AD8350AR15-REEL7 [ADI]

Low Distortion 1.0 GHz Differential Amplifier; 低失真1.0 GHz差分放大器
AD8350AR15-REEL7
型号: AD8350AR15-REEL7
厂家: ADI    ADI
描述:

Low Distortion 1.0 GHz Differential Amplifier
低失真1.0 GHz差分放大器

放大器
文件: 总11页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Distortion  
1.0 GHz Differential Amplifier  
a
AD8350  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAMS  
High Dynam ic Range  
8-Lead SO IC P ackage (with Enable)  
Output IP3: +22 dBm : Re 50 @ 250 MHz  
Low Noise Figure: 5.9 dB @ 250 MHz  
Tw o Gain Versions:  
AD8350-15 15 dB  
AD8350-20 20 dB  
–3 dB Bandw idth: 1.0 GHz  
Single Supply Operation: +5 V to +10 V  
Supply Current: 28 m A  
Input/ Output Im pedance: 200 ⍀  
Single-Ended or Differential Input Drive  
8-Lead SOIC Package  
IN+  
IN–  
1
2
3
4
8
7
6
5
+
ENBL  
GND  
GND  
V
CC  
OUT–  
OUT+  
AD8350  
APPLICATIONS  
Cellular Base Stations  
Com m unications Receivers  
RF/ IF Gain Block  
Differential A-to-D Driver  
SAW Filter Interface  
Single-Ended to Differential Conversion  
High Perform ance Video  
High Speed Data Transm ission  
P RO D UCT D ESCRIP TIO N  
T he amplifier can be operated down to +5 V with an OIP3 of  
+22 dBm at 250 MHz and slightly reduced distortion perfor-  
mance. T he wide bandwidth, high dynamic range and tempera-  
ture stability make this product ideal for the various RF and IF  
frequencies required in cellular, CAT V, broadband, instrumen-  
tation and other applications.  
T he AD8350 series are high performance fully-differential  
amplifiers useful in RF and IF circuits up to 1000 MHz. T he  
amplifier has excellent noise figure of 5.9 dB at 250 MHz. It  
offers a high output third order intercept (OIP3) of +22 dBm  
at 250 MHz. Gain versions of 15 dB and 20 dB are offered.  
T he AD8350 is designed to meet the demanding performance  
requirements of communications transceiver applications. It  
enables a high dynamic range differential signal chain, with  
exceptional linearity and increased common-mode rejection.  
T he device can be used as a general purpose gain block, an  
A-to-D driver, and high speed data interface driver, among  
other functions. The AD8350 input can also be used as a single-  
ended-to-differential converter.  
T he AD8350 is offered in an 8-lead single SOIC package. It  
operates from +5 V and +10 V power supplies, drawing 28 mA  
typical. T he AD8350 offers a power enable function for power-  
sensitive applications. T he AD8350 is fabricated using Analog  
Devices’ proprietary high speed complementary bipolar process.  
The device is available in the industrial (–40°C to +85°C)  
temperature range.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1999  
AD8350-15–SPECIFICATIONS (@ +25؇C, V = +5 V, G = 15 dB, unless otherwise noted. All specifications refer  
to differential inputs and differential outputs unless noted.)  
S
P aram eter  
Conditions  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VOUT = 1 V p-p  
0.1%, VOUT = 1 V p-p  
VS = +5 V, f = 50 MHz  
VS = +5 V to +10 V, f = 50 MHz  
TMIN to T MAX  
0.9  
1.1  
270  
270  
2000  
10  
GHz  
GHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling T ime  
Gain (S21)1  
14  
15  
16  
dB  
Gain Supply Sensitivity  
Gain T emperature Sensitivity  
Isolation (S12)1  
0.003  
–0.002  
–18  
dB/V  
dB/°C  
dB  
f = 50 MHz  
NOISE/HARMONIC PERFORMANCE  
50 MHz Signal  
Second Harmonic  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V  
VS = +10 V  
VS = +5 V  
VS = +10 V  
–66  
–67  
–65  
–70  
52  
52  
22  
23  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
T hird Harmonic  
Output Second Order Intercept2  
Output T hird Order Intercept2  
250 MHz Signal  
Second Harmonic  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V  
VS = +10 V  
VS = +5 V  
VS = +10 V  
VS = +5 V  
–48  
–49  
–52  
–61  
33  
34  
18  
22  
2
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
nV/Hz  
dB  
T hird Harmonic  
Output Second Order Intercept2  
Output T hird Order Intercept2  
1 dB Compression Point (RT I)2  
VS = +10 V  
f = 150 MHz  
f = 150 MHz  
5
1.7  
6.8  
Voltage Noise (RT I)  
Noise Figure  
INPUT /OUT PUT CHARACT ERIST ICS  
Differential Offset Voltage (RT I)  
Differential Offset Drift  
Input Bias Current  
VOUT + – VOUT –  
TMIN to T MAX  
±1  
0.02  
15  
mV  
mV/°C  
µA  
Input Resistance  
Input Capacitance  
Real  
200  
2
pF  
CMRR  
Output Resistance  
Output Capacitance  
f = 50 MHz  
Real  
–67  
200  
2
dB  
pF  
POWER SUPPLY  
Operating Range  
Quiescent Current  
+4  
25  
3
27  
3
+11.0  
32  
5.5  
34  
V
Powered Up, VS = +5 V  
Powered Down, VS = +5 V  
Powered Up, VS = +10 V  
Powered Down, VS = +10 V  
28  
3.8  
30  
4
15  
–58  
mA  
mA  
mA  
mA  
ns  
6.5  
Power-Up/Down Switching  
Power Supply Rejection Ratio  
f = 50 MHz, VS = 1 V p-p  
dB  
OPERAT ING T EMPERAT URE RANGE  
–40  
+85  
°C  
NOT ES  
1See T ables I–IV for complete list of S-Parameters.  
2Re: 50 .  
Specifications subject to change without notice.  
–2–  
REV. 0  
(@ +25؇C, V = +5 V, G = 20 dB, unless otherwise noted. All  
S
specifications refer to differential inputs and differential outputs  
unless noted.)  
AD8350  
AD8350-20–SPECIFICATIONS  
P aram eter  
Conditions  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VOUT = 1 V p-p  
0.1%, VOUT = 1 V p-p  
VS = +5 V, f = 50 MHz  
VS = +5 V to +10 V, f = 50 MHz  
TMIN to T MAX  
0.7  
0.9  
230  
200  
2000  
15  
GHz  
GHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling T ime  
Gain (S21)1  
19  
20  
21  
dB  
Gain Supply Sensitivity  
Gain T emperature Sensitivity  
Isolation (S12)1  
0.003  
–0.002  
–22  
dB/V  
dB/°C  
dB  
f = 50 MHz  
NOISE / HARMONIC PERFORMANCE  
50 MHz Signal  
Second Harmonic  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V  
VS = +10 V  
VS = +5 V  
VS = +10 V  
–65  
–66  
–66  
–70  
50  
50  
22  
23  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
T hird Harmonic  
Output Second Order Intercept2  
Output T hird Order Intercept2  
250 MHz Signal  
Second Harmonic  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V, VOUT = 1 V p-p  
VS = +10 V, VOUT = 1 V p-p  
VS = +5 V  
VS = +10 V  
VS = +5 V  
VS = +10 V  
VS = +5 V  
–45  
–46  
–55  
–60  
31  
32  
18  
22  
–2.6  
1.8  
1.7  
5.6  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
nV/Hz  
dB  
T hird Harmonic  
Output Second Order Intercept2  
Output T hird Order Intercept2  
1 dB Compression Point (RT I)2  
VS = +10 V  
f = 150 MHz  
f = 150 MHz  
Voltage Noise (RT I)  
Noise Figure  
INPUT /OUT PUT CHARACT ERIST ICS  
Differential Offset Voltage (RT I)  
Differential Offset Drift  
Input Bias Current  
VOUT + – VOUT –  
TMIN to T MAX  
±1  
0.02  
15  
mV  
mV/°C  
µA  
Input Resistance  
Input Capacitance  
Real  
200  
2
pF  
CMRR  
Output Resistance  
Output Capacitance  
f = 50 MHz  
Real  
–52  
200  
2
dB  
pF  
POWER SUPPLY  
Operating Range  
Quiescent Current  
+4  
25  
3
27  
3
+11.0  
32  
5.5  
34  
V
Powered Up, VS = +5 V  
Powered Down, VS = +5 V  
Powered Up, VS = +10 V  
Powered Down, VS = +10 V  
28  
3.8  
30  
4
15  
–45  
mA  
mA  
mA  
mA  
ns  
6.5  
Power-Up/Down Switching  
Power Supply Rejection Ratio  
f = 50 MHz, VS = 1 V p-p  
dB  
OPERAT ING T EMPERAT URE RANGE  
–40  
+85  
°C  
NOT ES  
1See T ables I–IV for complete list of S-Parameters.  
2Re: 50 .  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD8350  
P IN FUNCTIO N D ESCRIP TIO NS  
ABSO LUTE MAXIMUM RATINGS*  
Supply Voltage, VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . +11 V  
Input Power Differential . . . . . . . . . . . . . . . . . . . . . . . +8 dBm  
Internal Power Dissipation . . . . . . . . . . . . . . . . . . . . . 400 mW  
θJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100°C/W  
Maximum Junction T emperature . . . . . . . . . . . . . . . . +125°C  
Operating T emperature Range . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . . +300°C  
P in Function  
1, 8 IN+, IN–  
D escription  
Differential Inputs. IN+ and IN–  
should be ac-coupled (pins have a dc  
bias of midsupply). Differential input  
impedance is 200 .  
2
3
ENBL  
VCC  
Power-up Pin. A high level (5 V) en-  
ables the device; a low level (0 V) puts  
device in sleep mode.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may effect device reliability.  
Positive Supply Voltage. +5 V to +10 V.  
4, 5 OUT +, OUT – Differential Outputs. OUT + and  
OUT – should be ac-coupled (pins have  
a dc bias of midsupply). Differential  
P IN CO NFIGURATIO N  
input impedance is 200 .  
6, 7 GND  
Common External Ground Reference.  
1
2
3
4
8
7
6
5
IN–  
IN+  
AD8350  
TOP VIEW  
(Not to Scale)  
GND  
GND  
OUT–  
ENBL  
V
CC  
OUT+  
O RD ERING GUID E  
Tem perature Range P ackage D escription  
Model  
P ackage O ption  
AD8350AR15  
–40°C to +85°C  
–40°C to +85°C  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
SO-8  
SO-8  
SO-8  
AD8350AR15-REEL1  
AD8350AR15-REEL72 –40°C to +85°C  
AD8350AR15-EVAL  
Evaluation Board (15 dB)  
8-Lead SOIC  
8-Lead SOIC  
AD8350AR20  
–40°C to +85°C  
–40°C to +85°C  
SO-8  
SO-8  
SO-8  
AD8350AR20-REEL1  
AD8350AR20-REEL72 –40°C to +85°C  
8-Lead SOIC  
AD8350AR20-EVAL  
Evaluation Board (20 dB)  
NOT ES  
113" Reels of 2500 each.  
27" Reels of 750 each.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8350 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
Typical Performance Characteristics–  
AD8350  
20  
15  
10  
25  
50  
40  
30  
20  
V
= 10V  
CC  
20  
15  
10  
5
V
= 10V  
V
= 10V  
CC  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
5
0
10  
0
V
= 5V  
CC  
0
–40  
–20  
20  
40  
60  
80  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
TEMPERATURE – ؇C  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 1. Supply Current vs.  
Tem perature  
Figure 2. AD8350-15 Gain (S21) vs.  
Frequency  
Figure 3. AD8350-20 Gain (S21) vs.  
Frequency  
350  
350  
300  
250  
500  
400  
300  
V
= 10V  
CC  
250  
200  
150  
100  
V
= 10V  
300  
200  
100  
0
CC  
V
= 10V  
CC  
V
= 5V  
200  
150  
100  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
1
10  
100  
1k  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY – MHz  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 4. AD8350-15 Input Im ped-  
ance vs. Frequency  
Figure 5. AD8350-20 Input Im ped-  
ance vs. Frequency  
Figure 6. AD8350-15 Output Im ped-  
ance vs. Frequency  
500  
400  
–10  
–15  
–5  
–10  
–15  
V
= 5V  
CC  
300  
V
= 10V  
= 5V  
CC  
–20  
–25  
–30  
V
= 10V  
CC  
200  
100  
0
V
= 10V  
CC  
V
–20  
–25  
CC  
V
= 5V  
CC  
1
10  
100  
1k  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY – MHz  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 7. AD8350-20 Output Im ped-  
ance vs. Frequency  
Figure 9. AD8350-20 Isolation (S12)  
vs. Frequency  
Figure 8. AD8350-15 Isolation (S12)  
vs. Frequency  
REV. 0  
–5–  
AD8350  
–40  
–45  
–55  
–65  
–75  
–85  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
F
= 50MHz  
V
= 1V p-p  
O
OUT  
V
= 1V p-p  
OUT  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
HD2 (V = 10V)  
HD3 (V = 5V)  
CC  
CC  
HD2 (V = 5V)  
CC  
HD2 (V = 5V)  
HD2 (V = 5V)  
CC  
CC  
HD2 (V = 10V)  
CC  
HD3 (V = 5V)  
CC  
HD2 (V = 10V)  
CC  
HD3 (V = 5V)  
CC  
HD3 (V = 10V)  
CC  
HD3 (V = 10V)  
CC  
HD3 (V = 10V)  
CC  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
FUNDAMENTAL FREQUENCY – MHz  
OUTPUT VOLTAGE – V p-p  
FUNDAMENTAL FREQUENCY – MHz  
Figure 10. AD8350-15 Harm onic  
Distortion vs. Frequency  
Figure 12. AD8350-15 Harm onic Dis-  
tortion vs. Differential Output Voltage  
Figure 11. AD8350-20 Harm onic  
Distortion vs. Frequency  
60  
55  
–45  
60  
55  
F
= 50MHz  
O
HD2 (V = 5V)  
CC  
HD3 (V = 5V)  
CC  
–55  
–65  
–75  
–85  
V
= 10V  
CC  
V
= 10V  
CC  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
HD2 (V = 10V)  
CC  
V = 5V  
CC  
V
= 5V  
CC  
HD3 (V = 10V)  
CC  
0
0
50  
100  
150  
200  
250  
300  
0.5  
1
1.5  
2
2.5  
3
3.5  
0
50  
100  
150  
200  
250  
300  
FREQUENCY – MHz  
OUTPUT VOLTAGE – V p-p  
FREQUENCY – MHz  
Figure 13. AD8350-20 Harm onic Dis-  
tortion vs. Differential Output Voltage  
Figure 15. AD8350-20 Output  
Referred IP2 vs. Frequency  
Figure 14. AD8350-15 Output  
Referred IP2 vs. Frequency  
35  
30  
10.0  
35  
30  
INPUT REFERRED  
V
= 10V  
7.5  
CC  
V
= 10V  
V
= 10V  
CC  
CC  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
5.0  
2.5  
0
V
= 5V  
CC  
V
= 5V  
CC  
V
= 5V  
200  
CC  
–2.5  
–5.0  
0
0
50  
100  
150  
200  
250  
300  
100  
200  
300  
400  
500  
600  
0
50  
100  
150  
250  
300  
FREQUENCY – MHz  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 16. AD8350-15 Output  
Referred IP3 vs. Frequency  
Figure 18. AD8350-15 1 dB Com pres-  
sion vs. Frequency  
Figure 17. AD8350-20 Output  
Referred IP3 vs. Frequency  
–6–  
REV. 0  
AD8350  
7.5  
10  
9
10  
9
INPUT REFERRED  
5.0  
2.5  
0
V
= 10V  
CC  
8
8
V
= 10V  
CC  
V
= 10V  
CC  
7
7
–2.5  
V
= 5V  
CC  
V
= 5V  
CC  
V
= 5V  
6
6
CC  
–5.0  
–7.5  
5
5
0
100  
200  
300  
400  
500  
600  
0
0
50 100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
50 100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 21. AD8350-20 Noise Figure  
vs. Frequency  
Figure 19. AD8350-20 1 dB Com pres-  
sion vs. Frequency  
Figure 20. AD8350-15 Noise Figure  
vs. Frequency  
–20  
100  
50  
25  
AD8350-20  
V
= 5V  
CC  
20  
15  
–30  
–40  
–50  
–60  
–70  
V
+ (V = 5V)  
CC  
OUT  
0
–50  
10  
5
AD8350-15  
V
– (V = 5V)  
CC  
OUT  
AD8350-20  
0
–100  
–150  
V
+ (V = 10V)  
CC  
OUT  
–5  
AD8350-15  
–10  
–15  
–20  
V
– (V = 10V)  
CC  
OUT  
–80  
–90  
–200  
–250  
1
2
3
4
5
6
7
8
9
10  
0
1
10  
100  
1k  
–40  
–20  
20  
40  
60  
80  
V
– Volts  
TEMPERATURE – ؇C  
FREQUENCY – MHz  
CC  
Figure 23. AD8350 Output Offset  
Voltage vs. Tem perature  
Figure 24. AD8350 PSRR vs.  
Frequency  
Figure 22. AD8350 Gain (S21) vs.  
Supply Voltage  
–20  
V
= 5V  
V
= 5V  
CC  
500mV  
CC  
–30  
–40  
–50  
–60  
–70  
AD8350-20  
V
OUT  
AD8350-15  
ENBL  
–80  
–90  
5V  
30ns  
1
10  
100  
1k  
FREQUENCY – MHz  
Figure 25. AD8350 CMRR vs.  
Frequency  
Figure 26. AD8350 Power-Up/Down  
Response Tim e  
REV. 0  
–7–  
AD8350  
Reactive Matching  
AP P LICATIO NS  
In practical applications, the AD8350 will most likely be matched  
using reactive matching components as shown in Figure 29.  
Matching components can be calculated using a Smith Chart  
and the AD8350s S-Parameters (see T ables I and II) along  
with those of the devices that are driving and loading it. T he S-  
Parameters in T ables I and II assume a differential source and  
load impedance of 50 . Because the load impedance on the  
output of the AD8350 affects the input impedance, a simulta-  
neous conjugate match must be performed to correctly match  
both input and output.  
Using the AD 8350  
Figure 27 shows the basic connections for operating the AD8350.  
A single supply in the range +5 V to +10 V is required. T he  
power supply pin should be decoupled using a 0.1 µF capacitor.  
T he ENBL pin is tied to the positive supply or to +5 V (when  
VCC = +10 V) for normal operation and should be pulled to  
ground to put the device in sleep mode. Both the inputs and the  
outputs have dc bias levels at midsupply and should be ac-coupled.  
Also shown, in Figure 27, are the impedance balancing require-  
ments, either resistive or reactive, of the input and output. With  
an input and output impedance of 200 , the AD8350 should  
be driven by a 200 source and loaded by a 200 impedance.  
A reactive match can also be implemented.  
C1  
C2  
8
7
6
5
Figure 28 shows how the AD8350 can be driven by a single-  
ended source. T he unused input should be ac-coupled to  
ground. When driven single-ended, there will be a slight imbal-  
ance in the differential output voltages. T his will cause an in-  
crease in the second order harmonic distortion (at 50 MHz,  
with VCC = +10 V and VOUT = 1 V p-p, –59 dBc was measured  
for the second harmonic on AD8350-15).  
AD8350  
L1  
L2  
1
2
3
4
C2  
C1  
C2  
0.1F  
ENBL (+5V)  
+V (+5V TO +10V)  
S
Figure 29. Reactively Matching the Input and Output  
SOURCE  
LOAD  
Z = 100  
C2  
0.001F  
C4  
0.001F  
8
7
6
5
AD8350  
Z = 200⍀  
1
2
3
4
Z = 100⍀  
C1  
0.001F  
C3  
0.001F  
C5  
0.1F  
ENBL (+5V)  
+V (+5V TO +10V)  
S
Figure 27. Basic Connections for Differential Drive  
LOAD  
C2  
0.001F  
C4  
0.001F  
8
7
6
5
AD8350  
Z = 200⍀  
1
2
3
4
SOURCE  
Z = 200⍀  
C3  
C1  
0.001F  
0.001F  
C5  
0.1F  
ENBL (+5V)  
+V (+5V TO +10V)  
S
Figure 28. Basic Connections for Single-Ended Drive  
–8–  
REV. 0  
AD8350  
Figure 30 shows how the AD8350 input can be matched for a  
single-ended drive. T he unused input is ac-coupled to ground  
using a low impedance (i.e., high value) capacitance. T he S-  
Parameters for this configuration are shown in T ables III and  
IV. T hese values assume a single-ended source impedance of  
50 and a differential load impedance of 50 . As in the case  
of a differential drive, a simultaneous conjugate match must be  
performed to correctly match both input and output.  
Evaluation Boar d  
Figure 31 shows the schematic of the AD8350 evaluation board  
as it is shipped from the factory. T he board is configured to  
allow easy evaluation using single-ended 50 test equipment.  
T he input and output transformers have a 4-to-1 impedance  
ratio and transform the AD8350’s 200 input and output  
impedances to 50 . In this mode, 0 resistors (R1 and R4)  
are required.  
T o allow compensation for the insertion loss of the transform-  
ers, a calibration path is provided at T est In and T est Out. T his  
consists of two transformers connected back to back.  
0.001F  
C2  
8
7
6
5
T o drive and load the board differentially, transformers T 1 and  
T 2 should be removed and replaced with four 0 resistors  
(0805 size); Resistors R1 and R4 (0 ) should also be removed.  
T his yields a circuit with a broadband input and output imped-  
ance of 200 . T o match to impedances other than this, match-  
ing components (0805 size) can be placed on pads C1, C2, C3,  
C4, L1 and L2.  
AD8350  
L2  
1
2
3
4
C2  
C1  
L1  
C2  
0.1F  
ENBL  
(+5V)  
+V (+5V TO +10V)  
S
Figure 30. Matching Circuit for Single-Ended Drive  
C3  
C1  
0.001F  
0.001F  
8
7
6
5
R1  
0⍀  
R4  
0⍀  
T1: TC4-1W  
(MINI CIRCUITS)  
T2: TC4-1W  
(MINI CIRCUITS)  
AD8350  
6
1
R2  
0⍀  
R3  
0⍀  
IN–  
IN+  
OUT–  
OUT+  
L2  
(OPEN)  
L1  
(OPEN)  
1
6
1
2
3
4
C2  
0.001F  
C4  
0.001F  
C5  
0.1F  
A
B
3
2
+V  
S
SW1  
1
+V  
S
T3: TC4-1W  
(MINI CIRCUITS)  
T4: TC4-1W  
(MINI CIRCUITS)  
6
1
TEST IN  
TEST OUT  
1
6
Figure 31. AD8350 Evaluation Board  
REV. 0  
–9–  
AD8350  
Table I. Typical S P aram eters AD 8350-15: VCC = 5 V, D ifferential Input Signal.  
SO URCE(diff) = 50 , ZLO AD(diff) = 50 ⍀  
Z
Frequency  
(MH z)  
S11  
S12  
S21  
S22  
50  
0.791 –3°  
0.787 –6°  
0.778 –9°  
0.766 –13°  
0.749 –17°  
0.068 177°  
0.071 174°  
0.070 172°  
0.072 168°  
0.074 165°  
2.73 –3°  
2.79 –7°  
2.91 –11°  
3.06 –16°  
3.24 –21°  
0.795 –2°  
0.794 –5°  
0.787 –7°  
0.779 –10°  
0.768 –12°  
100  
150  
200  
250  
Table II. Typical S P aram eters AD 8350-20: VCC = 5 V, D ifferential Input Signal.  
ZSO URCE(diff) = 50 , ZLO AD(diff) = 50 ⍀  
Frequency  
(MH z)  
S11  
S12  
S21  
S22  
50  
0.810 –4°  
0.795 –8°  
0.790 –12°  
0.776 –17°  
0.757 –22°  
0.046 176°  
0.043 173°  
0.045 169°  
0.046 165°  
0.048 162°  
4.82 –2.5°  
4.99 –6.16°  
5.30 –9.82°  
5.71 –14.89° 0.795 –10°  
6.25 –21.29° 0.783 –13°  
0.822 –3°  
0.809 –5°  
0.807 –8°  
100  
150  
200  
250  
Table III. Typical S P aram eters AD8350-15: VCC = 5 V, Single-Ended Input Signal.  
ZSO URCE(diff) = 50 , ZLO AD(diff) = 50 ⍀  
Frequency  
(MH z)  
S11  
S12  
S21  
S22  
50  
0.718 –6°  
0.701 –12°  
0.683 –19°  
0.657 –24°  
0.625 –31°  
0.068 177°  
0.066 173°  
0.067 167°  
0.069 163°  
0.070 159°  
2.62 –4°  
2.66 –10°  
2.76 –15°  
2.86 –22°  
2.98 –28°  
0.798 –3°  
0.794 –6°  
0.789 –10°  
0.776 –13°  
0.763 –16°  
100  
150  
200  
250  
Table IV. Typical S P aram eters AD8350-20: VCC = 5 V, Single-Ended Input Signal.  
ZSO URCE(diff) = 50 , ZLO AD(diff) = 50 ⍀  
Frequency  
(MH z)  
S11  
S12  
S21  
S22  
50  
0.747 –7°  
0.739 –14°  
0.728 –21°  
0.698 –29°  
0.659 –37°  
0.040 175°  
0.042 170°  
0.044 166°  
0.045 161°  
0.048 156°  
4.71 –4°  
4.82 –9°  
5.08 –15°  
5.37 –22°  
5.76 –30°  
0.814 –3°  
0.813 –6°  
0.804 –10°  
0.792 –13°  
0.774 –16°  
100  
150  
200  
250  
–10–  
REV. 0  
AD8350  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead P lastic SO IC  
(SO -8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
؋
 45؇  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
8؇  
0؇  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
REV. 0  
–11–  

相关型号:

AD8350AR20

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350AR20

1000MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, PLASTIC, SOIC-8
ROCHESTER

AD8350AR20-EVAL

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350AR20-REEL

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350AR20-REEL7

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350AR20-REEL7

1000MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, PLASTIC, SOIC-8
ROCHESTER

AD8350ARM15

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARM15-REEL

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARM15-REEL7

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARM15-REEL7

1000MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, PLASTIC, MICRO SOIC-8
ROCHESTER

AD8350ARM20

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARM20

1000MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, PLASTIC, MICRO SOIC-8
ROCHESTER