AD8553ARMZ [ADI]

1.8 V to 5 V Auto-Zero, In-Amp with Shutdown; 1.8 V至5 V自动调零,仪表放大器,带有关断
AD8553ARMZ
型号: AD8553ARMZ
厂家: ADI    ADI
描述:

1.8 V to 5 V Auto-Zero, In-Amp with Shutdown
1.8 V至5 V自动调零,仪表放大器,带有关断

仪表放大器
文件: 总20页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.8 V to 5 V Auto-Zero, In-Amp  
with Shutdown  
AD8553  
FEATURES  
PIN CONFIGURATION  
Low offset voltage: 20 μV max  
Low input offset drift: 0.1 μV/°C max  
High CMR: 120 dB min @ G = 100  
Low noise: 0.7 μV p-p from 0.01 Hz to 10 Hz  
Wide gain range: 0.1 to 10,000  
Single-supply operation: 1.8 V to 5.5 V  
Rail-to-rail output  
RGA  
VINP  
VCC  
VO  
1
2
3
4
5
10 RGB  
9
8
7
6
VINN  
GND  
AD8553  
TOP VIEW  
(Not to Scale)  
V
REF  
VFB  
ENABLE  
Figure 1. 10-Lead MSOP  
Shutdown capability  
APPLICATIONS  
Strain gauge  
Weigh scales  
Pressure sensors  
Laser diode control loops  
Portable medical instruments  
Thermocouple amplifiers  
GENERAL DESCRIPTION  
The AD8553 is a precision instrumentation amplifier featuring  
low noise, rail-to-rail output and a power-saving shutdown  
mode. The AD8553 also features low offset voltage and drift  
coupled with high common-mode rejection. In shutdown  
mode, the total supply current is reduced to less than 4 μA.  
The AD8553 is capable of operating from 1.8 V to 5.5 V.  
The small package and low power consumption allow  
maximum channel density and minimum board size for  
space-critical equipment and portable systems.  
The AD8553 is specified over the industrial temperature range  
from −40°C to +85°C. The AD8553 is available in a Pb-free,  
10-lead MSOP.  
With a low offset voltage of 20 μV, an offset voltage drift of  
0.1 μV/°C, and a voltage noise of only 0.7 μV p-p (0.01 Hz to  
10 Hz), the AD8553 is ideal for applications where error sources  
cannot be tolerated. Precision instrumentation, position and  
pressure sensors, medical instrumentation, and strain gauge  
amplifiers benefit from the low noise, low input bias current,  
and high common-mode rejection. The small footprint and low  
cost are ideal for high volume applications.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 © 2005–2010 Analog Devices, Inc. All rights reserved.  
 
AD8553  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Gain Selection (Gain-Setting Resistors).................................. 12  
Reference Connection ............................................................... 12  
Disable Function ........................................................................ 12  
Output Filtering.......................................................................... 12  
Clock Feedthrough..................................................................... 12  
Low Impedance Output............................................................. 12  
Maximizing Performance Through Proper Layout............... 13  
Power Supply Bypassing............................................................ 13  
Input Overvoltage Protection................................................... 13  
Capacitive Load Drive ............................................................... 13  
Circuit Diagrams/Connections ................................................ 14  
Outline Dimensions....................................................................... 18  
Ordering Guide............................................................................... 18  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 11  
High PSR and CMR ................................................................... 11  
1/f Noise Correction .................................................................. 11  
Applications..................................................................................... 12  
REVISION HISTORY  
8/10—Rev. 0 to Rev. A  
Changes to Figure 30...................................................................... 13  
10/05—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
AD8553  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VCC = 5.0 V, VCM = 2.5 V, VREF = VCC/2, VIN = VINP − VINN, RLOAD = 10 kΩ, TA = 25°C, G = 100, unless specified. See Table 5 for gain setting  
resistor values. Temperature specifications guaranteed by characterization.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Offset Voltage  
VOS  
G = 1000  
G = 100  
G = 10  
G = 1  
G = 1000, −40°C ≤ TA ≤ +85°C  
G = 100, −40°C ≤ TA ≤ +85°C  
G = 10, −40°C ≤ TA ≤ +85°C  
G = 1, −40°C ≤ TA ≤ +85°C  
4
4
20  
20  
50  
375  
0.1  
0.1  
0.3  
3
μV  
μV  
μV  
μV  
μV/°C  
μV/°C  
μV/°C  
μV/°C  
nA  
15  
120  
0.02  
0.02  
0.1  
1
vs. Temperature  
ΔVOS/ΔT  
Input Bias Current  
IB  
0.4  
1
−40°C ≤ TA ≤ +85°C  
2
nA  
Input Offset Current  
VREF Pin Current  
IOS  
IREF  
2
1
nA  
nA  
0.01  
Input Operating Impedance  
Differential  
Common Mode  
Input Voltage Range  
Common-Mode Rejection  
50||1  
10||10  
MΩ||pF  
GΩ||pF  
V
dB  
dB  
0
120  
100  
3.3  
CMR  
G = 100, VCM = 0 V to 3.3 V, −40°C ≤ TA ≤ +85°C  
G = 10, VCM = 0 V to 3.3 V, −40°C ≤ TA ≤ +85°C  
G = 100, VCM = 12.125 mV, VO = 0.075 V to 4.925 V  
G = 10, VCM = 121.25 mV , VO = 0.075 V to 4.925 V  
G = 10, 100, 1000, −40°C ≤ TA ≤ +85°C  
G = 1, −40°C ≤ TA ≤ +85°C  
G = 100, VCM = 12.125 mV, VO = 0.075 V to 4.925 V  
G = 10, VCM = 121.25 mV, VO = 0.075 V to 4.925 V  
140  
120  
0.10  
0.15  
5
30  
0.001  
0.040  
Gain Error  
Gain Drift  
0.3  
0.4  
25  
50  
0.003  
0.060  
4.2  
%
%
ppm/°C  
ppm/°C  
% FS  
% FS  
V
Nonlinearity  
VREF Range  
0.8  
OUTPUT CHARACTERISITICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
POWER SUPPLY  
VOH  
VOL  
ISC  
4.925  
V
V
mA  
0.075  
35  
Power Supply Rejection  
PSR  
ISY  
G = 100, VS = 1.8 V to 5.5 V, VCM = 0 V  
G = 10, VS = 1.8 V to 5.5 V, VCM = 0 V  
IO = 0 mA, VIN = 0 V  
100  
90  
120  
110  
1.1  
dB  
dB  
mA  
mA  
μA  
Supply Current  
1.3  
1.5  
4
−40°C ≤ TA ≤ +85°C  
Supply Current Shutdown Mode  
ENABLE INPUTS  
ISD  
2
Logic High Voltage  
Logic Low Voltage  
2.40  
V
V
0.80  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.01 Hz to 10 Hz  
G = 100, f = 1 kHz  
G = 10, f = 1 kHz  
0.7  
30  
150  
60  
1
μV p-p  
nV/√Hz  
nV/√Hz  
kHz  
Internal Clock Frequency  
Signal Bandwidth1  
G = 1 to 1000  
kHz  
1 Higher bandwidths result in higher noise.  
Rev. A | Page 3 of 20  
 
AD8553  
VS = 1.8 V, VCM = -0 V, VREF = VS/2, VIN = VINP − VINN, RLOAD = 10 kΩ, TA = 25°C, G = 100, unless specified. See Table 5 for gain setting  
resistor values. Temperature specifications guaranteed by characterization.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Offset Voltage  
VOS  
G = 1000  
G = 100  
G = 10  
G = 1  
G = 1000, −40°C ≤ TA ≤ +85°C  
G = 100, −40°C ≤ TA ≤ +85°C  
G = 10, −40°C ≤ TA ≤ +85°C  
G = 1, −40°C ≤ TA ≤ +85°C  
3
3
14  
130  
0.02  
0.02  
0.1  
1
20  
20  
50  
375  
0.25  
0.25  
3
μV  
μV  
μV  
μV  
μV/°C  
μV/°C  
μV/°C  
μV/°C  
nA  
Vs. Temperature  
ΔVOS/ΔT  
10  
1
Input Bias Current  
IB  
0.05  
−40°C ≤ TA ≤ +85°C  
2
nA  
Input Offset Current  
VREF Pin Current  
IOS  
IREF  
2
1
nA  
nA  
0.02  
Input Operating Impedance  
Differential  
Common Mode  
Input Voltage Range  
Common-Mode Rejection  
50||1  
10||10  
MΩ||pF  
GΩ||pF  
V
dB  
dB  
0
100  
90  
0.15  
CMR  
G = 100, VCM = 0 V to 0.15 V, −40°C ≤ TA ≤ +85°C  
G = 10, VCM = 0 V to 0.15 V, −40°C ≤ TA ≤ +85°C  
G = 100, VCM =4.125 mV, VO = 0.075 V to 1.725 V  
G = 10, VCM = 41.25 mV, VO = 0.075 V to 1.725 V  
G = 10, 100, 1000, −40°C ≤ TA ≤ +85°C  
G = 1, −40°C ≤ TA ≤ +85°C  
G = 100, VCM = 4.125 mV, VO = 0.075 V to 1.725 V  
G = 10, VCM = 41.25 mV, VO = 0.075 V to 1.725 V  
110  
110  
0.2  
Gain Error  
Gain Drift  
0.4  
0.4  
25  
%
%
0.2  
ppm/°C  
ppm/°C  
% FS  
% FS  
V
50  
Nonlinearity  
0.003  
0.010  
VREF Range  
0.8  
1.0  
OUTPUT CHARACTERISITICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
POWER SUPPLY  
VOH  
VOL  
ISC  
1.725  
V
V
mA  
0.075  
5
Power Supply Rejection  
Supply Current  
PSR  
ISY  
G = 100, VS = 1.8 V to 5.5 V, VCM = 0 V  
IO = 0 mA, VIN = 0 V  
−40°C ≤ TA ≤ +85°C  
100  
1.4  
120  
0.8  
dB  
1.2  
1.4  
4
mA  
mA  
μA  
Supply Current Shutdown Mode  
ENABLE INPUTS  
Logic High Voltage  
Logic Low Voltage  
ISD  
2
V
V
0.5  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.01 Hz to 10 Hz  
G = 100, f = 1 kHz  
G = 10, f = 1 kHz  
0.7  
30  
150  
60  
1
μV p-p  
nV/√Hz  
nV/√Hz  
kHz  
Internal Clock Frequency  
Signal Bandwidth1  
G = 1 to 1000  
kHz  
1 Higher bandwidths result in higher noise.  
Rev. A | Page 4 of 20  
AD8553  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Supply Voltage  
Input Voltage  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range (RM Package)  
Operating Temperature Range  
Junction Temperature Range (RM Package)  
Lead Temperature Range (Soldering, 10 sec)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Ratings  
6 V  
+VSUPPLY  
VSUPPLY  
Indefinite  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
THERMAL RESISTANCE  
θ JA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
1 Differential input voltage is limited to 5.0 V, the supply voltage, or  
whichever is less.  
Table 4.  
Package Type  
1
θJA  
θJC  
Unit  
10-Lead MSOP (RM)  
110  
32.2  
°C/W  
1 θJA is specified for the nominal conditions, that is, θJA is specified for the  
device soldered on a circuit board.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 20  
 
 
 
AD8553  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, G = 100, unless specified, see Table 5 for gain setting resistor values. Filters as noted are the combination of R2/C2 and R3/C3  
as in Figure 31.  
80  
80  
V
= 1.8V AND 5V  
V
= 1.8V AND 5V  
CC  
FILTER = 10kHz  
CC  
FILTER = 1kHz  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
GAIN = 1000  
60  
60  
GAIN = 100  
GAIN = 10  
GAIN = 1  
40  
40  
20  
20  
0
0
–20  
–40  
–20  
–40  
10  
100  
1k  
10k  
100k  
100k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. Gain vs. Frequency  
Figure 2. Gain vs. Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
V
= 5V  
V
= 5V  
CC  
CC  
FILTER = 10kHz  
FILTER = 1kHz  
GAIN = 100  
GAIN = 100  
GAIN = 10  
GAIN = 1  
GAIN = 10  
GAIN = 1  
60  
60  
40  
40  
20  
10  
20  
10  
100  
1k  
10k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. Common-Mode Rejection (CMR) vs. Frequency  
Figure 3. Common-Mode Rejection (CMR) vs. Frequency  
10k  
160  
GAIN = 100  
140  
120  
100  
80  
GAIN = 1  
GAIN = 10  
GAIN = 1  
1k  
100  
10  
GAIN = 10  
GAIN = 100, 1000  
60  
40  
20  
FILTER = 10kHz  
FILTER = 1kHz  
V
= 5V AND 1.8V  
CC  
1
0.01  
10  
10  
0.1  
1
10  
100  
1k  
10k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Voltage Noise Density  
Figure 4. Power Supply Rejection vs. Frequency  
Rev. A | Page 6 of 20  
 
