ADA4571BRZ [ADI]

Integrated AMR Angle Sensor and Signal Conditioner;
ADA4571BRZ
型号: ADA4571BRZ
厂家: ADI    ADI
描述:

Integrated AMR Angle Sensor and Signal Conditioner

光电二极管
文件: 总22页 (文件大小:499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated AMR Angle Sensor and Signal  
Conditioner  
ADA4571  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VDD  
High precision 180° angle sensor  
Maximum angular error of 0.5°  
ADA4571  
VTEMP  
GC  
TEMPERATURE SENSOR  
BRIDGE DRIVER  
Analog sine and cosine outputs  
Ratiometric output voltages  
Low thermal and lifetime drift  
SAR or Σ-∆ analog-to-digital converter (ADC) drive capable  
Magnetoresistive (MR) bridge temperature compensation mode  
Temperature range: −40°C to +150°C  
EMI resistant  
+
EMI  
FILTER  
VSIN  
DRIVER  
G = 40  
Fault diagnostics  
V
DD from 2.7 V to 5.5 V  
AMR BRIDGE  
SENSORS  
BIAS  
OSCILLATOR  
FAULT DETECTION  
Minimum phase delay  
Qualified for automotive applications  
Available in an 8-lead SOIC package  
+
EMI  
DRIVER  
VCOS  
G = 40  
FILTER  
APPLICATIONS  
Absolute position measurement (linear and angle)  
Brushless dc motor control and positioning  
Actuator control and positioning  
GND  
GND  
PD  
Contactless angular measurement and detection  
Magnetic angular position sensing  
Figure 1.  
GENERAL DESCRIPTION  
The ADA4571 is an anisotropic magnetoresistive (AMR) sensor  
with integrated signal conditioning amplifiers and ADC drivers.  
The ADA4571 produces two analog outputs that indicate the  
angular position of the surrounding magnetic field.  
COMPANION PRODUCTS  
ADCs: AD7265, AD7266, AD7866, AD7902  
Microconverter: ADuCM360  
Current Sense Amplifier: AD8418A  
Voltage Regulator Design Tool: ADIsimPower  
The ADA4571 consists of two die within one package, an AMR  
sensor, and a fixed gain (G = 40 nominally) instrumentation  
amplifier. The ADA4571 delivers clean and amplified cosine  
and sine output signals related to the angle of a rotating  
magnetic field. The output voltage range is ratiometric to the  
supply voltage.  
Additional companion products on the ADA4571 product page  
PRODUCT HIGHLIGHTS  
1. Contactless angular measurement.  
2. Measures magnetic field direction rather than field intensity.  
3. Minimum sensitivity to air gap variations.  
4. Large working distance.  
5. Excellent accuracy, even for weak saturation fields.  
6. Minimal thermal and lifetime drift.  
7. Negligible hysteresis.  
The sensor contains two Wheatstone bridges, at a relative angle  
of 45° to one another. A rotating magnetic field in the x-y  
sensor plane delivers two sinusoidal output signals with the  
double frequency of the angle (α) between sensor and magnetic  
field direction. Within a homogeneous field in the x-y plane,  
the output signals are independent of the physical placement in  
the z direction (air gap).  
8. Single chip solution.  
The ADA4571 is available in an 8-lead SOIC package.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother  
rightsofthirdpartiesthatmayresultfromitsuse.Specificationssubjecttochangewithoutnotice.No  
license isgranted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
©2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
Tel: 781.329.4700  
Technical Support  
ADA4571* PRODUCT PAGE QUICK LINKS  
Last Content Update: 09/21/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Press  
Analog Devices' Magnetic Angle Sensor Technology  
Delivers Industry’s Highest Performance for Precision DC  
Motor Controls  
EVALUATION KITS  
ADA4571 Evaluation Board  
Technical Articles  
New Sensor Developments Drive BLDC Motor Control  
Performance  
DOCUMENTATION  
Application Notes  
AN-1314: AMR Angle Sensors  
AN-1352: Calibration Procedures for the ADA4571  
Data Sheet  
DESIGN RESOURCES  
ADA4571 Material Declaration  
PCN-PDN Information  
ADA4571: Integrated AMR Angle Sensor and Signal  
Conditioner Data Sheet  
Quality And Reliability  
Symbols and Footprints  
User Guides  
UG-1169: Evaluating the ADA4571 Integrated AMR Angle  
Sensor and Signal Conditioner  
DISCUSSIONS  
View all ADA4571 EngineerZone Discussions.  
UG-739: ADA4571 End of Shaft Evaluation Board  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
REFERENCE DESIGNS  
CN0368  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADA4571  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Descriptions...............................................8ꢀ  
Typical Performance Characteristics ..............................................9ꢀ  
Terminology.................................................................................... 13ꢀ  
Theory of Operation ...................................................................... 14ꢀ  
Application Information................................................................ 16ꢀ  
Angle Calculation....................................................................... 16ꢀ  
Connection to ECU ................................................................... 16ꢀ  
Mechanical Tolerances Diagrams ............................................ 18ꢀ  
Diagnostics.................................................................................. 19ꢀ  
Outline Dimensions....................................................................... 21ꢀ  
Ordering Guide .......................................................................... 21ꢀ  
Automotive Products................................................................. 21ꢀ  
Applications....................................................................................... 1ꢀ  
Functional Block Diagram .............................................................. 1ꢀ  
General Description......................................................................... 1ꢀ  
Companion Products....................................................................... 1ꢀ  
Product Highlights ........................................................................... 1ꢀ  
Revision History ............................................................................... 2ꢀ  
Specifications..................................................................................... 3ꢀ  
Magnetic Characteristics............................................................. 3ꢀ  
Electrical Characteristics............................................................. 3ꢀ  
Absolute Maximum Ratings............................................................ 7ꢀ  
Thermal Resistance ...................................................................... 7ꢀ  
ESD Caution.................................................................................. 7ꢀ  
REVISION HISTORY  
10/14—Revision 0: Initial Version  
Rev. 0 | Page 2 of 21  
Data Sheet  
ADA4571  
SPECIFICATIONS  
MAGNETIC CHARACTERISTICS  
Table 1.  
Parameter  
Value Unit  
25 kA/m  
Test Conditions/Comments  
Magnetic Field Strength, HEXT  
The stimulating magnetic field in the x-y sensor plane necessary to ensure the  
minimum error as specified in Table 1 and Table 2  
Maximum Magnetic Field Rotational  
Frequency  
50,000 rpm  
Reference position for y = 0 µm is the straight connection line of Pin 2 and Pin 7;  
the x = 0 µm position is referred to the middle distance of the package top  
Reference position for angle Φ = 0° is parallel to the straight connection line  
of Pin 2 and Pin 7  
Reference Position Error  
50  
2
µm  
Reference Angle Error  
Degrees  
ELECTRICAL CHARACTERISTICS  
ADA4571WH  
−40°C ≤ TA ≤ +150°C, VDD = 2.7 V to 5.5 V, CL = 10 nF to GND, RL = 200 kΩ to GND; angle inaccuracies referred to homogenous  
magnetic field of 25 kA/m; output signals and offset voltages are related to the common-mode level of VDD/2, unless otherwise stated.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ANGULAR PERFORMANCE  
Angle Measurement Range  
Uncorrected Angular Error1  
0
180  
5
Degrees  
Degrees  
Degrees  
Degrees  
Degrees  
αUNCORR  
TA = −40°C  
TA = 25°C  
5
TA = 150°C  
5
Single Point Calibration Angular αCAL  
Error2, 3  
TA = −40°C to +150°C, GC = GND  
0.7  
TA = −40°C to +150°C, GC = VDD  
0.7  
0.1  
Degrees  
Degrees  
Dynamic Angular Error4  
αDYNAMIC  
TA = −40°C to +150°C, rotation frequency =  
2000 rpm  
0.5  
OUTPUT PARAMETERS  
Amplitude  
VAMP  
GC = GND  
TA = −40°C  
63  
41  
21  
18  
56  
52  
38  
35  
7
75  
53  
33  
30  
77  
72  
57  
55  
93  
5
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% peak  
µs  
TA = 25°C  
TA = 125°C  
TA = 150°C  
GC = VDD  
TA = −40°C  
TA = 25°C  
TA = 125°C  
TA = 150°C  
Output Voltage Range  
Output Voltage Low  
VO_SWING  
VOL  
VSIN and VCOS, normal operation  
VSIN or VCOS, broken bond wire detected  
GC = VDD  
Output Referred Offset Voltage  
VOFFSET  
3.75  
3.75  
+1  
GC = GND  
Amplitude Synchronism Error5  
Delay Time  
Phase Error6  
k
−1  
tDEL  
ΦERR  
OE  
Rotation frequency = 30,000 rpm  
Rotation frequency = 30,000 rpm  
2
0.8  
Degrees  
Degrees  
µV rms  
Orthogonality Error3  
0.05  
Output Noise  
VNOISE  
Bandwidth (BW) = 80 kHz, referred to  
output (RTO)  
500  
60  
Output Series Resistance  
RO  
Normal operation, PD = GND  
PD = VDD  
63  
kΩ  
kHz  
Output −3 dB Cutoff Frequency3 f−3dB  
Amplifier BW, CL = 10 pF  
100  
Rev. 0 | Page 3 of 21  
ADA4571  
Data Sheet  
Parameter  
Power Supply Rejection3  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PSRR  
Measured as output variation from VDD/2,  
VDD = 2.7 V to 5.5 V, RL = 200 kΩ to GND,  
GC = GND or VDD  
80  
dB  
Output Short-Circuit Current  
ISC  
Short to GND per pin (VSIN, VCOS)  
Short to VDD per pin (VSIN, VCOS)  
α1 = 0°, α2 = 135°, TA = 25°C  
15  
20  
mA  
−15  
−18  
52  
mA  
Sensitivity  
SEN  
mV/°  
POWER SUPPLY  
Supply Voltage  
VDD  
ISY  
2.7  
3.5  
5.5  
6.5  
7
V
Quiescent Supply Current  
PD = GND, GC = GND, no load  
PD = GND, GC = VDD, no load  
PD = VDD, no load  
4.5  
mA  
mA  
µA  
µs  
15  
150  
Power-Up Time  
tPWRUP  
To 98% of desired output level after VDD was  
reached  
To 98% of desired output level after PD cycling  
100  
30  
µs  
DIGITAL INPUTS  
Input Bias Current (GC)  
IB_GC  
IB_PD  
For GC mode control pin, GC = GND  
For GC mode control pin, GC = VDD  
For PD pin, PD = GND  
µA  
µA  
µA  
µA  
3
3
Input Bias Current (PD)  
For PD pin, PD = VDD  
30  
Input Voltage (GC and PD)  
High  
VIH  
VIL  
1.4  
V
V
Low  
0.35  
TEMPERATURE SENSOR  
Error Over Temperature  
Temperature Voltage Range  
Temperature Coefficient  
VTEMP Output Voltage  
VTEMP Output Impedance  
VTEMP Load Capacitance  
VTEMP Short-Circuit Current  
LOAD CAPACITOR  
TERR  
5
°C  
TRANGE  
TCO  
TA = −40°C to +150°C  
0
82  
40  
22  
% VDD  
mV/V/°C  
% VDD  
3.173  
50  
TA = 25°C  
18  
Buffered output  
Optional load capacitance  
Short-circuit to VDD or GND  
0
2
nF  
ISC_VTEMP  
CL  
mA  
External Load Capacitance  
Between VSIN to GND and VCOS to GND;  
solder close to package  
10  
nF  
1 αUNCORR is the total mechanical angular error after arctan computation. This parameter is 100% production tested at 25°C and 150°C. This error includes all sources of  
error over temperature before calibration. Error components such as offset, amplitude synchronism, amplitude synchronism drift, thermal offset drift, phase error,  
hysteresis, orthogonality error, and noise are included.  
2 αCAL is the total mechanical angular error after arctan computation. This error includes all sources of error over temperature after an initial offset (nulling) is performed  
at TA = 25°C. Error components such as amplitude synchronism drift, amplifier gain matching, thermal offset drift, phase error, hysteresis, orthogonality error, and  
noise are included.  
3 Guaranteed through characterization.  
4 αDYNAMIC is the total mechanical angular error after arctan computation. This parameter is 100% production tested. This error includes all sources of error over  
temperature after a continuous background calibration is performed to correct offset and amplitude synchronism errors. Error components such as phase error,  
hysteresis, orthogonality error, noise, and lifetime drift are included.  
5 Peak-to-peak amplitude mismatch. k = 100 × VSIN/VCOS.  
6 Rotation frequency dependent phase error, after offset correction, amplitude calibration, and arctan calculation.  
Rev. 0 | Page 4 of 21  
Data Sheet  
ADA4571  
ADA4571B  
−40°C ≤ TA ≤ +125°C, VDD = 2.7 V to 5.5 V, CL = 10 nF to GND, RL = 200 kΩ to GND; angle inaccuracies referred to homogenous  
magnetic field of 25 kA/m; output signals and offset voltages are related to the common-mode level of VDD/2, unless otherwise stated.  
Table 3.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ANGULAR PERFORMANCE  
Angle Measurement Range  
Uncorrected Angular Error1  
0
180  
3
Degrees  
Degrees  
Degrees  
Degrees  
Degrees  
αUNCORR  
TA = −40°C  
TA = 25°C  
3
TA = 125°C  
4
Single Point Calibration Angular  
Error2, 3  
αCAL  
TA = −40°C to +125°C, GC = GND  
0.5  
TA = −40°C to +125°C, GC = VDD  
0.5  
0.1  
Degrees  
Degrees  
Dynamic Angular Error4  
Angular Inaccuracy3, 5  
αDYNAMIC  
∆α  
TA = −40°C to +125°C, rotation frequency =  
2000 rpm  
0.4  
After end of line (EOL) calibration for offset  
voltage error and amplitude synchronism at  
TA = −40°C to +125°C (only 180° range)  
0.05  
Degrees  
OUTPUT PARAMETERS  
Amplitude  
VAMP  
GC = GND  
TA = −40°C  
63  
41  
21  
56  
52  
38  
7
75  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% VDD  
% peak  
µs  
TA = 25°C  
53  
TA = 125°C  
33  
GC = VDD  
TA = −40°C  
77  
TA = 25°C  
72  
TA = 125°C  
57  
Output Voltage Range  
OutputVoltage Low  
VO_SWING  
VOL  
VSIN and VCOS, normal operation  
VSIN or VCOS, broken bond wire detected  
GC = VDD  
93  
3.75  
3.75  
3.75  
+0.75  
Output Referred Offset Voltage  
VOFFSET  
GC = GND  
Amplitude Synchronism Error6  
Delay Time  
Phase Error7  
k
−0.75  
tDEL  
ΦERR  
OE  
VNOISE  
RO  
Rotation frequency = 30,000 rpm  
Rotation frequency = 30,000 rpm  
2
0.8  
Degrees  
Degrees  
µV rms  
Orthogonality Error3  
0.05  
Output Noise  
BW = 80 kHz, RTO  
500  
50  
Output Series Resistance  
Normal operation, PD = GND  
PD = VDD  
63  
kΩ  
Output −3 dB Cutoff Frequency3  
Power Supply Rejection3  
f−3dB  
Amplifier BW, CL = 10 pF  
100  
80  
kHz  
PSRR  
Measured as output variation from VDD/2,  
VDD = 2.7 V to 5.5 V, RL = 200 kΩ to GND,  
GC = GND or VDD  
dB  
Output Short-Circuit Current  
ISC  
Short to GND per pin (VSIN, VCOS)  
Short to VDD per pin (VSIN, VCOS)  
α = 0° and 135°, TA = 25°C  
15  
20  
mA  
−15  
−18  
52  
mA  
Sensitivity  
SEN  
mV/°  
POWER SUPPLY  
Supply Voltage  
VDD  
ISY  
2.7  
3.5  
5.5  
6
V
Quiescent Supply Current  
PD = GND, GC = GND, no load  
PD = GND, GC = VDD  
4.5  
mA  
mA  
µA  
µs  
6.5  
12.5  
150  
PD = VDD, no load  
Power-Up Time  
tPWRUP  
To 98% of desired output level after VDD was  
reached  
To 98% of desired output level after PD cycling  
100  
µs  
Rev. 0 | Page 5 of 21  
ADA4571  
Data Sheet  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL INPUTS  
Input Bias Current (GC)  
IB_GC  
IB_PD  
For GC mode control pin, GC = GND  
For GC mode control pin, GC = VDD  
For PD pin, PD = GND  
30  
µA  
µA  
µA  
µA  
3
3
Input Bias Current (PD)  
For PD pin, PD = VDD  
30  
Input Voltage (GC and PD)  
High  
VIH  
VIL  
1.4  
V
V
Low  
0.35  
TEMPERATURE SENSOR  
Error Over Temperature  
Temperature Voltage Range  
Temperature Coefficient  
VTEMP Output Voltage  
VTEMP Output Impedance  
VTEMP Load Capacitance  
VTEMP Short-Circuit Current  
LOAD CAPACITOR  
TERR  
5
°C  
TRANGE  
TCO  
TA = −40°C to +125°C  
0
69  
40  
22  
% VDD  
mV/V/°C  
% VDD  
3.173  
50  
TA = 25°C  
18  
Buffered output  
Optional load capacitance  
Short-circuit to VDD or GND  
0
2
nF  
ISC_VTEMP  
CL  
mA  
External Load Capacitance  
Between VSIN to GND and VCOS to GND;  
solder close to package  
10  
nF  
1 αUNCORR is the total mechanical angular error after arctan computation. This parameter is 100% production tested at 25°C and 150°C. This error includes all sources of  
error over temperature before calibration. Error components such as offset, amplitude synchronism, amplitude synchronism drift, thermal offset drift, phase error,  
hysteresis, orthogonality error, and noise are included.  
2 αCAL is the total mechanical angular error after arctan computation. This error includes all sources of error over temperature after an initial offset (nulling) is performed  
at TA = 25°C. Error components such as amplitude synchronism drift, amplifier gain matching, thermal offset drift, phase error, hysteresis, orthogonality error, and  
noise are included.  
3 Guaranteed through characterization.  
4 αDYNAMIC is the total mechanical angular error after arctan computation. This parameter is 100% production tested. This error includes all sources of error over  
temperature after a continuous background calibration is performed to correct offset and amplitude synchronism errors. Error components such as phase error,  
hysteresis, orthogonality error, noise, and lifetime drift are included.  
5 Angular speed <300 rpm. Limited to 180° rotation. The value is calculated only with the third and fifth harmonics of the spectrum of output signal amplitude by the  
ideal homogeneous field.  
6 Peak-to-peak amplitude mismatch. k = 100 × VSIN/VCOS.  
7 Rotation frequency dependent phase error, after offset correction, amplitude calibration, and arctan calculation.  
Rev. 0 | Page 6 of 21  
Data Sheet  
ADA4571  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for the worst case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Operating Temperature  
Storage Temperature  
Supply Voltage (VDD)1  
−40°C to +150°C  
−65°C to +150°C  
−0.3 V to +6 V  
Table 5. Thermal Resistance  
Package Type  
θJA  
Unit  
Output Short-Circuit Duration to GND or VDD Indefinite  
8-Lead SOIC  
120  
°C/W  
VTEMP Short-Circuit to GND or VDD  
Indefinite  
ESD  
Human Body Model (HBM)2  
Machine Model (MM)3  
Charge Device Model (CDM)4  
4000 V  
300 V  
ESD CAUTION  
1250 V  
1 GC or PD at VDD + 0.3 V.  
2 Applicable standard: JESD22-C101.  
3 Applicable standard: JESD22-A115.  
4 Applicable standard: ESDA/JEDEC JS-001-2011.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 7 of 21  
ADA4571  
Data Sheet  
PIN CONFIGURATION AND DESCRIPTIONS  
GC  
VCOS  
GND  
1
2
3
4
8
7
6
5
PD  
ADA4571  
TOP VIEW  
(Not to Scale)  
VDD  
GND  
VTEMP  
VSIN  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
GC  
Description  
1
2
3
4
5
6
7
8
Gain Control Mode Enable  
Analog Cosine Output  
Ground  
VCOS  
GND  
VSIN  
Analog Sine Output  
Temperature Output  
Ground  
VTEMP  
GND  
VDD  
Supply Pin  
PD  
Power-Down Pin, Active High  
Rev. 0 | Page 8 of 21  
Data Sheet  
ADA4571  
TYPICAL PERFORMANCE CHARACTERISTICS  
40  
35  
30  
25  
20  
15  
10  
5
5
4
3
2
1
0
–40°C  
+25°C  
+125°C  
+150°C  
0
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
DYNAMIC ANGULAR ERROR (Degrees)  
0
90  
180  
270  
360  
RELATIVE MECHANICAL ANGLE (Degrees)  
Figure 3. Raw Output Waveforms, VDD = 5 V, GC = On, T = 25°C  
Figure 6. Dynamic Angular Error, VDD = 5.5 V, GC = Off  
0.2  
35  
30  
25  
20  
15  
10  
5
–40°C  
+25°C  
+125°C  
+150°C  
0.1  
0
–0.1  
–0.2  
0
0
90  
180  
270  
360  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
DYNAMIC ANGULAR ERROR (Degrees)  
MECHANICAL ANGLE (Degrees)  
Figure 4. Error Waveform After Offset Correction, VDD = 5 V, GC = On  
Figure 7. Dynamic Angular Error, VDD = 2.7 V, GC = On  
40  
35  
30  
25  
20  
15  
10  
5
–40°C  
+25°C  
+125°C  
+150°C  
–40°C  
+25°C  
+125°C  
+150°C  
35  
30  
25  
20  
15  
10  
5
0
0
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
DYNAMIC ANGULAR ERROR (Degrees)  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
DYNAMIC ANGULAR ERROR (Degrees)  
Figure 5. Dynamic Angular Error, VDD = 5.5 V, GC = On  
Figure 8. Dynamic Angular Error, VDD = 2.7 V, GC = Off  
Rev. 0 | Page 9 of 21  
ADA4571  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
–40°C  
–40°C  
+25°C  
+125°C  
+150°C  
+25°C  
+125°C  
+150°C  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
UNCORRECTED ANGULAR ERROR (Degrees)  
UNCORRECTED ANGULAR ERROR (Degrees)  
Figure 9. Uncorrected Angular Error, VDD = 5.5 V, GC = On  
Figure 12. Uncorrected Angular Error, VDD = 2.7 V, GC = Off  
40  
1.2  
–40°C  
+25°C  
+125°C  
+150°C  
35  
30  
25  
20  
15  
10  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40  
0
40  
80  
120  
UNCORRECTED ANGULAR ERROR (Degrees)  
TEMPERATURE (°C)  
Figure 10. Uncorrected Angular Error, VDD = 5.5 V, GC = Off  
Figure 13. Single Point Calibration Angular Error, VDD = 5.5 V, GC = On  
35  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–40°C  
+25°C  
+125°C  
+150°C  
30  
25  
20  
15  
10  
5
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40  
0
40  
80  
120  
UNCORRECTED ANGULAR ERROR (Degrees)  
TEMPERATURE (°C)  
Figure 11. Uncorrected Angular Error, VDD = 2.7 V, GC = On  
Figure 14. Single Point Calibration Angular Error, VDD = 5.5 V, GC = Off  
Rev. 0 | Page 10 of 21  
Data Sheet  
ADA4571  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
GC OFF (mA)  
GC ON (mA)  
0
–40  
0
40  
80  
120  
–40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Single Point Calibration Angular Error, VDD = 2.7 V, GC = On  
Figure 18. Supply Current (ISY) vs. Temperature, VDD = 5 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
GC OFF (mA)  
GC ON (mA)  
–40  
0
40  
80  
120  
0
40  
80  
120  
–40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Single Point Calibration Angular Error, VDD = 2.7 V, GC = Off  
Figure 19. Supply Current (ISY) vs. Temperature, VDD = 3 V  
7
10  
8
5V  
3V  
6
5
4
3
6
4
2
0
–40  
0
40  
80  
120  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
TEMPERATURE (°C)  
V
DD  
Figure 20. Power-Down Current (IPD) vs. Temperature  
Figure 17. Supply Current (ISY) vs. Voltage (VDD), T = 25°C  
Rev. 0 | Page 11 of 21  
ADA4571  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
p-p GC OFF  
p-p GC ON  
OUT  
OUT  
0
–40  
0
40  
80  
120  
–40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. VTEMP Output Voltage vs. Temperature  
Figure 23. Output Voltage (VSIN and VCOS) Peak-to-Peak vs.  
Temperature (% VDD  
)
20  
18  
16  
14  
12  
10  
8
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
6
4
ERROR –40°C  
ERROR +25°C  
ERROR +150°C  
2
0
–1.00 –0.75 –0.50 –0.25  
0
0.25  
0.50  
0.75  
1.00  
300  
3000  
30000  
AMPLITUDE MISMATCH (%)  
RPM (Mechanical)  
Figure 22. Amplitude Synchronism (% k)  
Figure 24. Angular Error Delay vs. RPM (Mechanical)  
Rev. 0 | Page 12 of 21  
Data Sheet  
ADA4571  
TERMINOLOGY  
Reference Position Error  
Uncorrected Angular Error  
The uncorrected angular error is defined as the maximum  
deviation from an ideal angle reading, when calculating the  
angle from VSIN and VCOS without offset calibration.  
The reference position error is the absolute mounting position  
deviation of the sensor from its nominal placement. The  
reference position for Y = 0 µm is the straight connection line of  
Pin 2 and Pin 7. The X = 0 µm position is referred to the middle  
distance of the package top. The position accuracies are within  
a precision of 0.05 mm ( 50 µm) in both the X and Y  
direction.  
Single Point Calibration Angular Error  
The single point calibration angular error is defined as the  
maximum deviation from an ideal angle reading, when  
calculating the angle from VSIN and VCOS after an initial  
calibration for offset voltage at TA = 25°C.  
Reference Angle Error  
The reference angle error is the absolute mounting rotation  
deviation of the sensor from its nominal placement. Marking  
the position for angle Φ= 0° position is referred parallel to the  
straight connection line of Pin 2 and Pin 7.  
Dynamic Angular Error  
The dynamic angular error is defined as the maximum  
deviation from an ideal angle reading, when calculating the  
angle from VSIN and VCOS while a continuous offset calibration is  
taken into account.  
GC  
VCOS  
GND  
1
2
3
4
8
7
6
5
PD  
Phase Error  
VDD  
GND  
VTEMP  
The phase error (ΦERR) is defined as the rotation frequency  
dependent error due to bandwidth limitation of the instrumen-  
tation amplifiers. VSIN and VCOS are impacted by the amplifier  
propagation delay, referred to the actual angle direction of the  
rotating magnetic field. The typical characteristics value can be  
used for a first-order compensation of this error on very high  
rotations per minute. For low rotational speed systems, this error  
component is negligible and no compensation is necessary.  
VSIN  
Figure 25. Bonding Arrangement and Sensor Alignment in Package  
Output Amplitude Synchronism Error  
The output amplitude matching error (k) is defined as the  
relationship between both output channel amplitudes at  
continuously rotating magnetic excitation of the MR sensor  
mathematically expressed as  
k = 100% × VSIN_P-P/VCOS_P-P  
Rev. 0 | Page 13 of 21  
ADA4571  
Data Sheet  
THEORY OF OPERATION  
The ADA4571 is an AMR sensor with integrated signal  
conditioning amplifiers and ADC drivers. The ADA4571  
produces two analog outputs, sine and cosine, which indicate  
the angular position of the surrounding magnetic field.  
Electromagnetic interference (EMI) filters at the sensor outputs  
and between the first and second stages reject unwanted noise  
and interference from appearing in the signal band.  
The architecture of the instrumentation amplifier consists of  
precision, low noise, zero drift amplifiers that feature a proprietary  
chopping technique. This chopping technique offers a low input  
offset voltage of 0.3 µV typical and an input offset voltage drift  
of 0.02 µV/°C typical. The zero drift design also features  
chopping ripple suppression circuitry, which removes glitches  
and other artifacts caused by chopping.  
The AMR sensing element is designed and manufactured by  
Sensitec GmbH.  
Figure 27 shows the sine channel, consisting of an AMR sensor  
element and the supporting functions for control, filtering,  
buffering, and signal amplification. A reference voltage that is  
proportional to the supply voltage is generated and it controls  
the supply voltage of the sensor bridges. For noise and  
electromagnetic compatibility (EMC) suppression purposes, the  
bridge supply is low-pass filtered. The bridge output voltages  
are amplified by a constant factor (G = 40, GC mode disabled)  
and buffered. The single-ended outputs are biased around a  
common-mode voltage of VDD/2 and are capable of driving the  
inputs of an external ADC referenced to the supply voltage.  
Offset voltage errors caused by common-mode voltage swings  
and power supply variations are also corrected by the chopping  
technique, resulting in a dc common-mode rejection ratio that  
is greater than 150 dB. The amplifiers feature low broadband  
noise of 22 nV/√Hz and no 1/f noise component. These features  
are ideal for amplification of the low level AMR bridge signals  
for high precision sensing applications.  
In addition, extensive diagnostics are integrated on-chip to self  
check sensor and IC conditions.  
For optimum use of the ADC input range, the cosine and sine  
output voltages track the supply voltage ensuring a ratiometric  
configuration. To achieve high signal performance both output  
signals are carefully matched in both amplitude and phase. The  
amplifier bandwidth is sufficient to ensure low phase delay at  
maximum specified rotation speed.  
1
2
3
4
8
7
6
5
ADA4571  
TOP VIEW  
(Not to Scale)  
Figure 26. Direction of Homogeneous Magnetic Field for α = 0°  
VDD  
VDD  
VDD  
+
62.7pF  
20pF  
+
VTEMP  
ꢀꢁꢀNŸ  
ꢂꢃŸ  
AMR  
BRIDGE  
VSIN  
+
ADA4571  
ꢀꢁꢀNŸ  
+
62.7pF  
VDD/2  
Figure 27. Detailed Internal Diagram of the ADA4571 Sine Channel  
Rev. 0 | Page 14 of 21  
Data Sheet  
ADA4571  
DIAGNOSTIC  
BAND  
93% V  
DD  
V
COS  
V
OFFSET  
V p-p  
LINEAR  
REGION  
50% V  
DD  
V
SIN  
7% V  
DD  
DIAGNOSTIC  
BAND  
0
90  
180  
270  
360  
MAGNETIC $1*/(ꢄꢅĮꢅꢆ'HJUHHVꢇ  
Figure 28. Typical Output Waveforms; Sine and Cosine vs. Magnetic Angle  
Rev. 0 | Page 15 of 21  
ADA4571  
Data Sheet  
APPLICATIONS INFORMATION  
The integrated AMR sensor is designed for applications with a  
separate processing IC or electronic control unit (ECU) containing  
an ADC with references connected to the supply voltage. With  
the ADC input resolution related to VDD in the same way as the  
AMR sensor output, the system is inherently ratiometric and the  
signal dependency on supply voltage changes are minimized.  
To achieve maximum accuracy from the VTEMP output  
voltage, perform an initial calibration at a known, controlled  
temperature. Then, use the following equation to extract  
temperature information:  
§
V
CAL  
·
¸
¹
V
§
¨
©
·
¸
¹
§
©
·
¸
¹
TEMP  
T uTCO  
CAL  
¨¨  
V
V
DD  
DD  
©
TVTEMP  
where:  
 
TC VTEMP  
ANGLE CALCULATION  
To calculate angle from the output of the AMR device, use the  
trigonometric function arctangent2. The arctangent2 function  
is a standard arctangent function with additional quadrant  
information to extend the output from the magnetic angle range  
of −90° to +90° to the magnetic angle range of −180° to +180°.  
Because of the sensing range of AMR technology, this  
calculated magnetic angle repeats over each pole of the magnet.  
For a simple dipole magnet, the following equation reports  
absolute angle over 180° mechanical:  
TVTEMP is the calculated temperature (°C) from the VTEMP  
output voltage.  
VTEMP is the VTEMP output voltage during operation.  
VDD is the supply voltage.  
VCAL is the VTEMP output voltage during calibration at a  
controlled temperature.  
TCAL is the controlled temperature during calibration.  
TCO is the temperature coefficient of the internal circuit; see the  
Specifications section for the exact value.  
VSIN  
arctan(  
2
)
Gain Control Mode  
VCOS  
D
 
Gain control (GC) enable mode can be activated by switching  
the GC pin to the VDD pin. In this mode, the AMR bridge  
sensor amplitude outputs are compensated to reduce  
temperature variation. This results in higher and controlled  
output voltage levels, boosting system dynamic range and  
easing the system design task. If the GC pin is left floating, a  
weak pull-up resistor ensures that the GC mode is enabled as a  
default condition. The GC mode can also be used as a sensor  
self diagnostic by comparing the sine and cosine amplitude  
outputs when enabled and disabled, such as radius check. In the  
event that the radius does not change, it indicates a gross failure  
in the IC.  
CONNECTION TO ECU  
Because of the limited driving capability of the ADA4571  
output, minimize the length of printed circuit board (PCB)  
traces between the ADA4571 and other IC. Shielding of the  
signal lines is recommended. Match the load capacitors and  
resistors for best angular accuracy. Add bandwidth limitation  
filters related to the sampling frequency of the system in front  
of the ADC inputs to reduce noise bandwidth.  
In Figure 29, the load resistors on VCOS and VSIN are  
representing the input load of the filter and the ADC. The  
processor may be used for arctan and offset calculations, offset  
storage, and additional calibration.  
Power-Down Mode  
Power-down mode can be activated by switching the PD pin to  
the VDD pin. Within this mode, the device shuts down and its  
output pins are set to high impedance to avoid current  
consumption across the load resistors. The VTEMP output is  
connected to ground through a pull-down resistor. Power-down  
mode can be entered with GC = VDD or GC = GND. An internal  
pull-down resistor ensures that the device remains active if the  
PD pin is left floating.  
VTEMP Output Pin  
A proportional to absolute temperature circuit provides a  
voltage output at the VTEMP pin for temperature monitoring  
or temperature calibration purposes. The output voltage is  
ratiometric to the supply voltage enabling the interface with an  
ADC that uses the supply voltage to generate the reference  
voltage. This pin must be left open when not in use.  
Rev. 0 | Page 16 of 21  
Data Sheet  
ADA4571  
VDD  
R
C
LO4  
LO4  
VDD  
VTEMP  
GC  
ADA4571  
TEMPERATURE SENSOR  
BRIDGE DRIVER  
VDD  
+
VSIN  
Ȉꢈǻ  
ADC  
EMI  
FILTER  
DRIVER  
G = 40  
R
C
LO1  
LO1  
AMR BRIDGE  
SENSORS  
MICROPROCESSOR  
BIAS  
OSCILLATOR  
FAULT DETECTION  
+
EMI  
FILTER  
VCOS  
Ȉꢈǻ  
ADC  
DRIVER  
G = 40  
R
C
LO2  
LO2  
GND  
GND  
PD  
R
C
LO3  
LO3  
Figure 29. Typical Application Diagram with Separate Processor and Data Conversion  
Offset of Signal Outputs  
Power Consumption  
The single-ended output signals are referenced to VDD/2  
Worst case quiescent power occurs when the supply current  
runs at its specified maximum of 7 mA and the ADA4571 is run  
at the maximum VDD of 5.5 V, giving a worst case quiescent  
power of 38.5 mW.  
generated internally on-chip. Offsets originate from matching  
inaccuracies and other imperfections during the production  
process. For tight tolerances, it is required to match the external  
loads for VSIN and VCOS to each other. For ESD and EMC  
protection, the outputs contain a series resistance of 50 Ω. The  
influence of this series resistance is minimized with a large  
output load resistance.  
The power consumption is dependent on VDD, temperature,  
load resistance (RL), load capacitance (CL), and frequency of the  
rotating magnetic field. It is recommended to refer RL and CL to  
ground. The output voltages are protected against short circuit  
to the VDD pin or ground by current limitation within the  
given time duration. Placing the device 180° rotated into the  
socket may lead to damages if the supply current is not limited  
to 100 mA.  
Signal Dependence on Air Gap Distance  
The IC measures the direction of the external magnetic field  
within its x-y plane. The result is widely independent of the  
field strength as long as it is above the specified minimum value  
of 25 kA/m. Within a homogeneous field in x-y direction, the  
result is independent of its placement in z direction (air gap).  
The nominal z distance of the internal x-y plane to the top  
surface of the plastic package is 0.400 mm.  
Rev. 0 | Page 17 of 21  
ADA4571  
Data Sheet  
MECHANICAL TOLERANCES DIAGRAMS  
5.00  
4.90  
4.80  
A
2.50  
2.45  
2.40  
SENSING ELEMENT  
CENTER  
B
LEAD TIPS  
3.10  
3.00  
2.90  
2.00  
1.95  
1.90  
5
4
8
1
NOTE 4  
4.00  
6.20  
6.00  
5.80  
0.50 C B  
3.90  
3.80  
2° MAX  
NOTE 2  
0.854  
0.25 C A  
NOTES 3, 6, 7  
0.10 C  
0.487  
0.437  
0.387  
1.27  
C
SEATING PLANE  
NOTES 5, 6  
0.25 M C A B  
ALL LEADS  
NOTES  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. MAXIMUM SENSOR ROTATION.  
3. THIS DIMENSION AND TRUE POSITION SPECIFY THE LOCATION OF THE CENTER  
OF THE SENSING ELEMENT WITH RESPECT TO THE CENTER OF THE PACKAGE.  
THE CENTER OF THE SENSING ELEMENT IS ALIGNED WITH THE EDGES OF  
LEAD 2 AND LEAD 7.  
4. THE CENTER OF THE SENSING ELEMENT IS ALIGNED WITH THE CENTER LINE  
OF THE PACKAGE (DATUM B).  
5. THE LEAD WIDTH DIMENSION IS TOLERANCED MORE TIGHTLY THAN ON  
THE R8 PACKAGE OUTLINE DRAWING. THIS DIMENSION IS MEASURED AT  
THE FOOT OF THE LEAD (NO FLASH, BURRS).  
6. DOES NOT INCLUDE MOLD FLASH, DAMBAR PROTRUSIONS, OR BURRS.  
7. MOLD BODY WIDTH AND LENGTH DIMENSIONS DO NOT INCLUDE MOLD FLASH,  
OFFSETS, OR MOLD GATE PROTRUSIONS.  
8. REFER TO THE R8 PACKAGE OUTLINE DRAWING FOR DIMENSIONS NOT SHOWN HERE.  
Figure 30. Mechanical Drawing of the ADA4571  
0.475  
0.400  
0.325  
AMR SENSING ELEMENT  
1.400  
1.250  
1.100  
0.10 C  
C
SEATING PLANE  
Figure 31. Cross Sectional View of the ADA4571  
Rev. 0 | Page 18 of 21  
Data Sheet  
ADA4571  
V
SIN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
DIAGNOSTICS  
+150°C  
+125°C  
+25°C  
–40°C  
Radius Calculation  
The VSIN and VCOS outputs can be used to calculate a radius  
value. These outputs have a fixed 90° phase relationship and  
therefore the calculated radius value remains in a predictable,  
predetermined range that varies with the temperature of the  
device independent of the current magnetic field direction. This  
radius, VRAD, can be used to validate the VSIN and VCOS readings  
in the ECU. When the calculated radius is no longer within the  
acceptable bounds, a fault may occur in the system. To calculate  
radius, use the following formula:  
V
RAD  
V
COS  
V
COS  
V
VDD  
2
VRAD  
 
(VSIN  
DD )2  (VCOS  
)
2
2
It is important to perform offset calibration before calculating  
the radius.  
0
V
MAGNITUDE (%V  
GC OFF  
)
DD  
COS  
Figure 32 shows the allowable radius values when GC mode is  
enabled and Figure 33 shows the allowable radius values when  
GC mode is disabled. The maximum and minimum VRAD values  
are calculated based on the allowable amplitude range for VSIN  
and VCOS, over the entire operating temperature of the device as  
specified in the Specifications section. This range is represented  
by the shaded region in Figure 32 and Figure 33.  
Figure 33. GC Off Radius Values  
Monitoring of the VTEMP pin can allow an even tighter range  
for radius length at the known temperature. See the  
Specifications section and the Typical Performance  
Characteristics section for exact values and output amplitude  
specifications at each temperature.  
Typical VRAD values for −40°C, +25°C, +125°C, and +150°C are  
indicated as well.  
Broken Bond Wire Detection  
V
SIN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
The ADA4571 includes circuitry to detect broken bond wire  
conditions between the AMR sensor and the instrumentation  
amplifier. The detection circuitry consists of current sources  
and window comparators placed on the signal connections  
between the AMR sensor and the ASIC. The purpose of the  
current sources is to pull the signal node outside of the normal  
operating region in the event of an open bond wire between the  
AMR sensor and the ASIC. The purpose of the window  
comparators is to detect when the signal from the AMR sensor  
is outside of the normal operating region. When the comparators  
detect that the signal nodes are outside the normal operating  
region, the circuit pulls the VSIN and/or VCOS node to ground  
to indicate the fault to the host controller.  
+150°C  
+125°C  
+25°C  
–40°C  
V
RAD  
V
COS  
V
COS  
In addition to the active circuitry, there are applications  
recommendations, such as the utilization of pull-up and pull-  
down resistors, which detect broken bond wires by pulling  
nodes outside of the defined operating regions. A broken bond  
wire at VTEMP, VCOS, and VSIN interrupts the corresponding  
outputs. To ensure that the output enters into a known state if  
there is a broken bond wire on these pins, connect a 200 kΩ  
pull-down resistor at these pins. Pulling these nodes outside of  
the normal operating region signals a fault to the host  
controller.  
0
V
MAGNITUDE (%V  
GC ON  
)
DD  
COS  
Figure 32. GC On Radius Values  
Rev. 0 | Page 19 of 21  
ADA4571  
Data Sheet  
Short-Circuit Condition to GND or VDD  
Short-Circuit Between Sine and Cosine Sensor Outputs  
In the event of a short-circuit condition, the output voltages are  
pulled to the GND or VDD pin.  
In the event of a short-circuit between sensor outputs, the IC  
output voltages are tied to the output common-mode voltage. A  
gross angular error is detected in the microcontroller.  
100%  
SHORT-CIRCUIT DIAGNOSTIC BAND (HIGH)  
93%  
LINEAR REGION  
7%  
0%  
SHORT-CIRCUIT DIAGNOSTIC BAND (LOW)  
Figure 34. Output Span Classification During Short-Circuit Diagnostic Condition  
Table 7. Diagnostic Cases  
Fault Description  
Output Conditions  
Alert  
Broken Bond Wire Between the  
Internal MR Sensor and the ASIC  
Broken bond wire detection is activated; the  
broken channel(s), VSIN or VCOS, are pulled to  
ground  
Diagnostic region violation  
Broken Bond Wire at the PD Pin  
Broken Bond Wire at the GC Pin  
Output Short-Circuit to GND  
Output Short-Circuit to VDD  
Device remains functional  
No alert  
Gain control is activated  
Possible change in output amplitude  
Diagnostic region violation  
Diagnostic region violation  
Shorted channel is pulled to ground  
Shorted channel is pulled to VDD  
Rev. 0 | Page 20 of 21  
Data Sheet  
ADA4571  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +150°C  
Package Description  
Package Option  
ADA4571WHRZ-R7  
ADA4571BRZ  
8-Lead SOIC_N, 7”Tape and Reel  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
ADA4571BRZ-RL  
ADA4571BRZ-R7  
8-Lead SOIC_N, 13”Tape and Reel  
8-Lead SOIC_N, 7”Tape and Reel  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADA4571WHRZ model is available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12514-0-10/14(0)  
Rev. 0 | Page 21 of 21  

相关型号:

ADA4571BRZ-R7

Integrated AMR Angle Sensor and Signal Conditioner
ADI

ADA4571BRZ-RL

Integrated AMR Angle Sensor and Signal Conditioner
ADI

ADA4571R-EBZ

Customer supplied 6 V to 12 V bench supply
ADI

ADA4571WHRZ-R7

Integrated AMR Angle Sensor and Signal Conditioner
ADI

ADA4610-1

Rail-to-rail output
ADI

ADA4610-1ARJZ-R2

Low Noise, Precision, Rail-to-Rail Output, JFET Single/Dual/Quad Op Amps
ADI

ADA4610-1ARJZ-R7

Low Noise, Precision, Rail-to-Rail Output, JFET Single/Dual/Quad Op Amps
ADI

ADA4610-1ARJZ-RL

Low Noise, Precision, Rail-to-Rail Output, JFET Single/Dual/Quad Op Amps
ADI

ADA4610-1ARZ

暂无描述
ADI

ADA4610-1ARZ-R7

Low Noise, Precision, Rail-to-Rail Output, JFET Single Op Amp
ADI

ADA4610-1ARZ-RL

Low Noise, Precision, Rail-to-Rail Output, JFET Single/Dual/Quad Op Amps
ADI

ADA4610-1BRZ

Low Noise, Precision, Rail-to-Rail Output, JFET Single Op Amp
ADI