AD9684BBPZ-500 [ADI]

Dual Analog-to-Digital Converter;
AD9684BBPZ-500
型号: AD9684BBPZ-500
厂家: ADI    ADI
描述:

Dual Analog-to-Digital Converter

文件: 总65页 (文件大小:1276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 500 MSPS LVDS,  
Dual Analog-to-Digital Converter  
Data Sheet  
AD9684  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD1  
(1.25V)  
AVDD2  
(2.5V)  
AVDD3  
(3.3V)  
DVDD  
DRVDD  
(1.25V)  
SPIVDD  
Parallel LVDS (DDR) outputs  
(1.25V)  
(1.8V TO 3.4V)  
1.1 W total power per channel at 500 MSPS (default settings)  
SFDR = 85 dBFS at 170 MHz fIN (500 MSPS)  
SNR = 68.6 dBFS at 170 MHz fIN (500 MSPS)  
ENOB = 10.9 bits at 170 MHz fIN  
DNL = ±0.5 LSB  
INL = ±±.5 LSB  
Noise density = −153 dBFS/Hz at 500 MSPS  
1.±5 V, ±.50 V, and 3.3 V supply operation  
No missing codes  
BUFFER  
VIN+A  
VIN–A  
14  
D0±  
ADC  
D1±  
CORE  
D2±  
DIGITAL  
DOWN-  
D3±  
D4±  
CONVERTER  
D5±  
16  
FD_A  
FD_B  
D6±  
D7±  
D8±  
D9±  
D10±  
D11±  
D12±  
D13±  
DCO±  
STATUS±  
DIGITAL  
DOWN-  
CONVERTER  
BUFFER  
VIN+B  
VIN–B  
14  
ADC  
CORE  
CONTROL  
REGISTERS  
Internal analog-to-digital converter (ADC) voltage reference  
Flexible input range and termination impedance  
1.46 V p-p to ±.06 V p-p (±.06 V p-p nominal)  
400 Ω, ±00 Ω, 100 Ω, and 50 Ω differential  
SYNC± input allows multichip synchronization  
DDR LVDS (ANSI-644 levels) outputs  
± GHz usable analog input full power bandwidth  
>96 dB channel isolation/crosstalk  
Amplitude detect bits for efficient AGC implementation  
Two integrated wideband digital processors per channel  
1±-bit numerically controlled oscillator (NCO)  
3 cascaded half-band filters  
FAST  
DETECT  
V_1P0  
SYNC+  
SYNC–  
SIGNAL MONITOR  
CLOCK  
GENERATION  
CLK+  
CLK–  
SPI CONTROL  
÷2  
÷4  
÷8  
PDWN/  
STBY  
AD9684  
DGND  
AGND DRGND  
SDIO  
SCLK CSB  
Figure 1.  
GENERAL DESCRIPTION  
The AD9684 is a dual, 14-bit, 500 MSPS ADC. The device has  
an on-chip buffer and a sample-and-hold circuit designed for  
low power, small size, and ease of use. This product is designed  
for sampling wide bandwidth analog signals. The AD9684 is  
optimized for wide input bandwidth, a high sampling rate,  
excellent linearity, and low power in a small package.  
Differential clock inputs  
Serial port control  
Integer clock divide by ±, 4, or 8  
Small signal dither  
APPLICATIONS  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth buffered inputs, supporting a  
variety of user selectable input ranges. An integrated voltage  
reference eases design considerations. Each ADC data output is  
internally connected to an optional decimate by 2 block.  
Communications  
Diversity multiband, multimode digital receivers  
3G/4G, TD-SCDMA, W-CDMA, MC-GSM, LTE  
General-purpose software radios  
Ultrawideband satellite receiver  
Instrumentation (spectrum analyzers, network analyzers,  
integrated RF test solutions)  
Radar  
Digital oscilloscopes  
High speed data acquisition systems  
DOCSIS CMTS upstream receiver paths  
HFC digital reverse path receivers  
The analog input and clock signals are differential inputs. Each  
ADC data output is internally connected to two digital  
downconverters (DDCs). Each DDC consists of four cascaded  
signal processing stages: a 12-bit frequency translator (NCO),  
and three half-band decimation filters supporting a divide by  
factor of two, four, and eight.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 0±06±-9106, U.S.A.  
Tel: 781.3±9.4700  
Technical Support  
©±015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD9684* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD9684 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD9684 Evaluation Board  
DOCUMENTATION  
Application Notes  
DISCUSSIONS  
View all AD9684 EngineerZone Discussions.  
AN-1386: The Effects of the Sample Clock Spectrum on  
Measured Signal Spectrum in ADCs, a Simple  
Mathematical Description  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
Data Sheet  
AD9684: 14-Bit, 500 MSPS LVDS, Dual Analog-to-Digital  
Converter  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9684  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DDC I/Q Output Selection ....................................................... 31  
DDC General Description ........................................................ 31  
Frequency Translation ................................................................... 37  
General Description................................................................... 37  
DDC NCO Plus Mixer Loss and SFDR................................... 38  
Numerically Controlled Oscillator .......................................... 38  
FIR Filters ........................................................................................ 40  
General Description................................................................... 40  
Half-Band Filters ........................................................................ 41  
DDC Gain Stage ......................................................................... 42  
DDC Complex to Real Conversion Block............................... 42  
DDC Example Configurations ................................................. 43  
Digital Outputs ............................................................................... 47  
Digital Outputs ........................................................................... 47  
ADC Overrange.......................................................................... 47  
Multichip Synchronization............................................................ 48  
SYNC Setup and Hold Window Monitor............................. 49  
Test Modes....................................................................................... 51  
ADC Test Modes ........................................................................ 51  
Serial Port Interface (SPI).............................................................. 52  
Configuration Using the SPI..................................................... 52  
Hardware Interface..................................................................... 52  
SPI Accessible Features.............................................................. 52  
Memory Map .................................................................................. 53  
Reading the Memory Map Register Table............................... 53  
Memory Map Register Table..................................................... 54  
Applications Information .............................................................. 63  
Power Supply Recommendations............................................. 63  
Outline Dimensions....................................................................... 64  
Ordering Guide .......................................................................... 64  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Product Highlights ........................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Timing Specifications .................................................................. 8  
Absolute Maximum Ratings.......................................................... 16  
Thermal Characteristics ............................................................ 16  
ESD Caution................................................................................ 16  
Pin Configuration and Function Descriptions........................... 17  
Typical Performance Characteristics ........................................... 19  
Equivalent Circuits ......................................................................... 22  
Theory of Operation ...................................................................... 24  
ADC Architecture ...................................................................... 24  
Analog Input Considerations.................................................... 24  
Voltage Reference ....................................................................... 26  
Clock Input Considerations ...................................................... 27  
Power-Down/Standby Mode..................................................... 28  
Temperature Diode .................................................................... 28  
ADC Overrange and Fast Detect.................................................. 29  
ADC Overrange.......................................................................... 29  
Fast Threshold Detection (FD_A and FD_B) ........................ 29  
Signal Monitor ................................................................................ 30  
Digital Downconverters (DDCs).................................................. 31  
DDC I/Q Input Selection .......................................................... 31  
REVISION HISTORY  
5/15—Revision 0: Initial Version  
Rev. 0 | Page 2 of 64  
 
Data Sheet  
AD9684  
The AD9684 has several functions that simplify the automatic  
gain control (AGC) function in a communications receiver. The  
programmable threshold detector allows monitoring of the  
incoming signal power using the fast detect output bits of the  
ADC. If the input signal level exceeds the programmable  
threshold, the fast detect indicator goes high. Because this  
threshold indicator has low latency, the user can quickly reduce  
the system gain to avoid an overrange condition at the ADC  
input. In addition to the fast detect outputs, the AD9684 also  
offers signal monitoring capability. The signal monitoring block  
provides additional information about the signal that the ADC  
digitized.  
The AD9684 has flexible power-down options that allow  
significant power savings when desired. All of these features can  
be programmed using a 1.8 V to 3.4 V capable 3-wire serial port  
interface (SPI).  
The AD9684 is available in a Pb-free, 196-ball ball grid array  
(BGA) and is specified over the −40°C to +85°C industrial  
temperature range. This product is protected by a U.S. patent.  
PRODUCT HIGHLIGHTS  
1. Wide full power bandwidth supports intermediate  
frequency (IF) sampling of signals up to 2 GHz.  
2. Buffered inputs with programmable input termination ease  
filter design and implementation.  
3. Four integrated wideband decimation filters and NCO  
blocks supporting multiband receivers.  
4. Flexible SPI controls various product features and functions  
to meet specific system requirements.  
5. Programmable fast overrange detection and signal  
The dual ADC output data is routed directly to the one external,  
14-bit LVDS output port, supporting double data rate (DDR)  
formatting. An external data clock and status bit are offered for  
data capture flexibility.  
The LVDS outputs have several configurations, depending on  
the acceptable rate of the receiving logic device and the sampling  
rate of the ADC. Multiple device synchronization is supported  
through the SYNC input pins.  
monitoring.  
6. SYNC input allows synchronization of multiple devices.  
7. 12 mm × 12 mm, 196-ball BGA_ED.  
Rev. 0 | Page 3 of 64  
 
AD9684  
Data Sheet  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling  
rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference, AIN = −1.0 dBFS, default SPI settings, TA = 25°C, unless  
otherwise noted.  
Table 1.  
Parameter  
Temperature Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
−0.3  
−6.5  
0
0
0
0
+0.3  
+0.3  
+6.5  
+5.0  
+0.7  
+5.0  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
−0.6  
−4.5  
0.5  
2.5  
LSB  
25°C  
25°C  
Full  
3
−39  
1.0  
ppm/°C  
ppm/°C  
V
Gain Error  
INTERNAL VOLTAGE REFERENCE  
INPUT-REFERRED NOISE  
VREF = 1.0 V  
25°C  
2.63  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage Range (Programmable)  
Full  
1.46  
2.06  
2.05  
1.5  
2
2.06  
V p-p  
V
pF  
Common-Mode Voltage (VCM  
)
25°C  
25°C  
25°C  
Differential Input Capacitance1  
Analog Input Full Power Bandwidth  
GHz  
POWER SUPPLY  
AVDD1  
AVDD2  
AVDD3  
DVDD  
DRVDD  
SPIVDD  
IAVDD1  
IAVDD2  
IAVDD3  
IDVDD  
IDRVDD  
ISPIVDD  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
2.44  
3.2  
1.22  
1.22  
1.22  
1.25  
2.50  
3.3  
1.25  
1.25  
1.8  
448  
396  
103  
108  
106  
2
1.28  
2.56  
3.4  
1.28  
1.28  
3.4  
503  
455  
124  
127  
119  
6
V
V
V
V
V
V
mA  
mA  
mA  
mA  
mA  
mA  
POWER CONSUMPTION  
Total Power Dissipation2  
Power-Down Dissipation  
Standby  
Full  
Full  
Full  
2.2  
710  
1.0  
W
mW  
W
1 Differential capacitance is measured between the VIN+x and VIN−x pins (x = A or B).  
2 Parallel interleaved LVDS mode. The power dissipation on DRVDD changes with the output data mode used.  
Rev. 0 | Page 4 of 64  
 
 
Data Sheet  
AD9684  
AC SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling  
rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference, AIN = −1.0 dBFS, default SPI settings, TA = 25°C, unless  
otherwise noted.  
Table 2.  
Parameter1  
Temperature Min  
Typ  
Max  
Unit  
ANALOG INPUT FULL SCALE  
NOISE DENSITY2  
SIGNAL-TO-NOISE RATIO (SNR)3  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
Full  
Full  
2.06  
−153  
V p-p  
dBFS/Hz  
25°C  
Full  
69.2  
68.6  
68.4  
68.0  
64.4  
63.8  
60.5  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
67.5  
25°C  
25°C  
25°C  
25°C  
25°C  
SIGNAL-TO-NOISE RATIO AND DISTORTION RATIO (SINAD)3  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
Full  
68.7  
68.5  
67.6  
67.2  
63.8  
62.5  
58.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
67  
25°C  
25°C  
25°C  
25°C  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
Full  
11.1  
10.9  
10.8  
10.8  
10.3  
10.1  
9.5  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
10.8  
25°C  
25°C  
25°C  
25°C  
25°C  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)3  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
Full  
83  
85  
82  
86  
81  
76  
69  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
76  
25°C  
25°C  
25°C  
25°C  
25°C  
WORST HARMONIC, SECOND OR THIRD3  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
25°C  
Full  
−83  
−85  
−82  
−86  
−81  
−76  
−69  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
−76  
25°C  
25°C  
25°C  
25°C  
25°C  
Rev. 0 | Page 5 of 64  
 
AD9684  
Data Sheet  
Parameter1  
Temperature Min  
Typ  
Max  
Unit  
WORST OTHER, EXCLUDING SECOND OR THIRD HARMONIC3  
fIN = 10 MHz  
fIN = 170 MHz  
fIN = 340 MHz  
fIN = 450 MHz  
25°C  
Full  
−93  
−92  
−90  
−92  
−89  
−89  
−85  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
−76  
25°C  
25°C  
25°C  
25°C  
25°C  
fIN = 765 MHz  
fIN = 985 MHz  
fIN = 1950 MHz  
TWO-TONE INTERMODULATION DISTORTION (IMD), AIN1 AND AIN2 = −7 dBFS  
fIN1 = 185 MHz, fIN2 = 188 MHz  
fIN1 = 338 MHz, fIN2 = 341 MHz  
CROSSTALK4  
25°C  
25°C  
25°C  
25°C  
−88  
−87  
96  
dBFS  
dBFS  
dB  
FULL POWER BANDWIDTH  
2
GHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Noise density is measured at a low analog input frequency (30 MHz).  
3 See Table 9 for the recommended settings for full-scale voltage and buffer current control.  
4 Crosstalk is measured at 170 MHz with a −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
DIGITAL SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling  
rate (500 MSPS), 1.7 V p-p full-scale differential input, 1.0 V internal reference, AIN = −1.0 dBFS, default SPI settings, TA = 25°C, unless  
otherwise noted.  
Table 3.  
Parameter  
Temperature  
Min  
Typ  
LVDS/LVPECL  
1200  
0.85  
35  
Max  
1800  
2.5  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
600  
mV p-p  
V
kΩ  
pF  
SYNC INPUTS (SYNC+, SYNC−)  
Logic Compliance  
Full  
Full  
Full  
Full  
Full  
LVDS/LVPECL  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance (Differential)  
LOGIC INPUTS (SDIO, SCLK, CSB, PDWN/STBY)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
400  
0.6  
1200  
0.85  
35  
1800  
2.0  
mV p-p  
V
kΩ  
pF  
2.5  
Full  
Full  
Full  
Full  
CMOS  
0.8 × SPIVDD  
0.2 × SPIVDD  
30  
V
V
kΩ  
0
LOGIC OUTPUT (SDIO)  
Logic Compliance  
Logic 1 Voltage (IOH = 800 µA)  
Logic 0 Voltage (IOL = 50 µA)  
LOGIC OUTPUTS (FD_A, FD_B)  
Logic Compliance  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Full  
Full  
Full  
CMOS  
0.8 × SPIVDD  
0.2 × SPIVDD  
V
V
Full  
Full  
Full  
Full  
CMOS  
SPIVDD  
0
30  
0.8  
0
V
V
kΩ  
Rev. 0 | Page 6 of 64  
 
 
Data Sheet  
AD9684  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIGITAL OUTPUTS (Dx ,1 DCO , STATUS )  
Logic Compliance  
Differential Output Voltage  
Full  
Full  
LVDS  
230  
430  
mV p-p  
Output Common-Mode Voltage (VCM  
AC-Coupled  
)
25°C  
25°C  
25°C  
25°C  
Full  
0
1.8  
+100  
V
Short-Circuit Current (IDSHORT  
Differential Return Loss (RLDIFF  
Common-Mode Return Loss (RLCM  
)
−100  
8
6
mA  
dB  
dB  
2
)
2
)
Differential Termination Impedance  
80  
100  
120  
1 Where x = 0 to 13.  
2 Differential and common-mode return loss is measured from 100 MHz to 0.75 MHz × baud rate.  
SWITCHING SPECIFICATIONS  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD = 1.25 V, DRVDD = 1.25 V, SPIVDD = 1.8 V, specified maximum sampling  
rate, 1.7 V p-p full-scale differential input, 1.0 V internal reference, AIN = −1.0 dBFS, default SPI settings, TA = 25°C, unless otherwise  
noted.  
Table 4.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
CLOCK  
Clock Rate (at CLK+/CLK− Pins)  
Maximum Sample Rate1  
Minimum Sample Rate2  
Clock Pulse Width  
High  
Full  
Full  
Full  
0.25  
500  
250  
4
GHz  
MSPS  
MSPS  
Full  
Full  
1000  
1000  
ps  
ps  
Low  
LVDS DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD)3  
DCO Propagation Delay (tDCO  
Full  
Full  
2.225  
2.2  
ns  
ns  
3
)
DCO to Data Skew  
Rising Edge Data (tSKEWR  
Falling Edge Data (tSKEWF  
3
)
Full  
Full  
Full  
Full  
Full  
Full  
−150  
850  
−25  
1.025  
2.2  
−25  
2.225  
2.2  
+100  
1100  
ps  
ps  
ns  
ps  
ns  
ns  
3
)
4
STATUS Propagation Delay (tSTATUS  
)
4
DCO to STATUS Skew (tFRAME  
Data Propagation Delay (tPD)3  
)
−150  
+100  
3
DCO Propagation Delay (tDCO  
LATENCY5  
)
Pipeline Latency  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
35  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Fast Detect Latency  
HB1 Filter Latency3  
HB1 + HB2 Filter Latency3  
28  
50  
101  
217  
433  
28  
HB1 + HB2 + HB3 Filter Latency3  
HB1 + HB2 + HB3 + HB4 Filter Latency3  
Fast Detect Latency  
Wake-Up Time6  
Standby  
Power-Down  
25°C  
25°C  
1
ms  
ms  
4
Rev. 0 | Page 7 of 64  
 
 
AD9684  
Data Sheet  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tj)  
Out of Range Recovery Time  
Full  
Full  
Full  
530  
55  
1
ps  
fs rms  
Clock Cycles  
1 The maximum sample rate is the clock rate after the divider.  
2 The minimum sample rate operates at 300 MSPS.  
3 This specification is valid for parallel interleaved, channel multiplexed, and byte mode output modes.  
4 This specification is valid for byte mode output mode only.  
5 No DDCs used.  
6 Wake-up time is defined as the time required to return to normal operation from power-down mode or standby mode.  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Description  
Min Typ Max Unit  
CLK to SYNC TIMING REQUIREMENTS  
See Figure 2  
tSU_SR  
tH_SR  
Device clock to SYNC setup time  
Device clock to SYNC hold time  
117  
−96  
ps  
ps  
SPI TIMING REQUIREMENTS  
See Figure 3  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
Minimum period that SCLK must be in a logic high state  
Minimum period that SCLK must be in a logic low state  
Time required for the SDIO pin to switch from an input to an  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
output relative to the SCLK falling edge (not shown in Figure 3)  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge (not shown in Figure 3)  
10  
ns  
Timing Diagrams  
CLK–  
CLK+  
tSU_SR  
tH_SR  
SYNC–  
SYNC+  
Figure 2. SYNC Setup and Hold Timing  
tDS  
tHIGH  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 3. Serial Port Interface Timing Diagram  
Rev. 0 | Page 8 of 64  
 
