATURE RANGE  
Specification  
Operating (Derated Specifications)  
Storage  
−2ꢀ  
−ꢀꢀ  
−ꢀꢀ  
+8ꢀ  
+100  
+12ꢀ  
°C  
°C  
°C  
1 DTL/TTL compatible, that is, Logic 0 = 0.8 V maximum and Logic 1 = 2.0 V minimum for digital inputs, Logic 0 = 0.4 V maximum and Logic 1 = 2.4 V minimum for digital outputs.  
2 Adjustable to zero with external trimpots.  
3 FSR means full-scale range, that is, unit connected for 10 V range has +20 V FSR.  
4 Error shown is the same as ½ LSB maximum for resolution of analog-to-digital converter.  
Guaranteed by design. Not production tested.  
6 Conversion time with internal clock.  
7 See Table 4. Complementary offset binary is COB, complementary straight binary is CSB, and complementary twos complement is CTC.  
8 For conversion speeds specified.  
9 For “Z” models, order ADADC80-Z-12.  
Rev. E | Page 4 of 16  
 
 
 
 
 
 
ADADC80  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
18 V  
7 V  
0.3 V  
VS  
−0.3 V to VDD + 0.3 V  
17ꢀ°C  
1ꢀ0°C  
Logic Supply Voltage  
Analog Ground to Digital Ground  
Analog Inputs (Pin 13, Pin 14)  
Digital Input  
Junction Temperature  
Storage Temperature  
Lead Temperature (Soldering, 10 sec)  
300°C  
ESD CAUTION  
Rev. E | Page ꢀ of 16  
 
ADADC80  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
BIT 6  
BIT 7  
2
BIT 5  
BIT 8  
3
BIT 4  
BIT 9  
4
BIT 3  
BIT 10  
ADADC80  
TOP VIEW  
(Not to Scale)  
5
BIT 2  
BIT 11  
6
BIT 1 (MSB)  
NC  
BIT 12 (LSB)  
NC  
7
8
BIT 1 (MSB)  
5V DIGITAL SUPPLY  
DIGITAL GND  
COMPARATOR IN  
BIPOLAR OFFSET OUT  
10V SPAN IN  
20V SPAN IN  
–15V OR –12V  
REF OUT (6.3V)  
CLOCK OUT  
STATUS  
9
10  
11  
12  
13  
14  
SHORT CYCLE  
CLOCK INHIBIT  
EXTERNAL CLOCK IN  
ANALOG GND 15  
16  
18 CONVERT START  
17  
GAIN ADJUST  
15V OR 12V  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
1 to 6  
7
Mnemonic  
Function  
BIT 6 to BIT 1 (MSB)  
NC  
Digital Outputs.  
No Connection.  
8
BIT 1 (MSB)  
MSB Inverted Digital Output.  
Digital Positive Supply (Nominally 0.2ꢀ V).  
Digital Ground.  
Offset Adjust.  
Bipolar Offset Output.  
Analog Input 10 V Signal Range.  
Analog Input 20 V Signal Range.  
Analog Ground.  
9
10  
11  
12  
13  
14  
1ꢀ  
16  
17  
18  
19  
20  
21  
22  
23  
ꢀV DIGITAL SUPPLY  
DIGITAL GND  
COMPARATOR IN  
BIPOLAR OFFSET OUT  
10V SPAN IN  
20V SPAN IN  
ANALOG GND  
GAIN ADJUST  
1ꢀV OR 12V  
CONVERT START  
EXTERNAL CLOCK IN  
CLOCK INHIBIT  
SHORT CYCLE  
STATUS  
Gain Adjust.  
Analog Positive Supply (Nominally 1.0 V for +1ꢀ V or 0.6 V for +12 V).  
Enables Conversion.  
External Clock Input.  
Clock Inhibit.  
Shortens Conversion Cycle to Desired Resolution.  
Logic High, ADC Converting/Logic Low, ADC Data Valid.  
Internal Clock Output.  
CLOCK OUT  
24  
2ꢀ  
26  
REF OUT (6.3V)  
−1ꢀV OR −12V  
NC  
6.3 V Reference Output.  
Analog Negative Supply (Nominally 1.0 V for −1ꢀ V or 0.6 V for −12 V).  
No Connection.  
27 to 32  
BIT 12 (LSB) to BIT 7  
Digital Outputs.  
Rev. E | Page 6 of 16  
 
ADADC80  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.00  
1.00  
0.75  
0.75  
0.50  
0.50  
0.25  
0
8-BIT  
10-BIT  
12-BIT  
8-BIT  
10-BIT  
12-BIT  
0.25  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
CONVERSION TIME (µs)  
CONVERSION TIME (µs)  
Figure 5. Differential Linearity Error vs. Conversion Time (Normalized)  
Figure 3. Linearity Error vs. Conversion Time (Normalized)  
0.3  
0.08  
0.06  
0.04  
0.02  
0.2  
0.1  
0
0
TYPICAL  
–0.02  
–0.1  
–0.04  
–0.06  
–0.08  
–0.2  
–0.3  
–55  
–25  
0
25  
85  
100  
–25  
0
25  
70  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. Reference Drift, Error vs. Temperature  
Figure 4. Gain Drift Error vs. Temperature  
Rev. E | Page 7 of 16  
 
ADADC80  
THEORY OF OPERATION  
Upon receipt of a CONꢁERT START command, the ADADC80  
converts the voltage at its analog input into an equivalent 12-bit  
binary number. This conversion is accomplished as follows:  
All changes to the SAR parallel bit and to the STATUS bit are  
initialized on the leading edge, and the gated clock inhibit  
signal is removed on the trailing edge of the CONꢁERT START  
signal. At time t0, BIT 1 is reset and BIT 2 to BIT 12 are set  
unconditionally. At t1, the BIT 1 decision is made (keep) and  
BIT 2 is unconditionally reset. At t2, the BIT 2 decision is made  
(keep) and BIT 3 is reset unconditionally. This sequence  
continues until the BIT 12 (LSB) decision (keep) is made at t12.  
After a 40 ns delay period, the STATUS flag is reset, indicating  
that the conversion is complete and the parallel output data is  
valid. Resetting the STATUS flag restores the gated clock inhibit  
signal, forcing the clock output to the Logic 0 state.  
1. The 12-bit successive-approximation register (SAR) has its  
12-bit outputs connected both to the device bit output pins  
and to the corresponding bit inputs of the feedback DAC.  
2. The analog input is successively compared to the feedback  
DAC output, one bit at a time (MSB first, LSB last).  
3. The decision to keep or reject each bit is then made at the  
completion of each bit comparison period, depending on  
the state of the comparator at that time.  
TIMING  
Parallel data bits become valid on the positive-going clock edge  
(see Figure 7).  
The timing diagram is shown in Figure 7. Receipt of a  
CONꢁERT START signal sets the STATUS flag, indicating that  
a conversion is in progress. This, in turn, removes the inhibit  
applied to the gated clock, permitting it to run through 13 cycles.  
Incorporation of this 40 ns delay guarantees that the parallel  
data is valid at the Logic l to Logic 0 transition of the STATUS  
flag, permitting a parallel data transfer to be initiated by the  
trailing edge of the STATUS signal.  
MAXIMUM THROUGHPUT TIME  
CONVERT  
START  
2
CONVERSION TIME  
1
INTERNAL  
CLOCK  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
3
STATUS  
t12  
*
*
*
*
*
*
*
*
*
*
MSB  
0
BIT 2  
BIT 3  
1
1
BIT 4  
BIT 5  
0
0
BIT 6  
BIT 7  
BIT 8  
BIT 9  
1
1
1
0
1
BIT 10  
BIT 11  
1
LSB  
0
NOTES  
1
1
THE CONVERT START PULSE WIDTH IS 100ns MINIMUM AND MUST REMAIN LOW DURING A CONVERSION.  
THE CONVERSION IS INITIATED BY THE RISING EDGE OF THE CONVERT COMMAND.  
2
25µs FOR 12 BITS AND 21µs FOR 10 BITS (MAXIMUM).  
3t1 SHOWS THE MSB DECISION AND t11 SHOWS THE LSB DECISION 40ns PRIOR TO THE STATUS GOING LOW.  
*BIT DECISIONS.  
Figure 7. Timing Diagram (Binary Code 011001110110)  
Rev. E | Page 8 of 16  
 
 
ADADC80  
diagram of Figure 7). Short cycle pin connections and  
DIGITAL OUTPUT DATA  
associated maximum 12-, 10-, and 8-bit conversion times are  
summarized in Table 4. When 12-bit resolution is required,  
SHORT CYCLE (Pin 21) is connected to 5ꢁ DIGITAL SUPPLY  
(Pin 9).  
Parallel data from TTL storage registers is in negative true form.  
Parallel data output coding is complementary binary for  
unipolar ranges and either complementary offset binary or  
complementary twos complement binary for bipolar ranges,  
depending on whether BIT 1 (Pin 6) or its logical inverse  
INPUT SCALING  
BIT 1 (MSB)  
(Pin 8) is used as the MSB. Parallel data becomes  
The ADADC80 input should be scaled as close to the maximum  
input signal range as possible to use the maximum signal  
resolution of the ADC. Connect the input signal as shown in  
Table 5. See Figure 8 for circuit details.  
valid approximately 40 ns before the STATUS flag returns to  
Logic 0, permitting parallel data transfer to be clocked on the  
1 to 0 transition of the STATUS flag.  
Parallel data outputs change state on positive-going clock edges.  
There are 13 negative-going clock edges in the complete 12-bit  
conversion cycle, as shown in Figure 7. The first edge shifts an  
invalid bit into the register, which is shifted out on the 13th  
negative-going clock edge.  
13  
10V SPAN IN  
R2  
5k  
14  
20V SPAN IN  
R1  
5kΩ  
11  
COMPARATOR IN  
TO SAR  
FROM  
DAC  
SHORT CYCLE Input  
COMPARATOR  
The SHORT CYCLE input (Pin 21) permits the timing cycle shown  
in Figure 7 to be terminated after any number of desired bits has  
been converted, allowing somewhat shorter conversion times in  
applications not requiring full 12-bit resolution. When 10-bit  
resolution is desired, Pin 21 is connected to the BIT 11 output  
(Pin 28). The conversion cycle then terminates, and the  
6.3kΩ  
BIPOLAR  
OFFSET OUT  
V
12  
15  
REF  
ANALOG  
GND  
Figure 8. Input Scaling Circuit  
STATUS flag resets after the BIT 10 decision (t10 + 40 ns in timing  
Table 4. Short Cycle Connections  
Connect SHORT CYCLE (Pin 21) to  
ꢀV DIGITAL SUPPLY (Pin 9)  
BIT 11 (Pin 28)  
Resolution (Bits)  
(ꢀ FSR)  
0.024  
0.100  
Maximum Conversion Time (μs)  
STATUS Flag Reset  
t12 + 40 ns  
t10 + 40 ns  
12  
10  
8
2ꢀ  
21  
17  
BIT 9 (Pin 30)  
0.390  
t8 + 40 ns  
Table 5. Input Scaling Connections  
Connect BIPOLAR OFFSET OUT  
(Pin 12) to  
Connect 20V SPAN IN  
(Pin 14) to  
Input Signal Range  
10 V  
ꢀ V  
2.ꢀ V  
0 V to +ꢀ V  
0 V to +10 V  
Output Code  
COB or CTC  
COB or CTC  
COB or CTC  
CSB  
Connect Input Signal to  
20V SPAN IN (Pin 14)  
10V SPAN IN (Pin 13)  
10V SPAN IN (Pin 13)  
10V SPAN IN (Pin 13)  
10V SPAN IN (Pin 13)  
COMPARATOR IN (Pin 11)  
COMPARATOR IN (Pin 11)  
COMPARATOR IN (Pin 11)  
ANALOG GND (Pin 1ꢀ)  
ANALOG GND (Pin 1ꢀ)  
Input Signal  
Open  
COMPARATOR IN (Pin 11)  
COMPARATOR IN (Pin 11)  
Open  
CSB  
Rev. E | Page 9 of 16  
 
 
 
 
ADADC80  
Table 6. Input Voltage Range and LSB Values  
Binary Output  
Analog Input Voltage Range  
Defined as  
10 V  
COB1  
5 V  
COB1  
2.5 V  
COB1  
0 V to +10 V  
0 V to +5 V  
Code Designation  
or CTC2  
or CTC2  
or CTC2  
CSB3  
CSB3  
One Least Significant Bit (LSB)  
FSR  
2n  
20 V  
2n  
10 V  
2n  
ꢀ V  
2n  
10 V  
2n  
ꢀ V  
2n  
n = 8  
n = 10  
n = 12  
78.13 mV  
19.ꢀ3 mV  
4.88 mV  
39.06 mV  
9.77 mV  
2.44 mV  
19.ꢀ3 mV  
4.88 mV  
1.22 mV  
39.06 mV  
9.77 mV  
2.44 mV  
19.ꢀ3 mV  
4.88 mV  
1.22 mV  
Transition Values  
MSB LSB  
000. . . 0004  
011. . . 111  
111. . . 110  
+Full scale  
Midscale  
−Full scale  
10 V − 3/2 LSB  
0
ꢀ V − 3/2 LSB  
0
2.ꢀ V − 3/2 LSB  
0
10 V − 3/2 LSB ꢀ V − 3/2 LSB  
ꢀ V  
2.ꢀ V  
−10 V + 1/2 LSB −ꢀ V + 1/2 LSB −2.ꢀ V + 1/2 LSB 0 V + 1/2 LSB  
0 V + 1/2 LSB  
1 COB = complementary offset binary.  
2
MSB MSB  
).  
CTC = complementary twos complement; obtained by using the complement of the most significant bit (  
is available on Pin 8.  
3 CSB = complementary straight binary.  
4 Voltages given are the nominal value for transition to the code specified.  
OFFSET ADJUSTMENT  
The zero adjust circuit consists of a potentiometer connected  
across ꢁS with its slider connected through a 1.8 MΩ resistor  
to COMPARATOR IN (Pin 11) for all ranges. As shown in  
Figure 9, the tolerance of this fixed resistor is not critical, and a  
carbon composition type is generally adequate. Using a carbon  
composition resistor with a −1200 ppm/°C tempco contributes  
a worst-case offset tempco of 8 × 244 × 10−6 × 1200 ppm/°C =  
2.3 ppm/°C of FSR if the offset adjustment potentiometer is set  
at either end of its adjustment range. Because the maximum  
offset adjustment required is typically no more than 4 LSB,  
use of a carbon composition offset summing resistor typically  
contributes no more than 1 ppm/°C of FSR offset tempco.  
In either zero adjust circuit, the fixed resistor connected to  
COMPARATOR IN (Pin 11) should be located close to this pin  
to keep the pin connection runs short. Pin 11 is quite sensitive  
to external noise pickup.  
GAIN ADJUSTMENT  
The gain adjust circuit consists of a potentiometer connected  
across ꢁS with its slider connected through a 10 MΩ resistor  
to the GAIN ADJUST (Pin 16), as shown in Figure 11.  
+15V  
GAIN  
ADJUST  
10k  
TO  
100kΩ  
10MΩ  
GAIN  
ADJUST  
16  
ADADC80  
0.01µF  
+15V  
–15V  
COMPARATOR  
IN  
10k  
TO  
100kΩ  
Figure 11. Gain Adjustment Circuit  
11  
ADADC80  
1.8MΩ  
An alternative gain adjust circuit, which contributes negligible  
gain tempco if metal film resistors (tempco < 100 ppm/°C) are  
used, is shown in Figure 12.  
–15V  
Figure 9. Offset Adjustment Circuit  
+15V  
An alternative offset adjust circuit, which contributes negligible  
offset tempco if metal film resistors (tempco < 100 ppm/°C) are  
used, is shown in Figure 10. Note that the abbreviation MF in  
Figure 10 and Figure 12 refer to metal film resistors.  
+15V  
270kΩ  
MF  
270kΩ  
MF  
GAIN  
ADJUST  
10kΩ  
TO  
100kΩ  
16  
ADADC80  
6.8kΩ  
0.1µF  
–15V  
Figure 12. Low Tempco Gain Adjustment Circuit  
COMPARATOR  
180k  
MF  
IN  
10kΩ  
TO  
100kΩ  
OFFSET  
ADJUST  
11  
ADADC80  
22kΩ  
MF  
180kΩ  
MF  
–15V  
A
Figure 10. Low Tempco Zero Adjustment Circuit  
Rev. E | Page 10 of 16  
 
 
 
 
 
 
 
ADADC80  
input to +FSR − 2 LSB = 9.9952 ꢁ; adjust gain for 000000000001  
digital output code. Full-scale gain is now calibrated. For half-  
scale calibration check, set analog input to 5.0000 ꢁ; digital  
output code should be 011111111111.  
CALIBRATION  
External zero adjustment and gain adjustment potentiometers,  
connected as shown in Figure 13 and Figure 14, are used for  
device calibration. To prevent interaction of these two adjustments,  
zero is always adjusted first and gain second. Zero is adjusted  
with the analog input near the most negative end of the analog  
range (0 for unipolar and −FS for bipolar input ranges). Gain is  
adjusted with the analog input near the most positive end of the  
analog range.  
−10 V to +10 V Range  
Set analog input to −9.9951 ꢁ; adjust zero for 111111111110  
digital output (complementary offset binary) code. Set analog  
input to +9.9902 ꢁ; adjust gain for 000000000001 digital output  
(complementary offset binary) code. For half-scale calibration  
check, set analog input to 0.0000 ꢁ; digital output (complemen-  
tary offset binary) code should be 011111111111.  
0 V to 10 V Range  
Set analog input to +1 LSB = 0.0024 ꢁ; adjust zero for digital  
output = 111111111110. Zero is now calibrated. Set analog  
ADADC80  
SAR  
DAC  
REF OUT  
(6.3V)  
24  
17  
REF  
+15V  
–15V  
15V OR 12V  
+
+
ANALOG  
GND  
15  
25  
DIGITAL  
BIPOLAR  
OFFSET SPAN SPAN COMPARATOR  
OUT IN IN IN  
20V  
10V  
GND  
5V DIGITAL  
COMPARATOR  
GAIN  
–15V OR  
–12V  
SUPPLY  
9
ADJUST  
10  
16  
12  
14  
13  
11  
–15V  
+5V  
+
1.8M  
10kΩ  
–15V  
10kΩ  
+15V  
10MΩ  
ANALOG  
INPUT  
0.01µF  
+15V  
Figure 13. Analog and Power Connections for Unipolar 0 V to 10 V Input Range  
ADADC80  
SAR  
REF OUT  
(6.3V)  
24  
17  
REF  
DAC  
+15V  
–15V  
15V OR 12V  
+
+
ANALOG  
GND  
15  
25  
DIGITAL  
BIPOLAR  
OFFSET SPAN SPAN COMPARATOR  
OUT IN IN IN  
20V  
10V  
GND  
5V DIGITAL  
COMPARATOR  
GAIN  
–15V OR  
–12V  
SUPPLY  
9
ADJUST  
10  
16  
12  
14  
13  
11  
–15V  
+5V  
+
1.8MΩ  
10kΩ  
–15V  
10kΩ  
+15V  
10MΩ  
ANALOG  
INPUT  
0.01µF  
+15V  
Figure 14. Analog and Power Connections for Bipolar 10 V Input Range  
Rev. E | Page 11 of 16  
 
 
 
ADADC80  
Other Ranges  
common (analog power return), and analog signal ground.  
These grounds must be tied together at one point, usually at the  
system power-supply ground. Ideally, a single solid ground is  
desirable. However, because current flows through the ground  
wires and etch stripes of the circuit cards, and because these  
paths have resistance and inductance, hundreds of millivolts can  
be generated between the system ground point and the ground  
pin of the ADADC80. Therefore, separate ground returns  
should be provided to minimize the current flow in the path  
from sensitive points to the system ground point, and the two  
device grounds should be tied together. In this way, supply  
currents and logic gate return currents are not summed into the  
same return path as analog signals, where they would cause  
measurement errors.  
Coding relationships and calibration points for 0 ꢁ to +5 ,  
−2.5 ꢁ to +2.5 , and −5 ꢁ to +5 ꢁ ranges can be found by  
halving the corresponding code equivalents listed for the 0 ꢁ to  
+10 ꢁ and −10 ꢁ to +10 ꢁ ranges, respectively.  
Zero and full-scale calibration can be accomplished to a  
precision of approximately 1/4 LSB using the static adjustment  
procedure described previously. By summing a small sine- or  
triangular-wave voltage with the signal applied to the analog  
input, the output can be cycled through each of the calibration  
codes of interest to more accurately determine the center (or  
end points) of each discrete quantization level. A detailed  
description of this dynamic calibration technique is presented  
in A/D Conversion Notes, D. Sheingold, Analog Devices, Inc.,  
1977, Part II, Chapter 3.  
Each of the ADADC80 supply terminals should be capacitively  
decoupled as close to the ADADC80 as possible. A large value  
capacitor, such as 1 μF in parallel with a 0.1 μF capacitor, is  
usually sufficient. Analog supplies are bypassed to the analog  
power return pin, and the logic supply is bypassed to the logic  
power return pin.  
GROUNDING  
Many data-acquisition components have two or more ground  
pins that are not connected together within the device. These  
grounds are usually referred to as the logic power return, analog  
ANALOG  
PS  
DIGITAL  
PS  
+15V  
C
–15V  
C
5V  
0.01  
µF  
0.01  
µF  
0.01 0.01  
µF µF  
0.01 0.01  
µF µF  
DIG  
COM  
0.01  
µF  
17  
15  
25  
10  
9
AD521  
AD583  
SAMPLE AND  
HOLD  
15V OR ANALOG –15V OR DIGITAL  
12V  
5V  
INST. AMP  
GND  
–12V  
GND DIGITAL  
SUPPLY  
*ANALOG  
GROUND  
ADADC80  
OUTPUT  
REFERENCE  
DIGITAL  
GROUND  
*IF INDEPENDENT, OTHERWISE RETURN  
AMPLIFIER REFERENCE TO MECCA AT  
ANALOG P.S. COMMON.  
Figure 15. Basic Grounding Practice  
Rev. E | Page 12 of 16  
 
ADADC80  
10-BIT  
OPERATION  
CONTROL MODES  
ADADC80  
EXTERNAL  
CLOCK IN  
19  
28  
BIT 11  
The timing sequence of the ADADC80 allows the device to be  
easily operated in a variety of systems with different control  
modes. The most common control modes are illustrated in  
Figure 16, Figure 17, and Figure 18.  
EXTERNAL  
CLOCK  
12-BIT  
OPERATION  
SHORT  
CYCLE  
21  
20  
5V  
CLOCK  
INHIBIT  
CONVERT  
START  
18  
DIGITAL  
COMMON  
DIGITAL  
COMMON  
10-BIT  
OPERATION  
ADADC80  
Figure 17. Continuation Conversion with External Clock Conversion Initiated  
by 14th Clock Pulse (Clock Runs Continuously)  
CONVERT  
18  
28  
BIT 11  
START  
CONVERT  
COMMAND  
SHORT  
CYCLE  
21  
20  
19  
12-BIT  
OPERATION  
10-BIT  
OPERATION  
ADADC80  
CLOCK  
INHIBIT  
EXTERNAL  
CLOCK IN  
19  
22  
28  
BIT 11  
EXTERNAL  
CLOCK  
EXTERNAL  
CLOCK IN  
5V  
12-BIT  
OPERATION  
STATUS  
Figure 16. Internal Clock—Normal Operating Mode,  
Conversion Initiated by the Rising Edge of Convert Command  
(Internal Clock Runs Only During Conversion)  
SHORT  
CYCLE  
21  
20  
5V  
CLOCK  
INHIBIT  
CONVERT  
START  
18  
DIGITAL  
COMMON  
CONVERT  
COMMAND  
Figure 18. Continuous External Clock Conversion Initiated by Rising Edge of  
Convert Command (Convert Command Must Be Synchronized with Clock)  
Rev. E | Page 13 of 16  
 
 
 
 
ADADC80  
OUTLINE DIMENSIONS  
SEE NOTE 4  
0.005 (0.13) MIN  
0.098 (2.49) MAX  
17  
32  
0.910 (23.11) MAX  
0.870 (22.10) MIN  
1
16  
PIN 1  
INDICATOR  
SEE NOTE 1  
1.616 (41.05) MAX  
0.060 (1.52) MAX  
0.040 (1.02) MIN  
SEE NOTE 2  
0.280 (7.11)  
MAX  
0.012 (0.30) MAX  
0.009 (0.23) MIN  
0.120 (3.05)  
MIN  
0.180 (4.57)  
MIN  
0.930 (23.62) MAX  
0.890 (22.61) MIN  
SEE NOTE 5  
0.100 (2.54)  
BSC  
SEE NOTE 3, 6  
0.020 (0.51) MAX  
0.016 (0.41) MIN  
0.055 (1.40) MAX  
0.035 (0.89) MIN  
NOTES:  
1. INDEX AREA; A NOTCH OR A LEAD ONE IDENTIFICATION MARK IS  
LOCATED ADJACENT TO LEAD ONE.  
2. DIMENSION SHALL BE MEASURED FROM THE SEATING PLANE TO THE BASE PLANE.  
3. THE BASIC PIN SPACING IS 0.100" (2.54 mm) BETWEEN CENTERLINES.  
4. APPLIES TO ALL FOUR CORNERS.  
5. THE DIMENSION SHALL BE MEASURED AT THE CENTERLINE OF THE LEADS.  
6. THIRTY SPACES.  
7. CONTROLLING DIMENSIONS ARE IN INCHES. MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 19. 32-Lead Side Brazed Ceramic DIP for Hybrid [SBDIP_H]  
(DH-32D)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model  
ADADC80-12  
ADADC80-Z-121  
Temperature Range  
–2ꢀ°C to +8ꢀ°C  
–2ꢀ°C to +8ꢀ°C  
Package Description  
32-Lead SBDIP_H  
32-Lead SBDIP_H  
Package Option  
DH-32D  
DH-32D  
1 “Z “= Models for 12 V supplies. This part is not RoHS compliant.  
Rev. E | Page 14 of 16  
 
 
ADADC80  
NOTES  
Rev. E | Page 1ꢀ of 16  
ADADC80  
NOTES  
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01202-0-2/08(E)  
Rev. E | Page 16 of 16  
 

相关型号:

ADADC80Z-12

Analog-to-Digital Converter, 12-Bit
ADI

ADADC80Z10

Analog to Digital Converter
ETC

ADADC84

FAST, COMPLETE 12-BIT A/D CONVERTERS
ADI

ADADC84-10

FAST, COMPLETE 12-BIT A/D CONVERTERS
ADI

ADADC84-10

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, DH-32E
ROCHESTER

ADADC84-12

FAST, COMPLETE 12-BIT A/D CONVERTERS
ADI

ADADC84-12

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, DH-32E
ROCHESTER

ADADC84-122

IC 2-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP32, SIDE BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

ADADC84Z-10

IC 1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, DH-32E, Analog to Digital Converter
ADI

ADADC84Z-10

1-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, DH-32E
ROCHESTER

ADADC84Z-12

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, DH-32E, Analog to Digital Converter
ADI

ADADC84Z-12

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, DH-32E
ROCHESTER