AD8553  
80  
70  
60  
50  
40  
30  
20  
10  
0
GAIN = 100  
FILTER = 1kHz  
V
= 5V  
CC  
TURN ON TIME = 10µs  
GAIN = 100  
FILTER = 10kHz  
FILTER SETTLING  
= 5V  
V
FILTER SETTLING  
CC  
V
= 5V  
CC  
V
= 1.8V  
CC  
V
= 1.8V  
–10  
CC  
TURN ON TIME = 15µs  
= 1.8V  
V
CC  
–20  
–0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0
50  
100  
150  
200  
250  
300  
350  
TIME (ms)  
TIME (µs)  
Figure 11. Input Offset Voltage vs. Turn-On Time  
Figure 8. Input Offset Voltage vs. Turn-On Time  
V
= 5V, G = 1, 10, 100, 1000  
CC  
V
V
= 5V, G = 1, 10, 100, 1000  
= 1.8V, G = 1, 10, 100, 1000  
CC  
CC  
10kHz FILTER  
10kHz FILTER  
1kHz FILTER  
1kHz FILTER  
500µs/DIV  
500µs/DIV  
Figure 9. Small Signal Step Response  
Figure 12. Large Signal Step Response  
V
= 5V  
V
= 5V  
CC  
CC  
GAIN = 100, 1000  
GAIN = 100, 1000  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10  
Figure 13. Input Offset Voltage Drift (μV/°C)  
Figure 10. Input Offset Voltage (μV)  
Rev. A | Page 7 of 20  
AD8553  
V
= 5V  
V
= 5V  
CC  
CC  
GAIN = 10  
GAIN = 10  
0
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0  
0
0
0
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30  
Figure 17. Input Offset Voltage Drift (μV/°C)  
Figure 14. Input Offset Voltage (μV)  
V
= 5V  
V
= 5V  
CC  
CC  
GAIN = 1  
GAIN = 1  
0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00  
–50 –10 30  
70 110 150 190 230 270 310 350  
Figure 18. Input Offset Voltage Drift (μV/°C)  
Figure 15. Input Offset Voltage (μV)  
V
= 5V  
V
= 5V  
CC  
CC  
GAIN = 100  
= 12.125mV  
GAIN = 100  
V
V
= 12.125mV  
CM  
CM  
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0  
–250 –225 –200 –175 –150 –125 –100 –75 –50 –25  
0
Figure 16. Gain Error (m%)  
Figure 19. Nonlinearity (m%)  
Rev. A | Page 8 of 20  
AD8553  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
V
= 1.8V  
V
= 1.8V  
CC  
CC  
FILTER = 1kHz  
FILTER = 10kHz  
GAIN = 100  
GAIN = 100  
GAIN = 10  
GAIN = 1  
GAIN = 10  
GAIN = 1  
60  
60  
40  
40  
20  
10  
20  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Common-Mode Rejection (CMR) vs. Frequency  
Figure 20. Common-Mode Rejection (CMR) vs. Frequency  
V
= 1.8V  
V
= 1.8V  
CC  
CC  
GAIN = 100, 1000  
GAIN = 100, 1000  
2
–2  
0
4
6
8
10 12 14 16 18 20  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10  
Figure 21. Input Offset Voltage (μV)  
Figure 24. Input Offset Voltage Drift (μV/°C)  
V
= 1.8V  
V
= 1.8V  
CC  
CC  
GAIN = 10  
GAIN = 10  
0
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30  
0
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60  
Figure 22. Input Offset Voltage (μV)  
Figure 25. Input Offset Voltage Drift (μV/°C)  
Rev. A | Page 9 of 20  
AD8553  
V
= 1.8V  
V
= 1.8V  
CC  
CC  
GAIN = 1  
GAIN = 1  
0
40  
80  
120 160 200 240 280 320 360  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8  
Figure 26. Input Offset Voltage (μV)  
Figure 28. Input Offset Voltage Drift (μV/°C)  
V
= 5.0V  
V
= 1.8V,  
CC  
CC  
G = 10, 100, 1000  
GAIN = 100  
10kHz FILTER  
1kHz FILTER  
500µs/DIV  
10SEC/DIV  
Figure 27. 0.01 Hz to 10 Hz Voltage Noise  
Figure 29. Large Signal Step Response  
Rev. A | Page 10 of 20  
AD8553  
THEORY OF OPERATION  
The AD8553 is a precision current-mode correction  
HIGH PSR AND CMR  
instrumentation amplifier capable of single-supply operation.  
The current-mode correction topology results in excellent  
accuracy without the need for trimmed resistors on the die.  
Common-mode rejection and power supply rejection indicate  
the amount that the offset voltage of an amplifier changes when  
its common-mode input voltage or power supply voltage changes.  
The autocorrection architecture of the AD8553 continuously  
corrects for offset errors, including those induced by changes in  
input or supply voltage, resulting in exceptional rejection  
performance. The continuous autocorrection provides great  
CMR and PSR performances over the entire operating  
temperature range (−40°C to +85°C).  
Figure 30 shows a simplified diagram illustrating the basic  
operation of the AD8553 (without correction). The circuit  
consists of a voltage-to-current amplifier (M1 to M6), followed  
by a current-to-voltage amplifier (R2 and A1). Application of a  
differential input voltage forces a current through External  
Resistor R1, resulting in conversion of the input voltage to a  
signal current. Transistor M3 to Transistor M6 transfer twice  
this signal current to the inverting input of the op amp A1.  
Amplifier A1 and External Resistor R2 form a current-to-  
voltage converter to produce a rail-to-rail output voltage at  
The parasitic resistance in series with R2 does not degrade  
CMR but causes a small gain error and a very small offset error.  
Therefore, an external buffer amplifier is not required to drive  
the VREF pin to maintain excellent CMR performance. This  
helps reduce system costs over conventional instrumentation  
amplifiers.  
VOUT  
.
Op amp A1 is a high precision auto-zero amplifier. This  
amplifier preserves the performance of the autocorrecting,  
current-mode amplifier topology while offering the user a true  
voltage-in, voltage-out instrumentation amplifier. Offset errors  
are corrected internally.  
1/f NOISE CORRECTION  
Flicker noise, also known as 1/f noise, is noise inherent in the  
physics of semiconductor devices and decreases 10 dB per  
decade. The 1/f corner frequency of an amplifier is the frequency  
at which the flicker noise is equal to the broadband noise of the  
amplifier. At lower frequencies, flicker noise dominates causing  
large errors in low frequency or dc applications.  
An external reference voltage is applied to the noninverting  
input of A1 to set the output reference level. External Capacitor  
C2 is used to filter out correction noise.  
Flicker noise is seen effectively as a slowly varying offset error,  
which is reduced by the autocorrection topology of the AD8553.  
This allows the AD8553 to have lower noise near dc than  
standard low noise instrumentation amplifiers.  
The pinout of the AD8553 allows the user to access the signal  
current from the output of the voltage-to-current converter  
(Pin 5). The user can choose to use the AD8553 as a current-  
output device instead of a voltage-output device. See Figure 35  
for circuit connections.  
Rev. A | Page 11 of 20  
 
AD8553  
APPLICATIONS  
DISABLE FUNCTION  
GAIN SELECTION (GAIN-SETTING RESISTORS)  
The gain of the AD8553 is set according to  
G = 2 × (R2/R1)  
The AD8553 provides a shutdown function to conserve power  
when the device is not needed. Although there is a 1 μA pull-up  
current on the ENABLE pin, Pin 6 should be connected to the  
positive supply for normal operation and to the negative supply  
to turn the device off. It is not recommended to leave Pin 6  
floating.  
(1)  
Table 5 lists the recommended resistor values. Resistor R1 must  
be at least 3.92 kꢀ for proper operation. Use of resistors larger  
than the recommended values results in higher offset and  
higher noise.  
Turn-on time upon switching Pin 6 high is dominated by the  
output filters. When the device is disabled, the output becomes  
high impedance enabling muxing application of multiple  
AD8553 instrumentation amplifiers.  
Gain accuracy depends on the matching of R1 and R2. Any  
mismatch in resistor values results in a gain error. Resistor  
value errors due to drift affect gain by the amount indicated by  
Equation 1. However, due to the current-mode operation of the  
AD8553, a mismatch in R1 and R2 does not degrade the CMR.  
OUTPUT FILTERING  
Filter Capacitor C2 is required to limit the amount of switching  
noise present at the output. The recommended bandwidth of  
the filter created by C2 and R2 is 1.4 kHz. The user should first  
select R1 and R2 based on the desired gain, then select C2 based on  
Care should be taken when selecting and positioning the gain  
setting resistors. The resistors should be made of the same  
material and package style. Surface-mount resistors are  
recommended. They should be positioned as close together  
as possible to minimize TC errors.  
C2 = 1/(1400 × 2 × π × R2)  
(2)  
Addition of another single-pole RC filter of 1.4 kHz on the  
output (R3 and C3 in Figure 31 to Figure 33) is required for  
bandwidths greater than 10 Hz. These two filters produce an  
overall bandwidth of 1 kHz.  
To maintain good CMR vs. frequency, the parasitic capacitance  
on the R1 gain setting pins should be minimized and matched.  
This also helps maintain a low gain error at G < 10.  
If resistor trimming is required to set a precise gain, trim  
Resistor R2 only. Using a potentiometer for R1 degrades the  
amplifiers performance.  
When driving an ADC, the recommended values for the second  
filter are R3 = 100 Ω and C3 = 1 μF. This filter is required to  
achieve the specified performance. It also acts as an antialiasing  
filter for the ADC. If a sampling ADC is not being driven, the  
value of the capacitor can be reduced, but the filter frequency  
should remain unchanged.  
REFERENCE CONNECTION  
Unlike traditional three op amp instrumentation amplifiers,  
parasitic resistance in series with VREF (Pin 7) does not degrade  
CMR performance. This allows the AD8553 to attain its extremely  
high CMR performance without the use of an external buffer  
amplifier to drive the VREF pin, which is required by industry-  
standard instrumentation amplifiers. This helps save valuable  
printed circuit board space and minimizes system costs.  
For applications with low bandwidths (<10 Hz), only the first  
filter is required. In this case, the high frequency noise from the  
auto-zero amplifier (output amplifier) is not filtered before the  
following stage.  
CLOCK FEEDTHROUGH  
For optimal performance in single-supply applications, VREF  
should be set with a low noise precision voltage reference.  
However, for a lower system cost, the reference voltage can be  
set with a simple resistor voltage divider between the supply and  
ground (see Figure 31). This configuration results in degraded  
output offset performance if the resistors deviate from their  
ideal values. In dual-supply applications, VREF can simply be  
connected to ground.  
The AD8553 uses two synchronized clocks to perform the  
autocorrection. The input voltage-to-current amplifiers are  
corrected at 60 kHz.  
Trace amounts of these clock frequencies can be observed at the  
output. The amount of feedthrough is dependent upon the gain,  
because the autocorrection noise has an input and output  
referred term. The correction feedthrough is also dependent  
upon the values of the external filters R2/C2, and R3/C3.  
The VREF pin current is approximately 20 pA, and as a result, an  
external buffer is not required.  
LOW IMPEDANCE OUTPUT  
For applications where a low output impedance is required, the  
circuit in Figure 33 should be used. This provides the same  
filtering performance as shown in the configuration in Figure 34.  
Rev. A | Page 12 of 20  
 
AD8553  
MAXIMIZING PERFORMANCE THROUGH PROPER  
LAYOUT  
For single-supply operation, a 0.1 μF surface-mount capacitor  
should be connected from the supply line to ground.  
To achieve the maximum performance of the AD8553, care  
should be taken in the circuit board layout. The PC board  
surface must remain clean and free of moisture to avoid leakage  
currents between adjacent traces. Surface coating of the circuit  
board reduces surface moisture and provides a humidity barrier,  
reducing parasitic resistance on the board.  
All bypass capacitors should be positioned as close to the DUT  
supply pins as possible, especially the bypass capacitor between  
the supplies. Placement of the bypass capacitor on the back of  
the board directly under the DUT is preferred.  
INPUT OVERVOLTAGE PROTECTION  
All terminals of the AD8553 are protected against ESD. In the  
case of a dc overload voltage beyond either supply, a large  
current would flow directly through the ESD protection diodes.  
If such a condition should occur, an external resistor should be  
used in series with the inputs to limit current for voltages  
beyond the supply rails. The AD8553 can safely handle 5 mA of  
continuous current, resulting in an external resistor selection of  
Care must be taken to minimize parasitic capacitance on Pin 1  
and Pin 10 (Resistor R1 connections). Traces from Pin 1 and  
Pin 10 to R1 should be kept short and symmetric. Excessive  
capacitance on these pins will result in a gain error. This effect  
is most prominent at low gains (G < 10).  
For high impedance sources, the PC board traces from the  
AD8553 inputs should be kept to a minimum to reduce input  
bias current errors.  
REXT = (VIN − VS)/5 mA.  
CAPACITIVE LOAD DRIVE  
POWER SUPPLY BYPASSING  
The output buffer, Pin 4, can drive capacitive loads up to 100 pF.  
The AD8553 uses internally generated clock signals to perform  
the autocorrection. As a result, proper bypassing is necessary to  
achieve optimum performance. Inadequate or improper bypassing  
of the supply lines can lead to excessive noise and offset voltage.  
A 0.1 μF surface-mount capacitor should be connected between  
the supply lines. This capacitor is necessary to minimize ripple  
from the correction clocks inside the IC. For dual-supply  
operation (see Figure 33), a 0.1 μF (ceramic) surface-mount  
capacitor should be connected from each supply pin to ground.  
V
CC  
C2  
R2  
M5  
M6  
I – I  
I
I
R1  
R1  
2I  
R1  
I – I  
R1  
2R2  
R1  
V
– V  
INN  
I + I  
INP  
V
= V  
+
REF  
R1  
OUT  
(V  
INP  
– V )  
INN  
I
=
R1  
A1  
R1  
V
BIAS  
V
V
V
INP  
REF  
INN  
M3  
M4  
M1  
M2  
2I  
2I  
EXTERNAL  
Figure 30. Simplified AD8553 Schematic  
Rev. A | Page 13 of 20  
 
 
AD8553  
CIRCUIT DIAGRAMS/CONNECTIONS  
V
S+  
0.1µF  
GND  
3
2
1
V
IN+  
+
6
5
R3  
100  
4
V
R1  
OUT  
AD8553  
C3  
1µF  
10  
9
7
GND  
R2  
C2  
V
IN–  
8
R3 AND C3 VALUES ARE  
RECOMMENDED TO DRIVE  
AN A/D CONVERTER  
GND  
100kΩ  
0.1µF  
100kΩ  
V
S+  
GND  
Figure 31. Single-Supply Connection Diagram Using Voltage Divider Reference  
V
S+  
0.1µF  
0.1µF  
GND  
V
S–  
2
+
3
V
IN+  
6
5
1
R3  
100Ω  
4
V
R1  
OUT  
AD8553  
C3  
1µF  
10  
7
GND  
R2  
C2  
V
IN–  
9
8
R3 AND C3 VALUES ARE  
RECOMMENDED TO DRIVE  
AN A/D CONVERTER  
0.1µF  
V –  
S
GND  
Figure 32. Dual-Supply Connection Diagram  
Rev. A | Page 14 of 20  
 
 
AD8553  
V
S+  
0.1µF  
0.1µF  
GND  
V
S–  
3
2
+
V
IN+  
6
5
1
R3  
100  
4
V
R1  
OUT  
AD8553  
C3  
1µF  
10  
C2  
7
GND  
R2  
V
IN–  
9
8
GND  
R3 AND C3 VALUES ARE  
RECOMMENDED TO DRIVE  
AN A/D CONVERTER  
0.1µF  
V –  
S
GND  
Figure 33. Dual-Supply Connection Diagram with Low Impedance Output  
V
S+  
0.1µF  
GND  
2
1
3
V
+
IN+  
6
5
R3  
100Ω  
4
V
R1  
OUT  
AD8553  
C3  
1µF  
10  
9
7
GND  
R2  
C2  
V
IN–  
8
R3 AND C3 VALUES ARE  
RECOMMENDED TO DRIVE  
AN A/D CONVERTER  
V
S–  
V
CC  
1.0µF  
0.1µF  
V
IN  
V
OUT  
GND  
Figure 34. Dual-Supply Connection Diagram Using IC Voltage Reference  
Rev. A | Page 15 of 20  
 
 
AD8553  
V
S+  
6
2
1
3
+
7
V
IN  
4
NC (NO CONNECT)  
AD8553  
R1  
V
IN  
R1  
I
=
5
O
10k  
0.1µF  
10  
9
A
8
_
AMMETER  
V
S–  
Figure 35. Voltage-to-Current Converter, 0 μA to 30 μA Source  
V
S+  
6
2
1
3
V
= 2.5V  
+
REF  
7
100  
4
A/D  
CONVERTER  
AD8553  
R1  
1µF  
C2  
R2  
5
10  
9
8
_
Figure 36. Example of an AD8553 Driving a Converter at VS+ = 5 V  
Rev. A | Page 16 of 20  
 
AD8553  
V
S+  
LOGIC  
6
6
6
2
1
3
+
V
REF  
7
7
7
R3  
4
4
4
AD8553  
R1  
100  
C2  
5
5
5
10  
9
8
_
R2  
V
S–  
V
S+  
2
1
3
+
V
REF  
R8  
V
OUT  
AD8553  
R6  
100Ω  
1µF  
C3  
R7  
10  
9
8
_
V
S+  
2
1
3
+
V
REF  
R13  
AD8553  
R11  
100Ω  
C4  
10  
9
8
_
R12  
Figure 37. Multiplexed Output  
Table 5. Recommended External Component Values for Selected Gains  
Desired Gain (V/V)  
R1 (Ω)  
200 k  
100 k  
40.2 k  
20 k  
4.02 k  
3.92 k  
3.92 k  
3.92 k  
R2 || C2 (Ω || F)  
100 k || 1200p  
100 k || 1200p  
100 k || 1200p  
100 k || 1200p  
100 k || 1200p  
196 k || 560p  
976 k || 120p  
1.96 M || 56p  
Calculated Gain  
1
2
5
1
2
4.975  
10  
49.75  
100  
497.95  
1000  
10  
50  
100  
500  
1000  
Rev. A | Page 17 of 20  
 
AD8553  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 38. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
Package Option  
RM-10  
RM-10  
Branding  
A09  
A09  
AD8553ARMZ  
AD8553ARMZ-REEL  
−40°C to +85°C  
−40°C to +85°C  
1 Z = RoHS Compliant Part.  
Rev. A | Page 18 of 20  
 
 
AD8553  
NOTES  
Rev. A | Page 19 of 20  
AD8553  
NOTES  
©2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05474-0-8/10(A)  
Rev. A | Page 20 of 20  

相关型号:

AD8553ARMZ-R2

1.8 V to 5 V Auto-Zero, In-Amp with Shutdown
ADI

AD8553ARMZ-REEL

1.8 V to 5 V Auto-Zero, In-Amp with Shutdown
ADI

AD8554

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8554AN

IC QUAD OP-AMP, 12 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP14, PLASTIC, DIP-14, Operational Amplifier
ADI

AD8554AR

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8554AR-REEL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8554AR-REEL7

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8554ARU

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8554ARU

QUAD OP-AMP, 10 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, PDSO14, MO-153AB-1, TSSOP-14
ROCHESTER

AD8554ARU-REEL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8554ARUZ

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8554ARUZ-REEL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI