AD8251ARMZ-RL [ADI]

10 MHz, 20 V/レs, G = 1, 2, 4, 8 i CMOS㈢ Programmable Gain Instrumentation Amplifier; 10兆赫, 20 V /レS,G = 1 , 2 , 4 , 8我CMOS㈢可编程增益仪表放大器
AD8251ARMZ-RL
型号: AD8251ARMZ-RL
厂家: ADI    ADI
描述:

10 MHz, 20 V/レs, G = 1, 2, 4, 8 i CMOS㈢ Programmable Gain Instrumentation Amplifier
10兆赫, 20 V /レS,G = 1 , 2 , 4 , 8我CMOS㈢可编程增益仪表放大器

仪表放大器
文件: 总24页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 MHz, 20 V/μs, G = 1, 2, 4, 8 iCMOS®  
Programmable Gain Instrumentation Amplifier  
AD8251  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
DGND WR  
A1  
5
A0  
4
Small package: 10-lead MSOP  
Programmable gains: 1, 2, 4, 8  
Digital or pin-programmable gain setting  
Wide supply: 5 V to 15 V  
2
6
LOGIC  
1
–IN  
Excellent dc performance  
High CMRR: 98 dB (minimum), G = 8  
Low gain drift: 10 ppm/°C (maximum)  
Low offset drift: 1.8 μV/°C (maximum), G = 8  
Excellent ac performance  
7
OUT  
10  
+IN  
Fast settling time: 785 ns to 0.001% (maximum)  
High slew rate: 20 V/ꢀs (minimum)  
Low distortion: −110 dB THD at 1 kHz,10 V swing  
High CMRR over frequency: 80 dB to 50 kHz (minimum)  
Low noise: 18 nV/√Hz, G = 10 (maximum)  
Low power: 4 mA  
AD8251  
8
3
–V  
9
+V  
REF  
S
S
Figure 1.  
25  
APPLICATIONS  
20  
15  
10  
5
G = 8  
G = 4  
Data acquisition  
Biomedical analysis  
Test and measurement  
G = 2  
G = 1  
GENERAL DESCRIPTION  
The AD8251 is an instrumentation amplifier with digitally  
programmable gains that has GΩ input impedance, low output  
noise, and low distortion, making it suitable for interfacing with  
sensors and driving high sample rate analog-to-digital converters  
(ADCs). It has high bandwidth of 10 MHz, low THD of −110 dB,  
and fast settling time of 785 ns (maximum) to 0.001%. Offset  
drift and gain drift are guaranteed to 1.8 μV/°C and 10 ppm/°C,  
respectively, for G = 8. In addition to its wide input common  
voltage range, it boasts a high common-mode rejection of 80 dB  
at G = 1 from dc to 50 kHz. The combination of precision dc  
performance coupled with high speed capabilities makes the  
AD8251 an excellent candidate for data acquisition. Furthermore,  
this monolithic solution simplifies design and manufacturing  
and boosts performance of instrumentation by maintaining a  
tight match of internal resistors and amplifiers.  
0
–5  
–10  
1k  
100M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 2. Gain vs. Frequency  
Table 1. Instrumentation and Difference Amplifiers  
by Category  
High  
Low  
High  
Mil  
Low  
Digital  
Gain  
AD6271 AD82311  
Performance Cost  
Voltage Grade Power  
AD82201  
AD8221  
AD8222  
AD82241  
AD6231  
AD85531  
AD628  
AD629  
AD620  
AD621  
AD524  
AD526  
AD624  
AD8250  
AD85551  
AD85561  
AD85571  
The AD8251 user interface consists of a parallel port that allows  
users to set the gain in one of two different ways (see Figure 1  
for the functional block diagram). A 2-bit word sent via a bus  
1 Rail-to-rail output.  
WR  
can be latched using the  
input. An alternative is to use  
The AD8251 is available in a 10-lead MSOP package and is  
specified over the −40°C to +85°C temperature range, making it  
an excellent solution for applications where size and packing  
density are important considerations.  
transparent gain mode where the state of logic levels at the gain  
port determines the gain.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
 
AD8251  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Power Supply Regulation and Bypassing ................................ 18  
Input Bias Current Return Path ............................................... 18  
Input Protection ......................................................................... 18  
Reference Terminal .................................................................... 19  
Common-Mode Input Voltage Range..................................... 19  
Layout .......................................................................................... 19  
RF Interference ........................................................................... 19  
Driving an Analog-to-Digital Converter ................................ 20  
Applications..................................................................................... 21  
Differential Output .................................................................... 21  
Setting Gains with a Microcontroller ...................................... 21  
Data Acquisition......................................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Diagram ........................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ..................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 16  
Gain Selection............................................................................. 16  
REVISION HISTORY  
5/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
AD8251  
SPECIFICATIONS  
+VS = +15 V, VS = −15 V, VREF = 0 V @ TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR to 60 Hz with 1 kΩ Source Imbalance  
+IN = −IN = −10 V to +10 V  
G = 1  
G = 2  
G = 4  
G = 8  
80  
86  
92  
98  
94  
dB  
dB  
dB  
dB  
104  
105  
105  
CMRR to 50 kHz  
+IN = −IN = −10 V to +10 V  
G = 1  
G = 2  
G = 4  
G = 8  
80  
84  
86  
86  
dB  
dB  
dB  
dB  
NOISE  
Voltage Noise, 1 kHz, RTI  
G = 1  
G = 2  
G = 4  
G = 8  
40  
27  
22  
18  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
0.1 Hz to 10 Hz, RTI  
G = 1  
G = 2  
G = 4  
G = 8  
2.5  
2.5  
1.8  
1.2  
μV p-p  
μV p-p  
μV p-p  
μV p-p  
pA/√Hz  
pA p-p  
Current Noise, 1 kHz  
Current Noise, 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Offset RTI VOS  
5
60  
G = 1, 2, 4, 8  
200 + 600/G  
μV  
Over Temperature  
Average TC  
T = −40°C to +85°C  
T = −40°C to +85°C  
VS = 5 V to 15 V  
260 + 900/G  
1.2 + 5/G  
6 + 20/G  
μV  
μV/°C  
μV/V  
Offset Referred to the Input vs. Supply (PSR)  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
5
5
30  
40  
400  
30  
30  
nA  
nA  
pA/°C  
nA  
nA  
T = −40°C to +85°C  
T = −40°C to +85°C  
T = −40°C to +85°C  
T = −40°C to +85°C  
160  
pA/°C  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
10  
10  
8
MHz  
MHz  
MHz  
MHz  
G = 2  
G = 4  
G = 8  
2.5  
Settling Time 0.01%  
G = 1  
G = 2  
G = 4  
G = 8  
ΔOUT = 10 V step  
615  
460  
460  
625  
ns  
ns  
ns  
ns  
Rev. 0 | Page 3 of 24  
 
 
 
AD8251  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Settling Time 0.001%  
ΔOUT = 10 V step  
G = 1  
G = 2  
G = 4  
G = 8  
785  
700  
700  
770  
ns  
ns  
ns  
ns  
Slew Rate  
G = 1  
G = 2  
G = 4  
G = 8  
20  
30  
30  
30  
V/μs  
V/μs  
V/μs  
V/μs  
dB  
Total Harmonic Distortion + Noise  
f = 1 kHz, RL = 10 kΩ, 10V,  
G = 1, 10 Hz to 22 kHz band-  
pass filter  
−110  
GAIN  
Gain Range  
Gain Error  
G = 1, 2, 4, 8  
OUT = 10 V  
1
8
V/V  
G = 1  
G = 2, 4, 8  
0.03  
0.04  
%
%
Gain Nonlinearity  
G = 1  
G = 2  
G = 4  
G = 8  
OUT = −10 V to +10 V  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
RL = 10 kΩ, 2 kΩ, 600 Ω  
All gains  
9
ppm  
ppm  
ppm  
ppm  
12  
12  
15  
10  
Gain vs. Temperature  
INPUT  
3
ppm/°C  
Input Impedance  
Differential  
1||2pF  
1||2pF  
||pF  
Common Mode  
Input Operating Voltage Range  
Over Temperature  
OUTPUT  
||pF  
V
V
VS = 5 V to 15 V  
T = −40°C to +85°C  
−VS + 1.5  
−VS + 1.6  
+VS − 1.5  
+VS − 1.7  
Output Swing  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
RIN  
−13.5  
−13.5  
+13.5  
+13.5  
V
V
mA  
T = −40°C to +85°C  
+IN, −IN, REF = 0  
37  
20  
kΩ  
μA  
V
IIN  
1
+VS  
Voltage Range  
Gain to Output  
DIGITAL LOGIC  
Digital Ground Voltage, DGND  
Digital Input Voltage Low  
Digital Input Voltage High  
Digital Input Current  
Gain Switching Time1  
tSU  
−VS  
1
0
0.0001  
V/V  
Referred to GND  
Referred to GND  
Referred to GND  
−VS + 4.25  
DGND  
2.8  
+VS − 2.7  
2.1  
+VS  
V
V
V
μA  
ns  
ns  
ns  
ns  
ns  
1
325  
See Figure 3 timing diagram  
20  
10  
20  
40  
tHD  
t WR -LOW  
t WR -HIGH  
Rev. 0 | Page 4 of 24  
AD8251  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current, +IS  
Quiescent Current, −IS  
Over Temperature  
TEMPERATURE RANGE  
Specified Performance  
5
15  
4.5  
4.5  
4.5  
V
4.1  
3.7  
mA  
mA  
mA  
T = −40°C to +85°C  
−40  
+85  
°C  
1 Add time for the output to slew and settle to calculate the total time for a gain change.  
TIMING DIAGRAM  
tWR-HIGH  
tWR-LOW  
WR  
tSU  
tHD  
A0, A1  
Figure 3. Timing Diagram for Latched Gain Mode (See the Timing for Latched Gain Mode Section)  
Rev. 0 | Page 5 of 24  
 
 
 
AD8251  
ABSOLUTE MAXIMUM RATINGS  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, the total drive power is VS/2 × IOUT, some of which is  
dissipated in the package and some in the load (VOUT × IOUT).  
Table 3.  
Parameter  
Rating  
17 V  
Supply Voltage  
Power Dissipation  
See Figure 4  
Indefinite1  
VS  
VS  
VS  
Output Short-Circuit Current  
Common-Mode Input Voltage  
Differential Input Voltage  
Digital Logic Inputs  
The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
PD = Quiescent Power + (Total Drive Power Load Power)  
Storage Temperature Range  
Operating Temperature Range2  
Lead Temperature (Soldering 10 sec)  
Junction Temperature  
–65°C to +125°C  
–40°C to +85°C  
300°C  
2
VS VOUT  
VOUT  
RL  
PD  
=
(
VS × IS  
)
+
×
2
RL  
140°C  
In single-supply operation with RL referenced to −VS, the worst  
case is VOUT = VS/2.  
θJA (4-Layer JEDEC Standard Board)  
Package Glass Transition Temperature  
112°C/W  
140°C  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
from metal traces, through holes, ground, and power planes  
reduces the θJA.  
1 Assumes the load is referenced to midsupply.  
2 Temperature for specified performance is −40°C to +85°C. For performance  
to +125°C, see the Typical Performance Characteristics section.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature on a 4-layer JEDEC  
standard board.  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the AD8251 package is  
limited by the associated rise in junction temperature (TJ) on  
the die. The plastic encapsulating the die locally reaches the  
junction temperature. At approximately 140°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit can change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8251. Exceeding  
a junction temperature of 140°C for an extended period can  
result in changes in silicon devices, potentially causing failure.  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
The still-air thermal properties of the package and PCB (θJA),  
the ambient temperature (TA), and the total power dissipated in  
the package (PD) determine the junction temperature of the die.  
The junction temperature is calculated as  
TJ = TA  
+
(
PD × θJA  
)
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
Rev. 0 | Page 6 of 24  
 
 
AD8251  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
–IN  
1
2
3
4
5
10  
9
+IN  
DGND  
REF  
AD8251  
TOP VIEW  
(Not to Scale)  
–V  
8
+V  
S
S
A0  
A1  
7
OUT  
WR  
6
Figure 5. 10-Lead MSOP (RM-10) Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
−IN  
DGND  
−VS  
Inverting Input Terminal. True differential input.  
Digital Ground.  
Negative Supply Terminal.  
Gain Setting Pin (LSB).  
A0  
5
A1  
Gain Setting Pin (MSB).  
6
WR  
Write Enable.  
7
8
9
10  
OUT  
+VS  
REF  
Output Terminal.  
Positive Supply Terminal.  
Reference Voltage Terminal.  
Noninverting Input Terminal. True differential input.  
+IN  
Rev. 0 | Page 7 of 24  
 
AD8251  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA @ 25°C, +VS = +15 V, VS = −15 V, RL = 10 kꢀ, unless otherwise noted.  
2700  
2400  
2100  
1800  
1500  
1200  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
600  
300  
0
–30  
–20  
–10  
0
10  
20  
30  
–120  
–90  
–60  
–30  
0
30  
60  
90  
120  
INPUT OFFSET CURRENT (nA)  
CMRR (µV/V)  
Figure 9. Typical Distribution of Input Offset Current  
Figure 6. Typical Distribution of CMRR, G = 1  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
500  
400  
300  
200  
100  
0
G = 1  
G = 2  
G = 4  
G = 8  
–200  
–100  
0
100  
200  
1
100k  
10  
100  
1k  
10k  
INPUT OFFSET VOLTAGE, V  
, RTI (µV)  
OSI  
FREQUENCY (Hz)  
Figure 7. Typical Distribution of Offset Voltage, VOSI  
Figure 10. Voltage Spectral Density Noise vs. Frequency  
800  
600  
400  
200  
0
2µV/DIV  
1s/DIV  
–30  
–20  
–10  
0
10  
20  
30  
INPUT BIAS CURRENT (nA)  
Figure 11. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1  
Figure 8. Typical Distribution of Input Bias Current  
Rev. 0 | Page 8 of 24  
 
 
AD8251  
150  
130  
110  
90  
G = 4  
G = 2  
G = 1  
70  
G = 8  
50  
30  
1.25µV/DIV  
1s/DIV  
10  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 12. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 8  
Figure 15. Positive PSRR vs. Frequency, RTI  
150  
130  
110  
90  
18  
16  
14  
12  
10  
8
G = 4  
G = 8  
G = 1  
70  
6
50  
4
G = 2  
30  
2
10  
10  
0
100  
1k  
10k  
100k  
1M  
1
100k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Current Noise Spectral Density vs. Frequency  
Figure 16. Negative PSRR vs. Frequency, RTI  
20  
15  
10  
5
I
+
B
I
B
0
I
OS  
–5  
–10  
140pA/DIV  
1s/DIV  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (ºC)  
Figure 14. 0.1 Hz to 10 Hz Current Noise  
Figure 17. Input Bias Current and Offset Current vs. Temperature  
Rev. 0 | Page 9 of 24  
AD8251  
140  
120  
100  
80  
25  
20  
15  
10  
5
V
V
R
= ±15V  
S
G = 4  
G = 8  
= 200m Vp-p  
= 2k  
IN  
G = 8  
G = 4  
LOAD  
G = 2  
G = 2  
G = 1  
G = 1  
0
60  
–5  
–10  
40  
10  
100  
1k  
10k  
100k  
1M  
1M  
130  
1k  
100M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. CMRR vs. Frequency  
Figure 21. Gain vs. Frequency  
140  
120  
100  
40  
30  
20  
G = 8  
10  
G = 4  
0
G = 2  
80  
60  
40  
G = 1  
–10  
–20  
–30  
–40  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
10  
100  
1k  
10k  
100k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 19. CMRR vs. Frequency, 1 kΩ Source Imbalance  
Figure 22. Gain Nonlinearity, G = 1, RL = 10 kΩ, 2 kΩ, 600 Ω  
40  
30  
20  
15  
10  
5
10  
0
0
–10  
–5  
–10  
–15  
–20  
–30  
–40  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 23. Gain Nonlinearity, G = 2, RL = 10 kΩ, 2 kΩ, 600 Ω  
Figure 20. CMRR vs. Temperature, G = 1  
Rev. 0 | Page 10 of 24  
AD8251  
16  
12  
8
40  
30  
20  
–13V, +13.5V  
0V, +13.5V  
±15V  
+13V, +13V  
V
S
0V, +4V  
–4V, +4V  
+4V, +3.9V  
4
10  
0
0
V = ±5V  
S
–10  
–4  
–8  
–12  
–16  
–4V, –3.9V 0V, –3.9V +4V, –4V  
–20  
–30  
–40  
–13V, –13.1V  
0V, –13.5V  
0
+13V, –13.5V  
16  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–16  
–12  
–8  
–4  
4
8
12  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 27. Input Common-Mode Voltage Range vs. Output Voltage, G = 8  
Figure 24. Gain Nonlinearity, G = 4, RL = 10 kΩ, 2 kΩ, 600 Ω  
+V  
S
40  
30  
20  
+85°C  
+125°C  
–40°C  
–1  
–2  
+25°C  
10  
0
–10  
+2  
+1  
–40°C  
–20  
+25°C  
–30  
–40  
+125°C  
+85°C  
12  
–V  
S
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
4
16  
6
8
10  
14  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (±V )  
S
Figure 25. Gain Nonlinearity, G = 8, RL = 10 kΩ, 2 kΩ, 600 Ω  
Figure 28. Input Voltage Limit vs. Supply Voltage, G = 1, VREF = 0 V, RL = 10 kΩ  
16  
15  
0V, +13.5V  
+V  
S
12  
8
–14.2V, +7.1V  
+14V, +7V  
0V, ±15V  
10  
5
FAULT CONDITION  
(OVER DRIVEN INPUT)  
G = 8  
FAULT CONDITION  
(OVER DRIVEN INPUT)  
G = 8  
0V, +3.85V  
–4V, +2.2V  
+4V, +2V  
+4V, –2V  
4
+IN  
–IN  
0
V = ±5V  
S
0
–4V, –2V  
–4  
–8  
–12  
–16  
0V, –3.9V  
–5  
–10  
–15  
–V  
S
–14.2V, –7.1V  
–12  
+14V, –7V  
12  
0V, –13.5V  
0
–16  
16  
–8  
–4  
4
8
–16  
–12  
–8  
–4  
0
4
8
12  
16  
OUTPUT VOLTAGE (V)  
DIFFERENTIAL INPUT VOLTAGE (V)  
Figure 26. Input Common-Mode Voltage Range vs. Output Voltage, G = 1  
Figure 29. Fault Current Draw vs. Input Voltage, G = 8, RL = 10 kΩ  
Rev. 0 | Page 11 of 24  
 
 
AD8251  
+V  
+V  
S
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+85°C  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
+125°C  
+125°C  
+25°C  
–40°C  
–40°C  
–40°C  
+25°C  
+25°C  
–40°C  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
+25°C  
+125°C  
+125°C  
+85°C  
–V  
–V  
S
S
4
16  
4
16  
6
8
10  
12  
14  
6
8
10  
12  
14  
SUPPLY VOLTAGE (±V )  
OUTPUT CURRENT (mA)  
S
Figure 30. Output Voltage Swing vs. Supply Voltage, G = 8, RL = 2 kΩ  
Figure 33. Output Voltage Swing vs. Output Current  
+V  
S
100pF  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
NO  
LOAD  
+125°C  
47pF  
+85°C  
–40°C  
–40°C  
+25°C  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
+25°C +85°C  
+125°C  
20mV/DIV  
2µs/DIV  
–V  
S
4
16  
6
8
10  
12  
14  
SUPPLY VOLTAGE (±V )  
S
Figure 31. Output Voltage Swing vs. Supply Voltage, G = 8, RL = 10 kΩ  
Figure 34. Small Signal Pulse Response for Various Capacitive Loads  
15  
+25°C  
+85°C  
10  
5
–40°C  
+125°C  
5V/DIV  
0
585ns TO 0.01%  
723ns TO 0.001%  
–5  
–10  
–15  
0.002%/DIV  
+125°C  
+85°C  
–40°C  
+25°C  
2µs/DIV  
100  
10k  
1k  
LOAD RESISTANCE ()  
Figure 32. Output Voltage Swing vs. Load Resistance  
Figure 35. Large Signal Pulse Response and Settling Time, G = 1, RL = 10 kΩ  
Rev. 0 | Page 12 of 24  
AD8251  
5V/DIV  
400ns TO 0.01%  
600ns TO 0.001%  
0.002%/DIV  
2µs/DIV  
25mV/DIV  
2µs/DIV  
Figure 39. Small Signal Response,  
G = 1, RL = 2 kΩ, CL = 100 pF  
Figure 36. Large Signal Pulse Response and Settling Time,  
G = 2, RL = 10 kΩ  
5V/DIV  
376ns TO 0.01%  
640ns TO 0.001%  
0.002%/DIV  
2µs/DIV  
25mV/DIV  
2µs/DIV  
Figure 40. Small Signal Response,  
G = 2, RL = 2 kΩ, CL = 100 pF  
Figure 37. Large Signal Pulse Response and Settling Time,  
G = 4, RL = 10 kΩ  
5V/DIV  
364ns TO 0.01%  
522ns TO 0.001%  
0.002%/DIV  
2µs/DIV  
25mV/DIV  
2µs/DIV  
Figure 38. Large Signal Pulse Response and Settling Time,  
G = 8, RL = 10 kΩ  
Figure 41. Small Signal Response,  
G = 4, RL = 2 kΩ, CL = 100 pF  
Rev. 0 | Page 13 of 24  
AD8251  
1200  
1000  
800  
600  
400  
200  
0
SETTLED TO 0.001%  
SETTLED TO 0.01%  
25mV/DIV  
2µs/DIV  
2
20  
4
6
8
10  
12  
14  
16  
18  
STEP SIZE (V)  
Figure 42. Small Signal Response, G = 8, RL = 2 kΩ, CL = 100 pF  
Figure 45. Settling Time vs. Step Size, G = 4, RL = 10 kΩ  
1200  
1000  
1200  
1000  
800  
600  
400  
200  
0
SETTLED TO 0.001%  
800  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
600  
SETTLED TO 0.01%  
400  
200  
0
2
20  
4
6
8
10  
12  
14  
16  
18  
2
20  
4
6
8
10  
12  
14  
16  
18  
STEP SIZE (V)  
STEP SIZE (V)  
Figure 43. Settling Time vs. Step Size, G = 1, RL = 10 kΩ  
Figure 46. Settling Time vs. Step Size, G = 8, RL = 10 kΩ  
1200  
1000  
800  
600  
400  
200  
0
–50  
–55  
–60  
–65  
–70  
–75  
–80  
SETTLED TO 0.001%  
–85  
G = 8  
–90  
G = 4  
–95  
SETTLED TO 0.01%  
–100  
–105  
–110  
–115  
–120  
G = 2  
G = 1  
2
20  
4
6
8
10  
12  
14  
16  
18  
10  
1M  
100  
1k  
10k  
100k  
STEP SIZE (V)  
FREQUENCY (Hz)  
Figure 44. Settling Time vs. Step Size, G = 2, RL = 10 kΩ  
Figure 47. Total Harmonic Distortion vs. Frequency,  
10 Hz to 22 kHz Band-Pass Filter, 2 kΩ Load  
Rev. 0 | Page 14 of 24  
AD8251  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
G = 8  
G = 4  
–85  
G = 2  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
G = 1  
1k  
10  
100  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 48. Total Harmonic Distortion vs. Frequency,  
10 Hz to 500 kHz Band-Pass Filter, 2 kΩ Load  
Rev. 0 | Page 15 of 24  
AD8251  
THEORY OF OPERATION  
+V  
–V  
+V  
–V  
S
S
A0  
A1  
2.2k  
+V  
–V  
S
S
S
2.2kΩ  
–IN  
10kΩ  
10kΩ  
A1  
S
+V  
S
DIGITAL  
GAIN  
OUT  
REF  
A3  
CONTROL  
–V  
+V  
S
S
+V  
–V  
S
10kΩ  
10kΩ  
A2  
+IN  
2.2kΩ  
–V  
S
+V  
–V  
+V  
S
S
S
2.2kΩ  
DGND  
WR  
–V  
S
S
Figure 49. Simplified Schematic  
The AD8251 is a monolithic instrumentation amplifier based  
on the classic, three op amp topology, as shown in Figure 49.  
It is fabricated on the Analog Devices, Inc. proprietary iCMOS  
process that provides precision, linear performance, and a robust  
digital interface. A parallel interface allows users to digitally  
program gains of 1, 2, 4, and 8. Gain control is achieved by  
switching resistors in an internal, precision, resistor array (as  
shown in Figure 49). Although the AD8251 has a voltage feed-  
back topology, gain bandwidth product increases for gains of 1,  
2, and 4 because each gain has its own frequency compensation.  
This results in maximum bandwidth at higher gains.  
Transparent Gain Mode  
The easiest way to set the gain is to program it directly via a  
logic high or logic low voltage applied to A0 and A1. Figure 50  
shows an example of this gain setting method, referred to through-  
WR  
out the data sheet as transparent gain mode. Tie  
to the  
negative supply to engage transparent gain mode. In this mode,  
any change in voltage applied to A0 and A1 from logic low to  
logic high, or vice versa, immediately results in a gain change.  
Table 5 is the truth table for transparent gain mode, and Figure 50  
shows the AD8251 configured in transparent gain mode.  
+15V  
All internal amplifiers employ distortion cancellation circuitry  
and achieve high linearity and ultralow THD. Laser trimmed  
resistors allow for a maximum gain error of less than 0.03% for  
G = 1 and minimum CMRR of 98 dB for G = 8. A pinout opti-  
mized for high CMRR over frequency enables the AD8251 to  
offer a guaranteed minimum CMRR over frequency of 80 dB at  
50 kHz (G = 1). The balanced input reduces the parasitics that,  
in the past, had adversely affected CMRR performance.  
10μF  
0.1µF  
WR  
–15V  
+5V  
A1  
A0  
+IN  
+5V  
G = 8  
AD8251  
REF  
–IN  
DGND  
DGND  
GAIN SELECTION  
10μF  
0.1µF  
This section shows users how to configure the AD8251 for  
basic operation. Logic low and logic high voltage limits are  
listed in the Specifications section. Typically, logic low is 0 V  
and logic high is 5 V; both voltages are measured with respect  
to DGND. Refer to the specifications table (Table 2) for the  
permissible voltage range of DGND. The gain of the AD8251  
can be set using two methods.  
–15V  
NOTE:  
1. IN TRANSPARENT GAIN MODE, WR IS TIED TO V .  
S
THE VOLTAGE LEVELS ON A0 AND A1 DETERMINE  
THE GAIN. IN THIS EXAMPLE, BOTH A0 AND A1 ARE  
SET TO LOGIC HIGH, RESULTING IN A GAIN OF 8.  
Figure 50. Transparent Gain Mode, A0 and A1 = High, G = 8  
Rev. 0 | Page 16 of 24  
 
 
 
AD8251  
Table 5. Truth Table Logic Levels for Transparent Gain Mode  
Table 6. Truth Table Logic Levels for Latched Gain Mode  
WR  
A1  
A0  
Gain  
WR  
A1  
A0  
Gain  
−VS  
−VS  
−VS  
−VS  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
1
2
4
8
High to Low  
High to Low  
High to Low  
High to Low  
Low to Low  
Low to High  
High to High  
Low  
Low  
High  
High  
X1  
Low  
High  
Low  
High  
X1  
Change to 1  
Change to 2  
Change to 4  
Change to 8  
No Change  
No Change  
No Change  
X1  
X1  
Latched Gain Mode  
X1  
X1  
Some applications have multiple programmable devices such as  
multiplexers or other programmable gain instrumentation  
amplifiers on the same PCB. In such cases, devices can share a  
data bus. The gain of the AD8251 can be set using  
allowing other devices to share A0 and A1. Figure 51 shows a  
schematic using this method, known as latched gain mode. The  
1 X = don’t care.  
On power-up, the AD8251 defaults to a gain of 1 when in  
latched gain mode. In contrast, if the AD8251 is configured in  
transparent gain mode, it starts at the gain indicated by the  
voltage levels on A0 and A1 on power-up.  
WR  
as a latch,  
WR  
AD8251 is in this mode when  
low, typically 5 V and 0 V, respectively. The voltages on A0 and  
WR  
is held at logic high or logic  
Timing for Latched Gain Mode  
A1 are read on the downward edge of the  
signal as it  
In latched gain mode, logic levels at A0 and A1 have to be held  
for a minimum setup time, tSU, before the downward edge of  
transitions from logic high to logic low. This latches in the logic  
levels on A0 and A1, resulting in a gain change. See the truth  
table listing in Table 6 for more on these gain changes.  
+15V  
WR  
latches in the gain. Similarly, they must be held for a  
WR  
minimum hold time of tHD after the downward edge of  
to  
ensure that the gain is latched in correctly. After tHD, A0 and A1  
may change logic levels but the gain does not change (until the  
next downward edge of  
can be held high is t WR-HIGH, and t WR-LOW is the minimum  
WR  
+5V  
0V  
WR  
A1  
10μF  
0.1µF  
WR WR  
+5V  
0V  
A1  
). The minimum duration that  
+5V  
0V  
A0  
A0  
+IN  
WR  
duration that  
can be held low. Digital timing specifications  
+
G = PREVIOUS G = 8  
STATE  
are listed in Table 2. The time required for a gain change is  
dominated by the settling time of the amplifier. A timing  
diagram is shown in Figure 52.  
AD8251  
REF  
–IN  
When sharing a data bus with other devices, logic levels applied  
to those devices can potentially feed through to the output of  
the AD8251. Feedthrough can be minimized by decreasing the  
edge rate of the logic signals. Furthermore, careful layout of the  
PCB also reduces coupling between the digital and analog  
portions of the board.  
DGND  
DGND  
10μF  
0.1µF  
–15V  
NOTE:  
1. ON THE DOWNWARD EDGE OF WR, AS IT TRANSITIONS  
FROM LOGIC HIGH TO LOGIC LOW, THE VOLTAGES ON A0  
AND A1 ARE READ AND LATCHED IN, RESULTING IN A  
GAIN CHANGE. IN THIS EXAMPLE, THE GAIN SWITCHES TO G = 8.  
Figure 51. Latched Gain Mode, G = 8  
tWR-HIGH  
tWR-LOW  
WR  
tSU  
tHD  
A0, A1  
Figure 52. Timing Diagram for Latched Gain Mode  
Rev. 0 | Page 17 of 24  
 
 
 
AD8251  
INCORRECT  
+V  
CORRECT  
+V  
POWER SUPPLY REGULATION AND BYPASSING  
S
S
The AD8251 has high PSRR. However, for optimal performance,  
a stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect per-  
formance. As in all linear circuits, bypass capacitors must be  
used to decouple the amplifier.  
AD8251  
AD8251  
REF  
REF  
REF  
REF  
Place a 0.1 ꢁF capacitor close to each supply pin. A 10 ꢁF tanta-  
lum capacitor can be used farther away from the part (see  
Figure 53) and, in most cases, it can be shared by other  
precision integrated circuits.  
–V  
–V  
S
S
TRANSFORMER  
+V  
TRANSFORMER  
+V  
S
S
+V  
S
0.1µF  
WR  
A1  
10µF  
AD8251  
AD8251  
A0  
+IN  
–IN  
REF  
V
OUT  
10M  
AD8251  
LOAD  
–V  
–V  
S
S
REF  
THERMOCOUPLE  
THERMOCOUPLE  
DGND  
+V  
+V  
S
S
0.1µF  
10µF  
C
C
C
–V  
DGND  
S
R
1
fHIGH-PASS  
=
Figure 53. Supply Decoupling, REF, and Output Referred to Ground  
AD8251  
2πRC  
AD8251  
C
REF  
INPUT BIAS CURRENT RETURN PATH  
R
The AD8251 input bias current must have a return path to its  
local analog ground. When the source, such as a thermocouple,  
cannot provide a return current path, one should be created  
(see Figure 54).  
–V  
S
–V  
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 54. Creating an IBIAS Path  
INPUT PROTECTION  
All terminals of the AD8251 are protected against ESD. Note  
that 2.2 kꢀ series resistors precede the ESD diodes as shown in  
Figure 49. They limit current into the diodes and allow for dc  
overload conditions 13 V above the positive supply and 13 V  
below the negative supply. An external resistor should be used  
in series with each of the inputs to limit current for voltages  
greater than 13 V beyond either supply rail. In either scenario,  
the AD8251 safely handles a continuous 6 mA current at room  
temperature. For applications where the AD8251 encounters  
extreme overload voltages, external series resistors and low  
leakage diode clamps such as BAV199Ls, FJH1100s, or SP720s  
should be used.  
Rev. 0 | Page 18 of 24  
 
 
 
 
AD8251  
Coupling Noise  
REFERENCE TERMINAL  
To prevent coupling noise onto the AD8251, follow these  
guidelines:  
The reference terminal, REF, is at one end of a 10 kꢀ resistor  
(see Figure 49). The instrumentation amplifier output is  
referenced to the voltage on the REF terminal; this is useful  
when the output signal needs to be offset to voltages other than  
its local analog ground. For example, a voltage source can be  
tied to the REF pin to level shift the output so that the AD8251  
can interface with a single-supply ADC. The allowable reference  
voltage range is a function of the gain, common-mode input,  
and supply voltages. The REF pin should not exceed either +VS  
or −VS by more than 0.5 V.  
Do not run digital lines under the device.  
Run the analog ground plane under the AD8251.  
Shield fast switching signals with digital ground to avoid  
radiating noise to other sections of the board, and never  
run them near analog signal paths.  
Avoid crossover of digital and analog signals.  
Connect digital and analog ground at one point only  
(typically under the ADC).  
For best performance, especially in cases where the output is  
not measured with respect to the REF terminal, source imped-  
ance to the REF terminal should be kept low because parasitic  
resistance can adversely affect CMRR and gain accuracy.  
Power supply lines should use large traces to ensure a low  
impedance path. Decoupling is necessary; follow the  
guidelines listed in the Power Supply Regulation and  
Bypassing section.  
INCORRECT  
CORRECT  
Common-Mode Rejection  
AD8251  
AD8251  
The AD8251 has high CMRR over frequency, giving it greater  
immunity to disturbances, such as line noise and its associated  
harmonics, in contrast to typical in amps whose CMRR falls off  
around 200 Hz. They often need common-mode filters at the  
inputs to compensate for this shortcoming. The AD8251 is able  
to reject CMRR over a greater frequency range, reducing the  
need for input common-mode filtering.  
V
REF  
V
REF  
+
OP1177  
Figure 55. Driving the Reference Pin  
Careful board layout maximizes system performance. To  
maintain high CMRR over frequency, lay out the input traces  
symmetrically. Ensure that the traces maintain resistive and  
capacitive balance; this holds for additional PCB metal layers  
under the input pins and traces. Source resistance and capaci-  
tance should be placed as close to the inputs as possible. Should  
a trace cross the inputs (from another layer), it should be routed  
perpendicular to the input traces.  
COMMON-MODE INPUT VOLTAGE RANGE  
The three op amp architecture of the AD8251 applies gain and  
then removes the common-mode voltage. Therefore, internal  
nodes in the AD8251 experience a combination of both the  
gained signal and the common-mode signal. This combined  
signal can be limited by the voltage supplies even when the  
individual input and output signals are not. Figure 26 and  
Figure 27 show the allowable common-mode input voltage  
ranges for various output voltages, supply voltages, and gains.  
RF INTERFERENCE  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass, RC network placed at the input  
of the instrumentation amplifier, as shown in Figure 56. The  
filter limits the input signal bandwidth according to the  
following relationship:  
LAYOUT  
Grounding  
In mixed-signal circuits, low level analog signals need to be  
isolated from the noisy digital environment. Designing with the  
AD8251 is no exception. Its supply voltages are referenced to an  
analog ground. Its digital circuit is referenced to a digital ground.  
Although it is convenient to tie both grounds to a single ground  
plane, the current traveling through the ground wires and PC  
board can cause an error. Therefore, use separate analog and  
digital ground planes. Only at one point, star ground, should  
analog and digital ground meet.  
1
FilterFreqDIFF  
=
2 π R(2CD + CC )  
1
FilterFreqCM  
=
2 π RCC  
The output voltage of the AD8251 develops with respect to the  
potential on the reference terminal. Take care to tie REF to the  
appropriate local analog ground or to connect it to a voltage that  
is referenced to the local analog ground.  
where CD ≥ 10 CC.  
Rev. 0 | Page 19 of 24  
 
AD8251  
+15V  
In this example, a 1 nF capacitor and a 49.9 Ω resistor create an  
antialiasing filter for the AD7612. The 1 nF capacitor also serves  
to store and deliver necessary charge to the switched capacitor  
input of the ADC. The 49.9 ꢀ series resistor reduces the burden  
of the 1 nF load from the amplifier and isolates it from the  
kickback current injected from the switched capacitor input of  
the AD7612. Selecting too small a resistor improves the  
correlation between the voltage at the output of the AD8251  
and the voltage at the input of the AD7612 but may destabilize  
the AD8251. A trade-off must be made between selecting a  
resistor small enough to maintain accuracy and large enough to  
maintain stability.  
0.1µF  
+IN  
10µF  
C
C
C
C
D
C
R
R
V
OUT  
AD8251  
REF  
–IN  
0.1µF  
10µF  
–15V  
+15V  
Figure 56. RFI Suppression  
10μF  
0.1µF  
Values of R and CC should be chosen to minimize RFI.  
Mismatch between the R × CC at the positive input and the  
R × CC at negative input degrades the CMRR of the AD8251.  
By using a value of CD that is 10 times larger than the value of  
CC, the effect of the mismatch is reduced and performance is  
improved.  
WR  
+12V  
0.1μF  
–12V  
0.1μF  
A1  
A0  
+IN  
49.9ꢀ  
AD8251  
AD7612  
1nF  
REF  
+5V  
ADR435  
–IN  
DRIVING AN ANALOG-TO-DIGITAL CONVERTER  
DGND  
DGND  
An instrumentation amplifier is often used in front of an  
analog-to-digital converter to provide CMRR. Usually,  
instrumentation amplifiers require a buffer to drive an ADC.  
However, the low output noise, low distortion, and low settle  
time of the AD8251 make it an excellent ADC driver.  
10μF  
0.1µF  
–15V  
Figure 57. Driving an ADC  
Rev. 0 | Page 20 of 24  
 
 
AD8251  
APPLICATIONS  
When using this circuit to drive a differential ADC, VREF can be  
set using a resistor divider from the ADC reference to make the  
output ratiometric with the ADC.  
DIFFERENTIAL OUTPUT  
In certain applications, it is necessary to create a differential  
signal. High resolution analog-to-digital converters often  
require a differential input. In other cases, transmission over  
a long distance can require differential signals for better  
immunity to interference.  
SETTING GAINS WITH A MICROCONTROLLER  
+15V  
10μF  
0.1µF  
Figure 59 shows how to configure the AD8251 to output a  
differential signal. An op amp, the AD817, is used in an  
inverting topology to create a differential voltage. VREF sets the  
output midpoint according to the equation shown in the figure.  
Errors from the op amp are common to both outputs and are  
thus common mode. Likewise, errors from using mismatched  
resistors cause a common-mode dc offset error. Such errors are  
rejected in differential signal processing by differential input  
ADCs or instrumentation amplifiers.  
WR  
A1  
MICRO-  
CONTROLLER  
A0  
+IN  
+
AD8251  
REF  
–IN  
DGND  
DGND  
10μF  
0.1µF  
–15V  
Figure 58. Programming Gain Using a Microcontroller  
+12V  
0.1μF  
AMPLITUDE  
WR  
+5V  
A1  
A0  
+IN  
AMPLITUDE  
–5V  
+
V
A = V + V  
IN REF  
OUT  
2
+2.5V  
0V  
–2.5V  
AD8251  
V
G = 1  
IN  
TIME  
REF  
4.99kꢀ  
0.1μF  
DGND  
–12V  
V
+
REF  
0V  
–12V  
10pF  
+12V  
AD817  
4.99kꢀ  
AMPLITUDE  
0.1µF  
0.1µF  
–12V  
+12V  
10μF  
+2.5V  
0V  
–2.5V  
10μF  
DGND  
V
B = –V + V  
IN  
OUT  
REF  
TIME  
2
Figure 59. Differential Output with Level Shift  
Rev. 0 | Page 21 of 24  
 
 
AD8251  
–70  
–80  
DATA ACQUISITION  
The AD8251 makes an excellent instrumentation amplifier  
for use in data acquisition systems. Its wide bandwidth, low  
distortion, low settling time, and low noise enable it to  
condition signals in front of a variety of 16-bit ADCs.  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
Figure 61 shows a schematic of the AD825x data acquisition  
demonstration board. The quick slew rate of the AD8251 allows  
it to condition rapidly changing signals from the multiplexed  
inputs. An FPGA controls the AD7612, AD8251, and ADG1209.  
In addition, mechanical switches and jumpers allow users to pin  
strap the gains when in transparent gain mode.  
This system achieved −106 dB of THD at 1 kHz and a signal-to-  
noise ratio of 91 dB during testing, as shown in Figure 60.  
0
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (kHz)  
Figure 60. FFT of the AD825x DAQ Demo Board  
Using the AD8251 1 kHz Signal  
JMP  
JMP  
–V  
S
+12V  
–12V  
+12V  
14  
+
+
+5V  
0.1µF  
10µF  
10µF  
2k  
GND  
2
V
DD  
DGND  
806ꢀ  
806ꢀ  
EN  
DGND  
2
JMP  
4
5
S1A  
S2A  
+CH1  
+CH2  
+5V  
2kꢀ  
DGND  
806ꢀ  
806ꢀ  
ALTERA  
EPF6010ATC144-3  
+CH3  
+CH4  
6
7
S3A  
S4A  
6
DGND  
00ꢀ  
00ꢀ  
C
C
5
WR  
DGND  
VOUT  
+IN  
8
10  
1
+
4
A1  
ADG1209  
S4B  
+IN  
A0  
VREF  
9
806ꢀ  
7
AD7612  
ADR435  
AD8251  
C
–CH4  
10  
11  
12  
D
049.9ꢀ  
–IN  
1nF  
806ꢀ  
806ꢀ  
9
–V  
3
S
S3B  
S2B  
–CH3  
–CH2  
–CH1  
C
+V  
8
C
S
15  
A0  
806ꢀ  
S1B  
1
A1  
16  
C4  
0.1µF  
C3  
0.1µF  
V
SS  
3
+12V –12V  
JMP  
0.1µF  
+5V  
–12V  
2kꢀ  
DGND  
JMP  
+5V  
R8  
2kꢀ  
DGND  
Figure 61. Schematic of ADG1209, AD8251, and AD7612 in the AD825x DAQ Demo Board  
Rev. 0 | Page 22 of 24  
 
 
 
AD8251  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 62. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8251ARMZ1  
AD8251ARMZ-RL1  
AD8251ARMZ-R71  
AD8251-EVALZ1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
Package Option  
RM-10  
RM-10  
Branding  
H0T  
H0T  
–40°C to +85°C  
RM-10  
H0T  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
AD8251  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06287-0-5/07(0)  
Rev. 0 | Page 24 of 24  

相关型号:

AD8251ARZ

12MHz 20V/us G=1,2,4,8 Programmable Gain iCMOS Instrumentation Amplifier
ADI

AD8251ARZ-R7

12MHz 20V/us G=1,2,4,8 Programmable Gain iCMOS Instrumentation Amplifier
ADI

AD8251ARZ-RL

12MHz 20V/us G=1,2,4,8 Programmable Gain iCMOS Instrumentation Amplifier
ADI

AD8251_07

10 MHz, 20 V/レs, G = 1, 2, 4, 8 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD8253

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD8253-EVALZ

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 iCMOS Programmable Gain Instrumentation Amplifier
ADI

AD8253-EVALZ1

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD8253ARMZ

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 iCMOS Programmable Gain Instrumentation Amplifier
ADI

AD8253ARMZ-R7

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 iCMOS Programmable Gain Instrumentation Amplifier
ADI

AD8253ARMZ-R71

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD8253ARMZ-RL

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 iCMOS Programmable Gain Instrumentation Amplifier
ADI

AD8253ARMZ-RL1

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI