AD9940BCPZ [ADI]

High Speed, Correlated Double Sampler with Integrated Timing Driver;
AD9940BCPZ
型号: AD9940BCPZ
厂家: ADI    ADI
描述:

High Speed, Correlated Double Sampler with Integrated Timing Driver

商用集成电路
文件: 总20页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Correlated Double Sampler  
with Integrated Timing Driver  
AD9940  
FEATURES  
GENERAL DESCRIPTION  
56 MSPS correlated double sampler (CDS) with 6 dB gain  
On-chip horizontal and RG timing driver  
Single-supply operation (2.7 V min )  
Precision Timing™ core with 0.37 ns resolution at 56 MSPS  
Low power CMOS: 105 mW at 2.7 V (115 mW at 3.0 V)  
48-lead LQFP and 48-lead LFCSP packages  
The AD9940 is a high speed, correlated double sampler for  
high speed digital imaging applications. Integrated with a  
programmable timing driver using the Precision Timing  
core, the AD9940 features a 56 MHz CDS amplifier with  
6 dB of fixed gain, an internal voltage reference supply,  
and timing control for all the high speed clocks necessary  
for CCD imaging systems. The Precision Timing core allows  
adjustment of high speed clocks with a resolution of 0.37 ns.  
Output buffers are also included, providing drive strength for  
PCB traces and direct connection to an image signal processor  
such as the AD9941.  
APPLICATIONS  
Professional HDTV camcorders  
Professional/high end digital cameras  
Broadcast cameras  
Industrial high speed cameras  
High speed data-acquisition systems  
The AD9940 is ideal for applications that need to place the  
CDS and VGA/ADC circuits on separate PC boards. The fully  
differential outputs of the AD9940 provide good signal integ-  
rity when interfaced with the differential input AD9941. The  
AD9940 operates from a single 2.7 V power supply, typically  
dissipates 105 mW (excluding the H/RG drive current), and is  
packaged in 48-lead LQFP and 48-lead LFCSP packages.  
FUNCTIONAL BLOCK DIAGRAM  
REFT REFB  
AD9940  
V
REF  
DIFFN  
DIFFP  
CCDIN  
CDS  
BUF  
INTERNAL  
CLOCKS  
RG  
HL  
PRECISION  
TIMING  
GENERATOR  
HORIZONTAL  
DRIVERS  
RST  
4
H1 TO H4  
SYNC  
INTERNAL  
GENERATOR  
REGISTERS  
CLI  
HD SHP SHD  
SL  
SCK SDI  
.
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2005 Analog Devices, Inc. All rights reserved.  
AD9940  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
System Overview ............................................................................ 13  
Analog Front End Operation.................................................... 13  
Precision Timing, High Speed Timing Generation................... 14  
Timing Resolution...................................................................... 14  
High Speed Clock Programmability........................................ 14  
H-Driver and RG Outputs ........................................................ 16  
HBLK Sequences........................................................................ 17  
Application Information................................................................ 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Analog Specifications................................................................... 4  
Digital Specifications ................................................................... 5  
Timing Specifications (Slave Timing Mode) ............................ 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Characteristics .............................................................. 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Data Bit Descriptions....................................................................... 9  
Serial Interface Timing .................................................................. 12  
REVISION HISTORY  
7/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
AD9940  
SPECIFICATIONS  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
−25  
−65  
56  
+85  
+150  
°C  
°C  
MAXIMUM CLOCK RATE  
MHz  
POWER SUPPLY VOLTAGE  
AVDD, TCVDD (AFE, Timing Core)  
OVDD (Analog Buffer)  
DVDD (Digital)  
HVDD (H1 to H4 Drivers)  
RGVDD (RG Driver)  
2.7  
2.7  
2.7  
2.7  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
POWER DISSIPATION1  
56 MHz, AFE supplies = 2.7 V, HVDD = RGVDD = 3.2 V, 70 pF, H1 to H4 Loading  
56 MHz, AFE supplies = 3.0 V, HVDD = RGVDD = 3.2 V, 70 pF, H1 to H4 Loading  
56 MHz, AFE supplies = 2.7 V, no H or RG drivers  
56 MHz, AFE supplies = 3.0 V, no H or RG drivers  
Standby Mode  
265  
275  
105  
115  
2
mW  
mW  
mW  
mW  
mW  
1 The total power dissipated by the HVDD supply can be approximated using the following equation:  
Total HVDD Power = (CLOAD × HVDD × Pixel Frequency) × HVDD  
Reducing the H-loading and/or using a lower HVDD supply reduces the power dissipation.  
Rev. 0 | Page 3 of 20  
 
AD9940  
ANALOG SPECIFICATIONS  
fCLI = 56 MHz, AVDD = OVDD = DVDD = TCVDD = 3.0 V, 25°C to +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS  
Gain  
5.0  
5.5  
500  
1
50  
0.2  
36  
6.0  
dB  
mV  
V p-p  
mV  
% FS  
dB  
Allowable CCD Reset Transient1  
Maximum Input Range Before Saturation1  
Maximum CCD Black Pixel Amplitude1  
Peak Nonlinearity, 500 mV Input Signal  
Power Supply Rejection (PSR)  
ANALOG OUTPUTS2  
Measured with step change on supply  
Typical DIFFP Output Signal Range  
Typical DIFFN Output Signal Range  
Typical Common Mode Level  
Maximum Differential Output Voltage Swing  
Output Voltage Compliance  
Maximum Load Capacitance  
Minimum Load Resistance (if required)  
1.2  
1.2  
2.2  
2.2  
V
V
V
V
V
1.2 V corresponds to black level  
2.2 V corresponds to black level  
Midscale voltage where DIFFP = DIFFN  
Defined as DIFFP − DIFFN  
Limitation of output swing into external load  
Value for each output (AD9941 CIN is < 24 pF)  
Only use resistive loading if required by the  
differential receiver. Proper dc biasing should  
be used to be compatible with levels in Figure 3  
1.7  
2
1.0  
2.4  
24  
pF  
Ω
5,000  
1 Input signal characteristics are defined in Figure 2.  
2 Output signal characteristics are defined in Figure 3.  
500mV TYP  
RESET TRANSIENT  
50mV TYP  
OPTICAL BLACK PIXEL  
850mV TYP  
INPUT SIGNAL RANGE  
Figure 2. Input Signal Characteristics  
1V MAX OUTPUT SIGNAL SWING, DIFFP AND DIFFN  
2V p-p MAX DIFFERENTIAL SIGNAL, DIFFP–DIFFN  
2.2V  
DIFFN  
BLACK  
LEVEL  
WHITE  
LEVEL  
1.7V  
1.2V  
DIFFP  
GND  
Figure 3. Output Signal Characteristics  
Rev. 0 | Page 4 of 20  
 
AD9940  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD = DVDD = OVDD = TCVDD = HVDD = RGVDD = 2.7 V, 25°C to +85°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
μA  
μA  
pF  
0.6  
10  
10  
10  
Input Capacitance  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
CLI INPUT  
VOH  
VOL  
2.2  
V
V
0.5  
High Level Input Voltage  
Low Level Input Voltage  
VIH–CLI  
VIL–CLI  
1.85  
V
V
0.85  
0.5  
RG-DRIVER AND H-DRIVER OUTPUTS (powered by HVDD, RGVDD)  
High Level Output Voltage (at max output current)  
Low Level Output Voltage (at max output current)  
Maximum Output Current (programmable)  
H-Driver (per output)  
VOH  
VOL  
VDD − 0.5  
V
V
64  
15  
mA  
mA  
RG-Driver, HL-Driver  
Maximum Load Capacitance  
H-Driver (per output)  
RG-Driver, HL-Driver  
100  
50  
pF  
pF  
TIMING SPECIFICATIONS (SLAVE TIMING MODE)  
See Figure 10 for Timing Diagram.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK (CLI)  
CLI Clock Period  
CLI High Pulse Width  
Internal Delay from CLI to First Tap  
SAMPLE CLOCKS  
TCLI  
TADC  
TCLIDLY  
18  
ns  
ns  
ns  
9
6
SHP Rising to SHD Rising  
ADCLK Edge Placement for AD9941  
SERIAL INTERFACE  
TS1  
TREC  
7.4  
9
3
ns  
ns  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Rising Edge to SDATA Valid Hold  
fSCLK  
tLS  
tLH  
tDS  
tDH  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
Rev. 0 | Page 5 of 20  
 
AD9940  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
AVDD and TCVDD to AVSS  
HVDD and RGVDD to HVSS and  
RGVSS  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
DVDD and OVDD to DVSS and OVSS −0.3 V to +3.9 V  
Any VSS to Any VSS  
−0.3 V to +0.3 V  
CLPOB/HBLK to DVSS  
SCK, SL, and SDI to DVSS  
RG to RGVSS  
−0.3 V to DVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to RGVDD + 0.3 V  
−0.3 V to HVDD + 0.3 V  
−0.3 V to AVDD + 0.3 V  
150°C  
THERMAL CHARACTERISTICS  
θJA is measured using a 4-layer PCB with the exposed paddle  
soldered to the board.  
H1–H4 to HVSS  
REFT, REFB, and CCDIN to AVSS  
Junction Temperature  
Lead Temperature (10 sec)  
Thermal resistance for 48-lead LQFP package:  
θJA = 92°C/W  
350°C  
Thermal resistance for 48-lead LFCSP package:  
θJA = 24°C/W1  
1 θJA is measured using a 4-layer PCB with the exposed paddle  
soldered to the board.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 20  
 
AD9940  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
NC  
AVSS  
CCDIN  
AVSS  
SHP  
SHD  
AVSS  
H1  
PIN 1  
2
3
AVSS  
AVDD  
DIFFN  
DIFFP  
OVSS  
OVDD  
TCVDD  
CLI  
4
5
AD9940  
TOP VIEW  
(Not to Scale)  
6
7
8
H2  
9
HVSS  
HVDD  
H3  
10  
11  
12  
TCVSS  
DVSS  
DVDD  
H4  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
Figure 4. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Menumonic  
Type1  
NC  
P
Description  
1
2
3
4
5
6
7
8
NC  
No Connect. Connect to GND.  
Analog Ground.  
Analog Supply.  
AVSS  
AVDD  
DIFFN  
DIFFP  
OVSS  
OVDD  
TCVDD  
CLI  
TCVSS  
DVSS  
DVDD  
DVSS  
SL  
DVSS  
SDI  
SCK  
RST  
HD  
NC  
RG  
HL  
P
AO  
AO  
P
P
P
DI  
P
P
P
P
CDS Output, Data (Negative).  
CDS Output, Data (Positive).  
Analog Output Buffer Ground.  
Analog Output Buffer Supply.  
Analog Supply for Timing Core.  
Reference Clock Input.  
Analog Ground for Timing Core.  
Digital Ground.  
Digital Logic Power Supply.  
Digital Ground.  
3-Wire Serial Load Pulse.  
Digital Ground.  
3-Wire Serial Data Input.  
3-Wire Serial Clock.  
Hardware Reset (Low Active). Low = Reset state, High = Normal operation.  
Horizontal Sync Pulse.  
Do No Connect. Should be left floating.  
CCD Reset Gate Clock.  
HL Horizontal Clock.  
RG Driver Ground.  
RG Driver Power Supply.  
CCD Horizontal Clock 4.  
CCD Horizontal Clock 3.  
Horizontal Clock Driver Supply.  
Horizontal Clock Driver Ground.  
CCD Horizontal Clock 2.  
CCD Horizontal Clock 1.  
Analog Ground.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
DI  
P
DI  
DI  
DI  
DI  
NC  
DO  
DO  
P
RGVSS  
RGVDD  
H4  
P
DO  
DO  
P
H3  
HVDD  
HVSS  
H2  
H1  
AVSS  
SHD  
P
DO  
DO  
P
DI  
Test Clock Input for CCD Data Phase Sampling.  
Rev. 0 | Page 7 of 20  
 
AD9940  
Pin No.  
33  
34  
Menumonic  
SHP  
AVSS  
Type1  
DI  
P
Description  
Test Clock Input for CCD Reset Phase Sampling.  
Analog Ground.  
35  
36  
CCDIN  
AVSS  
AI  
P
CCD Signal Input.  
Analog Ground (CCD Signal Input Reference).  
37  
38  
AVDD  
AVSS  
P
P
Analog Supply.  
Analog Ground.  
39  
40  
41 to 46  
47, 48  
REFB  
REFT  
NC  
AVSS  
AO  
AO  
NC  
P
Voltage Reference Bottom By-Pass. Decoupled to analog ground with a 0.1 μF capacitor.  
Voltage Reference Top By-Pass. Decoupled to analog ground with a 0.1 μF capacitor.  
No Connect. Connect to GND.  
Analog Ground.  
1 Type: AI = analog input; AO = analog output; DI = digital input; DO = digital output; P = power.  
Rev. 0 | Page 8 of 20  
AD9940  
DATA BIT DESCRIPTIONS  
Table 7.  
Address  
Data Bit Content  
Default Value  
Name  
Description  
0
[0]  
0
PARTSEL  
Part Select:  
0 = select AD9940  
1 = select AD9941  
[1]  
[2]  
0
0
TESTMODE  
SW RESET  
Always set = 0  
Reset registers:  
1 = reset all registers to the default values  
0 = slave mode  
1 = master mode  
[3]  
[4]  
0
0
MODE  
STANDBY  
0 = normal operation  
1 = standby operation  
[6:5]  
[7]  
0
0
TESTMODE  
WRITEMODE  
Always Set = 0  
0 = write to Address 1 to Address 13  
1 = write to Address 14 to Address 26  
Always set = 0  
1
2
[6:0]  
[7]  
0
0
TESTMODE  
HBLKMASKPOL  
HBLK mask polarity:  
0 = H1/H3 low, H2/H4 high  
1 = H1/H3 high, H2/H4 low  
[0]  
[1]  
[2]  
[3]  
[7:4]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[7:4]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[7:4]  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
HBLKTOG1_0 [8]  
HBLKTOG1_0 [9]  
HBLKTOG1_0 [10]  
HBLKTOG1_0 [11]  
TESTMODE  
HBLKTOG1 position for Sequence 0 (Bit 8)  
HBLKTOG1 position for Sequence 0 (Bit 9)  
HBLKTOG1 position for Sequence 0 (Bit 10)  
HBLKTOG1 position for Sequence 0 (Bit 11)  
Always set = 0  
3
HBLKTOG1_0 [0]  
HBLKTOG1_0 [1]  
HBLKTOG1_0 [2]  
HBLKTOG1_0 [3]  
HBLKTOG1_0 [4]  
HBLKTOG1_0 [5]  
HBLKTOG1_0 [6]  
HBLKTOG1_0 [7]  
HBLKTOG2_0 [8]  
HBLKTOG2_0 [9]  
HBLKTOG2_0 [10]  
HBLKTOG2_0 [11]  
TESTMODE  
HBLKTOG1 position for Sequence 0 (Bit 0)  
HBLKTOG1 position for Sequence 0 (Bit 1)  
HBLKTOG1 position for Sequence 0 (Bit 2)  
HBLKTOG1 position for Sequence 0 (Bit 3)  
HBLKTOG1 position for Sequence 0 (Bit 4)  
HBLKTOG1 position for Sequence 0 (Bit 5)  
HBLKTOG1 position for Sequence 0 (Bit 6)  
HBLKTOG1 position for Sequence 0 (Bit 7)  
HBLKTOG2 position for Sequence 0 (Bit 8)  
HBLKTOG2 position for Sequence 0 (Bit 9)  
HBLKTOG2 position for Sequence 0 (Bit 10)  
HBLKTOG2 position for Sequence 0 (Bit 11)  
Always set = 0  
4
5
HBLKTOG2_0 [0]  
HBLKTOG2_0 [1]  
HBLKTOG2_0 [2]  
HBLKTOG2_0 [3]  
HBLKTOG2_0 [4]  
HBLKTOG2_0 [5]  
HBLKTOG2_0 [6]  
HBLKTOG2_0 [7]  
HBLKTOG1_1 [8]  
HBLKTOG1_1 [9]  
HBLKTOG1_1 [10]  
HBLKTOG1_1 [11]  
TESTMODE  
HBLKTOG2 position for Sequence 0 (Bit 0)  
HBLKTOG2 position for Sequence 0 (Bit 1)  
HBLKTOG2 position for Sequence 0 (Bit 2)  
HBLKTOG2 position for Sequence 0 (Bit 3)  
HBLKTOG2 position for Sequence 0 (Bit 4)  
HBLKTOG2 position for Sequence 0 (Bit 5)  
HBLKTOG2 position for Sequence 0 (Bit 6)  
HBLKTOG2 position for Sequence 0 (Bit 7)  
HBLKTOG1 position for Sequence 1 (Bit 8)  
HBLKTOG1 position for Sequence 1 (Bit 9)  
HBLKTOG1 position for Sequence 1 (Bit 10)  
HBLKTOG1 position for Sequence 1 (Bit 11)  
Always set = 0  
6
Rev. 0 | Page 9 of 20  
 
AD9940  
Address  
Data Bit Content  
Default Value  
Name  
Description  
7
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[7:4]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[7:4]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[7:4]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
HBLKTOG1_1 [0]  
HBLKTOG1_1 [1]  
HBLKTOG1_1 [2]  
HBLKTOG1_1 [3]  
HBLKTOG1_1 [4]  
HBLKTOG1_1 [5]  
HBLKTOG1_1 [6]  
HBLKTOG1_1 [7]  
HBLKTOG2_1 [8]  
HBLKTOG2_1 [9]  
HBLKTOG2_1 [10]  
HBLKTOG2_1 [11]  
TESTMODE  
HBLKTOG1 position for Sequence 1 (Bit 0)  
HBLKTOG1 position for Sequence 1 (Bit 1)  
HBLKTOG1 position for Sequence 1 (Bit 2)  
HBLKTOG1 position for Sequence 1 (Bit 3)  
HBLKTOG1 position for Sequence 1 (Bit 4)  
HBLKTOG1 position for Sequence 1 (Bit 5)  
HBLKTOG1 position for Sequence 1 (Bit 6)  
HBLKTOG1 position for Sequence 1 (Bit 7)  
HBLKTOG2 position for Sequence 1 (Bit 8)  
HBLKTOG2 position for Sequence 1 (Bit 9)  
HBLKTOG2 position for Sequence 1 (Bit 10)  
HBLKTOG2 position for Sequence 1 (Bit 11)  
Always set = 0  
8
9
HBLKTOG2_1 [0]  
HBLKTOG2_1 [1]  
HBLKTOG2_1 [2]  
HBLKTOG2_1 [3]  
HBLKTOG2_1 [4]  
HBLKTOG2_1 [5]  
HBLKTOG2_1 [6]  
HBLKTOG2_1 [7]  
HBLKTOG1_2 [8]  
HBLKTOG1_2 [9]  
HBLKTOG1_2 [10]  
HBLKTOG1_2 [11]  
TESTMODE  
HBLKTOG2 position for Sequence 1 (Bit 0)  
HBLKTOG2 position for Sequence 1 (Bit 1)  
HBLKTOG2 position for Sequence 1 (Bit 2)  
HBLKTOG2 position for Sequence 1 (Bit 3)  
HBLKTOG2 position for Sequence 1 (Bit 4)  
HBLKTOG2 position for Sequence 1 (Bit 5)  
HBLKTOG2 position for Sequence 1 (Bit 6)  
HBLKTOG2 position for Sequence 1 (Bit 7)  
HBLKTOG1 position for Sequence 2 (Bit 8)  
HBLKTOG1 position for Sequence 2 (Bit 9)  
HBLKTOG1 position for Sequence 2 (Bit 10)  
HBLKTOG1 position for Sequence 2 (Bit 11)  
Always set = 0  
10  
11  
HBLKTOG1_2 [0]  
HBLKTOG1_2 [1]  
HBLKTOG1_2 [2]  
HBLKTOG1_2 [3]  
HBLKTOG1_2 [4]  
HBLKTOG1_2 [5]  
HBLKTOG1_2 [6]  
HBLKTOG1_2 [7]  
HBLKTOG2_2 [8]  
HBLKTOG2_2 [9]  
HBLKTOG2_2 [10]  
HBLKTOG2_2 [11]  
TESTMODE  
HBLKTOG1 position for Sequence 2 (Bit 0)  
HBLKTOG1 position for Sequence 2 (Bit 1)  
HBLKTOG1 position for Sequence 2 (Bit 2)  
HBLKTOG1 position for Sequence 2 (Bit 3)  
HBLKTOG1 position for Sequence 2 (Bit 4)  
HBLKTOG1 position for Sequence 2 (Bit 5)  
HBLKTOG1 position for Sequence 2 (Bit 6)  
HBLKTOG1 position for Sequence 2 (Bit 7)  
HBLKTOG2 position for Sequence 2 (Bit 8)  
HBLKTOG2 position for Sequence 2 (Bit 9)  
HBLKTOG2 position for Sequence 2 (Bit 10)  
HBLKTOG2 position for Sequence 2 (Bit 11)  
Always set = 0  
12  
13  
HBLKTOG2_2 [0]  
HBLKTOG2_2 [1]  
HBLKTOG2_2 [2]  
HBLKTOG2_2 [3]  
HBLKTOG2_2 [4]  
HBLKTOG2_2 [5]  
HBLKTOG2_2 [6]  
HBLKTOG2_2 [7]  
HBLKTOG2 position for Sequence 2 (Bit 0)  
HBLKTOG2 position for Sequence 2 (Bit 1)  
HBLKTOG2 position for Sequence 2 (Bit 2)  
HBLKTOG2 position for Sequence 2 (Bit 3)  
HBLKTOG2 position for Sequence 2 (Bit 4)  
HBLKTOG2 position for Sequence 2 (Bit 5)  
HBLKTOG2 position for Sequence 2 (Bit 6)  
HBLKTOG2 position for Sequence 2 (Bit 7)  
Rev. 0 | Page 10 of 20  
AD9940  
Address  
Data Bit Content  
Default Value  
Name  
Description  
14  
[2:0]  
3
RGDRV  
RG drive strength (resolution = 2.2 mA/Step):  
0 = Off  
1 = 2.2 mA  
2 = 4.4 mA  
7 = 15.4 mA  
[3]  
0
3
RGPOL  
HLDRV  
RG polarity:  
0 = normal  
1 = inverted  
[6:4]  
HL drive strength (Resolution = 2.2 mA/Step):  
0 = off  
1 = 2.2 mA  
2 = 4.4 mA  
7 = 15.4 mA  
[7]  
0
HLPOL  
HL polarity:  
0 = normal  
1 = inverted  
15  
16  
17  
18  
19  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[3:0]  
0
HLPOSLOC  
Unused  
HL rising edge location  
HL negative edge location  
RG rising edge location  
RG negative edge location  
24  
0
HLNEGLOC  
Unused  
0
RGPOSLOC  
Unused  
24  
7
RGNEGLOC  
Unused  
H2/H4DRV  
H2/H4 drive strength (resolution = 4.3 mA/Step):  
0 = Off  
1 = 4.3 mA  
2 = 8.6 mA  
15 =64.5 mA  
[7:4]  
7
H1/H3DRV  
H1/H3 drive strength (resolution = 4.3 mA/Step):  
0 = Off  
1 = 4.3 mA  
2 = 8.6 mA  
15 = 64.5 mA  
20  
[5:0]  
[6]  
[7]  
0
0
H1POSLOC  
Unused  
H1/H3POL  
H1 positive edge location  
H1/H3 polarity:  
0 = normal  
1 = inverted  
(H2/H4 is opposite polarity of H1/H3)  
H1 negative edge location  
21  
22  
23  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[7:0]  
[7:0]  
[7:0]  
32  
32  
0
H1NEGLOC  
Unused  
SHPLOC  
Unused  
SHP sampling location  
SHD sampling location  
0
0
SHDLOC  
Unused  
24  
25  
26  
TESTMODE  
TESTMODE  
TESTMODE  
Always set = 0  
Always set = 0  
Always set = 0  
0
0
Rev. 0 | Page 11 of 20  
AD9940  
SERIAL INTERFACE TIMING  
All the internal registers of the AD9940 are accessed through  
a 3-wire serial interface. Each register consists of an 8-bit data  
byte starting with the LSB bit. As shown in Figure 5, the data  
bits are clocked in on the rising edge of SCK after SL is asserted  
low and the entire 8-bit word is latched in on the rising edge  
of SL after the last MSB bit. Consecutive serial writes are per-  
formed starting with Address 0 and ending with an address  
MSB bit prior to asserting SL high.  
Every write operation must begin with a write to Address 0 to  
specify Part select bit and Bank location, then followed with any  
number of consecutive data words. Address 0 is always followed  
by Address 01 or Address 14 depending on the value specified  
for WRITEMODE (used for Bank selection).  
A hard reset is recommended after power-up to reset the  
AD9940 prior to performing a serial interface write. A hard  
reset is performed by asserting the RST pin low for a mini-  
mum of 10 μs. The serial interface pins SCK, SL, and SDI  
must be in a know state after the RST has been applied.  
The AD9940 contains two banks of registers, which are  
programmed independently. Bank 1 consists of the registers  
located at Address 0 to Address 13, and Bank 2 consists of  
Address 14 to Address 26. The WRITEMODE register located  
at Address 0 is used to select which register bank is written to.  
ADDR 00  
ADDR 01  
D2 D3  
ADDR N  
ADDR N+1  
...  
...  
...  
...  
SDATA  
D7 D0 D1  
D3  
D7  
D3  
D7 D0  
D3  
D7  
D0  
D2  
D0 D1  
D2  
D1 D2  
D1  
tDS  
tDH  
...  
...  
...  
...  
SCK  
SL  
tLS  
tLH  
...  
NOTES  
1. ANY NUMBER OF ADJACENT REGISTERS CAN BE LOADED SEQUENTIALLY, BEGINNING WITH THE LOWEST ADDRESS 00.  
2. WHEN SEQUENTIALLY LOADING MULTIPLE REGISTERS, THE EXACT REGISTER LENGTH (SHOWN ABOVE) MUST BE USED  
FOR EACH REGISTER.  
3. ALL LOADED REGISTERS ARE SIMULTANEOUSLY UPDATED ON THE RISING EDGE OF SL.  
Figure 5. Serial Interface Operation  
Rev. 0 | Page 12 of 20  
 
 
AD9940  
SYSTEM OVERVIEW  
Figure 6 shows the typical system block diagram for the  
AD9940. The CCD output is processed by the AD9940s  
AFE circuitry, which consists of a correlated double sam-  
pler (CDS) and output buffer. The differential output of the  
AD9940 provides good signal integrity when interfaced with  
the AD9941.  
ANALOG FRONT END OPERATION  
The AD9940 signal-processing chain is shown in Figure 7,  
consisting of a dc restore circuit, CDS, and output buffer.  
DC Restore  
To reduce the large dc offset of the CCD output signal, a  
dc restore circuit is used with an external 0.1 μF series  
coupling capacitor. This restores the dc level of the CCD  
signal to approximately 1.5 V to be compatible with the 3 V  
analog supply of the AD9940.  
To operate the AD9940, all CCD and AFE timing parameters  
are programmed into the AD9940 from the system micro-  
processor through the 3-wire serial interface. From the system  
master clock, CLI, provided by the image processor or external  
crystal, the AD9940 generates the CCDs horizontal and reset  
gate clocks and all internal AFE clocks.  
Correlated Double Sampler  
The CDS circuit samples each CCD pixel twice to extract  
the video information and reject low frequency noise. The  
timing diagram in Figure 10 illustrates how the two internally  
generated CDS clocks, SHP and SHD, are used to sample the  
reference level and the data level, respectively, of the CCD  
signal. The placement of the SHP and SHD sampling edges  
is determined by the setting of the SHPLOC (Address 22)  
and SHDLOC (Address 23) control registers. Placement of  
these two clock edges is critical to achieve the best perform-  
ance from the CCD.  
The H-drivers for H1 to H4, HL and RG, are included in the  
AD9940, allowing these clocks to be directly connected to the  
CCD. An H-drive voltage of up to 3.6 V is supported.  
DIGITAL  
OUTPUTS  
AD9941  
AD9940  
DIGITAL IMAGE  
PROCESSING  
ASIC  
CCD  
DIFFN  
DIFFP  
ADC  
BUF  
OUT  
OUT  
V
0.1μF  
OUT  
CCDIN  
SERIAL  
INTERFACE  
C
IN  
REGISTER  
DATA  
BUFFER  
H1–H4, HL, RG  
REGISTER  
DATA  
TIMING  
GENERATOR  
Figure 6. Typical System Block Diagram  
0.1μF  
0.1μF  
REFT  
2V  
REFB  
1V  
DC RESTORE  
+
INTERNAL  
1.5V  
V
REF  
AD9940  
SHP  
CDS  
SHD  
DIFFN  
DIFFP  
CCDIN  
0.1μF  
BUF  
SHP  
SHD  
H1–H4, HL, RG  
TIMING  
GENERATION  
PRECISION  
TIMING  
GENERATION  
SERIAL INTERFACE  
Figure 7. AD9940 Signal-Processing Chain  
Rev. 0 | Page 13 of 20  
 
 
 
AD9940  
PRECISION TIMING, HIGH SPEED TIMING GENERATION  
The AD9940 generates flexible, high speed timing signals  
using the Precision Timing core. This core is the foundation for  
generating the timing used for both the CCD and the AFE: the  
reset gate RG, horizontal drivers H1 to H4, and the SHP/SHD  
sample clocks. A unique architecture makes it routine for the  
system designer to optimize image quality by providing precise  
control over the horizontal CCD readout and the AFE corre-  
lated double sampling.  
HIGH SPEED CLOCK PROGRAMMABILITY  
Figure 9 shows how the high speed clocks, RG, HL, H1–H4, SHP,  
and SHD are generated. The RG pulse has programmable rising  
and falling edges, and can be inverted using the polarity control.  
The horizontal clocks H1/H3 have programmable rising and  
falling edges, and polarity control. The H2/H4 clocks are always  
inverses of the H1/H3 H-driver outputs.  
Table 8 summarizes the high speed timing registers and their  
parameters. Each edge location setting is 6 bits wide, but only  
48 valid edge locations are available. Therefore, the register  
values are mapped into four quadrants, with each quadrant  
containing 12 edge locations. Table 9 shows the correct reg-  
ister values for the corresponding edge locations.  
TIMING RESOLUTION  
The Precision Timing core uses a 1× master clock input (CLI)  
as a reference. This clock should be the same as the CCD pixel  
clock frequency. Figure 8 illustrates how the internal timing  
core divides the master clock period into 48 steps or edge  
positions. Therefore, the edge resolution of the Precision  
Timing core is (tCLI/48).  
POSITION  
CLI  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
...  
tCLIDLY  
...  
1 PIXEL  
PERIOD  
NOTES  
1. PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
2. THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITIONS (tCLIDLY = 6 ns TYP).  
Figure 8. High Speed Clock Resolution from CLI Master Clock Input  
Rev. 0 | Page 14 of 20  
 
 
AD9940  
4
CCD SIGNAL  
5
1
2
RG  
3
6
H1/H3  
H2/H4  
HL  
7
8
9
11  
10  
PROGRAMMABLE CLOCK POSITIONS:  
1
RG POLARITY.  
RG RISING EDGE.  
RG FALLING EDGE.  
SHP SAMPLE LOCATION.  
SHD SAMPLE LOCATION.  
H1/H3 POLARITY.  
H1/H3 RISING EDGE POSITION.  
H1/H3 FALLING EDGE POSITION (H2/H4 ARE INVERSE OF H1/H3).  
2
3
4
5
6
7
8
9
HL POLARITY.  
HL RISING EDGE.  
10  
11  
HL FALLING EDGE.  
Figure 9. High Speed Clock Programmable Locations  
CCD  
SIGNAL  
N
N+1  
N+2  
N+9  
N+10  
SHPLOC  
SHDLOC  
tS1  
DIFFP  
DIFFN  
VALID  
ADCLK  
(FOR AD9941)  
tREC  
Figure 10. SHP, SHD, and Data Output Timing  
Rev. 0 | Page 15 of 20  
 
 
AD9940  
The RG and HL output drive strength registers are divided into  
seven 3-bit values, each adjustable in 2.2 mA increments. The  
minimum setting of 0 is equal to off or three-state, and the  
maximum setting of 7 is 15.4 mA.  
H-DRIVER AND RG OUTPUTS  
In addition to the programmable timing positions, the AD9940  
features on-chip output drivers for the RG and H1 to H4 out-  
puts. These drivers are powerful enough to directly drive the  
CCD inputs. The H-driver and RG driver current can be  
adjusted for optimum rise/fall time into a particular load using  
the H1/H3DRV, H2/H4DRV, RGDRV, and HLDRV registers  
The horizontal output drive strength register is divided into  
fifteen different 4-bit values, each one adjustable in 4.3 mA  
increments. The minimum setting of 0 is off or three-state, and  
the maximum setting of 15 is 64.5 mA.  
As shown in Figure 11, the H2/H4 outputs are inverses of  
H1/H3. The internal propagation delay resulting from the  
signal inversion is less than l ns, which is significantly less  
than the typical rise time driving the CCD load. This results  
in an H1/H2 crossover voltage at approximately 50% of the  
output swing. The crossover voltage is not programmable.  
Table 8. Timing Core Register Parameters for H1, H3, RG1, RG2, and SHP/SHD  
Parameter  
Length (Bits)  
Range  
Description  
Polarity  
1
High/low  
Polarity control for H1/H3, RG1, and RG2:  
0 = no inversion.  
1 = inversion.  
Positive Edge  
6
6
6
4
3
3
0 to 47 edge location  
0 to 47 edge location  
0 to 47 sample location  
0 to 15 current steps  
0 to 7 current steps  
0 to 7 current steps  
Positive edge location for H1/H3, RG1, and RG2.  
Negative edge location for H1/H3, RG1, and RG2.  
Sampling location for SHP and SHD.  
Drive current for H1 to H4, 0 to 15 steps of 4.3 mA each.  
Drive current for RG, 0 to 7 steps of 2.2 mA each.  
Drive current for HL, 0 to 7 steps of 2.2 mA each.  
Negative Edge  
Sample Location  
H-Drive Control  
RG-Drive Control  
HL-Drive Control  
H1/H3  
tRISE  
H2/H4  
tPD << tRISE  
tPD  
H1/H3  
H2/H4  
FIXED CROSSOVER VOLTAGE  
Figure 11. H-Clock Inverse Phase Relationship  
Table 9. Precision Timing Edge Locations  
Quadrant  
Edge Location (Decimal)  
Register Value (Decimal)  
0 to 11  
16 to 27  
32 to 43  
48 to 59  
Register Value (Binary)  
00 0000 to 00 1011  
01 0000 to 01 1011  
10 0000 to 10 1011  
11 0000 to 11 1011  
I
II  
III  
IV  
0 to 11  
12 to 23  
24 to 35  
36 to 47  
Rev. 0 | Page 16 of 20  
 
 
 
 
AD9940  
Individual HBLK Sequences  
HBLK SEQUENCES  
Up to three individual HBLK sequences are available in each  
line. This allows special H-blanking as shown in Figure 14. The  
HBLK sequences are sequential starting with Sequence 0. To  
ensure proper HBLK operation, the following sequence is  
required for values programmed in the HBLKTOG registers:  
The HBLK programmable timing shown in Figure 12 is  
programmed using the HBLKTOG registers. Only the toggle  
positions are used to designate the start and the stop posi-  
tions of the blanking period. Additionally, a polarity control,  
HBLKMASKPOL, designates the polarity of the horizontal  
clock signals H1 to H4 during the blanking period. Setting  
HBLKMASKPOL high sets H1 = H3 = high and  
HBLKTOG1_0 < HBLKTOG2_0 < HBLKTOG1_1 <  
HBLKTOG2_1 < HBLKTOG1_2 < HBLKTOG2_2  
H2 = H4 = low during the blanking.  
CLI  
0
1
2
3
4
5
6
7
8
9
tCLIDLY  
PIXEL  
CLOCK  
0
1
2
3
4
5
6
7
3
8
9
HD  
1
2
H1/H3  
H2/H4  
PROGRAMMABLE SETTINGS:  
1
HBLKTOG1_n (n = 0, 1, 2)  
2
HBLKMASKPOL  
3
HBLKTOG2_n (n = 0, 1, 2)  
Figure 12. Horizontal Blanking Example Showing HBLKTOG1_0 = 0, HBLKMASKPOL = 0, and HBLKTOG2_0 = 3  
HD  
HBLK  
H1/H3  
...  
H1/H3  
H2/H4  
...  
NOTE  
1. THE POLARITY OF H1 DURING THE BLANKING REGION IS PROGRAMMABLE (H2 HAS THE OPPOSITE POLARITY OF H1).  
Figure 13. HBLK Masking Control  
Rev. 0 | Page 17 of 20  
 
 
AD9940  
HD  
1
2
3
4
5
6
HBLK  
H1/H3  
H2/H4  
SPECIAL H-BLANK PATTERN IS CREATED USING MULTIPLE HBLK TOGGLE POSITIONS.  
PROGRAMMABLE SETTINGS:  
1
HBLKTOG1_0  
2
HBLKTOG2_0  
3
HBLKTOG1_1  
4
HBLKTOG2_1  
5
HBLKTOG1_2  
6
HBLKTOG2_2  
Figure 14. Generating Special HBLK Patterns  
Rev. 0 | Page 18 of 20  
 
AD9940  
APPLICATIONS INFORMATION  
All signals should be carefully routed on the PCB to main-  
tain low noise performance. The CCD output signal should be  
connected to the CCDIN pin through a 0.1 μF capacitor. The  
CCD timing signals H1A/B to H2A/B and RG1 to RG2 should  
be routed directly to the CCD with minimum trace lengths. The  
clock inputs are located on the other side of the package, where  
the analog pins are located, and should be connected to the  
digital ASIC away from the analog and CCD clock signals.  
All decoupling capacitors should be located as close as possible  
to the package pins. Careful use of a split ground plane can be  
effective to avoid the return current of horizontal driver flows  
into analog ground, thereby reducing coupling noise.  
Power-supply decoupling is very important for achieving low  
noise performance. Figure 15 shows the local high frequency  
decoupling capacitors, but additional capacitance is recom-  
mended for lower frequencies. Additional capacitors and  
ferrite beads can further reduce noise.  
A single ground plane is recommended for the AD9940. This  
ground plane should be as continuous as possible, particularly  
where analog pins are concentrated, to ensure that all analog  
decoupling capacitors provide the lowest possible impedance  
path between the power and bypass pins and their respective  
ground pins.  
When using the LFCSP package, it is recommended that the  
exposed paddle on the bottom of the package be soldered  
to a large pad, with multiple vias connecting the pad to the  
ground plane.  
0.1μF  
0.1μF  
0.1μF  
3V ANALOG SUPPY  
48 47 46 45 44 43 42 41 40 39 38 37  
NC  
AVSS  
AVDD  
DIFFN  
DIFFP  
OVSS  
OVDD  
TCVDD  
CLI  
AVSS  
CCDIN  
AVSS  
SHP  
SHD  
AVSS  
H1  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
ANALOG OUTPUT  
FROM CCD  
PIN 1  
0.1μF  
3
3V ANALOG SUPPLY  
4
DIFFN OUTPUT  
DIFFP OUTPUT  
5
2
AD9940  
TOP VIEW  
(Not to Scale)  
CCD SAMPLING INPUTS  
6
0.1μF  
7
3V ANALOG SUPPLY  
3V ANALOG SUPPLY  
H2  
8
0.1μF  
0.1μF  
HVSS  
HVDD  
H3  
MASTER  
9
CLOCK INPUT  
4.7μF  
0.1μF  
TCVSS  
DVSS  
DVDD  
+
10  
11  
12  
3V ANALOG  
SUPPLY  
4.7μF  
H4  
+
3V ANALOG SUPPLY  
13 14 15 16 17 18 19 20 21 22 23 24  
4
HORIZONTAL  
CLOCKS TO CCD  
3V ANALOG SUPPLY  
3
SERIAL  
INTERFACE  
0.1μF  
RST INPUT  
HD INPUT  
RG  
HL  
Figure 15. Recommended Circuit Configuration NC pin and supply name consistency  
Rev. 0 | Page 19 of 20  
 
 
AD9940  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
9.00  
BSC SQ  
1.60  
MAX  
37  
48  
36  
1
PIN 1  
7.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
25  
12  
0.15  
0.05  
13  
24  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
VIEW A  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BBC  
Figure 16. 48-Lead Low Profile Quad Flat Package [LQFP}  
(ST-48)  
Dimensions shown in millimeters  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
5.25  
5.10 SQ  
4.95  
TOP  
VIEW  
6.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 17. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm x 7mm Body, Very Thin Quad  
(CP-48-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9940BSTZ1  
AD9940BSTZRL1  
AD9940BCPZ1  
AD9940BCPZRL1  
Temperature Range  
25°C to +85°C  
25°C to +85°C  
25°C to +85°C  
25°C to +85°C  
Package Description  
Package Option  
48-lead Low Profile Quad Flat Package [LQFP]  
48-lead Low Profile Quad Flat Package [LQFP]  
48-lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ST-48  
ST-48  
CP-48-1  
CP-48-1  
1 Z = Pb-free part.  
©2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05261–0–7/05(0)  
Rev. 0 | Page 20 of 20  
 

相关型号:

AD9940BCPZRL

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9940BSTZ

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9940BSTZ

SPECIALTY CONSUMER CIRCUIT, PQFP48, LEAD FREE, MS-026-BBC, LQFP-48
ROCHESTER

AD9940BSTZRL

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9941BSTZ

Complete 14-Bit, 56 MSPS Imaging Signal Processor
ADI

AD9941BSTZRL

Complete 14-Bit, 56 MSPS Imaging Signal Processor
ADI

AD9942

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9942BBCZ

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9942BBCZRL

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9943

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCP

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPRL

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI