AD8275ARMZ-RL [ADI]

G = 0.2, Level Translation, 16-Bit ADC Driver; G = 0.2 ,电平转换, 16位ADC驱动器
AD8275ARMZ-RL
型号: AD8275ARMZ-RL
厂家: ADI    ADI
描述:

G = 0.2, Level Translation, 16-Bit ADC Driver
G = 0.2 ,电平转换, 16位ADC驱动器

驱动器 转换器 模数转换器 光电二极管
文件: 总16页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
G = 0.2, Level Translation,  
16-Bit ADC Driver  
AD8275  
FEATURES  
PIN CONFIGURATION  
Translates 10 V to +4 V  
Drives 16-bit SAR ADCs  
Small MSOP package  
Input overvoltage: +40 V to −35 V (VS = 5 V)  
Fast settling time: 450 ns to 0.001%  
Rail-to-rail output  
Wide supply operation: +3.3 V to +15 V  
High CMRR: 80 dB  
REF1  
–IN  
1
2
3
4
8
7
6
5
REF2  
AD8275  
+V  
S
TOP VIEW  
+IN  
OUT  
(Not to Scale)  
–V  
SENSE  
S
Figure 1.  
TYPICAL APPLICATION  
+5V  
0.1µF  
0.1µF  
Low gain drift: 1 ppm/°C  
Low offset drift: 2.5 μV/°C  
7
+4.048V  
+2.048V  
+0.048V  
+V  
S
+10V  
50k  
–IN  
10kΩ  
2
5
APPLICATIONS  
SENSE  
33Ω  
VDD  
AD7685  
IN+  
IN–  
OUT  
Level translator  
ADC driver  
6
2.7nF  
REF  
GND  
50kΩ  
+IN  
20kΩ  
20kΩ  
Instrumentation amplifier building block  
Automated test equipment  
3
8
1
VIN  
–10V  
REF2  
REF1  
VREF  
4.096V  
10µF  
AD8275 –V  
S
4
Figure 2. Translating 10 V to 4.096 V ADC Full Scale  
GENERAL DESCRIPTION  
The AD8275 is a G = 0.2 difference amplifier that can be used  
to translate ±±0 V signals to a +4 V level. It solves the problem  
typically encountered in industrial and instrumentation applic-  
ations where ±±0 V signals must be interfaced to a single-supply  
4 V or 5 V ADC. The AD8275 interfaces the two signal levels,  
simplifying design.  
The AD8275 can be used as an analog front end, or it can follow  
buffers to level translate high voltages to a voltage range accepted  
by the ADC. In addition, the AD8275 can be configured for diff-  
erential outputs if used with a differential ADC.  
The AD8275 is available in a space-saving, 8-lead MSOP  
and is specified for performance over the −40°C to +85°C  
temperature range.  
The AD8275 has fast settling time of 450 ns and low distortion,  
making it suitable for driving medium speed successive approx-  
imation (SAR) ADCs. Its wide input voltage range and rail-to-  
rail outputs make it an easy to use building block. Single-supply  
operation reduces the power consumption of the amplifier and  
helps to protect the ADC from overdrive conditions.  
Table 1. Difference Amplifiers by Category  
Single-Supply  
Current Sense  
Low Distortion  
AD8270  
High Voltage  
AD628  
AD8202  
AD8273  
AD629  
AD8203  
Internal, matched, precision laser-trimmed resistors ensure  
low gain error, low gain drift of ± ppm/°C (maximum), and  
high common-mode rejection of 80 dB. Low offset and low  
offset drift, combined with its fast settling time, make the  
AD8275 suitable for a variety of data acquisition applications  
where accurate and quick capture is required.  
AD8274  
AD8205  
AD8275  
AD8206  
AMP03  
AD8216  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
AD8275  
TABLE OF CONTENTS  
Features .............................................................................................. ±  
Reference ..................................................................................... ±2  
Common-Mode Input Voltage Range..................................... ±2  
Input Protection ......................................................................... ±2  
Configurations............................................................................ ±3  
Applications Information.............................................................. ±4  
Driving a Single-Ended ADC................................................... ±4  
Differential Outputs................................................................... ±4  
Increasing Input Impedance ..................................................... ±5  
AC Coupling ............................................................................... ±5  
Applications....................................................................................... ±  
Pin Configuration............................................................................. ±  
Typical Application........................................................................... ±  
General Description......................................................................... ±  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Maximum Power Dissipation ..................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... ±±  
Basic Connection........................................................................ ±±  
Power Supplies ............................................................................ ±2  
Using the AD8275 as a Level Translator in a Data Acquisition  
System .......................................................................................... ±5  
Outline Dimensions....................................................................... ±6  
Ordering Guide .......................................................................... ±6  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD8275  
SPECIFICATIONS  
VS = 5 V, G = 0.2, REF± connected to GND and REF2 connected to 5 V, RL = 2 kΩ connected to VS/2, TA = 25°C, unless otherwise noted.  
Specifications referred to output unless otherwise noted.  
Table 2.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
Small Signal Bandwidth  
Slew Rate  
Settling Time to 0.01%  
Settling Time to 0.001%  
Overload Recovery Time  
NOISE/DISTORTION1  
THD + N  
−3 dB  
4 V step  
4 V step on output, CL = 100 pF  
4 V step on output, CL = 100 pF  
50% overdrive  
10  
20  
15  
25  
350  
450  
300  
10  
20  
15  
25  
350  
450  
300  
MHz  
V/μs  
ns  
ns  
ns  
450  
550  
f = 1 kHz, VOUT = 4 V p-p, 22 kHz band  
pass filter  
106  
106  
dB  
Voltage Noise  
Spectral Noise Density  
GAIN  
f = 0.1 Hz to 10 Hz, referred to output  
f = 1 kHz, referred to output  
1
40  
0.2  
4
1
40  
0.2  
4
μV p-p  
nV/√Hz  
V/V  
VREF2 = 4.096 V, REF1 and RL connected  
to GND, (VIN+) − (VIN−) = −10 V to +10 V  
Gain Error  
Gain Drift  
Gain Nonlinearity  
OFFSET AND CMRR  
Offset2  
0.024  
3
0.024  
1
3
%
−40°C to +85°C  
VOUT = 4 V p-p, RL = 600 Ω, 2 kΩ, 10 kΩ  
1
2.5  
0.3  
2.5  
ppm/°C  
ppm  
Referred to output, VS = 2.5 V,  
reference and input pins grounded  
−40°C to +85°C  
VS = 3.3 V to 5 V  
300  
2.5  
700  
150  
2.5  
500  
7
μV  
vs. Temperature  
vs. Power Supply  
Reference Divider Accuracy  
Common-Mode Rejection  
Ratio3  
μV/°C  
dB  
%
90  
80  
100  
86  
0.024  
+12  
0.024  
VCM  
=
10 V, referred to output  
96  
dB  
INPUT CHARACTERISTICS  
Input Voltage Range4  
Impedance5  
−12.3  
−12.3  
+12  
V
Differential  
Common Mode  
VCM = VS/2  
108||2  
27.5||2  
108||2  
27.5||2  
kΩ||pF  
kΩ||pF  
OUTPUT CHARACTERISTICS  
Output Swing  
VREF2 = 4.096 V, REF1 and RL connected  
to GND, RL = 2 kΩ  
−VS +  
0.048  
+VS −  
0.1  
−VS +  
0.048  
+VS −  
0.1  
V
Capacitive Load6  
Short-Circuit Current Limit  
POWER SUPPLY  
100  
30  
100  
30  
pF  
mA  
Specified Voltage Range  
Operating Voltage Range  
Supply Current  
5
5
V
V
mA  
3.3  
15  
2.3  
3.3  
15  
2.3  
IO = 0 mA, VS = 2.5 V, reference and  
input pins grounded  
IO = 0 mA, VS = 2.5 V, reference and  
input pins grounded, −40°C to +85°C  
1.9  
2.1  
1.9  
2.1  
Over Temperature  
2.7  
2.7  
mA  
°C  
TEMPERATURE RANGE  
Specified Performance  
−40  
+85  
−40  
+85  
1 Includes amplifier voltage and current noise, as well as noise of internal resistors.  
2 Includes input bias and offset current errors.  
3 See Figure 7 for CMRR vs. temperature.  
4 The input voltage range is a function of the voltage supplies, reference voltage, and ESD diodes. When operating on other supply voltages, see the Absolute Maximum  
Ratings section, Figure 11, and Table 5 for more information.  
5 Internal resistors are trimmed to be ratio matched but have 20% absolute accuracy.  
6 See Figure 25 to Figure 28 in the Typical Performance Characteristics section for more information.  
Rev. 0 | Page 3 of 16  
 
 
 
AD8275  
ABSOLUTE MAXIMUM RATINGS  
midsupply, the total drive power is VS/2 × IOUT, some of which is  
dissipated in the package and some of which is dissipated in the  
load (VOUT × IOUT).  
Table 3.  
Parameter  
Rating  
Supply Voltage  
18 V  
The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
Output Short-Circuit Current  
See derating curve  
(Figure 3)  
Voltage at +IN, −IN Pins  
Voltage at REFx, +VS, − VS, SENSE,  
and OUT Pins  
Current into REFx, +IN, −IN, SENSE,  
and OUT Pins  
Storage Temperature Range  
Specified Temperature Range  
Thermal Resistance (θJA)  
−VS + 40 V, +VS − 40 V  
−VS − 0.5 V, +VS + 0.5 V  
PD = Quiescent Power + (Total Drive Power Load Power)  
2
VS VOUT  
VOUT  
RL  
PD =  
(
VS × IS  
)
+
×
2
RL  
3 mA  
In single-supply operation with RL referenced to –VS, the worst  
case is VOUT = VS/2.  
−65°C to +130°C  
−40°C to +85°C  
135°C/W  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
from metal traces, through holes, ground, and power planes  
reduces θJA.  
Package Glass Transition Temperature  
(TG)  
ESD Human Body Model  
140°C  
2 kV  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature on a 4-layer JEDEC  
standard board.  
2.00  
1.75  
1.50  
MAXIMUM POWER DISSIPATION  
1.25  
1.00  
0.75  
0.50  
0.25  
0
The maximum safe power dissipation in the AD8275 package is  
limited by the associated rise in junction temperature (TJ) on  
the die. The plastic encapsulating the die locally reaches the  
junction temperature. At approximately ±40°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit can change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8275. Exceeding  
a junction temperature of ±40°C for an extended period can  
result in changes in silicon devices, potentially causing failure.  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
The still air thermal properties of the package and PCB (θJA),  
the ambient temperature (TA), and the total power dissipated in  
the package (PD) determine the junction temperature of the die.  
The junction temperature is calculated as follows:  
TJ = TA + (PD × θJA)  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
Rev. 0 | Page 4 of 16  
 
 
 
 
AD8275  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
REF1  
–IN  
1
2
3
4
8
7
6
5
REF2  
+V  
AD8275  
S
TOP VIEW  
+IN  
OUT  
(Not to Scale)  
–V  
SENSE  
S
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
REF1  
−IN  
+IN  
Reference Pin. Sets the output voltage level (see the Reference section).  
Negative Input Pin.  
Positive Input Pin.  
Negative Supply Pin.  
Sense Output Pin. Tie this pin to the OUT pin.  
Output Pin (Force Output).  
−VS  
SENSE  
OUT  
+VS  
Positive Supply Pin.  
Reference Pin. Sets the output voltage level (see the Reference section).  
REF2  
Rev. 0 | Page 5 of 16  
 
AD8275  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, G = 0.2, REF± connected to GND and REF2 connected to 5 V, RL = 2 kΩ connected to VS/2, TA = 25°C, unless otherwise noted.  
300  
250  
14  
200  
12  
150  
100  
10  
50  
8
6
4
2
0
0
–50  
–100  
–150  
–200  
–250  
–300  
NORMALIZED AT 25°C, REPRESENTATIVE SAMPLES  
–40 –20 20 40 60 80 100  
TEMPERATURE (°C)  
–600  
–400  
–200  
0
200  
400  
600  
0
120  
OFFSET VOLTAGE (µV)  
Figure 5. Typical Distribution of System Offset Voltage, Referred to Output  
Figure 8. Offset Voltage vs. Temperature, Normalized at 25°C,  
Referred to Output  
50  
40  
70  
60  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
–10  
–20  
–30  
–40  
GAIN ERROR NORMALIZED AT 25°C  
–50  
–45 –30 –15  
0
15 30 45 60 75 90 105 120  
–60  
–40  
–20  
0
20  
40  
60  
TEMPERATURE (°C)  
CMRR (µV/V)  
Figure 6. Typical Distribution of CMRR, Referred to Output  
Figure 9. Gain Error vs. Temperature, Normalized at 25°C  
60  
5
4
3
2
1
40  
20  
0
5V  
–20  
–40  
–60  
3.3V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. CMRR vs. Temperature, Normalized at 25°C  
Figure 10. Quiescent Current vs. Temperature  
Rev. 0 | Page 6 of 16  
 
 
 
AD8275  
35  
30  
120  
100  
80  
25  
20  
15  
10  
60  
5
40  
0
–5  
20  
–10  
–15  
–20  
–25  
0
–20  
100  
1k  
10k  
100k  
1M  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 11. Input Common-Mode Voltage vs. Output Voltage, No Load  
Figure 14. Power Supply Rejection vs. Frequency, Referred to Output  
0
–5  
6
5
4
3
2
1
0
–10  
–15  
–20  
–25  
–30  
–35  
–40  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. Gain vs. Frequency  
Figure 15. Maximum Output Voltage vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
20  
15  
10  
5
0
–5  
–10  
–15  
–20  
0
1
2
3
4
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 16. Gain Nonlinearity, RL = 600 Ω, 2 kΩ, 10 kΩ  
Figure 13. Common-Mode Rejection vs. Frequency, Referred to Input  
Rev. 0 | Page 7 of 16  
 
AD8275  
+V  
60  
50  
S
–40°C  
+V – 0.4  
S
+125°C  
+85°C  
40  
5V SOURCE  
+25°C  
+V – 0.8  
S
30  
+V – 1.2  
3.3V SOURCE  
S
20  
+V – 1.6  
S
10  
+V – 2.0  
S
0
–10  
–20  
–30  
–40  
–50  
–60  
–V + 2.0  
S
–V + 1.6  
S
3.3V SINK  
5V SINK  
–V + 1.2  
S
–V + 0.8  
S
+85°C +125°C  
+25°C  
8
–V + 0.4  
S
–40°C  
12 14  
–70  
–50  
–V  
S
–25  
0
25  
50  
75  
100  
125  
0
2
4
6
10  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 17. Short-Circuit Current vs. Temperature, VS = 3.3 V, 5 V  
Figure 20. Output Voltage Swing vs. Output Current, VS = 5 V  
1k  
+V  
S
–40°C  
+V – 0.2  
S
+25°C  
+V – 0.4  
S
+85°C  
+125°C  
+V – 0.6  
S
+V – 0.8  
S
+V – 1.0  
S
100  
–V + 1.0  
S
–V + 0.8  
S
+125°C  
+85°C  
+25°C  
–V + 0.6  
S
–V + 0.4  
S
–V + 0.2  
S
–40°C  
100  
10  
–V  
S
1
10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
R
()  
LOAD  
FREQUENCY (Hz)  
Figure 18. Output Voltage Swing vs. RLOAD, VS = 5 V  
Figure 21. Voltage Noise Density vs. Frequency, Referred to Output  
+V  
S
–40°C  
+25°C  
+V – 0.4  
S
+125°C  
+85°C  
+V – 0.8  
S
+V – 1.2  
S
+V – 1.6  
S
+V – 2.0  
S
–V + 2.0  
S
–V + 1.6  
S
–V + 1.2  
S
–V + 0.8  
S
+125°C  
12  
+85°C  
10  
+25°C  
8
–V + 0.4  
S
–40°C  
–V  
S
0
2
4
6
14  
TIME (1s/DIV)  
OUTPUT CURRENT (mA)  
Figure 19. Output Voltage Swing vs. Output Current, VS = 3.3 V  
Figure 22. 0.1 Hz to 10 Hz Voltage Noise, Referred to Output  
Rev. 0 | Page 8 of 16  
AD8275  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
+SR  
–SR  
3.3V  
5V  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
140  
160  
160  
160  
TEMPERATURE (°C)  
CAPACITANCE (pF)  
Figure 26. Small Signal Overshoot vs. Capacitive Load,  
No Resistive Load  
Figure 23. Slew Rate vs. Temperature  
60  
50  
40  
30  
20  
10  
C
= 47pF  
LOAD  
2k  
NO LOAD  
600Ω  
3.3V  
5V  
10kΩ  
0
0
20  
40  
60  
80  
100  
120  
140  
1µs/DIV  
CAPACITANCE (pF)  
Figure 27. Small Signal Overshoot vs. Capacitive Load,  
600 Ω in Parallel with Capacitive Load  
Figure 24. Small Signal Step Response for Various Resistive Loads  
(Step Responses Staggered for Clarity)  
60  
NO RESISTIVE LOAD  
100pF  
20pF  
50  
40  
30  
20  
10  
0
NO CAP  
3.3V  
5V  
47pF  
0
20  
40  
60  
80  
100  
120  
140  
1µs/DIV  
CAPACITANCE (pF)  
Figure 28. Small Signal Overshoot vs. Capacitive Load,  
2 kΩ in Parallel with Capacitive Load  
Figure 25. Small Signal Pulse Response for Various Capacitive Loads  
(Step Responses Staggered for Clarity)  
Rev. 0 | Page 9 of 16  
 
 
AD8275  
1.0  
0.1  
V
= 4V p-p  
OUT  
10V/DIV  
0.01  
R
= 600  
= 10kꢀ  
L
10mV/DIV  
0.001  
0.0001  
R
= 2kꢀ  
L
R
L
2µs/DIV  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 29. Large Signal Pulse Response and Settling Time, RL = 2 kΩ  
Figure 30. THD + N vs. Frequency, VOUT = 4 V p-p  
Rev. 0 | Page 10 of 16  
AD8275  
THEORY OF OPERATION  
The AD8275 level translates ±±0 V signals at its inputs to 4 V  
at its output. It does this by attenuating the input signal by 5.  
A subtractor network performs the attenuation, the level shifting,  
and the differential-to-single-ended conversion. One benefit of  
the subtractor topology is that it can accept input signals  
beyond its supply voltage. The subtractor is composed of tightly  
matched resistors. By integrating the resistors and trimming the  
resistor ratios, the AD8275 achieves 80 dB CMRR and 0.024%  
gain error.  
The AD8275 employs a balanced, high gain, linear output stage  
that adaptively generates current as required, eliminating the  
dynamic errors found in other amplifiers. This is useful when  
driving SAR ADCs, which can deliver kickback current into the  
output of the amplifier. The result is a design that achieves low  
distortion, consistent bandwidth, and high slew rate.  
BASIC CONNECTION  
The basic configurations for the AD8275 are shown in  
Figure 33 and Figure 34. In Figure 33, REF± and REF2 are  
tied together. A voltage, VREF, applied to the tied REF± and  
REF2 pins, sets the output voltage level to VREF. For example,  
in Figure 33, if VREF = 2 V and the inputs are tied to ground,  
the output remains at 2 V.  
+V  
S
50kꢀ  
10kꢀ  
INPUT  
ESD  
–IN  
SENSE  
+V  
S
–V  
+V  
S
–V  
+V  
S
S
S
S
7kꢀ  
7kꢀ  
+5V  
OUT  
0.1µF  
–V  
S
2.5V  
7
–V  
+V  
S
+V  
S
–V  
S
–V  
S
+V  
S
50kꢀ  
–IN  
10kꢀ  
V
5
6
2
INN  
20kꢀ  
REF2  
REF1  
SENSE  
OUT  
–V  
S
V
OUT  
+V  
S
20kꢀ  
INPUT  
ESD  
V
+IN  
REF  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
50kꢀ  
3
8
1
V
INP  
REF2  
REF1  
–V  
S
Figure 31. AD8275 Simplified Schematic  
AD8275 –V  
S
4
To achieve a wider input voltage range, the AD8275 uses an  
internal 2.5 V voltage bias tied to –VS and two 7 kꢀ resistors, as  
shown in Figure 3±. The resistors help to set the common mode  
of the internal amplifier. The benefit of this circuit is that it  
extends the input range without causing crossover distortion  
typical of amplifiers that have rail-to-rail complementary  
transistor inputs. The input range of the internal op amp is  
+VS − 0.9 V to −VS + ±.35 V.  
(V ) – (V  
INP  
)
INN  
V
=
+ V  
REF  
OUT  
5
Figure 33. Basic Configuration 1: Shared Reference  
In contrast, Figure 34 shows REF± tied to ground and REF2  
tied to VREF. In this example, the two 20 kꢀ resistors serve as a  
resistor divider, and VREF is divided by 2. For example, if both  
inputs of the AD8275 are grounded and VREF = 5 V, the output  
is 2.5 V.  
600  
400  
200  
+5V  
0.1µF  
7
+V  
S
0
50k  
–IN  
10kꢀ  
V
5
6
2
INN  
SENSE  
OUT  
–200  
–400  
–600  
V
OUT  
V
REF  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
3
8
1
V
INP  
REF2  
REF1  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
COMMON-MODE VOLTAGE (V)  
AD8275 –V  
S
4
Figure 32. AD8275 Does Not Have Crossover Distortion Typical of Rail-to-Rail  
Input Amplifiers  
(V ) – (V  
INP  
)
V
+ 0V  
2
INN  
REF  
V
=
+
OUT  
5
Figure 34. Basic Configuration 2: Split Reference  
Rev. 0 | Page 11 of 16  
 
 
 
 
 
 
 
 
AD8275  
POWER SUPPLIES  
COMMON-MODE INPUT VOLTAGE RANGE  
Use a stable dc voltage to power the AD8275. Noise on the  
supply pins can adversely affect performance. Place a bypass  
capacitor of 0.± μF between each supply pin and ground, as  
close to each pin as possible. A tantalum capacitor of ±0 μF  
should also be used between each supply and ground. It can  
be farther away from the AD8275 and typically can be shared  
by other precision integrated circuits.  
The common-mode voltage range is a function of the input  
voltage range of the internal op amp, the supply voltage, and  
the reference voltage.  
Equation ± expresses the maximum positive common-mode  
voltage range.  
VCM_POS ≤ ±3.±4(+VS) – 7.±4(–VS) – 5((REF1 + REF2)/2) – 29.69 (±)  
Equation 2 expresses the minimum common-mode voltage  
range.  
REFERENCE  
The reference terminals are used to provide a bias level for the  
output. For example, in a single-supply 5 V operation, the  
reference terminals can be set so that the output is biased at  
2.5 V. This ensures that the output can swing positive or  
negative around a 2.5 V level.  
V
CM_NEG ≥ 6(–VS) – 5((REF1 + REF2)/2) – 0.±±  
(2)  
The voltage range of the internal op amp varies depending on  
temperature. The equations reflect a typical input voltage range  
of +VS − 0.9 V and −VS + ±.35 V over temperature. Table 5 lists  
expected common-mode ranges for typical configurations.  
Figure 33 and Figure 34 illustrate two different ways to set the  
reference voltage. See the Basic Connection section for the  
differences between the two settings.  
Table 5. Expected Common-Mode Voltage Range for Typical  
Configurations  
+VS (V)1 VREF1 (V)  
VREF2 (V)  
VCM+ (V)  
23.5  
29.8  
25.8  
5.4  
VCM− (V)  
−12.6  
−6.4  
−10.4  
−8.4  
The allowable reference voltage range is a function of the  
common-mode input and supply voltages. The REF± and REF2  
pins should not exceed either +VS or −VS by more than 0.5 V.  
5
5
0
0
0
0
0
5
5
5
3.3  
3.3  
5
2.5  
4.096  
3.3  
2.5  
5
The REFx terminals should be driven by low source impedance  
because parasitic resistance in series with REF± and REF2 can  
adversely affect CMRR and gain accuracy.  
7.4  
−6.4  
11.0  
15.5  
21.0  
23.5  
25.8  
29.8  
36.0  
−25.1  
−20.6  
−15.1  
−12.6  
−10.4  
−6.4  
CORRECT  
INCORRECT  
5
5
4.096  
3
4.096  
3
2.5  
2.048  
1.25  
0
+V  
7
+V  
7
S
S
5
5
5
5
2.5  
2.048  
1.25  
0
SENSE  
SENSE  
50kꢀ  
–IN  
10kꢀ  
50kꢀ  
–IN  
10kꢀ  
2
3
5
2
3
5
OUT  
OUT  
6
6
V
REF  
−0.1  
V
1 –VS = 0 V.  
REF  
REF2  
REF1  
REF2  
REF1  
50kꢀ  
+IN  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
20kꢀ  
20kꢀ  
8
1
8
1
INPUT PROTECTION  
–V  
S
4
–V  
S
The inputs of the AD8275, +IN and −IN, are protected by ESD  
diodes that clamp 40 V above −VS and 40 V below +VS. When  
operating on a single +5 V supply, the ESD diode conducts at  
input voltages less than −35 V and greater than +40 V.  
AD8275  
AD8275  
4
+V  
7
+V  
7
S
S
If the input voltage is expected to exceed the maximum ratings  
of the AD8275, use external transorbs. Adding series resistors to  
the inputs of the AD8275 is not recommended because the  
internal resistor ratios are matched to provide optimal CMRR  
and gain accuracy. Adding external series resistors to the input  
degrades the performance of the AD8275.  
SENSE  
SENSE  
50kꢀ  
–IN  
10kꢀ  
50kꢀ  
–IN  
10kꢀ  
2
3
5
2
3
5
OUT  
OUT  
6
6
V
REF  
V
REF  
REF2  
REF1  
REF2  
REF1  
50kꢀ  
+IN  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
20kꢀ  
20kꢀ  
8
1
8
1
All other pins are protected by ESD diodes that clamp 0.5 V  
beyond either supply rail. For example, the voltage range of the  
REF± and REF2 pins on a 5 V supply is −0.5 V to +5.5 V.  
–V  
4
–V  
S
S
AD8275  
AD8275  
4
Figure 35. REF1 and REF2 Pin Guidelines  
Rev. 0 | Page 12 of 16  
 
 
 
 
 
AD8275  
CONFIGURATIONS  
Figure 36 and Figure 37, along with Table 6 and Table 7, provide  
examples of the possible input and output ranges for various  
supplies and reference voltages.  
Note that Table 6 and Table 7 list the typical voltage range of the  
AD8275; these values do not reflect variation over process or  
temperature.  
+5V  
+5V  
0.1µF  
0.1µF  
USEFUL V  
OUT  
USEFUL V  
OUT  
HI  
HI  
7
7
LINEAR V  
RANGE  
LINEAR V  
RANGE  
+SWING  
–SWING  
+SWING  
–SWING  
IN  
IN  
+V  
+V  
S
S
HI  
HI  
50k  
–IN  
10kꢀ  
50kꢀ  
–IN  
10kꢀ  
LO  
LO  
2
5
6
2
5
6
V
V
INN  
INN  
SENSE  
OUT  
SENSE  
OUT  
MID  
LO  
MID  
LO  
V
V
OUT  
OUT  
V
V
REF  
REF  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
3
8
1
3
8
1
V
V
INP  
INP  
REF2  
REF1  
REF2  
REF1  
AD8275 –V  
AD8275 –V  
S
S
4
4
Figure 36. Split Reference  
Figure 37. Shared Reference  
Table 6. Input and Output Relationships for Split Reference  
Configuration in Figure 36  
Table 7. Input and Output Relationships for Shared  
Reference Configuration in Figure 37  
Linear  
Linear  
V
OUT for  
Differential  
VIN Range  
Useful VOUT  
Ranges  
V
OUT for  
Differential  
VIN Range  
Useful VOUT  
Ranges  
1
1
+VS  
VREF  
VIN = 0 V  
+VS  
VREF  
VIN = 0 V  
5 V  
5 V  
2.5 V  
High: +12 V  
Mid: 0 V  
High: +4.95 V  
Swing: +2.45 V,  
5 V  
5 V  
5 V  
High: −0.1 V  
Mid: 0 V  
High: +4.98 V  
Swing: −4.94 V  
Low: −12.3 V −2.455 V  
Low: +0.045 V  
High: +18.3 V High: +4.95 V  
Low: −24.7 V Low: +0.06 V  
5 V  
5 V  
5 V  
5 V  
5 V  
0 V  
4.096 V 4.096 V  
High: +4.4 V  
Mid: 0 V  
High: +4.98 V  
Swing: +0.884 V  
5 V  
5 V  
2.5 V  
1.25 V  
Mid: 0 V  
Low: −6 V  
Swing: +3.7 V,  
−1.205 V  
Low: −20.2 V to −4.03 V  
Low: +0.06 V  
Low: +0.045 V  
High: +14.3 V High: +4.95 V  
3 V  
3 V  
High: +9.5 V  
Mid: 0 V  
High: +4.95 V  
Swing: +1.9 V,  
4.096 V 2.048 V  
Mid: 0 V  
Low: −10 V  
Swing: +2.902 V,  
−2.003 V  
Low: −14.8 V −2.955 V  
Low: +0.045 V  
Low: +0.045 V  
2.5 V  
2.5 V  
High: +12 V  
Mid: 0 V  
High: +4.95 V  
Swing: +2.45 V,  
3.3 V 3.3 V  
3.3 V 2.5 V  
1.65 V  
1.25 V  
High: +8 V  
Mid: 0 V  
Low: −8 V  
High: +3.24 V  
Swing: +1.59 V,  
−1.605 V  
Low: −12.3 V −2.455 V  
Low: +0.045 V  
High: +14.3 V High: +4.95 V  
Low: +0.045 V  
2.048 V 2.048 V  
High: +10 V  
Mid: 0 V  
Low: −6 V  
High: +3.24 V  
Swing: +1.99 V,  
−1.205 V  
Mid: 0 V  
Low: −10 V  
Swing: +2.902 V,  
−2.003 V  
Low: +0.045 V  
Low: +0.045 V  
1.25 V  
0 V  
1.25 V  
0 V  
+18.3 V to  
−6 V  
High: +4.95 V  
Swing: +3.7 V,  
−1.205 V  
1 −VS = 0 V.  
Low: +0.045 V  
24.5 V to 0.2 V High: 4.95 V  
Swing: 4.95 V  
Low: 0.045 V  
1 −VS = 0 V.  
Rev. 0 | Page 13 of 16  
 
 
 
 
 
AD8275  
APPLICATIONS INFORMATION  
10  
0
–10  
DRIVING A SINGLE-ENDED ADC  
The AD8275 provides the common-mode rejection that SAR  
ADCs often lack. In addition, it enables designers to use cost-  
effective, precision, ±6-bit ADCs such as the AD7685, yet still  
condition ±±0 V signals.  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
One important factor in selecting an ADC driver is its ability to  
settle within the acquisition window of the ADC. The AD8275  
is able to drive medium speed SAR ADCs.  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
In Figure 38, the 2.7 nF capacitor serves to store and deliver  
necessary charge to the switched capacitor input of the ADC.  
The 33 ꢀ series resistor reduces the burden of the 2.7 nF load  
from the amplifier and isolates it from the kickback current  
injected from the switched capacitor input of the AD7685. The  
output impedance of the amplifier can affect the THD of the  
ADC. In this case, the combined impedance of the 33 ꢀ resistor  
and the output impedance of the AD8275 provides extremely  
low THD of −±±2 dB. Figure 39 shows the ac response of the  
AD8275 driving the AD7685.  
0
1
4
7
10  
2
5
8
3
6
9
FREQUENCY (kHz)  
Figure 39. FFT of AD8275 Directly Driving the AD7685 Using the 5 V  
Reference of the Evaluation Board (Input = 20 V p-p, 1 kHz, THD = −112 dB)  
The AD8275 can condition signals for higher resolution ADCs  
such as ±8-bit SAR converters, provided that a narrower  
bandwidth is sampled to limit noise.  
+5V  
DIFFERENTIAL OUTPUTS  
0.1µF  
0.1µF  
In certain applications, it is necessary to create a differential signal.  
For example, high resolution ADCs often require a differential  
input. In other cases, transmission over a long distance can require  
differential signals for better immunity to interference.  
7
+V  
S
50k  
–IN  
10kꢀ  
2
5
SENSE  
33ꢀ  
VDD  
AD7685  
IN+  
Figure 40 shows how to configure the AD8275 to output a  
differential signal. The AD8655 op amp is used in an inverting  
topology to create a differential voltage. VREF sets the output  
midpoint. Errors from the op amp are common to both outputs  
and are thus common mode. Likewise, errors from using  
mismatched resistors cause a common-mode dc offset error.  
Such errors are rejected in differential signal processing by  
differential input ADCs or by instrumentation amplifiers.  
OUT  
6
2.7nF  
IN–  
REF  
GND  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
3
8
1
VIN  
REF2  
REF1  
VREF  
(ADR444,  
ADR445)  
10µF  
AD8275 –V  
S
4
Figure 38. Driving a Single-Ended ADC  
When using this circuit to drive a differential ADC, VREF can be  
set using a resistor divider from the ADC reference to make the  
output ratiometric with the ADC.  
+5V  
0.1µF  
7
+V  
S
50kꢀ  
–IN  
10kꢀ  
2
5
6
SENSE  
OUT  
+4.5V  
+V  
OUT  
+2.5V  
+0.5V  
AD8655  
2kꢀ  
2kꢀ  
V
= 2.5V  
REF  
+10V  
–10V  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
3
8
1
REF2  
REF1  
8.2µF  
+5V  
0.1µF  
AD8275  
+4.5V  
–V  
4
S
+2.5V  
+0.5V  
–V  
OUT  
Figure 40. AD8275 Configured for Differential Output (for Driving a Differential ADC)  
Rev. 0 | Page 14 of 16  
 
 
 
 
AD8275  
INCREASING INPUT IMPEDANCE  
USING THE AD8275 AS A LEVEL TRANSLATOR IN  
A DATA ACQUISITION SYSTEM  
In applications where a high input impedance is needed, low  
input bias current op amps can be used to buffer the AD8275.  
In Figure 4±, an AD8620 is used to provide high input imped-  
ance. Input bias current is limited to ±0 pA.  
+5V  
Signal size varies dramatically in some data acquisition applica-  
tions. Instrumentation amplifiers, such as the AD8253, AD8228,  
or AD822±, are often used at the inputs to provide CMRR and  
high input impedance. However, the instrumentation amplifiers  
output ±±0 V signals and the ADC full scale is 5 V or 4.096 V.  
In Figure 43, the AD8275 serves as a level translator between  
the in-amp and the ADC. The AD8275, along with the AD8228  
and the AD8253, have very low gain drift because all gain setting  
resistors are internal and laser-trimmed.  
0.1µF  
+13V  
8
INVERTING  
INPUT  
7
+V  
0.1µF  
1
S
3
2
50k  
–IN  
10kꢀ  
SENSE  
OUT  
2
5
6
AD8620  
1/2  
+5V  
V
OUT  
0.1µF  
0.1µF  
V
REF  
7
50kꢀ  
+IN  
20kꢀ  
REF2  
REF1  
6
5
3
8
1
AD8620  
2/2  
+V  
S
7
20kꢀ  
50k  
–IN  
10kꢀ  
2
5
NON-  
INVERTING  
INPUT  
0.1µF  
SENSE  
AD8275 –V  
VCC  
ADC  
S
4
33ꢀ  
4
+IN  
–IN  
+15V  
–13V  
OUT  
6
0.1µF  
0.1µF  
2.7nF  
REF GND  
Figure 41. Adding Op Amp Buffers for High Input Impedance  
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
3
8
1
IN-AMP  
REF2  
REF1  
AC COUPLING  
VREF  
10µF  
An integrator can be tied to the AD8275 in feedback to create a  
high-pass filter as shown in Figure 42. This circuit can be used  
to reject dc voltages and offsets. At low frequencies, the impedance  
of the capacitor, C, is high. Thus, the gain of the integrator is  
high. DC voltage at the output of the AD8275 is inverted and  
gained by the integrator. The inverted signal is injected back  
into the REFx pins, nulling the output. In contrast, at high fre-  
quencies, the integrator has low gain because the impedance of  
C is low. Voltage changes at high frequencies are inverted but at  
a low gain. The signal is injected into the REFx pins but it is not  
enough to null the output. High frequency signals are, therefore,  
allowed to pass.  
–15V  
AD8275 –V  
S
4
Figure 43. Level Translation in a Data Acquisition System  
When a signal exceeds fHIGH-PASS, the AD8275 outputs the  
conditioned input signal.  
+5V  
0.1µF  
7
+V  
S
50kꢀ  
–IN  
10kꢀ  
1
2
5
6
f
=
HIGH-PASS  
2πRC  
SENSE  
OUT  
V
OUT  
R
C
50kꢀ  
+IN  
20kꢀ  
20kꢀ  
3
8
1
REF2  
REF1  
OP  
AMP  
AD8275 –V  
S
V
4
REF  
0.1µF  
+5V  
Figure 42. AC-Coupled Level Translator  
Rev. 0 | Page 15 of 16  
 
 
 
AD8275  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 44. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
8-Lead MSOP  
8-Lead MSOP, Tape and Reel  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP  
Package Option  
RM-8  
RM-8  
RM-8  
RM-8  
Branding  
Y13  
Y13  
Y13  
Y1V  
AD8275ARMZ1  
AD8275ARMZ-R71  
AD8275ARMZ-RL1  
AD8275BRMZ1  
AD8275BRMZ-R71  
AD8275BRMZ-RL1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead MSOP, Tape and Reel  
8-Lead MSOP, 13" Tape and Reel  
RM-8  
RM-8  
Y1V  
Y1V  
1 Z = RoHS Compliant Part.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07546-0-10/08(0)  
Rev. 0 | Page 16 of 16  
 
 
 
 
 
 
 
 
 

相关型号:

AD8275BRMZ

G = 0.2, Level Translation, 16-Bit ADC Driver
ADI

AD8275BRMZ-R7

G = 0.2, Level Translation, 16-Bit ADC Driver
ADI

AD8275BRMZ-RL

G = 0.2, Level Translation, 16-Bit ADC Driver
ADI

AD8275_10

G = 0.2, Level Translation, 16-Bit ADC Driver
AAVID

AD8276

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
ADI

AD8276ARMZ

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
ADI

AD8276ARMZ-R7

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
ADI

AD8276ARMZ-RL

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
ADI

AD8276ARZ

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
ADI

AD8276ARZ-R7

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
ADI

AD8276ARZ-RL

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
ADI

AD8276BRMZ

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
ADI