ADA4853-3WYCPZ-R7 [ADI]

Low Power, Rail-to-Rail Output, Video Op Amps with Ultralow Power;
ADA4853-3WYCPZ-R7
型号: ADA4853-3WYCPZ-R7
厂家: ADI    ADI
描述:

Low Power, Rail-to-Rail Output, Video Op Amps with Ultralow Power

文件: 总20页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Rail-to-Rail Output,  
Video Op Amps with Ultralow Power  
ADA4853-1/ADA4853-2/ADA4853-3  
Data Sheet  
FEATURES  
PIN CONFIGURATIONS  
Qualified for automotive applications (ADA4853-3W only)  
Ultralow disable current: 0.1 μA  
Low quiescent current: 1.4 mA/amplifier  
Ideal for standard definition video  
High speed  
100 MHz, −3 dB bandwidth  
120 V/μs slew rate  
0.5 dB flatness: 22 MHz  
ADA4853-2  
V
1
1
2
3
4
12 +V  
OUT  
S
–IN1  
+IN1  
11  
V
2
OUT  
+
10 –IN2  
+IN2  
+
–V  
S
9
ADA4853-1  
V
1
2
3
6
5
4
+V  
S
OUT  
–V  
S
DISABLE  
–IN  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED DIE PAD MUST BE  
CONNECTED TO GND.  
+IN  
Differential gain: 0.20%  
Differential phase: 0.10°  
TOP VIEW  
(Not to Scale)  
Single-supply operation  
Rail-to-rail output  
Figure 1. 6-Lead SC70  
Figure 2. 16-Lead LFCSP_WQ  
ADA4853-3  
Output swings to within 200 mV of either rail  
Low voltage offset: 1 mV  
Wide supply range: 2.65 V to 5 V  
+
DISABLE 1  
DISABLE 2  
DISABLE 3  
1
2
3
4
12 –V  
S
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
DISABLE 1  
DISABLE 2  
DISABLE 3  
V
3
OUT  
11 +IN2  
10 –IN2  
+
–IN3  
+IN3  
APPLICATIONS  
+
+V  
S
9
V
2
OUT  
+
Automotive infotainment systems  
Automotive safety systems  
Portable multimedia players  
Video cameras  
ADA4853-3  
+V  
–V  
S
S
+IN1  
–IN1  
+IN2  
–IN2  
+
+
NOTES  
1. EXPOSED DIE PAD MUST BE  
CONNECTED TO GND.  
8
V
1
V
2
OUT  
OUT  
Digital still cameras  
Figure 3. 16-Lead LFCSP_WQ  
Figure 4. 14-Lead TSSOP  
Consumer video  
Clock buffer  
GENERAL DESCRIPTION  
The ADA4853-1/ADA4853-2/ADA4853-3 are low power, low cost,  
high speed, rail-to-rail output op amps with ultralow power disables  
that are ideal for portable consumer electronics. Despite their low  
price, the ADA4853-1/ADA4853-2/ADA4853-3 provide excellent  
overall performance and versatility. The 100 MHz, −3 dB  
The ADA4853-1 is available in a 6-lead SC70, the ADA4853-2 is  
available in a 16-lead LFCSP_WQ, and the ADA4853-3 is available in  
both a 16-lead LFCSP_WQ and a 14-lead TSSOP. The ADA4853-1  
temperature range is −40°C to +85°C while the ADA4853-2/  
ADA4853-3 temperature range is −40°C to +105°C.  
6.5  
bandwidth, and 120 V/μs slew rate make these amplifiers well-  
suited for many general-purpose, high speed applications.  
0.1V p-p  
V
R
= 5V  
= 150  
S
L
6.4  
6.3  
G = +2  
The ADA4853-1/ADA4853-2/ADA4853-3 voltage feedback op  
amps are designed to operate at supply voltages as low as 2.65 V and up  
to 5 V using only 1.4 mA of supply current per amplifier. To further  
reduce power consumption, the amplifiers are equipped with a disable  
mode that lowers the supply current to less than 1.5 μA maximum,  
making them ideal in battery-powered applications.  
6.2  
6.1  
6.0  
2.0V p-p  
5.9  
5.8  
5.7  
The ADA4853-1/ADA4853-2/ADA4853-3 provide users with a  
true single-supply capability, allowing input signals to extend  
200 mV below the negative rail and to within 1.2 V of the positive  
rail. On the output, the amplifiers can swing within 200 mV of  
either supply rail. With their combination of low price, excellent  
differential gain (0.2%), differential phase (0.10°), and 0.5 dB flatness  
out to 22 MHz, these amplifiers are ideal for video applications.  
5.6  
5.5  
0.1  
1
10  
40  
FREQUENCY (MHz)  
Figure 5. 0.5 dB Flatness Frequency Response  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2006–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADA4853-1/ADA4853-2/ADA4853-3  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Specifications with 3 V Supply ................................................... 3  
Specifications with 5 V Supply ................................................... 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Typical Performance Characteristics ..............................................8  
Circuit Description......................................................................... 16  
Headroom Considerations........................................................ 16  
Overload Behavior and Recovery ............................................ 16  
Applications Information .............................................................. 17  
Single-Supply Video Amplifier................................................. 17  
Power Supply Bypassing............................................................ 17  
Layout .......................................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Automotive Products................................................................. 19  
REVISION HISTORY  
12/14—Rev. F to Rev. G  
Changes to DC Performance, Input Characteristics, and  
Power Supply Sections ......................................................................4  
Changes to Figure 20.........................................................................8  
Changes to Figure 49...................................................................... 13  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide.......................................................... 16  
Updated Figure 54; Outline Dimensions..................................... 18  
Changes to Ordering Guide .......................................................... 19  
1/11—Rev. E to Rev. F  
Changes to Features Section, Applications Section, and General  
Description Section.......................................................................... 1  
Changed Pin 5 to DISABLE in Figure 1 ........................................ 1  
Changed Pin 13 to DISABLE 2 and Pin 14 and DISABLE 1 in  
Figure 2 .............................................................................................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2 ............................................................................ 5  
Changes to Ordering Guide .......................................................... 18  
Added Automotive Products Section........................................... 18  
7/06—Rev. 0 to Rev. A  
Added ADA4853-2..............................................................Universal  
Changes to Features and General Description..............................1  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Changes to Table 3.............................................................................5  
Changes to Figure 7...........................................................................6  
Changes to Figure 11 Caption, Figure 12, Figure 13,  
9/10—Rev. D to Rev. E  
and Figure 16......................................................................................7  
Changes to Figure 17 and Figure 19 ...............................................8  
Inserted Figure 21; Renumbered Sequentially ..............................8  
Inserted Figure 25; Renumbered Sequentially ..............................9  
Changes to Figure 28.........................................................................9  
Changes to Figure 31 through Figure 35..................................... 10  
Changes to Figure 37, Figure 39 through Figure 42 .................. 11  
Inserted Figure 43 and Figure 46.................................................. 12  
Inserted Figure 47........................................................................... 13  
Changes to Circuit Description Section...................................... 13  
Changes to Headroom Considerations Section ......................... 13  
Changes to Figure 48...................................................................... 14  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide.......................................................... 15  
Changes to Figure 2 and Figure 3................................................... 1  
6/10—Rev. C to Rev. D  
Changes to Figure 2 and Figure 3................................................... 1  
Changes to Outline Dimensions................................................... 16  
10/07—Rev. B to Rev. C  
Changes to Applications Section .................................................... 1  
Changes to Ordering Guide .......................................................... 16  
10/06—Rev. A to Rev. B  
Added ADA4853-3..............................................................Universal  
Added 16-Lead LFCSP_VQ ..............................................Universal  
Added 14-Lead TSSOP ......................................................Universal  
Changes to Features.......................................................................... 1  
Changes to DC Performance, Input Characteristics, and  
1/06—Revision 0: Initial Version  
Power Supply Sections ..................................................................... 3  
Rev. G | Page 2 of 20  
 
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
SPECIFICATIONS  
SPECIFICATIONS WITH 3 V SUPPLY  
TA = 25°C, RF = 1 kΩ, RG = 1 kΩ for G = +2, RL = 150 Ω, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +2, VO = 2 V p-p  
G = +2, VO = 2 V p-p, RL = 150 Ω  
VO = 2 V step  
G = +2, VO = 2 V step  
ADA4853-3W only: TMIN to TMAX  
90  
32  
22  
45  
100  
MHz  
MHz  
MHz  
ns  
V/µs  
V/µs  
Bandwidth for 0.5 dB Flatness  
Settling Time to 0.1%  
Slew Rate  
88  
60  
NOISE/DISTORTION PERFORMANCE  
Differential Gain  
Differential Phase  
Input Voltage Noise  
Input Current Noise  
Crosstalk  
RL = 150 Ω  
RL = 150 Ω  
f = 100 kHz  
f = 100 kHz  
0.20  
0.10  
22  
2.2  
−66  
%
Degrees  
nV/√Hz  
pA/√Hz  
dB  
G = +2, VO = 2 V p-p, RL = 150 Ω, f = 5 MHz  
DC PERFORMANCE  
Input Offset Voltage  
1
4.0  
6.0  
mV  
mV  
µV/°C  
µA  
ADA4853-3W only: TMIN to TMAX  
ADA4853-3W only: TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
1.6  
1.0  
1.7  
1.7  
µA  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
4
50  
80  
nA/°C  
nA  
dB  
VO = 0.5 V to 2.5 V  
ADA4853-3W only: TMIN to TMAX  
72  
69  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Differential/common mode  
0.5/20  
0.6  
−0.2 to +VCC − 1.2  
MΩ  
pF  
V
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall) VIN = −0.5 V to +3.5 V, G = +1  
40  
−85  
ns  
dB  
dB  
Common-Mode Rejection Ratio  
VCM = 0 V to 1 V  
−69  
−66  
ADA4853-3W only: TMIN to TMAX  
DISABLE  
DISABLE Input Voltage  
Turn-Off Time  
Turn-On Time  
1.2  
1.4  
120  
V
µs  
ns  
DISABLE Bias Current  
Enabled  
DISABLE = 3.0 V  
DISABLE = 3.0 V, ADA4853-3W only:  
25  
30  
30  
µA  
µA  
TMIN to TMAX  
Disabled  
DISABLE = 0 V  
0.01  
70  
µA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
Output Voltage Swing  
VIN = −0.25 V to +1.75 V, G = +2  
RL = 150 Ω  
RL = 150 Ω, ADA4853-3W only: TMIN to TMAX  
Sinking/sourcing  
ns  
V
V
0.3 to 2.7 0.15 to 2.88  
0.3 to 2.7  
Short-Circuit Current  
150/120  
mA  
Rev. G | Page 3 of 20  
 
 
ADA4853-1/ADA4853-2/ADA4853-3  
Data Sheet  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current/Amplifier  
2.65  
5
V
1.3  
1.6  
1.6  
1.5  
1.5  
mA  
mA  
µA  
µA  
dB  
dB  
dB  
dB  
ADA4853-3W only: TMIN to TMAX  
Quiescent Current (Disabled)/Amplifier DISABLE = 0 V  
DISABLE = 0 V, ADA4853-3W only: TMIN to TMAX  
Positive Power Supply Rejection  
0.1  
+VS = +1.5 V to +2.5 V, −VS = −1.5 V  
ADA4853-3W only: TMIN to TMAX  
−VS = −1.5 V to −2.5 V, +VS = +1.5 V  
ADA4853-3W only: TMIN to TMAX  
−76  
−76  
−77  
−74  
−86  
−88  
Negative Power Supply Rejection  
Rev. G | Page 4 of 20  
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
SPECIFICATIONS WITH 5 V SUPPLY  
TA = 25°C, RF = 1 kΩ, RG = 1 kΩ for G = +2, RL = 150 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +2, VO = 2 V p-p  
G = +2, VO = 2 V p-p  
VO = 2 V step  
G = +2, VO = 2 V step  
ADA4853-3W only: TMIN to TMAX  
100  
35  
22  
54  
120  
MHz  
MHz  
MHz  
ns  
V/µs  
V/µs  
Bandwidth for 0.5 dB Flatness  
Settling Time to 0.1%  
Slew Rate  
93  
70  
NOISE/DISTORTION PERFORMANCE  
Differential Gain  
Differential Phase  
Input Voltage Noise  
Input Current Noise  
Crosstalk  
RL = 150 Ω  
RL = 150 Ω  
f = 100 kHz  
f = 100 kHz  
0.22  
0.10  
22  
2.2  
−66  
%
Degrees  
nV/√Hz  
pA/√Hz  
dB  
G = +2, VO = 2 V p-p, RL = 150 Ω, f = 5 MHz  
DC PERFORMANCE  
Input Offset Voltage  
1
4.1  
6.0  
mV  
mV  
µV/°C  
µA  
ADA4853-3W only: TMIN to TMAX  
ADA4853-3W only: TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
1.6  
1.0  
1.7  
1.7  
µA  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
4
60  
80  
nA/°C  
nA  
dB  
VO = 0.5 V to 4.5 V  
ADA4853-3W only: TMIN to TMAX  
72  
70  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time  
(Rise/Fall)  
Differential/common mode  
VIN = −0.5 V to +5.5 V, G = +1  
0.5/20  
0.6  
−0.2 to +VCC − 1.2  
40  
MΩ  
pF  
V
ns  
Common-Mode Rejection Ratio  
VCM = 0 V to 3 V  
ADA4853-3W only: TMIN to TMAX  
−71  
−68  
−88  
dB  
dB  
DISABLE  
DISABLE Input Voltage  
Turn-Off Time  
Turn-On Time  
DISABLE Bias Current  
Enabled  
1.2  
1.5  
120  
V
µs  
ns  
DISABLE = 5 V  
DISABLE = 5 V, ADA4853-3W only:  
TMIN to TMAX  
40  
50  
50  
µA  
µA  
Disabled  
DISABLE = 0 V  
0.01  
55  
µA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
Output Voltage Swing  
VIN = −0.25 V to +2.75 V, G = +2  
RL = 75 Ω  
RL = 75 Ω, ADA4853-3W only: TMIN to TMAX  
Sinking/sourcing  
ns  
V
V
0.55 to 4.5 0.1 to 4.8  
0.55 to 4.5  
Short-Circuit Current  
160/120  
mA  
Rev. G | Page 5 of 20  
 
ADA4853-1/ADA4853-2/ADA4853-3  
Data Sheet  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current/Amplifier  
2.65  
5
V
1.4  
0.1  
1.8  
1.8  
1.5  
1.5  
mA  
mA  
µA  
µA  
ADA4853-3W only: TMIN to TMAX  
DISABLE = 0 V  
DISABLE = 0 V, ADA4853-3W only: TMIN to  
TMAX  
Quiescent Current (Disabled)/Amplifier  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
+VS = +2.5 V to +3.5 V, −VS = −2.5 V  
ADA4853-3W only: TMIN to TMAX  
−VS = −2.5 V to −3.5 V, +VS = +2.5 V  
ADA4853-3W only: TMIN to TMAX  
−75  
−72  
−75  
−72  
−80  
−80  
dB  
dB  
dB  
Rev. G | Page 6 of 20  
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
The power dissipated in the package (PD) for a sine wave and a  
resistor load is the total power consumed from the supply  
minus the load power.  
Parameter  
Rating  
Supply Voltage  
5.5 V  
PD = Total Power Consumed Load Power  
Power Dissipation  
See Figure 6  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
6-Lead SC70  
16-Lead LFCSP_WQ  
14-Lead TSSOP  
Lead Temperature  
−VS − 0.2 V to +VS − 1.2 V  
VS  
−65°C to +125°C  
2
VOUT  
RL  
PD =  
(
V
SUPPLY VOLTAGE × ISUPPLY CURRENT  
)
RMS output voltages should be considered.  
−40°C to +85°C  
−40°C to +105°C  
−40°C to +105°C  
JEDEC J-STD-20  
150°C  
Airflow increases heat dissipation, effectively reducing θJA.  
In addition, more metal directly in contact with the package  
leads and through holes under the device reduces θJA.  
Figure 6 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 6-lead SC70  
(430°C/W), the 14-lead TSSOP (120°C/W), and the 16-lead  
LFCSP_WQ (63°C/W) on a JEDEC standard 4-layer board. θJA  
values are approximations.  
Junction Temperature  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
3.0  
2.5  
2.0  
THERMAL RESISTANCE  
LFCSP  
1.5  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for the device soldered in the circuit board for  
surface-mount packages.  
TSSOP  
1.0  
Table 4.  
0.5  
Package Type  
θJA  
430  
63  
Unit  
°C/W  
°C/W  
°C/W  
SC70  
–35  
6-Lead SC70  
16-Lead LFCSP_WQ  
14-Lead TSSOP  
0
–55  
–15  
5
25  
45  
65  
85  
105  
125  
AMBIENT TEMPERATURE (°C)  
120  
Figure 6. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
Maximum Power Dissipation  
ESD CAUTION  
The maximum safe power dissipation for the ADA4853-1/  
ADA4853-2/ADA4853-3 is limited by the associated rise in  
junction temperature (TJ) on the die. At approximately 150°C,  
which is the glass transition temperature, the plastic changes its  
properties. Even temporarily exceeding this temperature limit  
can change the stresses that the package exerts on the die,  
permanently shifting the parametric performance of the  
amplifiers. Exceeding a junction temperature of 150°C for an  
extended period can result in changes in silicon devices,  
potentially causing degradation or loss of functionality.  
Rev. G | Page 7 of 20  
 
 
 
 
ADA4853-1/ADA4853-2/ADA4853-3  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
5
4
2
V
= 5V  
C
= 10pF/25SNUB  
S
L
ADA4853-3  
R
= 150ꢀ  
= 0.1V p-p  
LFCSP  
L
C
= 10pF  
L
1
0
V
OUT  
G = +1  
3
G = –1*  
C
= 5pF  
L
2
1
G = +2*  
–1  
–2  
–3  
–4  
–5  
–6  
0
G = +10*  
C
= 0pF  
L
–1  
–2  
–3  
–4  
–5  
–6  
*ADA4853-1/ADA4853-2  
R
SNUB  
V
R
= 5V  
= 150  
= 0.1V p-p  
S
C
R
L
L
L
V
OUT  
0.1  
1
10  
FREQUENCY (MHz)  
100 200  
0.1  
1
10  
FREQUENCY (MHz)  
100 200  
Figure 10. Small Signal Frequency Response for Various Capacitive Loads  
Figure 7. Small Signal Frequency Response for Various Gains  
3
6.5  
V = 5V  
S
0.1V p-p  
V
= 5V  
R
= 75  
S
L
R
= 150  
6.4  
6.3  
L
G = +1  
= 0.1V p-p  
2
1
G = +2  
V
OUT  
6.2  
6.1  
6.0  
0
R
= 1kꢀ  
L
–1  
2.0V p-p  
R
= 150ꢀ  
L
–2  
–3  
–4  
5.9  
5.8  
5.7  
5.6  
5.5  
–5  
–6  
0.1  
1
10  
100 200  
0.1  
1
10  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Small Signal Frequency Response for Various Loads  
Figure 11. 0.5 dB Flatness Response for Various Output Voltages  
4
8.0  
V
R
= 5V  
= 150ꢀ  
V
= 3V  
S
S
G = +1  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
L
3
2
1
R
V
= 150ꢀ  
L
G = +2  
= 0.1V p-p  
OUT  
0.1V p-p  
V
= 5V  
S
0
–1  
–2  
–3  
–4  
2V p-p  
–5  
–6  
0.1  
1
10  
100 200  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 9. Small Signal Frequency Response for Various Supplies  
Figure 12. ADA4853-3 LFCSP_WQ Flatness Response for Various Output  
Voltages  
Rev. G | Page 8 of 20  
 
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
1
4
V
R
= 5V  
= 150Ω  
= 0.1V p-p  
+85°C  
S
G = –1  
L
3
2
+25°C  
V
OUT  
G = +1  
0
–1  
–2  
–3  
–4  
G = +2  
G = +10  
1
0
–40°C  
–1  
–2  
–3  
–4  
V
R
V
= 5V  
= 150Ω  
–5  
–6  
S
–5  
–6  
L
= 2V p-p  
OUT  
0.1  
1
10  
FREQUENCY (MHz)  
100 200  
0.1  
1
10  
FREQUENCY (MHz)  
100 200  
Figure 13. Large Signal Frequency Response for Various Gains  
Figure 16. Small Signal Frequency Response for Various Temperatures  
7
6
250  
V
R
= 5V  
= 150Ω  
S
L
G = +2  
200  
150  
100  
50  
R = 75Ω  
L
NEGATIVE SLEW RATE  
R = 1kΩ  
L
5
4
3
2
R = 150Ω  
L
POSITIVE SLEW RATE  
V
V
= 5V  
1
0
S
= 2V p-p  
OUT  
G = +2  
0
0.1  
1
10  
FREQUENCY (MHz)  
100 200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT VOLTAGE STEP (V)  
Figure 14. Large Signal Frequency Response for Various Loads  
Figure 17. Slew Rate vs. Output Voltage  
5
140  
0
V
R
= 3V  
= 150Ω  
= 0.1V p-p  
V = 5V  
S
+85°C  
S
R
= 150Ω  
4
L
L
+25°C  
120  
100  
80  
–30  
V
OUT  
G = +1  
3
2
–60  
PHASE  
GAIN  
1
0
–90  
–40°C  
–120  
–150  
–180  
–210  
–240  
60  
–1  
–2  
40  
–3  
–4  
–5  
–6  
20  
0
–20  
100  
0.1  
1
10  
100 200  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 15. Small Signal Frequency Response for Various Temperatures  
Figure 18. Open-Loop Gain and Phase vs. Frequency  
Rev. G | Page 9 of 20  
ADA4853-1/ADA4853-2/ADA4853-3  
Data Sheet  
–20  
10M  
1M  
V
= 5V  
V = 5V  
S
G = +1  
S
–30  
–40  
–50  
–60  
–70  
–80  
–90  
ADA4853-1/  
ADA4853-2  
100k  
10k  
1k  
ADA4853-3  
100  
10  
100  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Common-Mode Rejection vs. Frequency  
Figure 22. Output Impedance vs. Frequency Disabled  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
V
= 5V  
G = +2  
S
OUT  
S
V
V
= 3V  
GAIN = +2  
RTO  
= 2V p-p  
R
= 150HD2  
L
–PSR  
R
= 150HD3  
L
–60  
–70  
–80  
–90  
R
= 1kHD3  
L
+PSR  
R
= 1kHD2  
L
–100  
–110  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 20. Power Supply Rejection vs. Frequency  
Figure 23. Harmonic Distortion vs. Frequency  
1000  
100  
10  
–40  
–50  
V
= 5V  
S
G = +2  
G = +1  
V
V
= 5V  
OUT  
S
R
= 150HD3  
L
= 2V p-p  
–60  
–70  
R
= 150HD2  
L
R
= 1kHD3  
L
–80  
1
–90  
R
= 1kHD2  
L
–100  
–110  
–120  
0.1  
0.01  
100  
0.1  
1
10  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 21. Output Impedance vs. Frequency Enabled  
Figure 24. Harmonic Distortion vs. Frequency  
Rev. G | Page 10 of 20  
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
–40  
2.60  
G = +1  
G = +2  
= 150  
25ns/DIV  
V
V
= 5V  
S
OUT  
R
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
L
= 2V p-p  
–50  
–60  
–70  
–80  
–90  
R
= 150HD3  
L
V
= 3V  
S
R
= 150HD2  
L
V
= 5V  
S
R
= 75HD2  
L
R
= 75HD3  
L
–100  
–110  
–120  
R
= 1kHD2  
L
R
= 1kHD3  
L
0.1  
1
10  
FREQUENCY (MHz)  
Figure 25. Harmonic Distortion vs. Frequency  
Figure 28. Small Signal Pulse Response for Various Supplies  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2.60  
2.58  
G = +2  
= 2V p-p  
V
OUT  
= 75  
R
L
G = +1; C = 5pF  
L
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
V
= 3V HD3  
G = +2; C = 0pF, 5pF, 10pF  
L
S
V
= 5V HD2  
S
V
= 3V HD2  
S
V
= 5V HD3  
S
V
R
= 5V  
= 150  
S
L
25ns/DIV  
0.1  
1
10  
FREQUENCY (MHz)  
Figure 29. Small Signal Pulse Response for Various Capacitive Loads  
Figure 26. Harmonic Distortion vs. Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
3.75  
G = +1  
G = +2  
V
R
= 5V  
= 150  
5V  
S
L
R
= 150Ω  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
L
25ns/DIV  
V
= 3V, 5V  
S
f = 100kHz  
2V  
GND  
–100  
–110  
–120  
HD2  
HD3  
0
1
2
3
4
V
(V p-p)  
OUT  
Figure 27. Harmonic Distortion for Various Output Voltages  
Figure 30. Large Signal Pulse Response for Various Supplies  
Rev. G | Page 11 of 20  
 
ADA4853-1/ADA4853-2/ADA4853-3  
Data Sheet  
3.75  
1000  
G = +2  
V
R
= 5V  
= 150Ω  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
S
L
25ns/DIV  
C
= 0pF, 20pF  
L
100  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 31. Large Signal Pulse Response for Various Capacitive Loads  
Figure 34. Voltage Noise vs. Frequency  
5.5  
100  
V
= 5V  
S
2 × INPUT  
G = +2  
= 150Ω  
R
L
4.5  
f = 1MHz  
OUTPUT  
3.5  
2.5  
1.5  
10  
0.5  
–0.5  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100ns/DIV  
FREQUENCY (Hz)  
Figure 32. Output Overdrive Recovery  
Figure 35. Current Noise vs. Frequency  
5.5  
4.5  
20  
V
= 5V  
S
INPUT  
V
= 5V  
S
G = +1  
R
f = 1MHz  
18  
16  
14  
12  
10  
8
N = 155  
x = –0.370mV  
σ = 0.782  
= 150Ω  
L
OUTPUT  
3.5  
2.5  
1.5  
6
4
0.5  
2
–0.5  
0
–4  
–3  
–2  
–1  
0
1
2
3
4
100ns/DIV  
V
(mV)  
OS  
Figure 36. VOS Distribution  
Figure 33. Input Overdrive Recovery  
Rev. G | Page 12 of 20  
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
–0.50  
–0.6  
V
= 5V  
S
–0.52  
–0.54  
–0.56  
–0.58  
–0.60  
–0.62  
–0.64  
–0.66  
–0.68  
–0.8  
V
= 5V  
S
–1.0  
–1.2  
+I  
B
–1.4  
–1.6  
V
= 3V  
S
–I  
B
–1.8  
–2.0  
–1.0 –0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
(V)  
–40  
–20  
0
20  
40  
60  
80  
V
CM  
TEMPERATURE (°C)  
Figure 37. VOS vs. Common-Mode Voltage  
Figure 40. Input Bias Current vs. Temperature  
3.0  
2.8  
2.6  
1.5  
V
= 5V, T = +85°C  
S
V
= 3V  
S
LOAD RESISTANCE TIED  
TO MIDSUPPLY  
POSITIVE SWING  
V
= 5V, T = –40°C  
S
V
= 5V, T = +25°C  
S
1.0  
0.5  
0
V
= 3V, T = –40°C  
S
V
= 3V, T = +25°C  
S
2.4  
0.6  
V
= 3V, T = +85°C  
S
0.4  
0.2  
0
NEGATIVE SWING  
10  
0
0.5  
1.0  
1.5  
2.0 2.5  
3.0  
3.5  
4.0 4.5  
5.0  
1
100  
1k  
10k  
POWER DOWN VOLTAGE (V)  
LOAD RESISTANCE ()  
POWER DOWN  
Figure 41. Output Voltage vs. Load Resistance  
Figure 38. Supply Current vs.  
Voltage  
5.0  
4.8  
4.6  
–0.6  
–0.7  
V
= 5V  
S
LOAD RESISTANCE TIED  
TO MIDSUPPLY  
POSITIVE SWING  
V
= 5V  
S
V
= 3V  
S
4.4  
0.6  
–0.8  
–0.9  
–1.0  
0.4  
0.2  
0
NEGATIVE SWING  
100  
10  
1k  
10k  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
LOAD RESISTANCE ()  
Figure 39. Input Offset Voltage vs. Temperature  
Figure 42. Output Voltage vs. Load Resistance  
Rev. G | Page 13 of 20  
ADA4853-1/ADA4853-2/ADA4853-3  
Data Sheet  
0.25  
0.20  
0.15  
0.10  
0.05  
0
3.0  
V
= 3V  
R
= 150Ω  
S
L
2.9  
2.8  
2.7  
2.6  
+V  
SAT  
V
= 5V  
S
POSITIVE SWING  
2.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–V  
V
= 3V  
SAT  
S
NEGATIVE SWING  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
–40  
–20  
0
20  
40  
60  
80  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 45. Output Saturation Voltage vs. Temperature for Various Supplies  
Figure 43. Output Voltage vs. Load Current  
3.0  
5.0  
4.9  
4.8  
4.7  
4.6  
V
= 5V  
V
S
OUTPUT  
V
= 5V  
S
L
3.1  
2.9  
2.8  
2.7  
2.6  
2.5  
R
= 150Ω  
POSITIVE SWING  
2V  
INPUT  
+0.001  
(+0.1%)  
2V  
V
INPUT – OUTPUT  
4.5  
0.5  
–0.001  
2.4  
2.3  
2.2  
0.4  
0.3  
0.2  
0.1  
0
(–0.1%)  
NEGATIVE SWING  
2.1  
2.0  
1.9  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
TIME (ns)  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
LOAD CURRENT (mA)  
Figure 44. Output Voltage vs. Load Current  
Figure 46. 0.1% Settling Time  
Rev. G | Page 14 of 20  
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
0
6
3
2
V
R
V
= 5V  
S
POWER DOWN  
= 150Ω  
= 1V p-p  
L
V
5
4
3
2
1
OUT  
ADA4853-3  
IN  
G = +2  
–20  
–40  
V
OUT  
ADA4853-1/  
ADA4853-2  
1
0
–60  
–80  
G = +2  
0
V
IN  
= 5V  
= 100kHz  
S
f
–1  
–100  
0
1
2
3
4
5
6
7
8
9
10  
0.1  
1
10  
100 200  
TIME (µs)  
FREQUENCY (MHz)  
Figure 49. Input-to-Output Isolation, Chip Disabled  
Figure 47. Enable/Disable Time  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= 5V  
S
G = +2  
= 150Ω  
R
L
V
= 2V p-p  
OUT  
V
2 TO V  
OUT  
1
OUT  
ADA4853-2  
V
1 TO V  
ADA4853-2  
2
OUT  
OUT  
ADA4853-3  
ALL HOSTILE  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 200M  
Figure 48. Crosstalk vs. Frequency  
Rev. G | Page 15 of 20  
ADA4853-1/ADA4853-2/ADA4853-3  
CIRCUIT DESCRIPTION  
Data Sheet  
The ADA4853-1/ADA4853-2/ADA4853-3 feature a high slew  
rate input stage that is a true single-supply topology capable of  
sensing signals at or below the minus supply rail. The rail-to-  
rail output stage can pull within 100 mV of either supply rail  
when driving light loads and within 200 mV when driving  
150 Ω. High speed performance is maintained at supply  
voltages as low as 2.65 V.  
For signals approaching the negative supply, inverting gain, and  
high positive gain configurations, the headroom limit is the  
output stage. The ADA4853-1/ADA4853-2/ADA4853-3 use a  
common-emitter output stage. This output stage maximizes the  
available output range, limited by the saturation voltage of the  
output transistors. The saturation voltage increases with the  
drive current that the output transistor is required to supply due  
to the collector resistance of the output transistor.  
HEADROOM CONSIDERATIONS  
As the saturation point of the output stage is approached, the  
output signal shows increasing amounts of compression and  
clipping. For the input headroom case, higher frequency signals  
require a bit more headroom than the lower frequency signals.  
Figure 27 illustrates this point by plotting the typical distortion  
vs. the output amplitude.  
The ADA4853-1/ADA4853-2/ADA4853-3 are designed for use in  
low voltage systems. To obtain optimum performance, it is  
useful to understand the behavior of the amplifiers as input and  
output signals approach their headroom limits. The input  
common-mode voltage range of the amplifier extends from the  
negative supply voltage (actually 200 mV below this) to within  
1.2 V of the positive supply voltage.  
OVERLOAD BEHAVIOR AND RECOVERY  
Exceeding the headroom limits is not a concern for any  
inverting gain on any supply voltage, as long as the reference  
voltage at the positive input of the amplifier lies within the a  
input common-mode range of the amplifier.  
Input  
The specified input common-mode voltage of the ADA4853-1/  
ADA4853-2/ADA4853-3 is 200 mV below the negative supply to  
within 1.2 V of the positive supply. Exceeding the top limit results  
in lower bandwidth and increased rise time. Pushing the input  
voltage of a unity-gain follower to less than 1.2 V from the  
positive supply leads to an increasing amount of output error as  
well as increased settling time. The recovery time from input  
voltages 1.2 V or closer to the positive supply is approximately  
40 ns; this is limited by the settling artifacts caused by transis-  
tors in the input stage coming out of saturation.  
The input stage is the headroom limit for signals approaching  
the positive rail. Figure 50 shows a typical offset voltage vs. the  
input common-mode voltage for the ADA4853-1/ADA4853-2/  
ADA4853-3 on a 5 V supply. Accurate dc performance is  
maintained from approximately 200 mV below the negative  
supply to within 1.2 V of the positive supply. For high speed  
signals, however, there are other considerations. As the  
common-mode voltage gets within 1.2 V of positive supply, the  
amplifier responds well but the bandwidth begins to drop as the  
common-mode voltage approaches the positive supply. This can  
manifest itself in increased distortion or settling time. Higher  
frequency signals require more headroom than the lower  
frequencies to maintain distortion performance.  
The amplifiers do not exhibit phase reversal, even for input  
voltages beyond the voltage supply rails. Going more than 0.6 V  
beyond the power supplies turns on protection diodes at the  
input stage, greatly increasing the current draw of the devices.  
–0.6  
V
= 5V  
S
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–1.0 –0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
(V)  
V
CM  
Figure 50. VOS vs. Common-Mode Voltage, VS = 5 V  
Rev. G | Page 16 of 20  
 
 
 
 
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
APPLICATIONS INFORMATION  
SINGLE-SUPPLY VIDEO AMPLIFIER  
LAYOUT  
With low differential gain and phase errors and wide 0.5 dB  
flatness, the ADA4853-1/ADA4853-2/ADA4853-3 are ideal  
solutions for portable video applications. Figure 51 shows a  
typical video driver set for a noninverting gain of +2, where  
RF = RG = 1 kΩ. The video amplifier input is terminated into a  
shunt 75 Ω resistor. At the output, the amplifier has a series  
75 Ω resistor for impedance matching to the video load.  
As is the case with all high speed applications, careful attention  
to printed circuit board (PCB) layout details prevents associated  
board parasitics from becoming problematic. The ADA4853-1/  
ADA4853-2/ADA4853-3 can operate at up to 100 MHz; there-  
fore, proper RF design techniques must be employed. The PCB  
should have a ground plane covering all unused portions of the  
component side of the board to provide a low impedance return  
path. Removing the ground plane on all layers from the area  
near and under the input and output pins reduces stray capacit-  
ance. Signal lines connecting the feedback and gain resistors  
should be kept as short as possible to minimize the inductance  
and stray capacitance associated with these traces. Termination  
resistors and loads should be located as close as possible to their  
respective inputs and outputs. Input and output traces should  
be kept as far apart as possible to minimize coupling (crosstalk)  
through the board. Adherence to microstrip or stripline design  
techniques for long signal traces (greater than 1 inch) is  
recommended. For more information on high speed board  
layout, go to www.analog.com to view A Practical Guide to  
High-Speed Printed-Circuit-Board Layout.  
When operating in low voltage, single-supply applications, the  
input signal is only limited by the input stage headroom.  
R
F
C1  
2.2µF  
+V  
S
+
P
D
C2  
0.01µF  
R
G
75Ω CABLE  
V
75Ω  
OUT  
U1  
V
V
75Ω  
IN  
Figure 51. Video Amplifier  
POWER SUPPLY BYPASSING  
Attention must be paid to bypassing the power supply pins of  
the ADA4853-1/ADA4853-2/ADA4853-3. High quality capacitors  
with low equivalent series resistance (ESR), such as multilayer  
ceramic capacitors (MLCCs), should be used to minimize  
supply voltage ripple and power dissipation. A large, usually  
tantalum, 2.2 µF to 47 µF capacitor located in proximity to the  
ADA4853-1/ADA4853-2/ADA4853-3 is required to provide good  
decoupling for lower frequency signals. The actual value is  
determined by the circuit transient and frequency requirements.  
In addition, 0.1 µF MLCC decoupling capacitors should be  
located as close to each of the power supply pins as is physically  
possible, no more than ⅛ inch away. The ground returns should  
terminate immediately into the ground plane. Locating the bypass  
capacitor return close to the load return minimizes ground loops  
and improves performance.  
Rev. G | Page 17 of 20  
 
 
 
 
 
ADA4853-1/ADA4853-2/ADA4853-3  
OUTLINE DIMENSIONS  
Data Sheet  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
0.65 BSC  
1.30 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.22  
0.08  
SEATING  
PLANE  
0.10 MAX  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 52. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 53. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. G | Page 18 of 20  
 
Data Sheet  
ADA4853-1/ADA4853-2/ADA4853-3  
3.10  
3.00 SQ  
2.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
12  
EXPOSED  
PAD  
1.65  
1.50 SQ  
1.45  
9
4
8
5
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 54. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-27)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Ordering Package  
Quantity Option  
Model1, 2  
Package Description  
Branding  
HEC  
HEC  
ADA4853-1AKSZ-R2  
ADA4853-1AKSZ-R7  
ADA4853-1AKSZ-RL  
ADA4853-1AKS-EBZ  
ADA4853-2YCPZ-R2  
ADA4853-2YCPZ-RL  
ADA4853-2YCPZ-RL7  
ADA4853-2YCP-EBZ  
ADA4853-3YCPZ-R2  
ADA4853-3YCPZ-RL  
ADA4853-3YCPZ-R7  
ADA4853-3WYCPZ-R7  
ADA4853-3YCP-EBZ  
ADA4853-3YRUZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
6-LeadThin Shrink Small OutlineTransistor Package (SC70) 250  
6-LeadThin Shrink Small OutlineTransistor Package (SC70) 3000  
6-LeadThin Shrink Small OutlineTransistor Package (SC70) 10,000  
KS-6  
KS-6  
KS-6  
HEC  
Evaluation Board  
1
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
Evaluation Board  
250  
5000  
1500  
1
CP-16-27 H0H  
CP-16-27 H0H  
CP-16-27 H0H  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
Evaluation Board  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
Evaluation Board  
250  
5000  
1500  
1500  
CP-16-27 H0L  
CP-16-27 H0L  
CP-16-27 H0L  
CP-16-27 H2H  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
96  
RU-14  
RU-14  
RU-14  
ADA4853-3YRUZ-RL  
ADA4853-3YRUZ-R7  
ADA4853-3YRU-EBZ  
2500  
1000  
1
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADA4853-3W model is available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. G | Page 19 of 20  
 
 
ADA4853-1/ADA4853-2/ADA4853-3  
NOTES  
Data Sheet  
©2006–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05884-0-12/14(G)  
Rev. G | Page 20 of 20  

相关型号:

ADA4853-3YCP-EBZ

Low Power, Rail-to-Rail Output, Video Op Amps with Ultralow Power
ADI

ADA4853-3YCPZ-R2

Low Power, Rail-to-Rail Output, Video Op Amp with Ultralow Power Disable
ADI

ADA4853-3YCPZ-R7

Low Power, Rail-to-Rail Output, Video Op Amp with Ultralow Power Disable
ADI

ADA4853-3YCPZ-RL

Low Power, Rail-to-Rail Output, Video Op Amps with Ultralow Power
ADI

ADA4853-3YRU-EBZ

Low Power, Rail-to-Rail Output, Video Op Amps with Ultralow Power
ADI

ADA4853-3YRUZ

Low Power, Rail-to-Rail Output, Video Op Amp with Ultralow Power Disable
ADI

ADA4853-3YRUZ-R7

Low Power, Rail-to-Rail Output, Video Op Amp with Ultralow Power Disable
ADI

ADA4853-3YRUZ-RL

Low Power, Rail-to-Rail Output, Video Op Amp with Ultralow Power Disable
ADI

ADA4855-3

Single Supply, High Speed, Rail-to-Rail Output, Triple Op Amp
ADI

ADA4855-3YCP-EBZ

Single Supply, High Speed, Rail-to-Rail Output, Triple Op Amp
ADI

ADA4855-3YCPZ-R2

Single Supply, High Speed, Rail-to-Rail Output, Triple Op Amp
ADI

ADA4855-3YCPZ-R7

Single Supply, High Speed, Rail-to-Rail Output, Triple Op Amp
ADI