AD8253_08 [ADI]

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 iCMOS Programmable Gain Instrumentation Amplifier; 10兆赫, 20 V /レS,G = 1 , 10 , 100 , 1000的iCMOS可编程增益仪表放大器
AD8253_08
型号: AD8253_08
厂家: ADI    ADI
描述:

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 iCMOS Programmable Gain Instrumentation Amplifier
10兆赫, 20 V /レS,G = 1 , 10 , 100 , 1000的iCMOS可编程增益仪表放大器

仪表放大器
文件: 总24页 (文件大小:575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 MHz, 20 V/μs, G = 1, 10, 100, 1000 iCMOS  
Programmable Gain Instrumentation Amplifier  
AD8253  
FEATURES  
Small package: 10-lead MSOP  
FUNCTIONAL BLOCK DIAGRAM  
DGND WR  
A1  
A0  
2
6
5
4
Programmable gains: 1, 10, 100, 1000  
Digital or pin-programmable gain setting  
Wide supply: ±± V to ±1± V  
LOGIC  
1
–IN  
Excellent dc performance  
High CMRR: 100 dB (minimum), G = 100  
Low gain drift: 10 ppm/°C (maximum)  
Low offset drift: 1.2 μV/°C (maximum), G = 1000  
Excellent ac performance  
7
OUT  
10  
+IN  
Fast settling time: 780 ns to 0.001% (maximum)  
High slew rate: 20 V/ꢀs (minimum)  
AD8253  
8
3
–V  
9
Low distortion: −110 dB THD at 1 kHz,10 V swing  
High CMRR over frequency: 100 dB to 20 kHz (minimum)  
Low noise: 10 nV/√Hz, G = 1000 (maximum)  
Low power: 4 mA  
+V  
REF  
S
S
Figure 1.  
80  
70  
60  
50  
40  
30  
20  
10  
0
APPLICATIONS  
G = 1000  
G = 100  
G = 10  
G = 1  
Data acquisition  
Biomedical analysis  
Test and measurement  
GENERAL DESCRIPTION  
The AD8253 is an instrumentation amplifier with digitally  
programmable gains that has gigaohm (GΩ) input impedance,  
low output noise, and low distortion, making it suitable for  
interfacing with sensors and driving high sample rate analog-to-  
digital converters (ADCs).  
–10  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
It has a high bandwidth of 10 MHz, low THD of −110 dB, and  
fast settling time of 780 ns (maximum) to 0.001%. Offset drift and  
gain drift are guaranteed to 1.2 μV/°C and 10 ppm/°C, respectively,  
for G = 1000. In addition to its wide input common voltage range,  
it boasts a high common-mode rejection of 100 dB at G = 1000  
from dc to 20 kHz. The combination of precision dc performance  
coupled with high speed capabilities makes the AD8253 an  
excellent candidate for data acquisition. Furthermore, this  
monolithic solution simplifies design and manufacturing and  
boosts performance of instrumentation by maintaining a tight  
match of internal resistors and amplifiers.  
FREQUENCY (Hz)  
Figure 2. Gain vs. Frequency  
Table 1. Instrumentation Amplifiers by Category  
General  
Purpose  
Zero  
Drift  
Mil  
Grade  
Low  
Power  
High Speed  
PGA  
AD82201  
AD8221  
AD8222  
AD82241  
AD8228  
AD82311  
AD85531  
AD85551  
AD85561  
AD85571  
AD620  
AD621  
AD524  
AD526  
AD624  
AD6271  
AD6231  
AD82231  
AD8250  
AD8251  
AD8253  
1 Rail-to-rail output.  
The AD8253 user interface consists of a parallel port that allows  
users to set the gain in one of two different ways (see Figure 1  
for the functional block diagram). A 2-bit word sent via a bus  
The AD8253 is available in a 10-lead MSOP package and is  
specified over the −40°C to +85°C temperature range, making it  
an excellent solution for applications where size and packing  
density are important considerations.  
WR  
can be latched using the  
input. An alternative is to use  
transparent gain mode, where the state of logic levels at the gain  
port determines the gain.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
 
AD8253  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Power Supply Regulation and Bypassing ................................ 18  
Input Bias Current Return Path ............................................... 18  
Input Protection ......................................................................... 18  
Reference Terminal .................................................................... 19  
Common-Mode Input Voltage Range..................................... 19  
Layout .......................................................................................... 19  
RF Interference ........................................................................... 19  
Driving an Analog-to-Digital Converter ................................ 20  
Applications Information.............................................................. 21  
Differential Output .................................................................... 21  
Setting Gains with a Microcontroller ...................................... 21  
Data Acquisition......................................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Diagram ........................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ..................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 16  
Gain Selection............................................................................. 16  
REVISION HISTORY  
7/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
AD8253  
SPECIFICATIONS  
+VS = +15 V, VS = −15 V, VREF = 0 V @ TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR to 60 Hz with 1 kΩ Source Imbalance  
+IN = −IN = −10 V to +10 V  
G = 1  
80  
96  
100  
100  
100  
120  
120  
120  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
1
CMRR to 20 kHz  
+IN = −IN = −10 V to +10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
80  
96  
100  
100  
dB  
dB  
dB  
dB  
NOISE  
Voltage Noise, 1 kHz, RTI  
G = 1  
G = 10  
G = 100  
G = 1000  
45  
12  
11  
10  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
0.1 Hz to 10 Hz, RTI  
G = 1  
G = 10  
G = 100  
G = 1000  
Current Noise, 1 kHz  
Current Noise, 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Offset RTI VOS  
Over Temperature  
Average TC  
Offset Referred to the Input vs. Supply (PSR)  
INPUT CURRENT  
Input Bias Current  
Over Temperature2  
Average TC  
2.5  
1
0.5  
0.5  
μV p-p  
μV p-p  
μV p-p  
μV p-p  
pA/√Hz  
pA p-p  
5
60  
G = 1, 10, 100, 1000  
T = −40°C to +85°C  
T = −40°C to +85°C  
VS = 5 V to 15 V  
150 + 900/G  
μV  
μV  
μV/°C  
μV/V  
210 + 900/G  
1.2 + 5/G  
5 + 25/G  
5
5
50  
60  
400  
40  
40  
nA  
nA  
pA/°C  
nA  
nA  
T = −40°C to +85°C  
T = −40°C to +85°C  
40  
Input Offset Current  
Over Temperature  
Average TC  
T = −40°C to +85°C  
T = −40°C to +85°C  
160  
pA/°C  
DYNAMIC RESPONSE  
Small-Signal −3 dB Bandwidth  
G = 1  
10  
4
550  
60  
MHz  
MHz  
kHz  
G = 10  
G = 100  
G = 1000  
kHz  
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
ΔOUT = 10 V step  
700  
680  
1.5  
14  
ns  
ns  
μs  
μs  
Rev. 0 | Page 3 of 24  
 