 
 
 
Data Sheet  
AD9684  
APERTURE DELAY  
N + x  
N + 39  
N + 35  
N
N + 36  
N + 40  
N – 1  
VIN±x  
N + 37  
N + y  
N + 38  
N + 41  
SYNCHRONOUS LOW TO HIGH TRANSITIONS OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
tCLK  
FIXED DELAY FROM SYNC EVENT TO DCO KNOWN PHASE  
CONSTANT LATENCY = X CLK CYCLES  
tDCO  
tPD  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
1
90° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
2
270° PHASE ADJUST  
tSKEWR  
tSKEWF  
CONVERTER 0 CONVERTER 0 CONVERTER 0 CONVERTER 0 CONVERTER 0  
SAMPLE  
[N]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 2]  
SAMPLE  
[N + 3]  
SAMPLE  
[N + 4]  
STATUS+  
(OVERRANGE/STATUS BIT)  
STATUS  
D13  
STATUS  
D13  
STATUS  
D13  
STATUS  
D13  
STATUS  
D13  
STATUS  
D13  
STATUS  
D13  
STATUS–  
D13±  
D0±  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
1
90° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
270° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
2
Figure 4. Parallel Interleaved Mode—One Converter, ≤14-Bit Data  
Rev. 0 | Page 9 of 64  
AD9684  
Data Sheet  
APERTURE DELAY  
N + 36  
N
N + 38  
VIN±x  
N + x  
N + 37  
SYNCHRONOUS LOW TO HIGH TRANSITIONS OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
CONSTANT LATENCY = X CLK CYCLES  
tDCO  
tCLK  
tPD  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
tSKEWR  
tSKEWF  
STATUS BIT SELECTED BY  
REGISTER 0x559, BITS[2:0]  
IN THE REGISTER MAP  
CONVERTER 0 CONVERTER 1 CONVERTER 0 CONVERTER 1 CONVERTER 0  
SAMPLE  
[N]  
SAMPLE  
[N]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 2]  
STATUS+  
(OVERRANGE/STATUS BIT)  
STATUS  
STATUS  
D13  
STATUS STATUS  
STATUS  
D13  
STATUS  
D13  
STATUS  
D13  
STATUS  
D13  
STATUS–  
D13  
D13  
D13  
D13±  
D0±  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
Figure 5. Parallel Interleaved Mode—Two Converters, ≤14-Bit Data, Output Sample Rate < 625 MSPS  
Rev. 0 | Page 10 of 64  
Data Sheet  
AD9684  
APERTURE DELAY  
N + 36  
N
N + 38  
VIN±x  
N + x  
N + 37  
SYNCHRONOUS LOW TO HIGH TRANSITIONS OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
CONSTANT LATENCY = X CLK CYCLES  
tDCO  
tPD  
tCLK  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
tSKEWR  
tSKEWF  
STATUS BIT SELECTED BY  
REGISTER 0x559, BITS[2:0]  
IN THE REGISTER MAP  
CONVERTERS  
SAMPLE  
[N]  
CONVERTERS CONVERTERS CONVERTERS  
SAMPLE  
[N]  
CONVERTERS  
SAMPLE  
[N + 2]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 1]  
STATUS+  
(OVERRANGE/STAUS BIT)  
STATUS  
STATUS  
S[N – x]  
STATUS STATUS  
STATUS  
STATUS  
STATUS  
STATUS  
STATUS–  
CHANNEL A D12±/D13±  
S[N – y]  
S[N]  
S[N]  
S[N + 1]  
S[N + 1]  
S[N + 2]  
S[N – 1]  
(ODD BITS) (EVEN BITS)  
(EVEN BITS) (ODD BITS) (EVEN BITS) (ODD BITS) (EVEN BITS)  
(ODD BITS)  
CHANNEL A D0±/D1±  
Figure 6. Channel Multiplexed (Even/Odd) Mode—One Converter, ≤14-Bit Data  
Rev. 0 | Page 11 of 64  
AD9684  
Data Sheet  
APERTURE DELAY  
N + 36  
N
N + 38  
VIN±x  
N + x  
N + 37  
SYNCHRONOUS LOW TO HIGH TRANSITIONS OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
CONSTANT LATENCY = X CLK CYCLES  
tCLK  
tDCO  
tPD  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
tSKEWR  
tSKEWF  
STATUS BIT SELECTED BY  
REGISTER 0x559, BITS[2:0]  
IN THE REGISTER MAP  
CONVERTERS  
SAMPLE  
[N]  
CONVERTERS CONVERTERS CONVERTERS  
SAMPLE  
[N]  
CONVERTERS  
SAMPLE  
[N + 2]  
SAMPLE  
[N + 1]  
SAMPLE  
[N + 1]  
STATUS+  
(OVERRANGE/STATUS BIT)  
STATUS  
S[N – y]  
STATUS  
S[N – x]  
STATUS STATUS  
STATUS  
STATUS  
STATUS  
STATUS  
STATUS–  
CHANNEL A D12±/D13±  
S[N]  
S[N]  
S[N + 1]  
S[N + 1]  
S[N + 2]  
S[N – 1]  
(ODD BITS) (EVEN BITS)  
(EVEN BITS) (ODD BITS) (EVEN BITS) (ODD BITS) (EVEN BITS)  
(ODD BITS)  
CHANNEL A D0±/D1±  
CHANNEL B D12±/D13±  
S[N – y]  
S[N – x]  
S[N]  
S[N]  
S[N + 1]  
S[N + 1]  
S[N + 2]  
S[N – 1]  
(ODD BITS) (EVEN BITS)  
(EVEN BITS) (ODD BITS) (EVEN BITS) (ODD BITS) (EVEN BITS)  
(ODD BITS)  
CHANNEL B D0±/D1±  
Figure 7. Channel Multiplexed (Even/Odd) Mode—Two Converters, ≤14-Bit Data, Output Sample Rate < 625 MSPS  
Rev. 0 | Page 12 of 64  
Data Sheet  
AD9684  
APERTURE DELAY  
N + x  
N + 39  
N + z  
N + 36  
N + 40  
N
N + 42  
VIN±x  
N – 1  
N + 37  
N + 38  
N + y  
N + 41  
SYNCHRONOUS LOW TO HIGH TRANSITIONS OF THE SYNC SIGNAL CAPTURED ON THE RISING EDGE OF  
THE CLK SIGNAL CAUSES THE DCO INTERNAL DIVIDER TO BE RESET  
SYNC+  
SYNC–  
CLK+  
CLK–  
tCLK  
FIXED DELAY FROM SYNC EVENT  
TO DCO KNOWN PHASE  
CONSTANT LATENCY = X CLK CYCLES  
tDCO  
tPD  
tSTATUS  
DCO± (DATA CLOCK OUTPUT)  
0° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
1
90° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
180° PHASE ADJUST  
DCO± (DATA CLOCK OUTPUT)  
2
270° PHASE ADJUST  
tFRAME  
STATUS–  
(FRAME CLOCK OUTPUT)  
3
FRAME 0  
FRAME 1  
STAUS+  
tSKEWF  
tSKEWR  
I [N]  
0
I [N]  
Q [N]  
Q [N]  
I [N + 1] I [N + 1] Q [N + 1] Q [N + 1]  
0
0
0
0
0
0
0
EVEN  
ODD  
EVEN  
ODD  
EVEN  
ODD  
EVEN  
ODD  
STATUS+  
4
(OVERRANGE STATUS BIT)  
PAR  
PAR  
D15  
STATUS  
PAR  
D15  
STATUS  
D14  
PAR  
D15  
STATUS  
D14  
PAR  
STATUS  
D14  
PAR  
D15  
STATUS–  
D7±  
D15  
D1  
D14  
D0  
D15  
D1  
D0±  
D1  
D1  
D0  
D1  
D0  
D0  
D1  
1
90° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
270° PHASE ADJUST IS GENERATED USING THE FALLING EDGE OF CLK±.  
FRAME CLOCK OUTPUT SUPPORTS 3 MODES OF OPERATION:  
1) ENABLED (ALWAYS ON).  
2
3
2) DISABLED (ALWAYS OFF).  
3) GAPPED PERIODIC (CONDITIONALLY ENABLED BASED ON PSEUDO-RANDOM BIT).  
STATUS BIT SELECTED BY REGISTER 0x559, BITS[2:0] IN THE REGISTER MAP.  
4
Figure 8. LVDS Byte Mode—Two Virtual Converters, One DDC, I/Q Data Decimate by 4  
Rev. 0 | Page 13 of 64  
AD9684  
Data Sheet  
Figure 9. LVDS Byte Mode—Four Virtual Converters, Two DDCs, ≤16-Bit Data, I/Q Data Decimate by 8  
Rev. 0 | Page 14 of 64  
Data Sheet  
AD9684  
1 1 0  
1
Figure 10. LVDS Byte Mode—Eight Virtual Converters, Four DDCs, ≤16-Bit Data, I/Q Data Decimate by 16  
Rev. 0 | Page 15 of 64  
AD9684  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Typical θJA, θJB, and θJC are specified vs. the number of printed  
circuit board (PCB) layers in different airflow velocities (in  
m/sec). Airflow increases heat dissipation effectively reducing  
Parameter  
Rating  
Electrical  
AVDD1 to AGND  
AVDD2 to AGND  
AVDD3 to AGND  
DVDD to DGND  
1.32 V  
2.75 V  
3.63 V  
1.32 V  
θ
JA and θJB. The use of appropriate thermal management  
techniques is recommended to ensure that the maximum  
junction temperature does not exceed the limits shown in Table 7.  
DRVDD to DRGND  
SPIVDD to AGND  
AGND to DRGND  
VIN x to AGND  
SCLK, SDIO, CSB to AGND  
VIN x Maximum Swing  
PDWN/STBY to AGND  
Environmental  
1.32 V  
3.63 V  
−0.3 V to +0.3 V  
3.2 V  
−0.3 V to SPIVDD + 0.3 V  
4.3 V p-p  
Table 7. Simulated Thermal Data  
Airflow  
Velocity  
(m/sec)  
PCB  
Type  
θJA  
θJB  
θJC_TOP  
4.71, 5  
N/A4  
N/A4  
4.7  
N/A4  
N/A4  
θJC_BOT  
1.21, 5  
N/A4  
N/A4  
1.2  
N/A4  
N/A4  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JEDEC  
2s2p  
Board  
0.0  
1.0  
2.5  
0.0  
1.0  
2.5  
17.81, 2  
15.61, 2  
15.01, 2  
13.8  
6.31, 3  
5.91, 3  
5.71, 3  
4.6  
−0.3 V to SPIVDD + 0.3 V  
10-Layer  
PCB  
Operating Temperature Range  
−40°C to +85°C  
12.7  
4.6  
(TCASE  
)
12.0  
4.6  
Maximum Junction Temperature  
Storage Temperature Range  
(Ambient)  
125°C  
−65°C to +150°C  
1 Per JEDEC 51-7, plus JEDEC 51-5 2s2p test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per JEDEC JESD51-8 (still air).  
4 N/A means not applicable.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
5 Per MIL-STD 883, Method 1012.1.  
ESD CAUTION  
Rev. 0 | Page 16 of 64  
 
 
 
 
Data Sheet  
AD9684  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
AGND  
AGND  
AGND  
AVDD2  
AVDD1  
AGND  
CLK+  
CLK–  
AGND  
AVDD1  
AVDD2  
AGND  
AGND  
AGND  
A
B
C
D
E
F
A
B
C
D
E
F
AVDD3  
AVDD3  
AGND  
VIN–B  
VIN+B  
AGND  
AGND  
FD_B  
DGND  
DVDD  
D1+  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
D1–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DVDD  
D4–  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AGND  
CSB  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
AGND  
SPIVDD  
AGND  
AGND  
DRVDD  
D6–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRVDD  
D0–  
AGND  
SYNC+  
AVDD1  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRVDD  
DRVDD  
AGND  
SYNC–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
DRGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
D7–  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
V_1P0  
AVDD2  
AGND  
AGND  
DRGND  
D8–  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AGND  
SPIVDD  
AGND  
AGND  
DRGND  
D9–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DRGND  
D10–  
AGND  
AGND  
AVDD3  
AVDD3  
AGND  
VIN–A  
VIN+A  
AGND  
AGND  
FD_A  
AGND  
AGND  
AGND  
AGND  
G
H
J
G
H
J
AGND  
SCLK  
SDIO  
PDWN/STBY  
DCO–  
DCO+  
STATUS+  
D13+  
K
L
K
L
DGND  
DVDD  
D5–  
STATUS–  
D13–  
M
N
P
M
N
P
D2–  
D3–  
D11–  
D12–  
D2+  
1
D3+  
2
D4+  
3
D5+  
4
D6+  
5
D0+  
6
DRVDD  
7
DRGND  
8
D7+  
9
D8+  
10  
D9+  
11  
D10+  
12  
D11+  
13  
D12+  
14  
Figure 11. Pin Configuration (Top View)  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
Power Supplies  
A5, A10, B5, B10, C5, C10, D5, D7,  
D10, E5, E10  
A4, A11, B4, B11, C4, C11, D4,  
D11, E4, E11, F4, F11, G11, J10  
AVDD1  
AVDD2  
Supply  
Supply  
Analog Power Supply (1.25 V Nominal).  
Analog Power Supply (2.50 V Nominal).  
B1, B14, C1, C14  
L1, L2, M3, M4  
M5, M6, M7, N7, P7  
J5, J11  
AVDD3  
DVDD  
Supply  
Supply  
Supply  
Supply  
Ground  
Ground  
Ground  
Analog Power Supply (3.3 V Nominal)  
Digital Power Supply (1.25 V Nominal).  
DRVDD  
SPIVDD  
DGND  
Digital Driver Power Supply (1.25 V Nominal).  
Digital Power Supply for SPI (1.8 V to 3.4 V).  
Ground Reference for DVDD.  
K1, K2, L3, L4  
M8 to M12, N8, P8  
DRGND  
Ground Reference for DRVDD.  
A1, A2, A3, A6, A9, A12, A13, A14, AGND  
B2, B3, B6, B7, B8, B9, B12, B13,  
C2, C3, C6, C9, C12, C13, D1,  
D2, D3, D6, D8, D9, D12, D13,  
D14, E2, E3, E6 to E9, E12, E13,  
F2, F3, F5 to F10, F12, F13, G1  
to G10, G12, G13, G14, H1, H2,  
H3, H5 to H9, H11 to H14, J2,  
J3, J6 to J9, J12, K3, K5 to K12,  
L5 to L12  
Ground Reference for AVDD.  
Analog  
E14, F14  
E1, F1  
H10  
VIN−A, VIN+A  
VIN−B, VIN+B  
V_1P0  
Input  
Input  
Input/DNC  
ADC A Analog Input Complement/True.  
ADC B Analog Input Complement/True.  
1.0 V Reference Voltage Input/Do Not Connect. This pin is  
configurable through the SPI as a no connect or as an input.  
Do not connect this pin if using the internal reference. This pin  
requires a 1.0 V reference voltage input if using an external  
voltage reference source.  
A7, A8  
CLK+, CLK−  
Input  
Clock Input True/Complement.  
Rev. 0 | Page 17 of 64  
 
AD9684  
Data Sheet  
Pin No.  
CMOS Outputs  
J14, J1  
Mnemonic  
Type  
Description  
FD_A, FD_B  
SYNC+, SYNC−  
Output  
Input  
Fast Detect Outputs for Channel A and Channel B.  
Active High LVDS SYNC Input—True/Complement.  
Digital Inputs  
C7, C8  
Data Outputs  
N6, P6  
M1, M2  
N1, P1  
N2, P2  
N3, P3  
N4, P4  
N5, P5  
N9, P9  
N10, P10  
N11, P11  
N12, P12  
N13, P13  
N14, P14  
M13, M14  
L13, L14  
K13, K14  
SPI Controls  
K4  
D0−, D0+  
D1+, D1−  
D2−, D2+  
D3−, D3+  
D4−, D4+  
D5−, D5+  
D6−, D6+  
D7−, D7+  
D8−, D8+  
D9−, D9+  
D10−, D10+  
D11−, D11+  
D12−, D12+  
D13−, D13+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
LVDS Lane 0 Output Data—Complement/True.  
LVDS Lane 1 Output Data—True/Complement.  
LVDS Lane 2 Output Data—Complement/True.  
LVDS Lane 3 Output Data—Complement/True.  
LVDS Lane 4 Output Data—Complement/True.  
LVDS Lane 5 Output Data—Complement/True.  
LVDS Lane 6 Output Data—Complement/True.  
LVDS Lane 7 Output Data—Complement/True.  
LVDS Lane 8 Output Data—Complement/True.  
LVDS Lane 9 Output Data—Complement/True.  
LVDS Lane 10 Output Data—Complement/True.  
LVDS Lane 11 Output Data—Complement/True.  
LVDS Lane 12 Output Data—Complement/True.  
LVDS Lane 13 Output Data—Complement/True.  
LVDS Status Output Data—Complement/True.  
LVDS Digital Clock Output Data—Complement/True.  
STATUS−, STATUS+ Output  
DCO−, DCO+  
Output  
SDIO  
SCLK  
Input/output  
Input  
SPI Serial Data Input/Output.  
SPI Serial Clock.  
J4  
H4  
CSB  
Input  
SPI Chip Select (Active Low).  
J13  
PDWN/STBY  
Input  
Power-Down Input (Active High). The operation of this pin  
depends on the SPI mode and can be configured as power-  
down or standby.  
Rev. 0 | Page 18 of 64  
Data Sheet  
AD9684  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 1.2 V, AVDD2= 2.5 V, AVDD3 = 3.3 V, DVDD = 1.2 V, DRVDD = 1.2 V, SPIVDD = 1.8 V, sampling rate = 500 MHz, 1.6 V p-p  
full-scale differential input, AIN = −1.0 dBFS, default SPI settings, TA = 25°C, 256k FFT sample, unless otherwise noted.  
0
–20  
0
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 68.9dBFS  
ENOB = 10.9 BITS  
SFDR = 83dBFS  
SNR = 67.3dBFS  
ENOB = 10.8 BITS  
SFDR = 86dBFS  
–20  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 4.5×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
0
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 12. Single Tone FFT with fIN = 10.3 MHz  
Figure 15. Single Tone FFT with fIN = 450.3 MHz  
0
–20  
0
–20  
A
= 1dBFS  
A
= 1dBFS  
IN  
IN  
SNR = 68.7dBFS  
ENOB = 10.9 BITS  
SFDR = 84dBFS  
SNR = 63.9dBFS  
ENOB = 10.3 BITS  
SFDR = 81dBFS  
BUFFER CONTROL 1 = 2.0×  
BUFFER CONTROL 1 = 5.0×  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 13. Single Tone FFT with fIN = 170.3 MHz  
Figure 16. Single Tone FFT with fIN = 765.3 MHz  
0
–20  
A
= 1dBFS  
0
–20  
IN  
SNR = 62.8dBFS  
ENOB = 10.1 BITS  
SFDR = 76dBFS  
A
= 1dBFS  
IN  
SNR = 67.8dBFS  
ENOB = 10.8 BITS  
SFDR = 82dBFS  
BUFFER CONTROL 1 = 5.0×  
–40  
BUFFER CONTROL 1 = 4.5×  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
Figure 17. Single-Tone FFT with fIN = 985.3 MHz  
Figure 14. Single Tone FFT with fIN = 340.3 MHz  
Rev. 0 | Page 19 of 64  
 
AD9684  
Data Sheet  
95  
90  
85  
80  
75  
70  
65  
60  
0
2.0×  
2.0×  
3.0×  
3.0×  
4.0×  
4.0×  
A
= 1dBFS  
IN  
SNR = 61.7dBFS  
ENOB = 9.9 BITS  
SFDR = 70dBFS  
BUFFER CONTROL 1 = 8.0×  
–20  
SFDR  
–40  
–60  
–80  
–100  
–120  
SNR  
–140  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
100  
200  
300  
400  
500  
ANALOG INPUT FREQUENCY (MHz)  
Figure 18. Single Tone FFT with fIN = 1205.3 MHz  
Figure 21. SNR/SFDR vs. Analog Input Frequency (fIN);  
IN < 500 MHz; Buffer Control 1 Setting = 2.0×, 3.0×, and 4.0×  
f
0
0
–20  
A
= 1dBFS  
IN  
SNR = 60.1dBFS  
ENOB = 9.7 BITS  
SFDR = 71dBFS  
BUFFER CONTROL 1 = 8.0×  
A
AND A  
= –7dBFS  
IN1  
IN2  
–20  
–40  
SFDR = 88dBFS  
IMD2 = 95dBFS  
IMD3 = 88dBFS  
BUFFER CONTROL 1 = 2.0×  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
Figure 19. Single Tone FFT with fIN = 1630.3 MHz  
Figure 22. Two-Tone FFT with fIN1 = 184 MHz and fIN2 = 187 MHz  
0
–20  
0
A
= 1dBFS  
IN  
A
AND A  
= –7dBFS  
IN2  
SNR = 59.0dBFS  
ENOB = 9.5 BITS  
IN1  
SFDR = 87dBFS  
–20  
–40  
SFDR = 69dBFS  
BUFFER CONTROL 1 = 8.0×  
IMD2 = 94dBFS  
IMD3 = 87dBFS  
BUFFER CONTROL 1 = 2.0×  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
0
25  
50  
75  
100 125 150 175 200 225 250  
FREQUENCY (MHz)  
0
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
Figure 20. Single Tone FFT with fIN = 985.3 MHz  
Figure 23. Two-Tone FFT; fIN1 = 338 MHz, fIN2 = 341 MHz  
Rev. 0 | Page 20 of 64  
Data Sheet  
AD9684  
0
–20  
–40  
90  
85  
80  
75  
70  
65  
SFDR  
SFDR (dBc)  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
SNR  
–140  
–40  
–25  
–10  
0
15  
25  
40  
55  
70  
85  
90  
84  
78  
72  
66  
60 54 48 42 36 30 24 18 12 6  
TEMPERATURE (°C)  
INPUT AMPLITUDE (dBFS)  
Figure 24. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 184 MHz  
and fIN2 = 187 MHz  
Figure 27. SNR/SFDR vs. Temperature, fIN = 170.3 MHz  
0
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
–20  
SFDR (dBc)  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
–140  
90  
84  
78  
72  
66  
60 54 48 42 36 30 24 18 12 6  
INPUT AMPLITUDE (dBFS)  
SAMPLE RATE (MSPS)  
Figure 25. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 338 MHz  
and fIN2 = 341 MHz  
Figure 28. Power Dissipation vs. Sample Rate (fS) (Default SPI)  
100  
SFDR (dBc)  
80  
SNR (dBc)  
60  
SFDR (dBFS)  
40  
SNR (dBc)  
20  
0
–20  
–40  
INPUT AMPLITUDE (dBFS)  
Figure 26. SNR/SFDR vs. Input Amplitude, fIN = 170.3 MHz  
Rev. 0 | Page 21 of 64  
AD9684  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD3  
AVDD3  
VIN+x  
AVDD3  
3pF 1.5pF  
400  
V
CM  
BUFFER  
SPIVDD  
10pF  
ESD  
PROTECTED  
AVDD3  
AVDD3  
SPIVDD  
1k  
30kꢀ  
SCLK  
VIN–x  
ESD  
PROTECTED  
A
IN  
3pF 1.5pF  
CONTROL  
(SPI)  
Figure 29. Analog Inputs  
Figure 33. SCLK Inputs  
AVDD1  
SPIVDD  
25  
ESD  
CLK+  
CLK–  
PROTECTED  
30kꢀ  
1kꢀ  
CSB  
AVDD1  
ESD  
PROTECTED  
25ꢀ  
20kꢀ  
20kꢀ  
V
= 0.85V  
CM  
Figure 30. Clock Inputs  
Figure 34. CSB Input  
AVDD1  
1k  
SPIVDD  
SYNC+  
ESD  
PROTECTED  
SDO  
SPIVDD  
SDI  
20kꢀ  
1k  
SDIO  
LEVEL  
TRANSLATOR  
30kꢀ  
V
= 0.85V  
CM  
ESD  
PROTECTED  
AVDD1  
1kꢀ  
20kꢀ  
SYNC–  
Figure 31. SYNC Inputs  
Figure 35. SDIO  
SPIVDD  
SWING CONTROL  
(SPI)  
ESD  
PROTECTED  
DRVDD  
FD  
DATA+  
DATA–  
FD_A/FD_B  
Dx±  
DRGND  
DRVDD  
TEMPERATURE DIODE  
(FD_A ONLY)  
OUTPUT  
DRIVER  
ESD  
PROTECTED  
Dx±  
DRGND  
FD_x PIN CONTROL (SPI)  
Figure 32. LVDS Digital Outputs, STATUS , DCO  
Figure 36. FD_A/FD_B Outputs  
Rev. 0 | Page 22 of 64  
 
Data Sheet  
AD9684  
AVDD2  
SPIVDD  
ESD  
PROTECTED  
ESD  
PROTECTED  
30kΩ  
1kΩ  
PDWN/  
STBY  
V_1P0  
ESD  
PROTECTED  
ESD  
PROTECTED  
PDWN/STBY  
CONTROL (SPI)  
V_1P0 PIN  
CONTROL (SPI)  
Figure 38. V_1P0 Input/Output  
Figure 37. PDWN/STBY Input  
Rev. 0 | Page 23 of 64  
AD9684  
Data Sheet  
THEORY OF OPERATION  
The AD9684 has two analog input channels and 14 LVDS  
output lane pairs. The ADC is designed to sample wide  
bandwidth analog signals of up to 2 GHz. The AD9684 is  
optimized for wide input bandwidth, a high sampling rate,  
excellent linearity, and low power in a small package.  
frequencies. Place either a differential capacitor or two single-  
ended capacitors on the inputs to provide a matching passive  
network. This ultimately creates a low-pass filter at the input, which  
limits unwanted broadband noise. For more information, see the  
AN-742 Application Note, the AN-827 Application Note, and the  
Analog Dialogue article “Transformer-Coupled Front-End for  
Wideband A/D Converters(Volume 39, April 2005). In general,  
the precise values depend on the application.  
The dual ADC cores feature a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth inputs that support a variety of  
user selectable input ranges. An integrated voltage reference  
eases design considerations.  
For best dynamic performance, the source impedances driving  
VIN+x and VIN−x must be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC. An internal reference buffer  
creates a differential reference that defines the span of the ADC core.  
The AD9684 has several functions that simplify the AGC  
function in a communications receiver. The programmable  
threshold detector allows monitoring of the incoming signal  
power using the fast detect output bits of the ADC. If the input  
signal level exceeds the programmable threshold, the fast detect  
indicator goes high. Because this threshold indicator has low  
latency, the user can quickly reduce the system gain to avoid an  
overrange condition at the ADC input.  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9684, the available span is 2.06 V p-p differential.  
Differential Input Configurations  
There are several ways to drive the AD9684, either actively or  
passively. However, optimum performance is achieved by  
driving the analog input differentially.  
The LVDS outputs can be configured depending on the  
decimation ratio. Multiple device synchronization is supported  
through the SYNC input pins.  
For applications in which SNR and SFDR are key parameters,  
differential transformer coupling is the recommended input  
configuration because the noise performance of most amplifiers  
is not adequate to achieve the true performance of the AD9684.  
ADC ARCHITECTURE  
The architecture of the AD9684 consists of an input buffered pipe-  
lined ADC. The input buffer provides a termination impedance to  
the analog input signal. This termination impedance can be  
changed using the SPI to meet the termination needs of the driver/  
amplifier. The default termination value is set to 400 Ω. The input  
buffer is optimized for high linearity, low noise, and low power.  
For low to midrange frequencies, a double balun or double  
transformer network is recommended for optimum performance  
of the AD9684 (see Figure 39). For higher frequencies in the  
second and third Nyquist zones, it is better to remove some of  
the front-end passive components to ensure wideband  
operation (see Figure 40).  
The input buffer provides a linear high input impedance (for  
ease of drive) and reduces kickback from the ADC. The buffer  
is optimized for high linearity, low noise, and low power. The  
quantized outputs from each stage are combined into a final  
14-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate with a new input  
sample, whereas the remaining stages operate with the preceding  
samples. Sampling occurs on the rising edge of the clock.  
10  
10Ω  
ETC1-11-13/  
MABA007159  
0.1µF  
4pF  
25Ω  
1:1Z  
ADC  
2pF  
0.1µF  
25Ω  
10Ω  
10Ω  
0.1µF  
4pF  
ANALOG INPUT CONSIDERATIONS  
Figure 39. Differential Transformer-Coupled Configuration for First and  
Second Nyquist Frequencies  
The analog input to the AD9684 is a differential buffer. The  
internal common-mode voltage of the buffer is 2.05 V. The  
clock signal alternately switches the input circuit between  
sample mode and hold mode. When the input circuit is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within one-half of a clock cycle.  
A small resistor, in series with each input, helps reduce the peak  
transient current injected from the output stage of the driving  
source. In addition, low Q inductors or ferrite beads can be placed  
on each leg of the input to reduce high differential capacitance  
at the analog inputs and, thus, achieve the maximum bandwidth  
of the ADC. Such use of low Q inductors or ferrite beads is  
required when driving the converter front end at high IF  
25  
0.1µF  
25Ω  
MARKI  
BAL-0006  
ADC  
OR  
0.1µF  
25Ω  
25Ω  
BAL-0006SMG  
0.1µF  
Figure 40. Differential Transformer-Coupled Configuration for Second and  
Third Nyquist Frequencies  
Rev. 0 | Page 24 of 64  
 
 
 
 
 
Data Sheet  
AD9684  
95  
85  
75  
65  
55  
45  
35  
Input Common Mode  
The analog inputs of the AD9684 are internally biased to the  
common mode as shown in Figure 41. The common-mode  
buffer has a limited range in that the performance suffers greatly  
if the common-mode voltage drops by more than 100 mV.  
Therefore, in dc-coupled applications, set the common-mode  
voltage to 2.05 V 100 mV to ensure proper ADC operation.  
4.5×  
3.0×  
2.0×  
1.5×  
Analog Input Controls and SFDR Optimization  
1.0×  
The AD9684 offers flexible controls for the analog inputs, such  
as input termination and buffer current. All of the available  
controls are shown in Figure 41.  
AVDD3  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
INPUT FREQUENCY (MHz)  
Figure 43. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF),  
10 MHz < fIN < 500 MHz  
VIN+x  
3pF  
90  
AVDD3  
4.5×  
5.0×  
6.0×  
85  
400Ω  
V
CM  
7.0×  
8.0×  
BUFFER  
10pF  
80  
75  
70  
AVDD3  
VIN–x  
3pF  
AIN CONTROL  
(SPI) REGISTERS  
(REG 0x008, REG 0x015,  
REG 0x016, REG 0x018,  
REG 0x025)  
65  
Figure 41. Analog Input Controls (Should the AIN  
500 550 600 650 700 750 800 850 900 950 1000  
INPUT FREQUENCY (MHz)  
Using Register 0x018, the buffer currents on each channel can  
be scaled to optimize the SFDR over various input frequencies  
and bandwidths of interest. As the input buffer currents are set,  
the amount of current required by the AVDD3 supply changes.  
For a complete list of buffer current settings, see Table 29.  
250  
Figure 44. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF),  
500 MHz < fIN < 1000 MHz  
80  
75  
70  
65  
60  
230  
210  
190  
170  
150  
130  
110  
90  
4.5×  
5.0×  
6.0×  
7.0×  
8.0×  
8.0×  
55  
50  
45  
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000  
INPUT FREQUENCY (MHz)  
70  
Figure 45. Buffer Current Sweeps (SFDR vs. Input Frequency and IBUFF),  
1 GHz < fIN < 2 GHz, Front-End Network Shown in Figure 40  
50  
1.5×  
2.5×  
3.5×  
4.5×  
5.5×  
6.5×  
7.5×  
8.5×  
BUFFER CURRENT SETTING  
Figure 43, Figure 44, and Figure 45 show how the SFDR can be  
optimized using the buffer current setting in Register 0x018 for  
different Nyquist zones. At frequencies greater than 1 GHz, it is  
better to run the ADC at input amplitudes less than −1 dBFS  
(−3 dBFS, for example). This greatly improves the linearity of  
the converted signal without sacrificing SNR performance.  
Figure 42. AVDD3 Power (IAVDD3) vs. Buffer Current Control Setting in  
Register 0x018  
Rev. 0 | Page 25 of 64  
 
 
 
 
AD9684  
Data Sheet  
Table 9 shows the recommended buffer current and full-scale  
voltage settings for the different analog input frequency ranges.  
The use of an external reference may be necessary, in some  
applications, to enhance the gain accuracy of the ADC or  
improve thermal drift characteristics. Figure 47 shows the  
typical drift characteristics of the internal 1.0 V reference.  
Absolute Maximum Input Swing  
The absolute maximum input swing allowed at the inputs of the  
AD9684 is 4.3 V p-p differential. Signals operating near or at  
this level can cause permanent damage to the ADC.  
1.0010  
1.0009  
1.0008  
1.0007  
1.0006  
1.0005  
1.0004  
1.0003  
1.0002  
1.0001  
1.0000  
0.9999  
0.9998  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD9684. This internal 1.0 V reference sets the full-scale input  
range of the ADC. For more information on adjusting the input  
swing, see Table 29. Figure 46 shows the block diagram of the  
internal 1.0 V reference controls.  
VIN+A/  
VIN+B  
VIN–A/  
VIN–B  
–50  
0
25  
90  
ADC  
CORE  
TEMPERATURE (°C)  
INTERNAL  
V_1P0  
GENERATOR  
FULL-SCALE  
VOLTAGE  
ADJUST  
Figure 47. Typical V_1P0 Drift  
The external reference must be a stable 1.0 V reference. The  
ADR130 is a good option for providing the 1.0 V reference.  
Figure 48 shows how the ADR130 can be used to provide the  
external 1.0 V reference to the AD9684. The grayed out areas  
show unused blocks within the AD9684 while using the  
ADR130 to provide the external reference.  
INPUT FULL-SCALE  
RANGE ADJUST  
SPI REGISTER  
(REGISTER 0x025)  
V_1P0  
V_1P0 PIN  
CONTROL SPI  
REGISTER  
(REGISTER 0x024)  
Figure 46. Internal Reference Configuration and Controls  
Register 0x024 enables the user either to use this internal 1.0 V  
reference, or to provide an external 1.0 V reference. When using  
an external voltage reference, provide a 1.0 V reference. The  
full-scale adjustment is made using the SPI, irrespective of the  
reference voltage. For more information on adjusting the full-  
scale level of the AD9684, see the Memory Map Register Table  
section.  
Table 9. SFDR Optimization for Input Frequencies  
Buffer Control 1  
(Register 0x018)  
Input Full-Scale Range  
(Register 0x0±5)  
Input Full-Scale Control  
(Register 0x030)  
Input Termination  
(Register 0x016)1  
Frequency  
DC to 250 MHz  
250 MHz to 500  
MHz  
0x20 (2.0×)  
0x70 (4.5×)  
0x0C (2.06 V p-p)  
0x0C (2.06 V p-p)  
0x04  
0x04  
0x0C/0x1C/0x6C  
0x0C/0x1C/0x6C  
500 MHz to  
1 GHz  
1 GHz to 2 GHz  
0x80 (5.0×)  
0xF0 (8.5×)  
0x08 (1.46 V p-p)  
0x08 (1.46 V p-p)  
0x18  
0x18  
0x0C/0x1C/0x6C  
0x0C/0x1C/0x6C  
1 The input termination can be changed to accommodate the application with little or no impact to ac performance.  
INTERNAL  
V_1P0  
GENERATOR  
FULL-SCALE  
VOLTAGE  
ADJUST  
ADR130  
1
2
3
6
5
4
NC  
NC  
GND SET  
V_1P0  
0.1µF  
INPUT  
V
V
OUT  
IN  
0.1µF  
FULL-SCALE  
CONTROL  
Figure 48. External Reference Using the ADR130  
Rev. 0 | Page 26 of 64  
 
 
 
 
 
Data Sheet  
AD9684  
Input Clock Divider  
CLOCK INPUT CONSIDERATIONS  
The AD9684 contains an input clock divider with the ability to  
divide the Nyquist input clock by 1, 2, 4, and 8. The divider  
ratios can be selected using Register 0x10B. This is shown in  
Figure 52.  
For optimum performance, drive the AD9684 sample clock  
inputs (CLK+ and CLK−) with a differential signal. This signal  
is typically ac-coupled to the CLK+ and CLK− pins via a  
transformer or clock drivers. These pins are biased internally  
and require no additional biasing.  
The maximum frequency at the CLK inputs is 4 GHz. This is  
the limit of the divider. In applications where the clock input is  
a multiple of the sample clock, the appropriate divider ratio  
must be programmed into the clock divider before applying the  
clock signal. This ensures that the current transients during  
device startup are controlled.  
Figure 49 shows a preferred method for clocking the AD9684. The  
low jitter clock source is converted from a single-ended signal to  
a differential signal using an RF transformer.  
0.1µF  
1:1Z  
CLK+  
ADC  
CLK–  
CLOCK  
INPUT  
CLK+  
100Ω  
50Ω  
CLK–  
÷2  
÷4  
÷8  
0.1µF  
Figure 49. Transformer Coupled Differential Clock  
Another option is to ac couple a differential CML or LVDS  
signal to the sample clock input pins, as shown in Figure 50 and  
Figure 51.  
REG 0x10B  
Figure 52. Clock Divider Circuit  
3.3V  
The AD9684 clock divider can be synchronized using the external  
SYNC input. A valid SYNC input causes the clock divider to  
reset to a programmable state. This feature is enabled by setting  
Bit 7 of Register 0x10D. This synchronization feature allows  
multiple devices to have their clock dividers aligned to guarantee  
simultaneous input sampling.  
71Ω  
33Ω  
10pF  
33Ω  
Z
Z
= 50Ω  
0.1µF  
0
CLK+  
ADC  
CLK–  
0.1µF  
= 50Ω  
0
Input Clock Divider ½ Period Delay Adjustment  
Figure 50. Differential CML Sample Clock  
The input clock divider inside the AD9684 provides phase delay  
in increments of ½ the input clock cycle. Program Register 0x10C  
to enable this delay independently for each channel.  
0.1µF  
0.1µF  
0.1µF  
100Ω  
0.1µF  
CLOCK INPUT  
CLOCK INPUT  
CLK+  
LVDS  
CLK+  
ADC  
CLK–  
Clock Fine Delay Adjustment  
DRIVER  
To adjust the AD9684 sampling edge instant, write to Register 0x117  
and Register 0x118. Setting Bit 0 of Register 0x117 enables the fine  
delay feature, and Register 0x118, Bits[7:0] set the value of the  
delay. This value can be programmed individually for each channel.  
The clock delay can be adjusted from −151.7 ps to +150 ps in  
~1.7 ps increments. The clock delay adjust takes effect immediately  
when it is enabled via SPI writes. Enabling the clock fine delay  
adjustment in Register 0x117 causes a datapath reset.  
CLK–  
1
1
50Ω  
50Ω  
1
50Ω RESISTORS ARE OPTIONAL.  
Figure 51. Differential LVDS Sample Clock  
Clock Duty Cycle Considerations  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to the clock duty cycle. Commonly, a 5% tolerance  
is required on the clock duty cycle to maintain dynamic performance  
characteristics. In applications where the clock duty cycle cannot  
be guaranteed to be 50%, a higher multiple frequency clock can be  
supplied to the device. The AD9684 can be clocked at 2 GHz with  
the internal clock divider set to 2. The output of the divider offers  
a 50% duty cycle, high slew rate (fast edge) clock signal to the  
internal ADC. See the Memory Map section for more details on  
using this feature.  
Clock Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given input  
frequency (fA) due only to aperture jitter (tJ) can be calculated by  
SNR = 20 × log 10 (2 × π × fA × tJ)  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 53).  
Rev. 0 | Page 27 of 64  
 
 
 
 
 
AD9684  
Data Sheet  
130  
RMS CLOCK JITTER REQUIREMENT  
POWER-DOWN/STANDBY MODE  
120  
110  
100  
90  
The AD9684 has a PDWN/STBY pin that configures the device  
in power-down or standby mode. The default operation is the  
power-down function. The PDWN/STBY pin is a logic high pin.  
The power-down option can also be set via Register 0x03F and  
Register 0x040.  
16 BITS  
14 BITS  
12 BITS  
80  
70  
TEMPERATURE DIODE  
10 BITS  
8 BITS  
60  
The AD9684 contains a diode-based temperature sensor for  
measuring the temperature of the die. This diode can output a  
voltage and serve as a coarse temperature sensor to monitor the  
internal die temperature.  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
50  
40  
30  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
The temperature diode voltage can be output to the FD_A pin  
using the SPI. Use Register 0x028, Bit 0 to enable or disable the  
diode. Register 0x028 is a local register. Channel A must be  
selected in the device index register (Register 0x008) to enable  
the temperature diode readout. Configure the FD_A pin to  
output the diode voltage by programming Register 0x040,  
Bits[2:0]. See Table 29 for more information.  
Figure 53. Ideal SNR vs. Analog Input Frequency and Jitter  
Treat the clock input as an analog signal when aperture jitter  
may affect the dynamic range of the AD9684. Separate the power  
supplies for the clock drivers from the ADC output driver  
supplies to avoid modulating the clock signal with digital noise. If  
the clock is generated from another type of source (by gating,  
dividing, or other methods), retime the clock by the original clock  
at the last step. For more in-depth information about jitter  
performance as it relates to ADCs, see the AN-501 Application  
Note and the AN-756 Application Note.  
The voltage response of the temperature diode (with SPIVDD =  
1.8 V) is shown in Figure 55.  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
Figure 54 shows the estimated SNR of the AD9684 across the  
input frequency for different clock induced jitter values. Estimate  
the SNR using the following equation:  
SNR  
SNR  
JITTER  
  
ADC  
+10  
10  
10  
SNR(dBFS) =10log 10  
75  
70  
65  
60  
55  
50  
45  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
TEMPERATURE (°C)  
25fs  
50fs  
75fs  
100fs  
125fs  
150fs  
175fs  
200fs  
Figure 55. Diode Voltage vs. Temperature  
1M  
10M  
100M  
1G  
10G  
INPUT FREQUENCY (Hz)  
Figure 54. Estimated SNR Degradation for the AD9684 vs. Input Frequency  
and Clock Jitter  
Rev. 0 | Page 28 of 64  
 
 
 
 
 
Data Sheet  
AD9684  
ADC OVERRANGE AND FAST DETECT  
In receiver applications, it is desirable to have a mechanism to  
reliably determine when the converter is about to be clipped.  
The standard overrange pin outputs information on the state of  
the analog input. It is also helpful to have a programmable  
threshold below full scale that allows time to reduce the gain  
before the clip actually occurs. In addition, because input  
signals can have significant slew rates, the latency of this  
function is of major concern. Highly pipelined converters can  
have significant latency. The AD9684 contains fast detect  
circuitry for individual channels to monitor the threshold and  
assert the FD_A and FD_B pins.  
The operation of the upper threshold and lower threshold  
registers, along with the dwell time registers, is shown in  
Figure 56.  
The FD_x indicator is asserted if the input magnitude exceeds  
the value programmed in the fast detect upper threshold  
registers, in Register 0x247 and Register 0x248. The selected  
threshold register is compared with the signal magnitude at the  
output of the ADC. The fast upper threshold detection has a  
latency of 28 clock cycles (maximum). The approximate upper  
threshold magnitude is defined by  
Upper Threshold Magnitude (dBFS) = 20log(Threshold  
Magnitude/213)  
ADC OVERRANGE  
The ADC overrange indicator is asserted when an overrange is  
detected on the input of the ADC. The overrange indicator can  
be output on the STATUS pins (when CSB > 0). The latency of  
this overrange indicator matches the sample latency.  
The FD indicators are not cleared until the signal drops below  
the lower threshold for the programmed dwell time. The lower  
threshold is programmed in the fast detect lower threshold  
registers, in Register 0x249 and Register 0x24A. The fast detect  
lower threshold register is a 13-bit register that is compared with  
the signal magnitude at the output of the ADC. This  
comparison is subject to the ADC pipeline latency, but is  
accurate in terms of converter resolution. The lower threshold  
magnitude is defined by  
The AD9684 also records any overrange condition in any of the  
four virtual converters. The overrange status of each virtual  
converter is registered as a sticky bit in Register 0x563. The  
contents of Register 0x563 can be cleared using Register 0x562,  
by toggling the bits corresponding to the virtual converter to set  
and reset the position.  
Lower Threshold Magnitude (dBFS) = 20log(Threshold  
Magnitude/213)  
FAST THRESHOLD DETECTION (FD_A AND FD_B)  
For example, to set an upper threshold of −6 dBFS, write 0xFFF  
to Register 0x247 and Register 0x248. To set a lower threshold  
of −10 dBFS, write 0xA1D to Register 0x249 and Register 0x24A.  
The fast detect (FD) bit (enabled via the control bits in  
Register 0x559) is immediately set whenever the absolute value  
of the input signal exceeds the programmable upper threshold  
level. The FD bit is cleared only when the absolute value of the  
input signal drops below the lower threshold level for greater  
than the programmable dwell time. This feature provides  
hysteresis and prevents the FD bit from excessively toggling.  
The dwell time can be programmed from 1 to 65,535 sample  
clock cycles by placing the desired value in the fast detect dwell  
time registers, in Register 0x24B and Register 0x24C. See the  
Memory Map section (Register 0x040, and Register 0x245 to  
Register 0x24C in Table 29) for more details.  
UPPER THRESHOLD  
DWELL TIME  
TIMER RESET BY  
RISE ABOVE  
LOWER  
THRESHOLD  
LOWER THRESHOLD  
TIMER COMPLETES BEFORE  
SIGNAL RISES ABOVE  
LOWER THRESHOLD  
DWELL TIME  
FD_A OR FD_B  
Figure 56. Threshold Settings for FD_A and FD_B Signals  
Rev. 0 | Page 29 of 64  
 
 
 
 
AD9684  
Data Sheet  
SIGNAL MONITOR  
The signal monitor block provides additional information about  
the signal being digitized by the ADC. The signal monitor  
computes the peak magnitude of the digitized signal. This  
information can be used to drive an AGC loop to optimize the  
range of the ADC in the presence of real-world signals.  
monitor period register (SMPR). To enable the peak detector  
function, set Bit 1 of Register 0x270 in the signal monitor  
control register. The 24-bit SMPR must be programmed before  
activating this mode.  
After enabling this mode, the value in the SMPR is loaded into a  
monitor period timer that decrements at the decimated clock  
rate. The magnitude of the input signal is compared with the  
value in the internal magnitude storage register (not accessible  
to the user), and the greater of the two is updated as the current  
peak level. The initial value of the magnitude storage register is  
set to the current ADC input signal magnitude. This comparison  
continues until the monitor period timer reaches a count of 1.  
The results of the signal monitor block can be obtained by  
reading back the internal values from the SPI port. A global, 24-bit  
programmable period controls the duration of the measurement.  
Figure 57 shows the simplified block diagram of the signal  
monitor block.  
The peak detector captures the largest signal within the  
observation period. The detector only observes the magnitude  
of the signal. The resolution of the peak detector is a 13-bit  
value and the observation period is 24 bits and represents  
converter output samples.  
When the monitor period timer reaches a count of 1, the 13-bit  
peak level value is transferred to the signal monitor holding  
register, which can be read through the memory map. The  
monitor period timer is reloaded with the value in the SMPR,  
and the countdown is restarted. In addition, the magnitude of  
the first input sample is updated in the magnitude storage  
register.  
Derive the peak magnitude using the following equation:  
Peak Magnitude (dBFS) = 20log(Peak Detector Value/213)  
The magnitude of the input port signal is monitored over a  
programmable time period, which is determined by the signal  
SIGNAL MONITOR  
FROM  
PERIOD REGISTER  
DOWN  
COUNTER  
IS  
MEMORY  
(SMPR)  
MAP  
COUNT = 1?  
REG 0x271, REG 0x272, REG 0x273  
LOAD  
CLEAR  
LOAD  
MAGNITUDE  
SIGNAL  
MONITOR  
HOLDING  
REGISTER  
TO STATUS± PINS  
AND MEMORY MAP  
FROM  
STORAGE  
INPUT  
REGISTER  
LOAD  
COMPARE  
A > B  
Figure 57. Signal Monitor Block  
Rev. 0 | Page 30 of 64  
 
 
Data Sheet  
AD9684  
DIGITAL DOWNCONVERTERS (DDCs)  
The AD9684 includes four digital downconverters that provide  
filtering and reduce the output data rate. This digital processing  
section includes an NCO, a half-band decimating filter, a finite  
impulse response (FIR) filter, a gain stage, and a complex to real  
conversion stage. Each of these processing blocks has a control  
line that allows the block to be independently enabled and  
disabled to provide the desired processing function. The DDCs  
can be configured to output either real data or complex output data.  
DDC GENERAL DESCRIPTION  
The four DDC blocks extract a portion of the full digital  
spectrum captured by the ADCs. They are intended for IF  
sampling or oversampled baseband radios requiring wide  
bandwidth input signals.  
Each DDC block contains the following signal processing stages:  
Frequency translation stage (optional)  
Filtering stage  
Gain stage (optional)  
DDC I/Q INPUT SELECTION  
The AD9684 has two ADC channels and four DDC channels.  
Each DDC channel has two input ports that can be paired to  
support both real and complex inputs through the I/Q crossbar  
mux. For real signals, both DDC input ports must select the  
same ADC channel (that is, DDC Input Port I = ADC Channel A  
and DDC Input Port Q = ADC Channel A). For complex  
signals, each DDC input port must select different ADC  
channels (that is, DDC Input Port I = ADC Channel A and  
DDC Input Port Q = ADC Channel B).  
Complex to real conversion stage (optional)  
Frequency Translation Stage (Optional)  
This stage consists of a 12-bit complex NCO and quadrature  
mixers that can be used for frequency translation of both real or  
complex input signals. This stage shifts a portion of the available  
digital spectrum down to baseband.  
Filtering Stage  
After shifting down to baseband, this stage decimates the  
frequency spectrum using a chain of up to four half-band, low-  
pass filters for rate conversion. The decimation process lowers  
the output data rate, which, in turn, reduces the output interface  
rate.  
The inputs to each DDC are controlled by the DDC input selection  
registers (Register 0x311, Register 0x331, Register 0x351, and  
Register 0x371). See Table 29 for information on how to  
configure the DDCs.  
DDC I/Q OUTPUT SELECTION  
Gain Stage (Optional)  
Each DDC channel has two output ports that can be paired to  
support both real or complex outputs. For real output signals,  
only the DDC Output Port I is used (the DDC Output Port Q is  
invalid). For complex I/Q output signals, both DDC Output  
Port I and DDC Output Port Q are used.  
Due to losses associated with mixing a real input signal down to  
baseband, this stage compensates by adding an additional 0 dB  
or 6 dB of gain.  
Complex to Real Conversion Stage (Optional)  
When real outputs are necessary, this stage converts the complex  
outputs back to real outputs by performing an fS/4 mixing  
operation in addition to a filter to remove the complex  
component of the signal.  
The I/Q outputs to each DDC channel are controlled by the  
DDC complex to real enable bit in the DDC control registers  
(Bit 3 in Register 0x310, Register 0x330, Register 0x350, and  
Register 0x370).  
Figure 58 shows the detailed block diagram of the DDCs  
implemented in the AD9684.  
The Chip I only bit in the chip application mode register  
(Register 0x200, Bit 5) controls the chip output muxing of all  
the DDC channels. When all DDC channels use real outputs,  
set this bit high to ignore all DDC Q output ports. When any of  
the DDC channels are set to use complex I/Q outputs, the user  
must clear this bit to use both DDC Output Port I and DDC  
Output Port Q.  
Rev. 0 | Page 31 of 64  
 
 
 
 
AD9684  
Data Sheet  
DDC 0  
DDC 1  
DDC 2  
DDC 3  
REAL/I  
I
REAL/I  
CONVERTER 0  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 1  
ADC  
SAMPLING  
AT fS  
REAL/I  
SYNC±  
I
REAL/I  
REAL/I  
CONVERTER 2  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 3  
SYNC±  
I
REAL/I  
REAL/I  
CONVERTER 4  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 5  
ADC  
SAMPLING  
AT fS  
REAL/I  
SYNC±  
I
REAL/I  
REAL/I  
CONVERTER 6  
NCO  
+
MIXER  
(OPTIONAL)  
REAL/Q  
Q
Q CONVERTER 7  
SYNC±  
SYNC±  
SYNCHRONIZATION  
CONTROL CIRCUITS  
Figure 58. DDC Detailed Block Diagram  
Figure 59 shows an example usage of one of the four DDC  
blocks with a real input signal and four half-band filters (HB4 +  
HB3 + HB2 + HB1). It shows both complex (decimate by 16)  
and real (decimate by 8) output options.  
Table 10 through Table 15 show the DDC samples when the  
chip decimation ratio is set to 1, 2, 4, 8, or 16, respectively.  
When DDCs have different decimation ratios, the chip  
decimation ratio must be set to the lowest decimation ratio of  
all the DDC channels. In this scenario, samples of higher  
decimation ratio DDCs are repeated to match the chip  
decimation ratio sample rate.  
When DDCs have different decimation ratios, the chip decimation  
ratio (Register 0x201) must be set to the lowest decimation ratio  
for all the DDC blocks. In this scenario, samples of higher decima-  
tion ratio DDCs are repeated to match the chip decimation ratio  
sample rate. Whenever the NCO frequency is set or changed,  
the DDC soft reset must be issued. If the DDC soft reset is not  
issued, the output may potentially show amplitude variations.  
Rev. 0 | Page 32 of 64  
 
Data Sheet  
AD9684  
ADC  
SAMPLING  
AT fS  
ADC  
REAL  
REAL  
REAL INPUT—SAMPLED AT fS  
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FREQUENCY TRANSLATION STAGE (OPTIONAL)  
I
DIGITAL MIXER + NCO FORfS/3 TUNING, THE FREQUENCY  
TUNING WORD = ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
NCO TUNES CENTER OF  
BANDWIDTH OF INTEREST  
TO BASEBAND  
cos(wt)  
REAL  
12-BIT  
NCO  
90°  
0°  
–sin(wt)  
Q
BANDWIDTH OF  
INTEREST IMAGE  
(–6dB LOSS DUE TO  
NCO + MIXER)  
DIGITAL FILTER  
RESPONSE  
BANDWIDTH OF INTEREST  
(–6dB LOSS DUE TO  
NCO + MIXER)  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
FILTERING STAGE  
4 DIGITAL HALF-BAND FILTERS  
(HB4 + HB3 + HB2 + HB1)  
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
HALF-  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
BAND  
BAND  
I
I
FILTER  
FILTER  
2
2
2
2
2
2
HB4 FIR  
HB3 FIR  
HB2 FIR  
HB1 FIR  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
HALF-  
BAND  
FILTER  
Q
Q
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
COMPLEX (I/Q) OUTPUTS  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
DECIMATE BY 16  
DIGITAL FILTER  
RESPONSE  
I
I
2
+6dB  
GAIN STAGE (OPTIONAL)  
0dB OR 6dB GAIN  
Q
Q
2
+6dB  
fS/32  
fS/32  
fS/32  
fS/32  
DC  
COMPLEX TO REAL  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
fS/16  
fS/16  
CONVERSION STAGE (OPTIONAL)  
DOWNSAMPLE BY 2  
fS/4 MIXING + COMPLEX FILTER TO REMOVE Q  
I
I
+6dB  
+6dB  
REAL (I) OUTPUTS  
DECIMATE BY 8  
COMPLEX  
TO  
REAL  
REAL/I  
Q
Q
6dB GAIN TO  
COMPENSATE FOR  
NCO + MIXER LOSS  
fS/32  
fS/32  
DC  
fS/8  
fS/16  
fS/16  
fS/8  
Figure 59. DDC Theory of Operation Example (Real Input, Decimate by 16)  
Rev. 0 | Page 33 of 64  
 
AD9684  
Data Sheet  
Table 10. DDC Samples When the Chip Decimation Ratio = 1  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB± FIR +  
HB1 FIR  
HB3 FIR + HB±  
FIR + HB1 FIR  
(DCM1 = 4)  
HB4 FIR + HB3 FIR  
+ HB± FIR + HB1  
FIR (DCM1 = 8)  
HB± FIR +  
HB1 FIR  
HB3 FIR + HB±  
FIR + HB1 FIR  
(DCM1 = 8)  
HB4 FIR + HB3 FIR +  
HB± FIR + HB1 FIR  
(DCM1 = 16)  
HB1 FIR  
HB1 FIR  
(DCM1 = 1)  
(DCM1 = ±)  
(DCM1 = ±)  
(DCM1 = 4)  
N
N
N
N
N
N
N
N
N + 1  
N + 2  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 8  
N + 9  
N + 8  
N + 9  
N + 10  
N + 11  
N + 10  
N + 11  
N + 12  
N + 13  
N + 12  
N + 13  
N + 14  
N + 15  
N + 14  
N + 15  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 8  
N + 9  
N + 8  
N + 9  
N + 10  
N + 11  
N + 10  
N + 11  
N + 12  
N + 13  
N + 12  
N + 13  
N + 14  
N + 15  
N + 14  
N + 15  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 6  
N + 7  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 16  
N + 17  
N + 18  
N + 19  
N + 20  
N + 21  
N + 22  
N + 23  
N + 24  
N + 25  
N + 26  
N + 27  
N + 28  
N + 29  
N + 30  
N + 31  
N + 1  
1 DCM means decimation.  
Table 11. DDC Samples When the Chip Decimation Ratio = 2  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR +  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB3 FIR +  
HB± FIR +  
HB1 FIR  
HB3 FIR +  
HB± FIR +  
HB1 FIR  
HB3 FIR +  
HB± FIR +  
HB1 FIR  
HB3 FIR +  
HB± FIR +  
HB1 FIR  
HB± FIR +  
HB1 FIR  
HB± FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = ±)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = ±)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N
N
N
N
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 4  
N + 5  
N + 1  
Rev. 0 | Page 34 of 64  
 
Data Sheet  
AD9684  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR +  
HB3 FIR +  
HB4 FIR +  
HB3 FIR +  
HB± FIR +  
HB1 FIR  
HB3 FIR +  
HB± FIR +  
HB1 FIR  
HB3 FIR +  
HB± FIR +  
HB1 FIR  
HB± FIR +  
HB1 FIR  
HB± FIR +  
HB1 FIR  
HB± FIR +  
HB1 FIR  
HB1 FIR  
(DCM1 = ±)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = ±)  
(DCM1 = 4)  
(DCM1 = 8)  
(DCM1 = 16)  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
N + 4  
N + 5  
N + 6  
N + 7  
N + 6  
N + 7  
N + 2  
N + 3  
N + 2  
N + 3  
N + 2  
N + 3  
N
N + 1  
N
N + 1  
N
N + 1  
1 DCM means decimation.  
Table 12. DDC Samples When the Chip Decimation Ratio = 4  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB3 FIR + HB± FIR + HB1  
FIR (DCM1 = 4)  
HB4 FIR + HB3 FIR + HB± FIR HB± FIR + HB1 FIR  
HB3 FIR + HB± FIR +  
HB1 FIR (DCM1 = 8)  
HB4 FIR + HB3 FIR + HB± FIR  
+ HB1 FIR (DCM1 = 8)  
(DCM1 = 4)  
N
+ HB1 FIR (DCM1 = 16)  
N
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N
N + 1  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
1 DCM means decimation.  
Table 13. DDC Samples When the Chip Decimation Ratio = 8  
Real (I) Output (Complex to Real Enabled)  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR + HB± FIR + HB1  
HB4 FIR + HB3 FIR + HB± FIR + HB1 FIR (DCM1 = 8)  
HB3 FIR + HB± FIR + HB1 FIR(DCM1 = 8)  
FIR (DCM1 = 16)  
N
N
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 1  
N
N + 1  
N + 2  
N + 3  
N + 2  
N + 3  
1 DCM means decimation.  
Table 14. DDC Samples When the Chip Decimation Ratio = 16  
Real (I) Output (Complex to Real Enabled)  
HB4 FIR + HB3 FIR + HB± FIR + HB1 FIR (DCM1 = 16)  
Not applicable  
Complex (I/Q) Outputs (Complex to Real Disabled)  
HB4 FIR + HB3 FIR + HB± FIR + HB1 FIR (DCM1 = 16)  
N
Not applicable  
Not applicable  
Not applicable  
N + 1  
N + 2  
N + 3  
1 DCM means decimation.  
Rev. 0 | Page 35 of 64  
AD9684  
Data Sheet  
For example, if the chip decimation ratio is set to decimate by 4,  
DDC 0 is set to use HB2 + HB1 filters (complex outputs,  
decimate by 4) and DDC 1 is set to use HB4 + HB3 + HB2 +  
HB1 filters (real outputs, decimate by 8). DDC 1 repeats its  
output data two times for every one DDC 0 output. The  
resulting output samples are shown in Table 15.  
Table 15. Chip Decimation Ratio = 4, DDC 0 Decimation = 4 (Complex), and DDC 1 Decimation = 8 (Real)  
DDC 0  
Output Port Q  
DDC 1  
DDC Input Samples  
N
Output Port I  
Output Port I  
Output Port Q  
Not applicable  
I0 (N)  
Q0 (N)  
I1 (N)  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
I0 (N + 1)  
I0 (N + 2)  
I0 (N + 3)  
Q0 (N + 1)  
Q0 (N + 2)  
Q0 (N + 3)  
I1 (N + 1)  
I1 (N)  
Not applicable  
Not applicable  
Not applicable  
N + 8  
N + 9  
N + 10  
N + 11  
N + 12  
N + 13  
N + 14  
N + 15  
I1 (N + 1)  
Rev. 0 | Page 36 of 64  
 
Data Sheet  
AD9684  
FREQUENCY TRANSLATION  
Variable IF Mode  
GENERAL DESCRIPTION  
The NCO and the mixers are enabled. The NCO output  
frequency can be used to digitally tune the IF frequency.  
Frequency translation is accomplished using a 12-bit complex  
NCO with a digital quadrature mixer. The frequency translation  
translates either a real or complex input signal from an IF to a  
baseband complex digital output (carrier frequency = 0 Hz).  
0 Hz IF (ZIF) Mode  
The mixers are bypassed and the NCO is disabled.  
fS/4 Hz IF Mode  
The frequency translation stage of each DDC can be controlled  
individually and supports four different IF modes using Bits[5:4] of  
the DDC control registers (Register 0x310, Register 0x330,  
Register 0x350, and Register 0x370). These IF modes are  
The mixers and the NCO are enabled in a special downmixing  
by fS/4 mode to save power.  
Test Mode  
Variable IF mode  
0 Hz IF, or zero IF (ZIF), mode  
fS/4 Hz IF mode  
The input samples are forced to 0.999 × full scale to positive full  
scale. The NCO is enabled. This test mode allows the NCOs to  
drive the decimation filters directly.  
Test mode  
Figure 60 and Figure 61 show examples of the frequency  
translation stage for both real and complex inputs.  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096  
I
cos(wt)  
ADC  
SAMPLING  
AT fS  
ADC + DIGITAL MIXER + NCO  
REAL INPUT—SAMPLED AT fS  
REAL  
REAL  
12-BIT  
NCO  
90°  
0°  
COMPLEX  
–sin(wt)  
Q
BANDWIDTH OF  
INTEREST  
BANDWIDTH OF  
INTEREST IMAGE  
fS/32  
fS/32  
DC  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
–6dB LOSS DUE TO  
NCO + MIXER  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
POSITIVE FTW VALUES  
fS/32  
fS/32  
DC  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = –1365 (0xAAB)  
NEGATIVE FTW VALUES  
fS/32  
fS/32  
DC  
Figure 60. DDC NCO Frequency Tuning Word Selection—Real Inputs  
Rev. 0 | Page 37 of 64  
 
 
 
AD9684  
Data Sheet  
NCO FREQUENCY TUNING WORD (FTW) SELECTION  
12-BIT NCO FTW = MIXING FREQUENCY/ADC SAMPLE RATE × 4096  
QUADRATURE MIXER  
ADC  
SAMPLING  
AT fS  
I
+
I
I
I
I
Q
QUADRATURE ANALOG MIXER +  
Q
2 ADCs + QUADRATURE DIGITAL  
MIXER + NCO  
12-BIT  
NCO  
REAL  
90°  
PHASE  
90°  
0°  
COMPLEX  
Q
COMPLEX INPUT—SAMPLED AT fS  
I
I
+
ADC  
SAMPLING  
AT fS  
Q
Q
Q
Q
+
BANDWIDTH OF  
INTEREST  
IMAGE DUE TO  
ANALOG I/Q  
MISMATCH  
fS/32  
fS/32  
fS/16  
fS/2  
fS/3  
fS/4  
fS/8  
fS/16  
fS/8  
fS/4  
fS/3  
fS/2  
DC  
12-BIT NCO FTW =  
ROUND ((fS/3)/fS × 4096) = +1365 (0x555)  
POSITIVE FTW VALUES  
fS/32  
fS/32  
DC  
Figure 61. DDC NCO Frequency Tuning Word Selection—Complex Inputs  
Setting Up the NCO FTW and POW  
DDC NCO PLUS MIXER LOSS AND SFDR  
The NCO frequency value is given by the 12-bit, twos  
complement number entered in the NCO FT W. Frequencies  
between fS/2 (+fS/2 excluded) are represented using the  
following frequency words:  
When mixing a real input signal down to baseband, 6 dB of loss  
is introduced in the signal due to filtering of the negative image.  
The NCO introduces an additional 0.05 dB of loss. The total  
loss of a real input signal mixed down to baseband is 6.05 dB. For  
this reason, it is recommended to compensate for this loss by  
enabling the 6 dB of gain in the gain stage of the DDC to  
recenter the dynamic range of the signal within the full scale of  
the output bits.  
0x800 represents a frequency of −fS/2.  
0x000 represents dc (frequency is 0 Hz).  
0x7FF represents a frequency of +fS/2 − fS/212.  
Calculate the NCO frequency tuning word using the following  
equation:  
When mixing a complex input signal down to baseband, the  
maximum value that each I/Q sample can reach is 1.414 × full  
scale after it passes through the complex mixer. To avoid an  
overrange of the I/Q samples and to keep the data bit-widths  
aligned with real mixing, introduce 3.06 dB of loss (0.707 × full-  
scale) in the mixer for complex signals. The NCO introduces an  
additional 0.05 dB of loss. The total loss of a complex input  
signal mixed down to baseband is −3.11 dB.  
mod  
(
fC , fS  
fS  
)
12  
NCO_ FTW = round 2  
where:  
NCO_FTW is a 12-bit, twos complement number representing  
the NC O F T W.  
fC is the desired carrier frequency in Hz.  
fS is the AD9684 sampling frequency (clock rate) in Hz.  
mod( ) is a remainder function. For example, mod(110,100) =  
10, and for negative numbers, mod(−32, +10) = −2.  
round( ) is a rounding function. For example, round(3.6) = 4,  
and for negative numbers, round(−3.4) = −3.  
The worst case spurious signal from the NCO is greater than  
102 dBc SFDR for all output frequencies.  
NUMERICALLY CONTROLLED OSCILLATOR  
The AD9684 has a 12-bit NCO for each DDC that enables the  
frequency translation process. The NCO allows the input  
spectrum to be tuned to dc, where it can be effectively filtered  
by the subsequent filter blocks to prevent aliasing. The NCO  
can be set up by providing a frequency tuning word (FTW) and  
a phase offset word (POW).  
Note that this equation applies to the aliasing of signals in the  
digital domain (that is, aliasing introduced when digitizing  
analog signals).  
Rev. 0 | Page 38 of 64  
 
 
 
 
Data Sheet  
AD9684  
For example, if the ADC sampling frequency (fS) is 1250 MSPS  
and the carrier frequency (fC) is 416.667 MHz,  
Use the following two methods to synchronize multiple PAWs  
within the chip:  
Using the SPI. Use the DDC NCO soft reset bit in the DDC  
synchronization control register (Register 0x300, Bit 4) to  
reset all the PAWs in the chip. This is accomplished by  
toggling the DDC NCO soft reset bit. Note that this  
method synchronizes DDC channels within the same  
AD9684 chip only.  
mod  
(
416.667,1250  
1250  
)
NCO _ FTW = round 212  
=1365 MHz  
This, in turn, converts to 0x555 in the 12-bit, twos complement  
representation for NCO_FTW. Calculate the actual carrier  
frequency based on the following equation:  
Using the SYNC pins. When the SYNC pins are enabled  
in the SYNC control registers (Register 0x120 and  
Register 0x121), and the DDC synchronization is enabled  
in Bits[1:0] in the DDC synchronization control register  
(Register 0x300), any subsequent SYNC event resets all  
the PAWs in the chip. Note that this method synchronizes  
DDC channels within the same AD9684 chip or DDC  
channels within separate AD9684 chips.  
NCO _ FTW × fS  
fC  
=
= 416.56 MHz  
_ ACTUAL  
212  
A 12-bit POW is available for each NCO to create a known  
phase relationship between multiple AD9684 chips or  
individual DDC channels inside one AD9684 chip.  
The following procedure must be followed to update the FTW  
and/or POW registers to ensure proper operation of the NCO:  
1. Write to the FTW registers for all the DDCs.  
2. Write to the POW registers for all the DDCs.  
3. Synchronize the NCOs either through the DDC soft reset bit,  
accessible through the SPI, or through the assertion of the  
SYNC pins.  
Mixer  
The NCO is accompanied by a mixer, which operates similarly  
to an analog quadrature mixer. It performs the downconversion  
of input signals (real or complex) by using the NCO frequency  
as a local oscillator. For real input signals, this mixer performs a  
real mixer operation with two multipliers. For complex input  
signals, the mixer performs a complex mixer operation with  
four multipliers and two adders. The mixer adjusts its operation  
based on the input signal (real or complex) provided to each  
individual channel. The selection of real or complex inputs can be  
controlled individually for each DDC block using Bit 7 of the DDC  
control registers (Register 0x310, Register 0x330, Register 0x350,  
and Register 0x370).  
Note that the NCOs must be synchronized either through the  
SPI or through the SYNC pins after all writes to the FTW or  
POW registers are complete. This synchronization is necessary  
to ensure the proper operation of the NCO.  
NCO Synchronization  
Each NCO contains a separate phase accumulator word (PAW)  
that determines the instantaneous phase of the NCO. The initial  
reset value of each PAW is determined by the POW, described  
in the Setting Up the NCO FTW and POW section. The phase  
increment value of each PAW is determined by the FTW.  
Rev. 0 | Page 39 of 64  
 
AD9684  
Data Sheet  
FIR FILTERS  
Table 16 shows the different bandwidth options by including  
different half-band filters. In all cases, the DDC filtering stage of  
the AD9684 provides less than −0.001 dB of pass-band ripple  
and greater than 100 dB of stop band alias rejection.  
GENERAL DESCRIPTION  
There are four sets of decimate by 2, low-pass, half-band, FIR  
filters (labeled HB1 FIR, HB2 FIR, HB3 FIR, and HB4 FIR in  
Figure 58) following the frequency translation stage. After the  
carrier of interest is tuned down to dc (carrier frequency =  
0 Hz), these filters efficiently lower the sample rate while  
providing sufficient alias rejection from unwanted adjacent  
carriers around the bandwidth of interest.  
Table 17 shows the amount of stop band alias rejection for  
multiple pass-band ripple/cutoff points. The decimation ratio of  
the filtering stage of each DDC can be controlled individually  
through Bits[1:0] of the DDC control registers (Register 0x310,  
Register 0x330, Register 0x350, and Register 0x370).  
HB1 FIR is always enabled and cannot be bypassed. The HB2,  
HB3, and HB4 FIR filters are optional and can be bypassed for  
higher output sample rates.  
Table 16. DDC Filter Characteristics  
Real Output Complex (I/Q)  
Sample Rate Output Sample  
Alias Protected Ideal SNR  
Pass-Band Alias  
Improvement1 Ripple  
Rejection  
(dB)  
>100  
ADC Sample  
Rate (MSPS)  
DDC Decimation  
Ratio  
Bandwidth  
(MHz)  
385.0  
192.5  
96.3  
(MSPS)  
1000  
500  
Rate (MSPS)  
(dB)  
1
(dB)  
1000  
2 (HB1)  
4 (HB1 + HB2)  
500 (I) + 500 (Q)  
250 (I) + 250 (Q)  
125 (I) + 125 (Q)  
<−0.001  
4
7
8 (HB1 + HB2 + HB3) 250  
16 (HB1 + HB2 +  
HB3 + HB4)  
125  
62.5 (I) + 62.5 (Q) 48.1  
10  
1 The ideal SNR improvement due to oversampling and filtering = 10log(bandwidth/(fS/2)).  
Table 17. DDC Filter Alias Rejection  
Alias Protected Bandwidth for  
Real (I) Outputs1  
Alias Protected Bandwidth for  
Complex (I/Q) Outputs1  
Alias Rejection (dB)  
Pass-Band Ripple/Cutoff Point (dB)  
>100  
90  
85  
63.3  
25  
19.3  
10.7  
<−0.001  
<−0.001  
<−0.001  
<−0.006  
−0.5  
<38.5% × fOUT  
<38.7% × fOUT  
<38.9% × fOUT  
<40% × fOUT  
44.4% × fOUT  
45.6% × fOUT  
48% × fOUT  
<77% × fOUT  
<77.4% × fOUT  
<77.8% × fOUT  
<80% × fOUT  
88.8% × fOUT  
91.2% × fOUT  
96% × fOUT  
−1.0  
−3.0  
1 fOUT = ADC input sample rate/DDC decimation ratio.  
Rev. 0 | Page 40 of 64  
 
 
 
 
Data Sheet  
AD9684  
0
–20  
HALF-BAND FILTERS  
The AD9684 offers four half-band filters to enable digital signal  
processing of the ADC converted data. These half-band filters  
are bypassable and can be individually selected.  
–40  
HB4 Filter  
–60  
The first decimate by 2, half-band, low-pass FIR filter (HB4)  
uses an 15-bit, symmetrical, fixed coefficient filter  
–80  
implementation that is optimized for low power consumption.  
The HB4 filter is used only when complex outputs (decimate by  
16) or real outputs (decimate by 8) are enabled; otherwise, the  
filter is bypassed. Table 18 and Figure 62 show the coefficients  
and response of the HB4 filter.  
–100  
–120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Table 18. HB4 Filter Coefficients  
Figure 63. HB3 Filter Response  
HB4 Coefficient Number  
Decimal Coefficient (15-Bit)  
HB2 Filter  
C1, C11  
C2, C10  
C3, C9  
C4, C8  
C5, C7  
C6  
99  
0
−808  
0
4805  
8192  
The third decimate by 2, half-band, low-pass FIR filter (HB2)  
uses a 19-bit, symmetrical, fixed coefficient filter implementation  
that is optimized for low power consumption. The HB2 filter is  
only used when complex outputs (decimate by 4, 8, or 16) or  
real outputs (decimate by 2, 4, or 8) are enabled; otherwise, the  
filter is bypassed.  
0
–20  
Table 20 and Figure 64 show the coefficients and response of  
the HB2 filter.  
Table 20. HB2 Filter Coefficients  
–40  
HB± Coefficient Number  
Decimal Coefficient (19-Bit)  
C1, C19  
C2, C18  
161  
0
–60  
C3, C17  
C4, C16  
−1328  
0
–80  
C5, C15  
C6, C14  
C7, C13  
C8, C12  
5814  
0
−19272  
0
–100  
–120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
C9, C11  
C10  
80,160  
131,072  
Figure 62. HB4 Filter Response  
HB3 Filter  
0
–20  
The second decimate by 2, half-band, low-pass, FIR filter (HB3)  
uses an 18-bit, symmetrical, fixed coefficient filter implementation  
that is optimized for low power consumption. The HB3 filter is  
only used when complex outputs (decimate by 8 or 16) or real  
outputs (decimate by 4 or 8) are enabled; otherwise, the filter is  
bypassed. Table 19 and Figure 63 show the coefficients and  
response of the HB3 filter.  
–40  
–60  
–80  
Table 19. HB3 Filter Coefficients  
–100  
–120  
HB3 Coefficient Number  
Decimal Coefficient (18-Bit)  
C1, C11  
C2, C10  
C3, C9  
C4, C8  
C5, C7  
C6  
859  
0
−6661  
0
38570  
65536  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 64. HB2 Filter Response  
Rev. 0 | Page 41 of 64  
 
 
 
 
 
 
 
AD9684  
Data Sheet  
HB1 Filter  
0
–20  
The fourth and final decimate by 2, half-band, low-pass FIR  
filter (HB1) uses a 21-bit, symmetrical, fixed coefficient filter  
implementation that is optimized for low power consumption.  
The HB1 filter is always enabled and cannot be bypassed. Table 21  
and Figure 65 show the coefficients and response of the HB1  
filter.  
–40  
–60  
–80  
Table 21. HB1 Filter Coefficients  
HB1 Coefficient Number  
Decimal Coefficient (±1-Bit)  
–100  
–120  
C1, C55  
C2, C54  
−24  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
C3, C53  
C4, C52  
C5, C51  
102  
0
−302  
NORMALIZED FREQUENCY (× π RAD/SAMPLE)  
Figure 65. HB1 Filter Response  
C6, C50  
C7, C49  
0
730  
DDC GAIN STAGE  
Each DDC contains an independently controlled gain stage.  
The gain is selectable as either 0 dB or 6 dB. When mixing a real  
input signal down to baseband, it is recommended to enable the  
6 dB gain to recenter the dynamic range of the signal within the  
full scale of the output bits.  
C8, C48  
C9, C47  
0
−1544  
0
2964  
0
−5284  
0
8903  
0
−14,383  
0
22,640  
0
−35,476  
0
57,468  
0
−105,442  
0
331,792  
524,288  
C10, C46  
C11, C45  
C12, C44  
C13, C43  
C14, C42  
C15, C41  
C16, C40  
C17, C39  
C18, C38  
C19, C37  
C20, C36  
C21, C35  
C22, C34  
C23, C33  
C24, C32  
C25, C31  
C26, C30  
C27, C29  
C28  
When mixing a complex input signal down to baseband, the  
mixer has already recentered the dynamic range of the signal  
within the full scale of the output bits and no additional gain is  
necessary. However, the optional 6 dB gain compensates for low  
signal strengths. The downsample by 2 portion of the HB1 FIR  
filter is bypassed when using the complex to real conversion  
stage (see Figure 66).  
DDC COMPLEX TO REAL CONVERSION BLOCK  
Each DDC contains an independently controlled complex to  
real conversion block. The complex to real conversion block  
reuses the last filter (HB1 FIR) in the filtering stage, along with  
an fS/4 complex mixer to upconvert the signal.  
After upconverting the signal, the Q portion of the complex  
mixer is no longer needed and is dropped.  
Figure 66 shows a simplified block diagram of the complex to  
real conversion.  
Rev. 0 | Page 42 of 64  
 
 
 
 
Data Sheet  
AD9684  
HB1 FIR  
GAIN STAGE  
COMPLEX TO  
REAL ENABLE  
LOW-PASS  
FILTER  
I
0dB  
OR  
I
I
0
2
I/REAL  
6dB  
1
COMPLEX TO REAL CONVERSION  
0dB  
OR  
6dB  
cos(wt)  
+
90°  
REAL  
fS/4  
0°  
sin(wt)  
0dB  
OR  
6dB  
Q
LOW-PASS  
FILTER  
Q
0dB  
OR  
6dB  
Q
Q
2
HB1 FIR  
Figure 66. Complex to Real Conversion Block  
DDC EXAMPLE CONFIGURATIONS  
Table 22 describes the register settings for multiple DDC example configurations.  
Table 22. DDC Example Configurations  
Chip  
Application  
Layer  
Chip  
Decimation  
Ratio  
DDC  
Number of Virtual  
Converters  
Required (M)  
DDC Input Output  
Bandwidth  
Per DDC1  
Type  
Type  
Register Settings±  
One DDC  
2
Complex  
Complex  
77% × fS  
2
Register 0x200 = 0x01 (one DDC, I/Q  
selected)  
Register 0x201 = 0x01 (chip decimate  
by 2)  
Register 0x310 = 0x83 (complex mixer,  
0 dB gain, variable IF, complex outputs,  
HB1 filter)  
Register 0x311 = 0x04 (DDC I input =  
ADC Channel A, DDC Q input = ADC  
Channel B)  
Register 0x314, Register 0x315,  
Register 0x320, Register 0x321 = FTW  
and POW set as required by application  
for DDC 0  
Two DDCs  
4
Complex  
Complex  
38.5% × fS  
4
Register 0x200 = 0x02 (two DDCs, I/Q  
selected)  
Register 0x201 = 0x02 (chip decimate  
by 4)  
Register 0x310, Register 0x330 = 0x80  
(complex mixer, 0 dB gain, variable IF,  
complex outputs, HB2 + HB1 filters)  
Register 0x311, Register 0x331 = 0x04  
(DDC I input = ADC Channel A, DDC Q  
input = ADC Channel B)  
Rev. 0 | Page 43 of 64  
 
 
 
AD9684  
Data Sheet  
Chip  
Application  
Layer  
Chip  
Decimation  
Ratio  
DDC  
Number of Virtual  
Converters  
Required (M)  
DDC Input Output  
Bandwidth  
Per DDC1  
Type  
Type  
Register Settings±  
Register 0x314, Register 0x315,  
Register 0x320, Register 0x321 = FTW  
and POW set as required by application  
for DDC 0  
Register 0x334, Register 0x335,  
Register 0x340, Register 0x341 = FTW  
and POW set as required by application  
for DDC 1  
Two DDCs  
4
Complex  
Real  
19.25% × fS  
2
Register 0x200 = 0x22 (two DDCs, Q  
ignore selected)  
Register 0x201 = 0x02 (chip decimate  
by 4)  
Register 0x310, Register 0x330 = 0x89  
(complex mixer, 0 dB gain, variable IF,  
real output, HB3 + HB2 + HB1 filters)  
Register 0x311, Register 0x331 = 0x04  
(DDC I input = ADC Channel A, DDC Q  
input = ADC Channel B)  
Register 0x314, Register 0x315,  
Register 0x320, Register 0x321 = FTW  
and POW set as required by application  
for DDC 0  
Register 0x334, Register 0x335,  
Register 0x340, Register 0x341 = FTW  
and POW set as required by application  
for DDC 1  
Two DDCs  
4
Real  
Real  
19.25% × fS  
2
Register 0x200 = 0x22 (two DDCs, Q  
ignore selected)  
Register 0x201 = 0x02 (chip decimate  
by 4)  
Register 0x310, Register 0x330 = 0x49  
(real mixer, 6 dB gain, variable IF, real  
output, HB3 + HB2 + HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input =  
ADC Channel A, DDC 0 Q input = ADC  
Channel A)  
Register 0x331 = 0x05 (DDC 1 I input =  
ADC Channel B, DDC 1 Q input = ADC  
Channel B)  
Register 0x314, Register 0x315,  
Register 0x320, Register 0x321 = FTW  
and POW set as required by application  
for DDC 0  
Register 0x334, Register 0x335,  
Register 0x340, Register 0x341 = FTW  
and POW set as required by application  
for DDC 1  
Two DDCs  
4
Real  
Complex  
38.5% × fS  
4
Register 0x200 = 0x02 (two DDCs, I/Q  
selected)  
Register 0x201 = 0x02 (chip decimate  
by 4)  
Register 0x310, Register 0x330 = 0x40  
(real mixer, 6 dB gain, variable IF,  
complex output, HB2 + HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input =  
ADC Channel A, DDC 0 Q input = ADC  
Channel A)  
Register 0x331 = 0x05 (DDC 1 I input =  
ADC Channel B, DDC 1 Q input = ADC  
Channel B)  
Rev. 0 | Page 44 of 64  
Data Sheet  
AD9684  
Chip  
Application  
Layer  
Chip  
Decimation  
Ratio  
DDC  
Number of Virtual  
Converters  
Required (M)  
DDC Input Output  
Bandwidth  
Per DDC1  
Type  
Type  
Register Settings±  
Register 0x314, Register 0x315,  
Register 0x320, Register 0x321 = FTW  
and POW set as required by application  
for DDC 0  
Register 0x334, Register 0x335,  
Register 0x340, Register 0x341 = FTW  
and POW set as required by application  
for DDC 1  
Four DDCs  
8
Real  
Complex  
19.25% × fS  
8
Register 0x200 = 0x03 (four DDCs, I/Q  
selected)  
Register 0x201 = 0x03 (chip decimate  
by 8)  
Register 0x310, Register 0x330,  
Register 0x350, Register 0x370 = 0x41  
(real mixer, 6 dB gain, variable IF,  
complex output, HB3 + HB2 + HB1  
filters)  
Register 0x311 = 0x00 (DDC 0 I input =  
ADC Channel A, DDC 0 Q input = ADC  
Channel A)  
Register 0x331 = 0x00 (DDC 1 I input =  
ADC Channel A, DDC 1 Q input = ADC  
Channel A)  
Register 0x351 = 0x05 (DDC 2 I input =  
ADC Channel B, DDC 2 Q input = ADC  
Channel B)  
Register 0x371 = 0x05 (DDC 3 I input =  
ADC Channel B, DDC 3 Q input = ADC  
Channel B)  
Register 0x314, Register 0x315,  
Register 0x320, Register 0x321 = FTW  
and POW set as required by application  
for DDC 0  
Register 0x334, Register 0x335,  
Register 0x340, Register 0x341 = FTW  
and POW set as required by application  
for DDC 1  
Register 0x354, Register 0x355,  
Register 0x360, Register 0x361 = FTW  
and POW set as required by application  
for DDC 2  
Register 0x374, Register 0x375,  
Register 0x380, Register 0x381 = FTW  
and POW set as required by application  
for DDC 3  
Four DDCs  
16  
Real  
Complex  
9.625% × fS  
8
Register 0x200 = 0x03 (four DDCs, I/Q  
selected)  
Register 0x201 = 0x04 (chip decimate  
by 16)  
Register 0x310, Register 0x330,  
Register 0x350, Register 0x370 = 0x42  
(real mixer, 6 dB gain, variable IF,  
complex output, HB4 + HB3 + HB2 +  
HB1 filters)  
Register 0x311 = 0x00 (DDC 0 I input =  
ADC Channel A, DDC 0 Q input = ADC  
Channel A)  
Register 0x331 = 0x00 (DDC 1 I input =  
ADC Channel A, DDC 1 Q input = ADC  
Channel A)  
Rev. 0 | Page 45 of 64  
AD9684  
Data Sheet  
Chip  
Application  
Layer  
Chip  
Decimation  
Ratio  
DDC  
Number of Virtual  
Converters  
Required (M)  
DDC Input Output  
Bandwidth  
Per DDC1  
Type  
Type  
Register Settings±  
Register 0x351 = 0x05 (DDC 2 I input =  
ADC Channel B, DDC 2 Q input = ADC  
Channel B)  
Register 0x371 = 0x05 (DDC 3 I input =  
ADC Channel B, DDC 3 Q input = ADC  
Channel B)  
Register 0x314, 0x315, 0x320, 0x321 =  
FTW and POW set as required by  
application for DDC 0  
Register 0x334, Register 0x335,  
Register 0x340, Register 0x341 = FTW  
and POW set as required by application  
for DDC 1  
Register 0x354, Register 0x355,  
Register 0x360, Register 0x361 = FTW  
and POW set as required by application  
for DDC 2  
Register 0x374, Register 0x375,  
Register 0x380, Register 0x381 = FTW  
and POW set as required by application  
for DDC 3  
1 fS is the ADC sample rate. Bandwidths listed are <−0.001 dB of pass-band ripple and >100 dB of stop band alias rejection.  
2 The NCOs must be synchronized either through the SPI or through the SYNC pins after all writes to the FTW or POW registers are complete. This ensures the proper  
operation of the NCO. See the NCO Synchronization section for more information.  
Rev. 0 | Page 46 of 64  
Data Sheet  
AD9684  
DIGITAL OUTPUTS  
Minimize the length of the output data lines and the corresponding  
loads to reduce transients within the AD9684. These transients  
can degrade converter dynamic performance.  
DIGITAL OUTPUTS  
The AD9684 output drivers are for standard ANSI LVDS, but  
optionally the drive current can be reduced using Register 0x56A.  
The reduced drive current for the LVDS outputs potentially  
reduces the digitally induced noise.  
The lowest typical conversion rate of the AD9684 is 250 MSPS.  
At clock rates below 250 MSPS, dynamic performance may  
degrade.  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI  
control.  
Data Clock Output  
The AD9684 also provides a data clock output (DCO) intended  
for capturing the data in an external register. The DCO relative  
to the data output can be adjusted using Register 0x569.  
The AD9684 has a flexible three-state ability for the digital  
output pins. The three-state mode is enabled when the device is  
set for power-down mode.  
ADC OVERRANGE  
The ADC overrange (OR) indicator is asserted when an overrange  
is detected on the input of the ADC. The overrange condition is  
determined at the output of the ADC pipeline and, therefore, is  
subject to a latency of 28 ADC clocks. An overrange at the input is  
indicated by the OR bit 28 clock cycles after it occurs.  
As shown in Table 24, the function of the output pins changes  
based upon the selection of either parallel or byte output mode  
in Register 0x568.  
Timing  
The AD9684 provides latched data with a pipeline delay of  
33 input sample clock cycles. Data outputs are available one  
propagation delay (tPD) after the rising edge of the clock signal.  
Table 23. LVDS Output Configurations  
Number of Virtual  
Converters Supported  
Virtual Converter  
Resolution (Max)  
Parallel Output Mode  
LVDS Byte Mode Outputs Required  
Parallel Interleaved, Two  
Converters (0x1)  
2
14-bit  
DCO + STATUS + D[13:0]  
Parallel Channel Multiplexed, Two  
Converters (0x3)  
2
14-bit  
DCO + STATUS + D[13:7] =  
Channel AD[6:0] = Channel B  
Byte Mode, Two Converters (0x5)  
Byte Mode, Four Converters (0x6)  
Byte Mode, Eight Converters (0x7)  
2
4
8
16-bit  
16-bit  
16-bit  
1 DCO + 1 STATUS + 8 DATA[7:0]  
1 DCO + 1 STATUS + 8 DATA[7:0]  
1 DCO + 1 STATUS + 8 DATA[7:0]  
Table 24. Pin Mapping Between LVDS Parallel/Byte Modes  
Pin Name  
DCO−, DCO+  
STATUS−, STATUS+  
D13−, D13+  
D12−, D12+  
D11−, D11+  
D10−, D10+  
D9−, D9+  
D8−, D8+  
D7−, D7+  
D6−, D6+  
D5−, D5+  
LVDS Parallel Mode Output  
DCO−, DCO+  
OVR−, OVR+  
D13−, D13+  
D12−, D12+  
D11−, D11+  
D10−, D10+  
D9−, D9+  
D8−, D8+  
D7−, D7+  
D6−, D6+  
D5−, D5+  
LVDS Byte Mode Output  
DCO−, DCO+  
FCO−, FCO+  
STATUS−, STATUS+  
DATA7−, DATA7+  
DATA6−, DATA6+  
DATA5−, DATA5+  
DATA4−, DATA4+  
DATA3−, DATA3+  
DATA2−, DATA2+  
DATA1−, DATA1+  
DATA0−, DATA0+  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
D4−, D4+  
D3−, D3+  
D2−, D2+  
D1−, D1+  
D4−, D4+  
D3−, D3+  
D2−, D2+  
D1−, D1+  
D0−, D0+  
D0−, D0+  
Rev. 0 | Page 47 of 64  
 
 
 
 
AD9684  
Data Sheet  
MULTICHIP SYNCHRONIZATION  
The AD9684 supports several features that aid users in meeting  
the requirements for capturing SYNC signals. The SYNC  
sample event can be defined as either a synchronous low to high  
transition or a synchronous high to low transition. Additionally,  
the AD9684 allows the SYNC signal to be sampled using  
either the rising edge or the falling edge of the CLK input. The  
AD9684 can also to ignore a programmable number (up to 16)  
of SYNC events. The SYNC control options can be selected  
using Register 0x120 and Register 0x121.  
The AD9684 has a SYNC input that allows the user flexible  
options for synchronizing the internal blocks. The SYNC  
input is a source synchronous system reference signal that  
enables multichip synchronization. The input clock divider,  
DDCs, and signal monitor block LVDS output link can be  
synchronized using the SYNC input. For the highest level of  
timing accuracy, SYNC must meet the setup and hold  
requirements relative to the CLK input.  
The flowchart in Figure 67 shows the internal mechanism by  
which multichip synchronization can be achieved in the AD9684.  
START  
INCREMENT  
SYNC± IGNORE  
COUNTER  
NO  
NO  
NO  
SYNC±  
IGNORE  
COUNTER  
EXPIRED?  
REG (0x121)  
UPDATE  
SETUP/HOLD  
DETECTOR STATUS  
REG (0x128)  
RESET  
SYNC± IGNORE  
COUNTER  
SYNC±  
ENABLED?  
REG (0x120)  
NO  
YES  
SYNC±  
ASSERTED?  
YES  
YES  
CLOCK  
DIVIDER  
AUTO ADJUST  
ENABLED?  
REG (0x10D)  
INPUT  
CLOCK  
INCREMENT  
SYNC±  
COUNTER  
REG (0x12A)  
CLOCK  
DIVIDER  
> 1?  
ALIGN CLOCK  
DIVIDER  
PHASE TO  
SYNC±  
YES  
YES  
YES  
DIVIDER  
ALIGNMENT  
REQUIRED?  
REG (0x10B)  
NO  
NO  
NO  
ALIGN PHASE OF ALL  
INTERNAL CLOCKS  
TO SYNC±  
CLOCK  
ALIGNMENT  
REQUIRED?  
YES  
NO  
SIGNAL  
MONITOR  
SYNC  
ENABLED?  
REG (0x26F)  
DDC NCO  
ALIGN DDC  
ALIGN SIGNAL  
MONITOR  
COUNTERS  
YES  
YES  
ALIGNMENT  
ENABLED?  
REG (0x300)  
NCO PHASE  
BACK TO START  
ACCUMULATOR  
NO  
NO  
Figure 67. Multichip Synchronization  
Rev. 0 | Page 48 of 64  
 
 
Data Sheet  
AD9684  
Figure 68 and Figure 69 show the setup and hold status values for  
different phases of SYNC .  
SYNC± SETUP AND HOLD WINDOW MONITOR  
To assist in ensuring a valid SYNC capture, the AD9684 has a  
SYNC setup and hold window monitor. This feature allows the  
system designer to determine the location of the SYNC signals  
relative to the CLK signals by reading back the amount of setup  
and hold margin on the interface through the memory map.  
The setup detector returns the status of the SYNC signal before  
the CLK edge and the hold detector returns the status of the  
SYNC signal after the CLK edge. Register 0x128 stores the  
status of SYNC and alerts the user if the SYNC signal is  
captured by the ADC.  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
REG 0x128[3:0]  
–8  
7
6
5
4
3
2
1
0
CLK±  
INPUT  
SYNC±  
INPUT  
VALID  
FLIP FLOP  
HOLD (MIN)  
FLIP FLOP  
SETUP (MIN)  
FLIP FLOP  
HOLD (MIN)  
Figure 68. SYNC Setup Detector  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
7
REG 0x128[7:4]  
6
5
4
3
2
1
0
CLK±  
INPUT  
SYNC±  
INPUT  
VALID  
FLIP FLOP  
SETUP (MIN)  
FLIP FLOP  
HOLD (MIN)  
FLIP FLOP  
HOLD (MIN)  
Figure 69. SYNC Hold Detector  
Rev. 0 | Page 49 of 64  
 
 
 
AD9684  
Data Sheet  
Table 25 describes the contents of Register 0x128 and how to interpret those contents.  
Table 25. SYNC Setup and Hold Monitor Register 0x128  
Register 0x1±8, Bits[7:4],  
Hold Status  
Register 0x1±8, Bits[3:0],  
Setup Status  
Description  
0x0  
0x0 to 0x8  
0x8  
0x0 to 0x7  
0x8  
0x9 to 0xF  
0x0  
Possible setup error; the smaller this number, the smaller the setup margin  
No setup or hold error (best hold margin)  
No setup or hold error (best setup and hold margin)  
No setup or hold error (best setup margin)  
0x8  
0x9 to 0xF  
0x0  
0x0  
0x0  
Possible hold error; the larger this number, the smaller the hold margin  
Possible setup or hold error  
Rev. 0 | Page 50 of 64  
 
Data Sheet  
AD9684  
TEST MODES  
and some are not. The pseudorandom number (PN) generators  
from the PN sequence tests can be reset by setting Bit 4 or Bit 5  
of Register 0x550. These tests can be performed with or without  
an analog signal (if present, the analog signal is ignored);  
however, they do require an encode clock. For more information,  
see the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI.  
ADC TEST MODES  
The AD9684 has various test options that aid in the system level  
implementation. The AD9684 has ADC test modes that are  
available in Register 0x550. These test modes are described in  
Table 26. When an output test mode is enabled, the analog  
section of the ADC is disconnected from the digital back-end  
blocks and the test pattern is run through the output formatting  
block. Some of the test patterns are subject to output formatting,  
Table 26. ADC Test Modes  
Output Test Mode  
Bit Sequence  
Default/Seed  
Value  
Pattern Name  
Off (default)  
Midscale short  
+Full-scale short  
−Full-scale short  
Checkerboard  
PN sequence  
long  
PN sequence  
short  
Expression  
Sample (N, N + 1, N + ±, …)  
0000  
0001  
0010  
0011  
0100  
0101  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0x3AFF  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0x1555, 0x2AAA, 0x1555, 0x2AAA, 0x1555  
0x3FD7, 0x0002, 0x26E0, 0x0A3D, 0x1CA6  
00 0000 0000 0000  
01 1111 1111 1111  
10 0000 0000 0000  
10 1010 1010 1010  
x23 + x18 + 1  
0110  
0111  
1000  
x9 + x5 + 1  
0x0092  
0x125B, 0x3C9A, 0x2660, 0x0c65, 0x0697  
0x0000, 0x3FFF, 0x0000, 0x3FFF, 0x0000  
One-/zero-word  
toggle  
User input  
11 1111 1111 1111  
Not applicable  
Not applicable  
Register 0x551 to  
Register 0x558  
For repeat mode: User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2], User Pattern 1[15:2]…  
For single mode: User Pattern 1[15:2], User Pattern 2[15:2],  
User Pattern 3[15:2], User Pattern 4[15:2], 0x0000…  
(x) % 214, (x + 1) % 214, (x + 2) % 214, (x + 3) % 214  
1111  
Ramp output  
(x) % 214  
Not applicable  
Rev. 0 | Page 51 of 64  
 
 
 
AD9684  
Data Sheet  
SERIAL PORT INTERFACE (SPI)  
The AD9684 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. The SPI gives the user added  
flexibility and customization, depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the serial port. Memory is organized into bytes  
that can be further divided into fields. These fields are  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to program the chip and to read the contents of  
the on-chip memory. If the instruction is a readback operation,  
performing a readback causes the SDIO pin to change direction  
from an input to an output at the appropriate point in the serial  
frame.  
documented in the Memory Map section. For detailed operational  
information, see the Serial Control Interface Standard (Rev. 0).  
Data can be sent in MSB first mode or in LSB first mode. MSB  
first is the default configuration on power-up and can be  
changed via the SPI port configuration register. For more  
information about this and other features, see the Serial Control  
Interface Standard (Rev. 0).  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 27). The SCLK (serial clock) pin  
synchronizes the read and write data presented from/to the  
ADC. The SDIO (serial data input/output) pin is a dual-purpose  
pin that allows data to be sent to and read from the internal ADC  
memory map registers. The CSB (chip select bar) pin is an active  
low control that enables or disables the read and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 27 compose the physical interface  
between the user programming device and the serial port of the  
AD9684. The SCLK pin and the CSB pin function as inputs  
when using the SPI. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during  
readback.  
Table 27. Serial Port Interface Pins  
Pin  
Function  
The SPI is flexible enough to be controlled by either field  
programmable gate arrays (FPGAs) or microcontrollers. One  
method for SPI configuration is described in detail in the AN-  
812 Application Note, Microcontroller-Based Serial Port  
Interface (SPI) Boot Circuit.  
SCLK Serial clock. The serial shift clock input, which synchronizes  
the serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
Do not activate the SPI port during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used  
for other devices, it may be necessary to provide buffers between  
this bus and the AD9684 to prevent these signals from  
transitioning at the converter inputs during critical sampling  
periods.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. See Figure 3 and  
Table 5 for an example of the serial timing and its definitions.  
Other modes involving the CSB pin are available. The CSB pin  
can be held low indefinitely, which permanently enables the  
device; this is called streaming. The CSB pin can stall high  
between bytes to allow additional external timing. When CSB is  
tied high, SPI functions are placed in a high impedance mode.  
This mode turns on any secondary functions of the SPI pins.  
SPI ACCESSIBLE FEATURES  
Table 28 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the Serial Control Interface Standard (Rev. 0). The AD9684  
device specific features are described in the Memory Map  
section.  
All data is composed of 8-bit words. The first bit of each  
individual byte of serial data indicates whether a read or write  
command is issued. This bit allows the SDIO pin to change  
direction from an input to an output.  
Table 28. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Clock  
Allows the user to set either power-down mode or standby mode  
Allows the user to access the clock divider via the SPI  
DDC  
Test Input/Output  
Output Mode  
Allows the user to set up the decimation filters for different applications  
Allows the user to set the test modes to have known data on the output bits  
Allows the user to set up outputs  
Rev. 0 | Page 52 of 64  
 
 
 
 
 
 
Data Sheet  
AD9684  
MEMORY MAP  
Logic Levels  
READING THE MEMORY MAP REGISTER TABLE  
An explanation of logic level terminology follows:  
Each row in the memory map register table has eight bit  
locations. The memory map is divided into four sections: the  
Analog Devices, Inc., SPI registers (Register 0x000 to  
Register 0x00D), the ADC function registers (Register 0x015 to  
Register 0x278), The DDC function registers (Register 0x300 to  
Register 0x387), and the digital outputs and test modes registers  
(Register 0x550 to Register 0x05B).  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
“X” denotes a “don’t care” bit.  
Channel-Specific Registers  
Table 29 documents the default hexadecimal value for each  
hexadecimal address shown. The column with the heading Bit 7  
(MSB) is the start of the default hexadecimal value given. For  
example, Address 0x561, the output mode register, has a  
hexadecimal default value of 0x01. This means that Bit 0 = 1,  
and the remaining bits are 0s. This setting is the default output  
format value, which is twos complement. For more information  
on this function and others, see the Table 29.  
Some channel setup functions, such as the input termination  
(Register 0x016), can be programmed to a different value for  
each channel. In these cases, channel address locations are  
internally duplicated for each channel. These registers and bits  
are designated in Table 29 as local. These local registers and bits  
can be accessed by setting the appropriate Channel A or  
Channel B bits in Register 0x008. If both bits are set, the  
subsequent write affects the registers of both channels. In a read  
cycle, set only Channel A or Channel B to read one of the two  
registers. If both bits are set during an SPI read cycle, the device  
returns the value for Channel A. Registers and bits designated  
as global in Table 29 affect the entire device and the channel  
features for which independent settings are not allowed  
between channels. The settings in Register 0x005 do not affect  
the global registers and bits.  
Unassigned and Reserved Locations  
All address and bit locations that are not included in Table 29  
are not currently supported for this device. Write unused bits of  
a valid address location with 0s unless the default value is set  
otherwise. Writing to these locations is required only when part  
of an address location is unassigned (for example, Address 0x561).  
If the entire address location is open (for example, Address 0x013),  
do not write to this address location.  
SPI Soft Reset  
Default Values  
After issuing a soft reset by programming 0x81 to Register 0x000,  
the AD9684 requires 5 ms to recover. Therefore, when program-  
ming the AD9684 for application setup, ensure that an adequate  
delay is programmed into the firmware after asserting the soft  
reset and before starting the device setup.  
After the AD9684 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
Table 29.  
Rev. 0 | Page 53 of 64  
 
 
AD9684  
Data Sheet  
MEMORY MAP REGISTER TABLE  
All address locations that are not included in Table 29 are not currently supported for this device and must not be written.  
Table 29. Memory Map Registers  
Reg.  
Addr. Register  
(Hex) Name  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
Analog Devices SPI Registers  
0x000 INTERFACE_ Soft reset  
LSB first  
0 = MSB  
1 = LSB  
Address  
ascension  
0
0
Address  
ascension  
LSB first  
0 = MSB  
1 = LSB  
Soft reset  
(self  
clearing)  
0x00  
0x00  
CONFIG_A  
(self  
clearing)  
0x001 INTERFACE_ Single  
0
0
0
0
0
0
0
0
0
Datapath  
soft reset  
(self  
0
CONFIG_B  
instruction  
clearing)  
0x002 DEVICE_  
CONFIG  
0
0
00 = normal operation 0x00  
10 = standby  
(local)  
11 = power-down  
0x003 CHIP_TYPE  
011 = high speed ADC  
0x03  
0xD3  
Read only  
Read only  
0x004 CHIP_ID  
(low byte)  
1
1
0
1
0
0
1
1
0x005 CHIP_ID  
(high byte)  
0
0x00  
0x5X  
Read only  
Read only  
0x006 CHIP_  
GRADE  
Chip speed grade  
0101 = 500 MSPS  
0
0
0
1
0
0
0
X
0x008 Device  
index  
0
0
0
0
0
0
0
Channel B Channel A 0x03  
0x00A Scratch  
pad  
0
0
0
0x00  
0x00B SPI revision  
0
0
0
1
0
0
0
1
0
0
0
1
0
1
1
0
0x01  
0x56  
0x00C Vendor ID  
(low byte)  
Read only  
Read only  
0x00D Vendor ID  
(high byte)  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0x04  
0x00  
ADC Function Registers  
0x015 Analog  
input  
0
Input  
disable  
(local)  
0 = normal  
operation  
1 = input  
disabled  
0x016 Input  
Analog input differential termination  
0000 = 400 Ω (default)  
0001 = 200 Ω  
1
0
1
0
0
0
0
0x0C  
0x20  
termination  
(local)  
0010 = 100 Ω  
0110 = 50 Ω  
0x018 Input  
buffer  
0000 = 1.0× buffer current (default)  
0001 = 1.5× buffer current  
0010 = 2.0× buffer current  
0011 = 2.5× buffer current  
0100 = 3.0× buffer current  
0101 = 3.5× buffer current  
0
current  
control  
(local)  
1111 = 8.5× buffer current  
0x024 V_1P0  
control  
0
0
0
0
0
0
0
0
1.0 V refer- 0x00  
ence select  
0 = internal  
1 =  
external  
0x025 Input full-  
scale range  
(local)  
0
0
0
Full-scale adjust  
0000 = 1.94 V  
1000 = 1.46 V  
1001 = 1.58 V  
1010 = 1.70 V  
1011 = 1.82 V  
0x0C  
V p-p  
differ-  
ential; use  
in con-  
junction  
with Reg.  
0x030  
1100 = 2.06 V (default)  
Rev. 0 | Page 54 of 64  
 
 
Data Sheet  
AD9684  
Reg.  
Addr. Register  
Bit 7  
(MSB)  
(Hex)  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
0
0
0
0
0
0
0
Diode  
selection  
0 = no  
diode  
0x00  
Used in  
0x028 Tempera-  
ture diode  
conjunc-  
tion with  
Reg. 0x040  
(local)  
selected  
1 =  
tempera-  
ture diode  
selected  
0x030 Input full-  
scale  
0
0
0
Full-scale control  
See Table 9 for  
0
0
0
0x04  
Input full-  
scale  
control  
(local)  
recommended settings for  
different frequency bands  
Default values:  
control  
(local)  
Full scale range ≥ 1.82 V =  
001  
Full scale range < 1.82 V =  
110  
0x03F PDWN/  
STBY pin  
0 =  
PDWN/  
STBY  
enabled  
1 =  
0
0
0
0
0
0
0
0x00  
0x3F  
Used in  
conjunc-  
tion with  
Reg. 0x040  
control  
(local)  
disabled  
0x040 Chip pin  
control  
PDWN/STBY function  
00 = power down  
01 = standby  
Fast Detect B (FD_B)  
000 = Fast Detect B output  
001 = reserved  
Fast Detect A (FD_A)  
000 = Fast Detect A output  
001 = reserved  
10 = disabled  
010 = reserved  
111 = disabled  
010 = reserved  
011 = temperature diode  
111 = disabled  
0x10B Clock  
divider  
0
0
0
0
0
0
0
0
0
000 = divide by 1  
001 = divide by 2  
011 = divide by 4  
111 = divide by 8  
0x00  
0x00  
0x10C Clock  
divider  
Independently controls Channel A and Channel B  
clock divider phase offset  
phase  
(local)  
0000 = 0 input clock cycles delayed  
0001 = ½ input clock cycles delayed  
0010 = 1 input clock cycles delayed  
0011 = 1½ input clock cycles delayed  
0100 = 2 input clock cycles delayed  
0101 = 2½ input clock cycles delayed  
1111 = 7½ input clock cycles delayed  
Clock  
divider and divider  
Clock  
divider  
must be  
>1  
0x10D Clock  
0
0
0
Clock divider negative  
skew window  
00 = no negative skew  
01 = 1 device clock of  
negative skew  
Clock divider positive 0x00  
skew window  
00 = no positive skew  
01 = 1 device clock of  
positive skew  
SYNC  
control  
automatic  
phase  
adjustment  
0 =  
disabled  
1 =  
10 = 2 device clocks of  
negative skew  
11 = 3 device clocks of  
negative skew  
10 = 2 device clocks of  
positive skew  
11 = 3 device clocks of  
positive skew  
enabled  
0x117 Clock delay  
control  
0
0
0
0
0
0
0
Clock fine  
delay  
adjust  
enable  
0 =  
0x00  
Enabling  
the clock  
fine delay  
adjustment  
causes a  
disabled  
1 =  
datapath  
soft reset  
enabled  
Rev. 0 | Page 55 of 64  
AD9684  
Data Sheet  
Reg.  
Addr. Register  
Bit 7  
(MSB)  
(Hex)  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
0x118 Clock fine  
delay  
Clock fine delay adjust, Bits[7:0]  
Twos complement coded control to adjust the fine sample clock skew in ~1.7 ps steps  
0x00  
Used in  
con-  
(local)  
≤−88 = −151.7 ps skew  
−87 = −150 ps skew  
junction  
with Reg.  
0x0117  
0 = 0 ps skew  
≥+87 = +150 ps skew  
0x11C Clock  
status  
0
0
0
0
0
0
0
0
0
0 = no  
0x00  
0x00  
Read only  
input clock  
detected  
1 = input  
clock det-  
ected  
SYNC flag  
reset  
0 = normal  
operation  
1 = flags  
SYNC  
transition  
select  
0 = low to  
high  
CLK edge  
select  
0 = rising  
SYNC mode select  
00 = disabled  
01 = continuous  
0
0x120 SYNC  
Control 1  
1 = falling  
10 = N shot  
held in reset  
1 = high to  
low  
0x121 SYNC  
Control 2  
0
0
0
0
SYNC N shot ignore counter select  
0000 = next SYNC only  
0001 = ignore the first SYNC transitions  
0010 = ignore the first two SYNC transitions  
0x00  
0x00  
Mode  
select  
(Reg.  
0x120,  
Bits[2:1])  
must be  
N shot  
1111 = ignore the first 16 SYNC transitions  
0x123 SYNC  
timestamp  
delay  
SYNC timestamp delay, Bits[6:0]  
Ignored  
when Reg.  
0x01FF =  
0x00  
0x00 = no delay  
0x01 = 1 clock delay  
control  
0x7F = 127 clocks delay  
0x128 SYNC  
Status 1  
SYNC hold status, Register 0x128, Bits [7:4]  
SYNC setup status, Register 0x128, Bits [3:0]  
Read  
only  
0x129 SYNC and  
0
0
0
0
Clock divider phase when SYNC was captured  
0000 = in-phase  
Read  
only  
clock  
divider  
status  
0001 = SYNC is ½ cycle delayed from clock  
0010 = SYNC is 1 cycle delayed from clock  
0011 = 1½ input clock cycles delayed  
0100 = 2 input clock cycles delayed  
0101 = 2½ input clock cycles delayed  
1111 = 7½ input clock cycles delayed  
0x12A SYNC  
counter  
SYNC counter, Bits[7:0] increments when a SYNC signal is captured  
Read  
only  
0x1FF Chip sync  
mode  
Synchronization mode 0x00  
00 = normal  
01 = timestamp  
0x200 Chip  
application  
mode  
0
0
0
0
Chip Q  
ignore  
0 = normal  
(I/Q)  
1 = ignore  
(I only)  
0
0
0
Chip operating mode 0x00  
00 = full bandwidth  
mode  
01 = DDC 0 on  
10 = DDC 0 and DDC 1  
0x201 Chip  
decimation  
ratio  
0
0
0
Chip decimation ratio select  
0x00  
0x00  
000 = decimate by 1  
001 = decimate by 2  
010 = decimate by 4  
011 = decimate by 8  
100 = decimate by 16  
0x228 Customer  
offset  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
Rev. 0 | Page 56 of 64  
Data Sheet  
AD9684  
Reg.  
Addr. Register  
Bit 7  
(MSB)  
(Hex)  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
0x245 Fast detect  
0
0
0
0
Force FD_A/ Force value  
0
Enable fast 0x00  
detect  
output  
(FD)  
control  
(local)  
FD_B pins  
0 = normal  
function  
of FD_A/  
FD_B pins if  
force pins is  
1 = force to true, this  
value  
value is  
output on  
FD_x pins  
0x247 FD upper  
threshold  
LSB  
Fast detect upper threshold, Bits[7:0]  
0x00  
0x00  
0x00  
0x00  
(local)  
0x248 FD upper  
threshold  
MSB  
0
0
0
0
0
0
Fast detect upper threshold, Bits[12:8]  
(local)  
0x249 FD lower  
threshold  
LSB  
Fast detect lower threshold, Bits[7:0]  
(local)  
0x24A FD lower  
threshold  
MSB  
Fast detect lower threshold, Bits[12:8]  
(local)  
0x24B FD dwell  
time LSB  
Fast detect dwell time, Bits[7:0]  
0x00  
0x00  
(local)  
0x24C FD dwell  
time MSB  
Fast detect dwell time, Bits[15:8]  
(local)  
0x26F Signal  
monitor  
0
0
0
0
0
0
0
0
0
0
0
0
Synchronization mode 0x00  
00 = disabled  
synchroni-  
zation  
control  
01 = continuous  
11 = one-shot  
0x270 Signal  
monitor  
Peak  
0
0x00  
detector  
control  
0 =  
(local)  
disabled  
1 =  
enabled  
0x271 Signal  
Monitor  
Signal monitor period, Bits[7:0]  
Signal monitor period, Bits[15:8]  
0x80  
0x00  
0x00  
0x01  
In  
decimated  
output  
clock cycles  
Period  
Register 0  
(local)  
0x272 Signal  
Monitor  
In  
decimated  
output  
clock cycles  
Period  
Register 1  
(local)  
0x273 Signal  
Monitor  
Signal monitor period, Bits[23:16]  
In  
decimated  
output  
clock cycles  
Period  
Register 2  
(local)  
0
0
0
Result  
0
0
0
Result  
selection  
0 =  
reserved  
1 = peak  
detector  
0x274 Signal  
monitor  
result  
update  
1 = update  
results (self  
clear)  
control  
(local)  
Rev. 0 | Page 57 of 64  
AD9684  
Data Sheet  
Reg.  
Addr. Register  
Bit 7  
(MSB)  
(Hex)  
Name  
Bit 6  
Bit 5  
Bit 4  
Signal monitor result, Bits[7:0]  
When Register 0x0274, Bit 0 = 1, result Bits[19:7] = peak detector absolute value, Bits [12:0]; result Bits[6:0] = 0 only  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
0x275 Signal  
Monitor  
Read  
Updated  
based on  
Reg. 0x274,  
Bit 4  
Result  
Register 0  
(local)  
0x276 Signal  
Monitor  
Signal monitor result, Bits[15:8]  
Read  
only  
Updated  
based on  
Reg.  
Result  
Register 1  
0x274, Bit 4  
(local)  
0x277 Signal  
Monitor  
0
0
0
0
Signal monitor result, Bits[19:16]  
Read  
only  
Updated  
based on  
Reg.  
Result  
Register 1  
0x274, Bit 4  
(local)  
0x278 Signal  
monitor  
period  
Period count result, Bits[7:0]  
Read  
only  
Updated  
based on  
Reg.  
counter  
result  
0x274, Bit 4  
(local)  
Digital Downconverter (DDC) Function Registers—See the Digital Downconverters (DDCs) Section  
0x300 DDC syn-  
chronization  
control  
0
0
0
DDC NCO  
soft reset  
0 = normal  
operation  
1 = reset  
0
0
Synchronization mode  
(triggered by SYNC  
00 = disabled  
)
01 = continuous  
11 = one-shot  
0x310 DDC 0  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
IF mode  
Complex to  
real enable  
0 = disabled  
1 = enabled  
0
Decimation rate select 0x00  
(complex to real  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0 Hz IF mode (mixer  
bypassed, NCO disabled)  
10 = fS/4 Hz IF mode (fS/4  
downmixing mode)  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
complex  
mixer  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x311 DDC 0  
input  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x00  
selection  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x314 DDC 0  
frequency  
LSB  
DDC 0 NCO FTW, Bits[7:0], twos complement  
0x00  
0x00  
0x315 DDC 0  
frequency  
MSB  
X
X
X
X
DDC 0 NCO FTW, Bits[11:8], twos complement  
0x320 DDC 0  
phase LSB  
DDC 0 NCO POW, Bits[7:0], twos complement  
0x00  
0x00  
0x00  
0x321 DDC 0  
phase MSB  
X
0
X
0
X
X
0
DDC 0 NCO POW, Bits[11:8], twos complement  
0x327 DDC 0  
output test  
mode  
0
0
Q output  
test mode  
enable  
0
I output  
test mode  
enable  
0 =  
selection  
0 =  
disabled  
1 = enabled  
from Ch. B  
disabled  
1 =  
enabled  
from Ch. A  
Rev. 0 | Page 58 of 64  
Data Sheet  
AD9684  
Reg.  
Addr. Register  
Bit 7  
(MSB)  
(Hex)  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
0x330 DDC 1  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
IF mode  
00 = variable IF mode  
(mixers and NCO  
Complex to  
real enable  
0 = disabled  
1 = enabled  
0
Decimation rate select 0x00  
(complex to real  
disabled)  
11 = decimate by 2  
(complex to real  
enabled)  
enabled)  
01 = 0 Hz IF mode (mixer  
bypassed, NCO disabled)  
10 = fS/4 Hz IF mode (fS/4  
downmixing mode)  
11 = test mode (mixer  
inputs forced to +FS,  
NCO enabled)  
complex  
mixer  
11 = decimate by 1  
0x331 DDC 1  
input  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x00  
selection  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x334 DDC 1  
frequency  
LSB  
DDC 1 NCO FTW, Bits[7:0], twos complement  
0x00  
0x00  
0x335 DDC 1  
frequency  
MSB  
X
X
X
X
DDC 1 NCO FTW, Bits[11:8], twos complement  
0x340 DDC 1  
phase LSB  
DDC 1 NCO POW, Bits[7:0], twos complement  
0x00  
0x00  
0x00  
0x341 DDC 1  
phase MSB  
X
0
X
0
X
0
X
0
DDC 1 NCO POW, Bits[11:8], twos complement  
0x347 DDC 1  
output test  
mode  
0
Q output  
test mode  
enable  
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
selection  
0 = disabled  
1 = enabled  
from  
Ch. B  
enabled  
from Ch. A  
0x350 DDC 2  
control  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
IF mode  
00 = variable IF mode  
(mixers and NCO  
enabled)  
01 = 0Hz IF mode (mixer  
bypassed, NCO disabled)  
10 = fS/4 Hz IF mode (fS/4  
downmixing mode)  
11 = test mode (mixer  
inputs forced to +FS, NCO  
enabled)  
Complex to  
real enable  
0 = disabled  
1 = enabled  
0
Decimation rate select 0x00  
(complex to real  
disabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
complex  
mixer  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x351 DDC 2  
input  
0
0
0
0
Q input  
select  
0
I input  
select  
0x00  
selection  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x354 DDC 2  
frequency  
LSB  
DDC 2 NCO FTW, Bits[7:0], twos complement  
0x00  
0x00  
0x355 DDC 2  
frequency  
MSB  
X
X
X
X
X
X
X
DDC 2 NCO FTW, Bits[11:8], twos complement  
0x360 DDC 2  
phase LSB  
DDC 2 NCOPOW, Bits[7:0], twos complement  
DDC 2 NCO POW, Bits[11:8], twos complement  
0x00  
0x00  
0x361 DDC 2  
phase MSB  
X
Rev. 0 | Page 59 of 64  
AD9684  
Data Sheet  
Reg.  
Addr. Register  
Bit 7  
(MSB)  
(Hex)  
0x367 DDC 2  
output test  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
0
0
0
0
0
Q output  
test mode  
enable  
0 = disabled  
1 = enabled  
from Ch. B  
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
0x00  
mode  
selection  
enabled  
from Ch. A  
0x370 DDC 3  
Mixer  
select  
0 = real  
mixer  
1 =  
Gain select  
0 = 0 dB  
gain  
1 = 6 dB  
gain  
IF mode  
00 = variable IF mode  
(mixers and NCO  
Complex to  
real enable  
0 = disabled  
1 = enabled  
0
Decimation rate select 0x00  
(complex to real  
control  
disabled)  
enabled)  
11 = decimate by 2  
00 = decimate by 4  
01 = decimate by 8  
10 = decimate by 16  
(complex to real  
01 = 0 Hz IF mode (mixer  
bypassed, NCO disabled)  
10 = fS/4 Hz IF mode (fS/4  
downmixing mode)  
11 = test mode (mixer  
inputs forced to +FS, NCO  
enabled)  
complex  
mixer  
enabled)  
11 = decimate by 1  
00 = decimate by 2  
01 = decimate by 4  
10 = decimate by 8  
0x371 DDC 3  
input  
0
0
0
0
0
Q input  
select  
0
I input  
select  
0x05  
selection  
0 = Ch. A  
1 = Ch. B  
0 = Ch. A  
1 = Ch. B  
0x374 DDC 3  
frequency  
LSB  
DDC 3 NCO FTW, Bits[7:0] twos complement  
0x00  
0x00  
0x375 DDC 3  
frequency  
MSB  
X
X
X
X
DDC 3 NCO FTW, Bits[11:8] twos complement  
0x380 DDC 3  
phase LSB  
DDC 3 NCO POW, Bits[7:0] twos complement  
0x00  
0x00  
0x00  
0x381 DDC 3  
phase MSB  
X
0
X
0
X
0
X
0
DDC 3 NCO POW, Bits[11:8] twos complement  
0x387 DDC 3  
output test  
mode  
0
Q output  
test mode  
0
I output  
test mode  
enable  
0 =  
disabled  
1 =  
enable  
selection  
0 = disabled  
1 = enabled  
from Ch. B  
enabled  
from Ch. A  
Digital Outputs and Test Modes  
0x550 ADC test  
modes  
User  
0
Reset PN  
long gen  
0 = long  
PN enable enable  
1 = long  
PN reset  
Reset PN  
short gen  
0 = short PN  
Test mode selection  
0000 = off (normal operation)  
0001 = midscale short  
0010 = positive full scale  
0011 = negative full scale  
0x00  
pattern  
selection  
0 =  
continuous  
repeat  
(local)  
1 = short PN  
reset  
0100 = alternating checker board  
1 = single  
pattern  
0101 = PN sequence, long  
0110 = PN sequence, short  
0111 = one/zero word toggle  
1000 = the user pattern test mode (used with  
Register 0x550, Bit 7 and User Pattern 1 to User  
Pattern 4 registers)  
1111 = ramp output  
0x551 User  
Pattern 1  
LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
0x00  
Used with  
Reg. 0x550  
and  
Reg. 0x573  
0x552 User  
Pattern 1  
MSB  
0
0
0
Used with  
Reg. 0x550  
and  
Reg. 0x573  
Rev. 0 | Page 60 of 64  
Data Sheet  
AD9684  
Reg.  
Addr. Register  
Bit 7  
(MSB)  
(Hex)  
0x553 User  
Pattern 2  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Used with  
Reg. 0x550  
and  
LSB  
Reg. 0x573  
0x554 User  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Used with  
Reg. 0x550  
and  
Pattern 2  
MSB  
Reg. 0x573  
0x555 User  
Used with  
Reg. 0x550  
and  
Pattern 3  
LSB  
Reg. 0x573  
0x556 User  
Used with  
Reg. 0x550  
and  
Pattern 3  
MSB  
Reg. 0x573  
0x557 User  
Used with  
Reg. 0x550  
and  
Pattern 4  
LSB  
Reg. 0x573  
0x558 User  
Used with  
Reg. 0x550  
and  
Pattern 4  
MSB  
Reg. 0x573  
0x559 Output  
Mode  
Status bit selection  
000 = tie low (1’b0)  
Control 1  
001 = overrange bit  
010 = signal monitor bit  
011 = fast detect (FD) bit  
100 = not applicable  
101 = system reference  
0x561 Output  
mode  
0
0
0
0
0
Sample  
invert  
0 = normal  
1 = sample  
invert  
Data format select  
00 = offset binary  
01 = twos  
complement  
0x01  
0x00  
0x562 Output  
overrange  
Virtual  
Con-  
verter 7 OR OR  
0 = OR bit 0 = OR bit  
enabled  
Virtual  
Converter 6  
Virtual  
Converter 5 verter 4 OR  
OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
Virtual Con-  
Virtual Con-  
verter 3 OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
Virtual Con-  
verter 2 OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
Virtual  
Virtual  
Con-  
verter 1  
Convert-  
er 0 OR  
(OR) clear  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
OR  
0 = OR bit  
enabled  
1 = OR bit  
cleared  
enabled  
0 = OR  
bit  
enabled  
1 = OR  
bit  
1 = OR bit 1 = OR bit  
cleared  
cleared  
cleared  
0x563 Output OR Virtual  
Virtual Con-  
verter 6 OR  
verter 7 OR 0 = no OR  
0 = no OR 1 = OR  
Virtual  
Virtual  
Virtual  
Converter 3  
OR  
0 = no OR  
1 = OR  
Virtual Con-  
verter 2 OR  
0 = no OR  
1 = OR  
Virtual  
Virtual  
0x00  
0x00  
Read only  
status  
Con-  
Converter 5 Converter 4  
OR  
0 = no OR  
1 = OR  
occurred  
Converter Converter 0  
1 OR OR  
0 = no OR 0 = no OR  
1 = OR 1 = OR  
occurred occurred  
OR  
0 = no OR  
1 = OR  
occurred  
1 = OR  
occurred  
occurred  
occurred  
occurred  
0x564 Output  
channel  
0
0
0
0
0
0
0
Converter  
channel  
swap  
select  
0 = normal  
channel  
ordering  
1 =  
channel  
swap  
enabled  
Rev. 0 | Page 61 of 64  
AD9684  
Data Sheet  
Reg.  
Addr. Register  
Bit 7  
(MSB)  
(Hex)  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit ±  
Bit 1  
Bit 0 (LSB) Default Notes  
0x568 LVDS  
output  
0
0
Frame clock mode (only  
used when in output data  
mode is in byte mode)  
00 = frame clock always  
off  
0
Output data mode  
0x00  
000 = parallel mode (one converter)  
001 = parallel interleaved mode (two  
converters)  
mode  
010 = parallel channel multiplexed  
(even/odd) mode (one converter)  
011 = parallel channel multiplexed  
(even/odd) mode (two converters)  
100 = byte mode (one converter)  
101 = byte mode (two converters)  
110 = byte mode (four converters)  
Others = reserved  
01 = frame clock always  
on  
10 = reserved  
11 = frame clock  
conditionally on based  
on PN23 sequence  
0x569 Digital  
clock  
0
0
0
1
0
0
0
0
0
DCO phase adjustment 0x01  
0x0: 0°  
0x1: 90°  
0x2: 180°  
0x3: 270°  
output  
adjust  
0x56A Output  
Parallel  
0
LVDS output drive current adjust  
000 = 2 mA  
0
0x4C  
Driver  
Adjust 1  
001 = 2.25 mA  
010 = 2.5 mA  
011 = 2.75 mA  
100 = 3.0 mA  
101 = 3.25 mA  
110 = 3.5 mA (default)  
111 = 3.75 mA  
0x05B Output  
Parallel  
0
0
0
0
0
0
Output slew rate  
control of LVDS driver  
Interface  
0x00  
Driver  
Adjust 2  
00 = 80 ps  
01 = 150 ps  
10 = 200 ps  
11 = 250 ps  
Rev. 0 | Page 62 of 64  
Data Sheet  
AD9684  
APPLICATIONS INFORMATION  
It is not necessary to split all of these power domains in all  
POWER SUPPLY RECOMMENDATIONS  
cases. The recommended solution shown in Figure 70 provides  
the lowest noise, highest efficiency power delivery system for  
the AD9684. If only one 1.25 V supply is available, route to  
AVDD1 first and then tap it off and isolate it with a ferrite bead  
or a filter choke, preceded by decoupling capacitors for  
SPIVDD, DVDD, and DRVDD, in that order. The user can  
employ several different decoupling capacitors to cover both  
high and low frequencies. These capacitors must be located  
close to the point of entry at the PCB level and close to the  
devices, with minimal trace lengths.  
The AD9684 must be powered by the following six supplies:  
AVDD1 = 1.25 V, AVDD2 = 2.5 V, AVDD3 = 3.3 V, DVDD =  
1.25 V, DRVDD = 1.25 V, and SPIVDD = 1.8 V. For applications  
requiring an optimal high power efficiency and low noise  
performance, it is recommended that the ADP2164 and ADP2370  
switching regulators be used to convert the 3.3 V, 5.0 V, or 12 V  
input rails to an intermediate rail (1.8 V and 3.8 V). These  
intermediate rails are then postregulated by very low noise, low  
dropout (LDO) regulators (ADP1741, ADP1740, and ADP125).  
Figure 70 shows the recommended power supply scheme for  
the AD9684.  
3.3V  
INPUT  
ADP1741  
LDO  
2.5V: AVDD2  
1.8V: SPIVDD  
1.25V: AVDD1  
1.25V: DVDD  
1.25V: DRVDD  
ADP125  
LDO  
ADP2164  
1.8V  
ADP1741  
LDO  
BUCK  
REGULATOR  
ADP1741  
LDO  
ADP1740  
LDO  
ADP2370  
3.8V  
5V/12V  
INPUT  
ADP125  
LDO  
3.3V: AVDD3  
BUCK  
REGULATOR  
Figure 70. High Efficiency, Low Noise Power Solution for the AD9684  
Rev. 0 | Page 63 of 64  
 
 
 
AD9684  
Data Sheet  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
PAD CORNER  
A1 BALL  
PAD CORNER  
14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
8.20 SQ  
10.40 REF  
SQ  
K
L
0.80  
11.20 SQ  
M
N
P
TOP VIEW  
BOTTOM VIEW  
0.80 REF  
DETAIL A  
1.49  
1.38  
1.27  
1.15  
1.05  
0.95  
DETAIL A  
0.75  
REF  
0.38  
0.33  
0.28  
0.30 REF  
0.50  
0.45  
0.40  
SEATING  
PLANE  
COPLANARITY  
0.12  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-GGAB-1.  
Figure 71. 196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]  
(BP-196-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD9684BBPZ-500  
AD9684BBPZRL7-500  
AD9684-500EBZ  
−40°C to +85°C  
−40°C to +85°C  
196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]  
196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]  
Evaluation Board for AD9684-500  
BP-196-3  
BP-196-3  
1 Z = RoHS Compliant Part.  
©±015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13015-0-5/15(0)  
Rev. 0 | Page 64 of 64  
 
 

相关型号:

AD9684BBPZRL7-500

Dual Analog-to-Digital Converter
ADI

AD9684_17

Dual Analog-to-Digital Converter
ADI

AD9685BD

Analog Comparator
ETC

AD9685BH

Analog Comparator
ETC

AD9686BH

Analog Comparator
ETC

AD9686BQ

Analog Comparator
ETC

AD9686TE

Analog Comparator
ETC

AD9686TH

Analog Comparator
ETC

AD9686TQ

Analog Comparator
ETC

AD9687BD

Analog Comparator
ETC

AD9688BQ

Analog-to-Digital Converter, 4-Bit
ETC

AD9688TE

Analog-to-Digital Converter, 4-Bit
ETC