 
 
AD8253  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Settling Time 0.001%  
ΔOUT = 10 V step  
G = 1  
G = 10  
G =100  
G = 1000  
780  
880  
1.8  
ns  
ns  
μs  
μs  
1.8  
Slew Rate  
G = 1  
G = 10  
G = 100  
G = 1000  
20  
20  
12  
2
V/μs  
V/μs  
V/μs  
V/μs  
dB  
Total Harmonic Distortion + Noise  
f = 1 kHz, RL = 10 kΩ, 10 V,  
G = 1, 10 Hz to 22 kHz band-  
pass filter  
−110  
GAIN  
Gain Range  
Gain Error  
G = 1, 10, 100, 1000  
OUT = 10 V  
1
1000  
V/V  
G = 1  
0.03  
0.04  
%
%
G = 10, 100, 1000  
Gain Nonlinearity  
G = 1  
G = 10  
G = 100  
G = 1000  
Gain vs. Temperature  
INPUT  
OUT = −10 V to +10 V  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
All gains  
5
3
18  
110  
10  
ppm  
ppm  
ppm  
ppm  
3
ppm/°C  
Input Impedance  
Differential  
4||1.25  
1||5  
||pF  
Common Mode  
Input Operating Voltage Range  
Over Temperature3  
OUTPUT  
||pF  
V
V
VS = 5 V to 15 V  
T = −40°C to +85°C  
−VS + 1  
−VS + 1.2  
+VS − 1.5  
+VS − 1.7  
Output Swing  
Over Temperature4  
Short-Circuit Current  
REFERENCE INPUT  
RIN  
−13.7  
−13.7  
+13.6  
+13.6  
V
V
mA  
T = −40°C to +85°C  
+IN, −IN, REF = 0  
37  
20  
kΩ  
μA  
V
IIN  
1
+VS  
Voltage Range  
Gain to Output  
DIGITAL LOGIC  
Digital Ground Voltage, DGND  
Digital Input Voltage Low  
Digital Input Voltage High  
Digital Input Current  
Gain Switching Time5  
tSU  
−VS  
1
0
0.0001  
V/V  
Referred to GND  
Referred to GND  
Referred to GND  
−VS + 4.25  
DGND  
1.5  
+VS − 2.7  
1.2  
+VS  
V
V
V
μA  
ns  
ns  
ns  
ns  
ns  
1
325  
See Figure 3 timing diagram  
15  
30  
20  
15  
tHD  
t WR -LOW  
t WR -HIGH  
Rev. 0 | Page 4 of 24  
AD8253  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current, +IS  
Quiescent Current, −IS  
Over Temperature  
TEMPERATURE RANGE  
Specified Performance  
5
15  
5.3  
5.3  
6
V
4.6  
4.5  
mA  
mA  
mA  
T = −40°C to +85°C  
−40  
+85  
°C  
1 See Figure 20 for CMRR vs. frequency for more information on typical performance over frequency.  
2 Input bias current over temperature: minimum at hot and maximum at cold.  
3 See Figure 30 for input voltage limit vs. supply voltage and temperature.  
4 See Figure 32, Figure 33, and Figure 34 for output voltage swing vs. supply voltage and temperature for various loads.  
5 Add time for the output to slew and settle to calculate the total time for a gain change.  
TIMING DIAGRAM  
tWR-HIGH  
tWR-LOW  
WR  
tSU  
tHD  
A0, A1  
Figure 3. Timing Diagram for Latched Gain Mode (See the Timing for Latched Gain Mode Section)  
Rev. 0 | Page 5 of 24  
 
 
AD8253  
ABSOLUTE MAXIMUM RATINGS  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, the total drive power is VS/2 × IOUT, some of which is  
dissipated in the package and some of which is dissipated in the  
load (VOUT × IOUT).  
Table 3.  
Parameter  
Rating  
17 V  
Supply Voltage  
Power Dissipation  
See Figure 4  
Indefinite1  
VS  
VS  
VS  
Output Short-Circuit Current  
Common-Mode Input Voltage  
Differential Input Voltage  
Digital Logic Inputs  
The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
PD = Quiescent Power + (Total Drive Power Load Power)  
Storage Temperature Range  
Operating Temperature Range2  
Lead Temperature (Soldering 10 sec)  
Junction Temperature  
–65°C to +125°C  
–40°C to +85°C  
300°C  
2
VS VOUT  
VOUT  
RL  
PD  
=
(
VS × IS  
)
+
×
2
RL  
140°C  
In single-supply operation with RL referenced to −VS, the worst  
case is VOUT = VS/2.  
θJA (4-Layer JEDEC Standard Board)  
Package Glass Transition Temperature  
112°C/W  
140°C  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
from metal traces through holes, ground, and power planes  
reduces the θJA.  
1 Assumes the load is referenced to midsupply.  
2 Temperature for specified performance is −40°C to +85°C. For performance  
to +125°C, see the Typical Performance Characteristics section.  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature on a 4-layer JEDEC  
standard board.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the AD8253 package is  
limited by the associated rise in junction temperature (TJ) on  
the die. The plastic encapsulating the die locally reaches the  
junction temperature. At approximately 140°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit can change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8253. Exceeding  
a junction temperature of 140°C for an extended period can  
result in changes in silicon devices, potentially causing failure.  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
The still-air thermal properties of the package and PCB (θJA),  
the ambient temperature (TA), and the total power dissipated in  
the package (PD) determine the junction temperature of the die.  
The junction temperature is calculated as  
TJ = TA  
+
(
PD × θJA  
)
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
Rev. 0 | Page 6 of 24  
 
 
 
AD8253  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
–IN  
1
2
3
4
5
10  
9
+IN  
DGND  
REF  
AD8253  
TOP VIEW  
(Not to Scale)  
–V  
8
+V  
S
S
A0  
A1  
7
OUT  
WR  
6
Figure 5. 10-Lead MSOP (RM-10) Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
−IN  
DGND  
−VS  
Inverting Input Terminal. True differential input.  
Digital Ground.  
Negative Supply Terminal.  
Gain Setting Pin (LSB).  
A0  
5
A1  
Gain Setting Pin (MSB).  
6
WR  
Write Enable.  
7
8
9
10  
OUT  
+VS  
REF  
Output Terminal.  
Positive Supply Terminal.  
Reference Voltage Terminal.  
Noninverting Input Terminal. True differential input.  
+IN  
Rev. 0 | Page 7 of 24  
 
AD8253  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA @ 25°C, +VS = +15 V, VS = −15 V, RL = 10 kꢀ, unless otherwise noted.  
210  
240  
210  
180  
150  
120  
90  
180  
150  
120  
90  
60  
60  
30  
0
30  
0
–60  
–40  
–20  
0
20  
–60  
–40  
–20  
0
20  
40  
60  
CMRR (µV/V)  
INPUT OFFSET CURRENT (nA)  
Figure 6. Typical Distribution of CMRR, G = 1  
Figure 9. Typical Distribution of Input Offset Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
180  
150  
120  
90  
G = 1  
G = 100  
60  
G = 10  
30  
0
G = 1000  
0
1
–200  
–100  
0
100  
200  
100k  
10  
100  
1k  
10k  
INPUT OFFSET VOLTAGE, V  
, RTI (µV)  
OSI  
FREQUENCY (Hz)  
Figure 10. Voltage Spectral Density Noise vs. Frequency  
Figure 7. Typical Distribution of Offset Voltage, VOSI  
300  
250  
200  
150  
100  
50  
2µV/DIV  
1s/DIV  
0
–90  
–60  
–30  
0
30  
60  
90  
INPUT BIAS CURRENT (nA)  
Figure 11. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1  
Figure 8. Typical Distribution of Input Bias Current  
Rev. 0 | Page 8 of 24  
 
 
AD8253  
20  
18  
16  
14  
12  
10  
8
6
4
2
500nV/DIV  
1s/DIV  
0
0.01  
0.1  
1
10  
WARM-UP TIME (Minutes)  
Figure 12. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1000  
Figure 15. Change in Input Offset Voltage vs. Warm-Up Time, G = 1000  
140  
18  
16  
120  
G = 1000  
14  
12  
10  
8
G = 100  
100  
80  
60  
40  
20  
0
G = 1  
G = 10  
6
4
2
0
10  
100  
1k  
10k  
100k  
1M  
1
100k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Current Noise Spectral Density vs. Frequency  
Figure 16. Positive PSRR vs. Frequency, RTI  
140  
120  
100  
80  
G = 100  
G = 1000  
G = 10  
60  
40  
G = 1  
20  
140pA/DIV  
1s/DIV  
0
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 14. 0.1 Hz to 10 Hz Current Noise  
Figure 17. Negative PSRR vs. Frequency, RTI  
Rev. 0 | Page 9 of 24  
AD8253  
20  
12.0  
120  
100  
80  
60  
40  
20  
0
10  
0
10.5  
9.0  
7.5  
6.0  
I
+
B
G = 1000  
I
B
–10  
–20  
G = 100  
G = 10  
–30  
–40  
–50  
4.5  
3.0  
1.5  
0
I
OS  
G = 1  
–60  
–15  
10  
100  
1k  
10k  
100k  
1M  
–10  
–5  
0
5
10  
15  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 21. CMRR vs. Frequency, 1 kΩ Source Imbalance  
Figure 18. Input Bias Current and Offset Current vs. Common-Mode Voltage  
30  
15  
10  
5
25  
20  
15  
10  
0
I
B
5
0
I
+
–5  
–10  
–15  
B
I
OS  
–5  
–10  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. Input Bias Current and Offset Current vs. Temperature  
Figure 22. CMRR vs. Temperature, G = 1  
120  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = 1000  
G = 100  
G = 1000  
100  
80  
G = 100  
G = 10  
G = 1  
G = 1  
60  
G = 10  
40  
20  
0
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. CMRR vs. Frequency  
Figure 23. Gain vs. Frequency  
Rev. 0 | Page 10 of 24  
AD8253  
40  
30  
20  
400  
300  
200  
10  
100  
0
0
–10  
–100  
–20  
–200  
–30  
–40  
–300  
–400  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 24. Gain Nonlinearity, G = 1, RL = 10 kΩ, 2 kΩ, 600 Ω  
Figure 27. Gain Nonlinearity, G = 1000, RL = 10 kΩ, 2 kΩ, 600 Ω  
40  
30  
20  
16  
0V, +13.9V  
12  
8
V , ±15V  
S
–14.1V, +7.3V  
+13.8V, +7.3V  
0V, +3.8V  
4
10  
0
–4V, +1.9V  
–4V, –1.9V  
+3.8V, +1.9V  
+3.8V, –1.9V  
0
V = ±5V  
S
–10  
–4  
–8  
–12  
–16  
0V, –4.2V  
–14.1V, –7.3V  
+13.8V, –7.3V  
–20  
–30  
–40  
0V, –14.2V  
0
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–16  
16  
–12  
–8  
–4  
4
8
12  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 25. Gain Nonlinearity, G = 10, RL = 10 kΩ, 2 kΩ, 600 Ω  
Figure 28. Input Common-Mode Voltage Range vs. Output Voltage, G = 1  
80  
60  
40  
16  
0V, +13.7V  
12  
V
±15V  
S
8
4
–14.4V, +6V  
–4.3V, +2V  
–4.3V, –2V  
–14.4V, –6V  
0V, +3.8V  
+14.1V, +6V  
+4.3V, +2V  
+4.3V, –2V  
+14.1V, –6V  
20  
0
0
V = ±5V  
S
–20  
–4  
–8  
–12  
–16  
0V, –4.2V  
–40  
–60  
–80  
0V, –14.1V  
0
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–16  
16  
–12  
–8  
–4  
4
8
12  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 29. Input Common-Mode Voltage Range vs. Output Voltage, G = 1000  
Figure 26. Gain Nonlinearity, G = 100, RL = 10 kΩ, 2 kΩ, 600 Ω  
Rev. 0 | Page 11 of 24  
 
 
AD8253  
+V  
+V  
S
S
+125°C  
+85°C  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+125°C  
–1  
–2  
+25°C  
–40°C  
+85°C  
+25°C  
+25°C  
–40°C  
–40°C  
+85°C  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
+25°C  
+2  
+1  
–40°C  
+125°C  
6
+125°C  
8
+85°C  
10  
–V  
–V  
S
S
4
16  
4
16  
8
12  
14  
6
10  
12  
14  
SUPPLY VOLTAGE (±V )  
SUPPLY VOLTAGE (±V )  
S
S
Figure 30. Input Voltage Limit vs. Supply Voltage, G = 1, VREF = 0 V, RL = 10 kΩ  
Figure 33. Output Voltage Swing vs. Supply Voltage, G =1000, RL = 10 kΩ  
25  
15  
FAULT  
CONDITION  
(OVER-DRIVEN  
INPUT)  
FAULT  
CONDITION  
(OVER-DRIVEN  
INPUT)  
+25°C  
20  
15  
+85°C  
10  
G=1000  
G=1000  
+Vs  
–40°C  
10  
5
5
+125°C  
+IN  
–IN  
+IN  
–IN  
0
0
–5  
+85°C  
–5  
–10  
–15  
–20  
–25  
+125°C  
–Vs  
+25°C  
–10  
–40°C  
–15  
100  
10k  
1k  
LOAD RESISTANCE ()  
DIFFERENTIAL INPUT VOLTAGE (V)  
Figure 31. Fault Current Draw vs. Input Voltage, G = 1000, RL = 10 kΩ  
Figure 34. Output Voltage Swing vs. Load Resistance  
+V  
S
+V  
S
–40°C  
–0.2  
–0.4  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
+25°C  
+85°C  
+125°C  
+125°C  
–0.6  
–0.8  
–1.0  
+85°C  
–1.2  
+25°C  
–40°C  
+85°C  
–40°C  
+25°C  
+1.2  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
+125°C  
8
–V  
S
–V  
S
4
16  
6
10  
12  
14  
4
16  
6
8
10  
12  
14  
SUPPLY VOLTAGE (±V )  
OUTPUT CURRENT (mA)  
S
Figure 35. Output Voltage Swing vs. Output Current  
Figure 32. Output Voltage Swing vs. Supply Voltage, G = 1000, RL = 2 kΩ  
Rev. 0 | Page 12 of 24  
AD8253  
5V/DIV  
NO  
LOAD  
47pF 100pF  
1392ns TO 0.01%  
1712ns TO 0.001%  
0.002%/DIV  
20mV/DIV  
2µs/DIV  
2µs/DIV  
TIME (µs)  
Figure 36. Small-Signal Pulse Response for Various Capacitive Loads, G = 1  
Figure 39. Large-Signal Pulse Response and Settling Time,  
G = 100, RL = 10 kΩ  
5V/DIV  
5V/DIV  
664ns TO 0.01%  
744ns TO 0.001%  
12.88µs TO 0.01%  
16.64µs TO 0.001%  
0.002%/DIV  
0.002%/DIV  
10µs/DIV  
2µs/DIV  
TIME (µs)  
TIME (µs)  
Figure 37. Large-Signal Pulse Response and Settling Time, G = 1, RL = 10 kΩ  
Figure 40. Large-Signal Pulse Response and Settling Time,  
G = 1000, RL = 10 kΩ  
5V/DIV  
656ns TO 0.01%  
840ns TO 0.001%  
0.002%/DIV  
20mV/DIV  
2µs/DIV  
2µs/DIV  
TIME (µs)  
Figure 41. Small-Signal Response,  
G = 1, RL = 2 kΩ, CL = 100  
Figure 38. Large-Signal Pulse Response and Settling Time,  
G = 10, RL = 10 kΩ  
Rev. 0 | Page 13 of 24  
AD8253  
1400  
1200  
1000  
800  
SETTLED TO 0.001%  
600  
SETTLED TO 0.01%  
400  
200  
0
20mV/DIV  
2µs/DIV  
2
20  
4
6
8
10  
12  
14  
16  
18  
STEP SIZE (V)  
Figure 42. Small-Signal Response,  
G = 10, RL = 2 kΩ, CL = 100 pF  
Figure 45. Settling Time vs. Step Size, G = 1, RL = 10 kΩ  
1400  
1200  
1000  
800  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
600  
400  
200  
0
20mV/DIV  
20µs/DIV  
2
20  
4
6
8
10  
12  
14  
16  
18  
STEP SIZE (V)  
Figure 43. Small-Signal Response,  
G = 100, RL = 2 kΩ, CL = 100 pF  
Figure 46. Settling Time vs. Step Size, G = 10, RL = 10 kΩ  
2000  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
20mV/DIV  
20µs/DIV  
2
20  
4
6
8
10  
12  
14  
16  
18  
STEP SIZE (V)  
Figure 44. Small-Signal Response, G = 1000, RL = 2 kΩ, CL = 100 pF  
Figure 47. Settling Time vs. Step Size, G = 100, RL = 10 kΩ  
Rev. 0 | Page 14 of 24  
AD8253  
0
–10  
–20  
–30  
20  
18  
16  
14  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
–40  
–50  
G = 1000  
12  
10  
8
–60  
–70  
G = 100  
G = 10  
–80  
6
–90  
G = 1  
4
2
0
–100  
–110  
–120  
10  
1M  
2
20  
100  
1k  
10k  
100k  
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (Hz)  
STEP SIZE (V)  
Figure 48. Settling Time vs. Step Size, G = 1000, RL = 10 kΩ  
Figure 50. Total Harmonic Distortion vs. Frequency,  
10 Hz to 500 kHz Band-Pass Filter, 2 kΩ Load  
0
–10  
–20  
–30  
–40  
–50  
G = 1000  
–60  
–70  
G = 100  
G = 10  
G = 1  
–80  
–90  
–100  
–110  
–120  
10  
1M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 49. Total Harmonic Distortion vs. Frequency,  
10 Hz to 22 kHz Band-Pass Filter, 2 kΩ Load  
Rev. 0 | Page 15 of 24  
AD8253  
THEORY OF OPERATION  
+V  
–V  
+V  
–V  
S
S
A0  
A1  
2.2k  
+V  
–V  
S
S
S
1.2kΩ  
–IN  
10kΩ  
10kΩ  
A1  
S
+V  
S
DIGITAL  
GAIN  
OUT  
REF  
A3  
CONTROL  
–V  
+V  
S
S
+V  
–V  
S
10kΩ  
10kΩ  
A2  
1.2kΩ  
+IN  
–V  
S
+V  
–V  
+V  
S
S
S
2.2kΩ  
DGND  
WR  
–V  
S
S
Figure 51. Simplified Schematic  
The AD8253 is a monolithic instrumentation amplifier based  
on the classic 3-op-amp topology, as shown in Figure 51. It is  
fabricated on the Analog Devices, Inc., proprietary iCMOS®  
process that provides precision linear performance and a robust  
digital interface. A parallel interface allows users to digitally  
program gains of 1, 10, 100, and 1000. Gain control is achieved  
by switching resistors in an internal precision resistor array (as  
shown in Figure 51).  
Transparent Gain Mode  
The easiest way to set the gain is to program it directly via a  
logic high or logic low voltage applied to A0 and A1. Figure 52  
shows an example of this gain setting method, referred to through-  
WR  
out the data sheet as transparent gain mode. Tie  
to the  
negative supply to engage transparent gain mode. In this mode,  
any change in voltage applied to A0 and A1 from logic low to  
logic high, or vice versa, immediately results in a gain change.  
Table 5 is the truth table for transparent gain mode, and Figure 52  
shows the AD8253 configured in transparent gain mode.  
+15V  
All internal amplifiers employ distortion cancellation circuitry  
and achieve high linearity and ultralow THD. Laser-trimmed  
resistors allow for a maximum gain error of less than 0.03% for  
G = 1 and a minimum CMRR of 100 dB for G = 1000. A pinout  
optimized for high CMRR over frequency enables the AD8253  
to offer a guaranteed minimum CMRR over frequency of 80 dB  
at 20 kHz (G = 1). The balanced input reduces the parasitics  
that in the past had adversely affected CMRR performance.  
10μF  
0.1µF  
WR  
–15V  
+5V  
A1  
A0  
+IN  
+5V  
G = 1000  
AD8253  
GAIN SELECTION  
REF  
This section describes how to configure the AD8253 for basic  
operation. Logic low and logic high voltage limits are listed in  
the Specifications section. Typically, logic low is 0 V and logic  
high is 5 V; both voltages are measured with respect to DGND.  
Refer to the specifications table (Table 2) for the permissible  
voltage range of DGND. The gain of the AD8253 can be set  
using two methods: transparent gain mode and latched gain  
mode. Regardless of the mode, pull-up or pull-down resistors  
should be used to provide a well-defined voltage at the A0 and  
A1 pins.  
–IN  
DGND  
DGND  
10μF  
0.1µF  
–15V  
NOTE:  
1. IN TRANSPARENT GAIN MODE, WR IS TIED TO V .  
S
THE VOLTAGE LEVELS ON A0 AND A1 DETERMINE  
THE GAIN. IN THIS EXAMPLE, BOTH A0 AND A1 ARE  
SET TO LOGIC HIGH, RESULTING IN A GAIN OF 1000.  
Figure 52. Transparent Gain Mode, A0 and A1 = High, G = 1000  
Rev. 0 | Page 16 of 24  
 
 
 
AD8253  
Table 5. Truth Table Logic Levels for Transparent Gain Mode  
Table 6. Truth Table Logic Levels for Latched Gain Mode  
WR  
A1  
A0  
Gain  
1
10  
100  
1000  
WR  
A1  
A0  
Gain  
−VS  
−VS  
−VS  
−VS  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
High to Low  
High to Low  
High to Low  
High to Low  
Low to Low  
Low to High  
High to High  
Low  
Low  
High  
High  
X1  
Low  
High  
Low  
High  
X1  
Change to 1  
Change to 10  
Change to 100  
Change to 1000  
No change  
No change  
No change  
X1  
X1  
Latched Gain Mode  
X1  
X1  
Some applications have multiple programmable devices such  
as multiplexers or other programmable gain instrumentation  
amplifiers on the same PCB. In such cases, devices can share a  
1 X = don’t care.  
WR  
data bus. The gain of the AD8253 can be set using  
as a latch,  
On power-up, the AD8253 defaults to a gain of 1 when in  
latched gain mode. In contrast, if the AD8253 is configured in  
transparent gain mode, it starts at the gain indicated by the  
voltage levels on A0 and A1 on power-up.  
allowing other devices to share A0 and A1. Figure 53 shows a  
schematic using this method, known as latched gain mode. The  
WR  
AD8253 is in this mode when  
low, typically 5 V and 0 V, respectively. The voltages on A0 and A1  
WR  
is held at logic high or logic  
Timing for Latched Gain Mode  
are read on the downward edge of the  
signal as it transitions  
In latched gain mode, logic levels at A0 and A1 must be held for  
from logic high to logic low. This latches in the logic levels on  
A0 and A1, resulting in a gain change. See the truth table listing  
in Table 6 for more on these gain changes.  
+15V  
WR  
a minimum setup time, tSU, before the downward edge of  
latches in the gain. Similarly, they must be held for a minimum  
WR  
hold time, tHD, after the downward edge of  
to ensure that  
WR  
+5V  
the gain is latched in correctly. After tHD, A0 and A1 may change  
logic levels, but the gain does not change until the next downward  
WR  
0V  
10μF  
0.1µF  
+5V  
0V  
A1  
A1  
A0  
WR  
WR  
edge of  
. The minimum duration that  
can be held high  
WR  
+5V  
0V  
A0  
is t WR-HIGH, and t WR-LOW is the minimum duration that  
can  
+IN  
+
G = PREVIOUS G = 1000  
STATE  
be held low. Digital timing specifications are listed in Table 2.  
The time required for a gain change is dominated by the settling  
time of the amplifier. A timing diagram is shown in Figure 54.  
AD8253  
REF  
–IN  
When sharing a data bus with other devices, logic levels applied  
to those devices can potentially feed through to the output of  
the AD8253. Feedthrough can be minimized by decreasing the  
edge rate of the logic signals. Furthermore, careful layout of the  
PCB also reduces coupling between the digital and analog  
portions of the board.  
DGND  
DGND  
10μF  
0.1µF  
–15V  
NOTE:  
1. ON THE DOWNWARD EDGE OF WR, AS IT TRANSITIONS  
FROM LOGIC HIGH TO LOGIC LOW, THE VOLTAGES ON A0  
AND A1 ARE READ AND LATCHED IN, RESULTING IN A  
GAIN CHANGE. IN THIS EXAMPLE, THE GAIN SWITCHES TO G = 1000.  
Figure 53. Latched Gain Mode, G = 1000  
tWR-HIGH  
tWR-LOW  
WR  
tSU  
tHD  
A0, A1  
Figure 54. Timing Diagram for Latched Gain Mode  
Rev. 0 | Page 17 of 24  
 
 
 
 
 
 
AD8253  
INCORRECT  
+V  
CORRECT  
+V  
POWER SUPPLY REGULATION AND BYPASSING  
S
S
The AD8253 has high PSRR. However, for optimal performance,  
a stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect per-  
formance. As in all linear circuits, bypass capacitors must be  
used to decouple the amplifier.  
AD8253  
AD8253  
REF  
REF  
REF  
REF  
Place a 0.1 ꢁF capacitor close to each supply pin. A 10 ꢁF tantalum  
capacitor can be used farther away from the part (see Figure 55)  
and, in most cases, it can be shared by other precision integrated  
circuits.  
–V  
–V  
S
S
TRANSFORMER  
+V  
TRANSFORMER  
+V  
S
S
+V  
S
10µF  
0.1µF  
WR  
A1  
AD8253  
AD8253  
A0  
+IN  
–IN  
REF  
V
OUT  
10M  
AD8253  
LOAD  
–V  
–V  
S
S
REF  
THERMOCOUPLE  
THERMOCOUPLE  
DGND  
+V  
+V  
S
S
10µF  
0.1µF  
C
C
C
–V  
DGND  
S
R
1
fHIGH-PASS  
=
Figure 55. Supply Decoupling, REF, and Output Referred to Ground  
AD8253  
2πRC  
AD8253  
C
REF  
INPUT BIAS CURRENT RETURN PATH  
R
The AD8253 input bias current must have a return path to its  
local analog ground. When the source, such as a thermocouple,  
cannot provide a return current path, one should be created  
(see Figure 56).  
–V  
S
–V  
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 56. Creating an IBIAS Path  
INPUT PROTECTION  
All terminals of the AD8253 are protected against ESD. An external  
resistor should be used in series with each of the inputs to limit  
current for voltages greater than 0.5 V beyond either supply rail.  
In such a case, the AD8253 safely handles a continuous 6 mA  
current at room temperature. For applications where the AD8253  
encounters extreme overload voltages, external series resistors  
and low leakage diode clamps such as BAV199Ls, FJH1100s, or  
SP720s should be used.  
Rev. 0 | Page 18 of 24  
 
 
 
 
AD8253  
Coupling Noise  
REFERENCE TERMINAL  
To prevent coupling noise onto the AD8253, follow these  
guidelines:  
The reference terminal, REF, is at one end of a 10 kꢀ resistor  
(see Figure 51). The instrumentation amplifier output is  
referenced to the voltage on the REF terminal; this is useful  
when the output signal needs to be offset to voltages other than  
its local analog ground. For example, a voltage source can be  
tied to the REF pin to level shift the output so that the AD8253  
can interface with a single-supply ADC. The allowable reference  
voltage range is a function of the gain, common-mode input,  
and supply voltages. The REF pin should not exceed either +VS  
or −VS by more than 0.5 V.  
Do not run digital lines under the device.  
Run the analog ground plane under the AD8253.  
Shield fast-switching signals with digital ground to avoid  
radiating noise to other sections of the board, and never  
run them near analog signal paths.  
Avoid crossover of digital and analog signals.  
Connect digital and analog ground at one point only  
(typically under the ADC).  
For best performance, especially in cases where the output is  
not measured with respect to the REF terminal, source imped-  
ance to the REF terminal should be kept low because parasitic  
resistance can adversely affect CMRR and gain accuracy.  
Power supply lines should use large traces to ensure a low  
impedance path. Decoupling is necessary; follow the  
guidelines listed in the Power Supply Regulation and  
Bypassing section.  
INCORRECT  
CORRECT  
Common-Mode Rejection  
The AD8253 has high CMRR over frequency, giving it greater  
immunity to disturbances, such as line noise and its associated  
harmonics, in contrast to typical in amps whose CMRR falls off  
around 200 Hz. They often need common-mode filters at the  
inputs to compensate for this shortcoming. The AD8253 is able  
to reject CMRR over a greater frequency range, reducing the  
need for input common-mode filtering.  
AD8253  
AD8253  
V
REF  
V
REF  
+
OP1177  
Careful board layout maximizes system performance. To maintain  
high CMRR over frequency, lay out the input traces symmetrically.  
Ensure that the traces maintain resistive and capacitive balance;  
this holds for additional PCB metal layers under the input pins  
and traces. Source resistance and capacitance should be placed  
as close to the inputs as possible. Should a trace cross the inputs  
(from another layer), it should be routed perpendicular to the  
input traces.  
Figure 57. Driving the Reference Pin  
COMMON-MODE INPUT VOLTAGE RANGE  
The 3-op-amp architecture of the AD8253 applies gain and then  
removes the common-mode voltage. Therefore, internal nodes  
in the AD8253 experience a combination of both the gained  
signal and the common-mode signal. This combined signal can  
be limited by the voltage supplies even when the individual  
input and output signals are not. Figure 28 and Figure 29 show  
the allowable common-mode input voltage ranges for various  
output voltages, supply voltages, and gains.  
RF INTERFERENCE  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass RC network placed at the input  
of the instrumentation amplifier, as shown in Figure 58. The  
filter limits the input signal bandwidth according to the following  
relationship:  
LAYOUT  
Grounding  
In mixed-signal circuits, low level analog signals need to be  
isolated from the noisy digital environment. Designing with the  
AD8253 is no exception. Its supply voltages are referenced to an  
analog ground. Its digital circuit is referenced to a digital ground.  
Although it is convenient to tie both grounds to a single ground  
plane, the current traveling through the ground wires and PC  
board can cause an error. Therefore, use separate analog and  
digital ground planes. Only at one point, star ground, should  
analog and digital ground meet.  
1
FilterFreqDIFF  
=
2 π R(2CD + CC )  
1
FilterFreqCM  
=
2 π RCC  
where CD ≥ 10 CC.  
The output voltage of the AD8253 develops with respect to the  
potential on the reference terminal. Take care to tie REF to the  
appropriate local analog ground or to connect it to a voltage that  
is referenced to the local analog ground.  
Rev. 0 | Page 19 of 24  
 
AD8253  
+15V  
In this example, a 1 nF capacitor and a 49.9 Ω resistor create an  
antialiasing filter for the AD7612. The 1 nF capacitor also serves  
to store and deliver necessary charge to the switched capacitor  
input of the ADC. The 49.9 ꢀ series resistor reduces the burden  
of the 1 nF load from the amplifier and isolates it from the kickback  
current injected from the switched capacitor input of the AD7612.  
Selecting too small a resistor improves the correlation between  
the voltage at the output of the AD8253 and the voltage at the  
input of the AD7612 but may destabilize the AD8253. A trade-  
off must be made between selecting a resistor small enough to  
maintain accuracy and large enough to maintain stability.  
+15V  
0.1µF  
+IN  
10µF  
C
C
C
C
D
C
R
R
V
OUT  
AD8253  
REF  
–IN  
0.1µF  
10µF  
–15V  
Figure 58. RFI Suppression  
10μF  
0.1µF  
WR  
+12V  
0.1μF  
–12V  
0.1μF  
Values of R and CC should be chosen to minimize RFI.  
Mismatch between the R × CC at the positive input and the  
R × CC at negative input degrades the CMRR of the AD8253.  
By using a value of CD that is 10 times larger than the value of  
CC, the effect of the mismatch is reduced and performance is  
improved.  
A1  
A0  
+IN  
49.9ꢀ  
AD8253  
AD7612  
1nF  
REF  
+5V  
ADR435  
–IN  
DGND  
DGND  
DRIVING AN ANALOG-TO-DIGITAL CONVERTER  
10μF  
0.1µF  
An instrumentation amplifier is often used in front of an analog-  
to-digital converter to provide CMRR. Usually, instrumentation  
amplifiers require a buffer to drive an ADC. However, the low  
output noise, low distortion, and low settle time of the AD8253  
make it an excellent ADC driver.  
–15V  
Figure 59. Driving an ADC  
Rev. 0 | Page 20 of 24  
 
 
AD8253  
APPLICATIONS INFORMATION  
DIFFERENTIAL OUTPUT  
SETTING GAINS WITH A MICROCONTROLLER  
+15V  
In certain applications, it is necessary to create a differential  
signal. High resolution analog-to-digital converters often require a  
differential input. In other cases, transmission over a long distance  
can require differential signals for better immunity to interference.  
10μF  
0.1µF  
WR  
A1  
MICRO-  
CONTROLLER  
A0  
+IN  
+
Figure 61 shows how to configure the AD8253 to output a  
differential signal. An op amp, the AD8675, is used in an  
inverting topology to create a differential voltage. VREF sets the  
output midpoint according to the equation shown in the figure.  
Errors from the op amp are common to both outputs and are  
thus common mode. Likewise, errors from using mismatched  
resistors cause a common-mode dc offset error. Such errors are  
rejected in differential signal processing by differential input  
ADCs or instrumentation amplifiers.  
AD8253  
REF  
–IN  
DGND  
DGND  
10μF  
0.1µF  
–15V  
Figure 60. Programming Gain Using a Microcontroller  
When using this circuit to drive a differential ADC, VREF can be  
set using a resistor divider from the ADC reference to make the  
output ratiometric with the ADC.  
+15V  
0.1μF  
AMPLITUDE  
WR  
+5V  
A1  
A0  
+IN  
AMPLITUDE  
–5V  
+
V
A = V + V  
IN REF  
OUT  
2
+2.5V  
0V  
–2.5V  
AD8253  
G = 1  
V
IN  
TIME  
REF  
4.99kꢀ  
0.1μF  
DGND  
–15V  
V
+
REF  
0V  
+15V  
–15V  
56pF  
AD8675  
4.99kꢀ  
AMPLITUDE  
0.1µF  
0.1µF  
–15V  
+15V  
10μF  
+2.5V  
0V  
10μF  
DGND  
–2.5V  
V
B = –V + V  
IN  
OUT  
REF  
TIME  
2
Figure 61. Differential Output with Level Shift  
Rev. 0 | Page 21 of 24  
 
 
AD8253  
0
–10  
DATA ACQUISITION  
–20  
The AD8253 makes an excellent instrumentation amplifier  
for use in data acquisition systems. Its wide bandwidth, low  
distortion, low settling time, and low noise enable it to  
condition signals in front of a variety of 16-bit ADCs.  
–30  
–40  
–50  
–60  
–70  
–80  
Figure 63 shows the AD825x as part of a total data acquisition  
system. The quick slew rate of the AD8253 allows it to condition  
rapidly changing signals from the multiplexed inputs. An FPGA  
controls the AD7612, AD8253, and ADG1209. In addition,  
mechanical switches and jumpers allow users to pin strap the  
gains when in transparent gain mode.  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
This system achieved −116 dB of THD at 1 kHz and a signal-to-  
noise ratio of 91 dB during testing, as shown in Figure 62.  
0
5
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (kHz)  
Figure 62. FFT of the AD825x in a Total Data Acquisition System  
Using the AD8253 1 kHz Signal  
JMP  
JMP  
–V  
S
+12V  
–12V  
+12V  
14  
+
+
+5V  
2kꢀ  
0.1µF  
10µF  
10µF  
GND  
2
V
DD  
DGND  
806ꢀ  
806ꢀ  
EN  
DGND  
2
JMP  
4
5
S1A  
S2A  
+CH1  
+CH2  
+5V  
2kꢀ  
DGND  
806ꢀ  
806ꢀ  
ALTERA  
EPF6010ATC144-3  
+CH3  
+CH4  
6
7
S3A  
S4A  
6
DGND  
00ꢀ  
00ꢀ  
C
C
5
WR  
DGND  
VOUT  
+IN  
DA  
8
10  
1
+
4
A1  
ADG1209  
S4B  
+IN  
A0  
REF  
9
806ꢀ  
7
AD7612  
ADR435  
AD8253  
C
–CH4  
10  
11  
12  
D
049.9ꢀ  
–IN  
1nF  
806ꢀ  
806ꢀ  
9
–V  
3
DB  
S
S3B  
–CH3  
–CH2  
–CH1  
C
+V  
8
C
S
15  
GND  
S2B  
A0  
806ꢀ  
S1B  
1
A1  
16  
C4  
0.1µF  
C3  
0.1µF  
V
SS  
3
+12V –12V  
JMP  
0.1µF  
+5V  
–12V  
2kꢀ  
DGND  
JMP  
+5V  
R8  
2kꢀ  
DGND  
Figure 63. Schematic of ADG1209, AD8253, and AD7612 Used with the AD825x in a Total Data Acquisition System  
Rev. 0 | Page 22 of 24  
 
 
 
AD8253  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 64. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8253ARMZ1  
AD8253ARMZ-RL1  
AD8253ARMZ-R71  
AD8253-EVALZ1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
Package Option  
RM-10  
RM-10  
Branding  
X
X
X
RM-10  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
AD8253  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06983-0-7/08(0)  
Rev. 0 | Page 24 of 24  

相关型号:

AD82550A

Stereo Digital Audio Amplifier with Headphone Driver
ADI

AD82550A

Stereo Digital Audio Amplifier with Headphone Driver
ESMT

AD82550A-CG

Stereo Digital Audio Amplifier with Headphone Driver
ESMT

AD82551A

Stereo Digital Audio Amplifier with Headphone Driver
ESMT

AD82551A-CG

Stereo Digital Audio Amplifier with Headphone Driver
ESMT

AD8256A

2x16W Stereo Digital Audio Amplifier with Headphone Driver
ESMT

AD8256A-KG

2x16W Stereo Digital Audio Amplifier with Headphone Driver
ESMT

AD8256A-LEG

2x16W Stereo Digital Audio Amplifier with Headphone Driver
ESMT

AD82571A-LEG

Audio Amplifier,
ESMT

AD8258A

Stereo/Mono Digital Audio Amplifier with Headphone Driver and SubWoofer Line-Out
ESMT

AD825ACHIPS

Low Cost, General Purpose High Speed JFET Amplifier
ADI

AD825AR

Low Cost, General Purpose High Speed JFET Amplifier
ADI