AD8218_13 [ADI]

Zero Drift, Bidirectional Current Shunt Monitor; 零漂移,双向电流分流监控器
AD8218_13
型号: AD8218_13
厂家: ADI    ADI
描述:

Zero Drift, Bidirectional Current Shunt Monitor
零漂移,双向电流分流监控器

监控
文件: 总16页 (文件大小:361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero Drift, Bidirectional  
Current Shunt Monitor  
Data Sheet  
AD8218  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
S
High common-mode voltage range  
4 V to 80 V operating  
R4  
AD8218  
−0.3 V to +85 V survival  
Buffered output voltage  
Gain = 20 V/V  
Wide operating temperature range: −40°C to +125°C  
Excellent ac and dc performance  
100 nV/°C typical offset drift  
50 µV typical offset  
R1  
–IN  
+IN  
OUT  
R2  
R3  
LDO  
ENB  
GND  
REF  
5 ppm/°C typical gain drift  
110 dB typical CMRR at dc  
Figure 1.  
APPLICATIONS  
High-side current sensing  
48 V telecom  
Power management  
Base stations  
Bidirectional motor control  
Precision high voltage current sources  
GENERAL DESCRIPTION  
The AD8218 is a high voltage, high resolution current shunt  
amplifier. It features a set gain of 20 V/V, with a maximum  
0.35% gain error over the entire temperature range. The  
buffered output voltage directly interfaces with any typical  
converter. The AD8218 offers excellent input common-mode  
rejection from 4 V to 80 V. The AD8218 performs bidirectional  
current measurements across a shunt resistor in a variety of  
industrial and telecom applications, including motor control,  
battery management, and base station power amplifier bias  
control.  
The AD8218 offers breakthrough performance throughout the  
−40°C to +125°C temperature range. It features a zero-drift core,  
which leads to a typical offset drift of 100 nV/°C throughout  
the operating temperature range and the common-mode voltage  
range. Special attention is devoted to output linearity being  
maintained throughout the input differential voltage range of  
0 mV to ~250 mV. The AD8218 also includes an internal 80 mV  
reference that can be enabled for optimal dynamic range in  
unidirectional current sense applications. The typical input  
offset voltage is 50 µ V.  
The AD8218 is offered in an 8-lead MSOP package and an  
8-lead LFCSP package.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8218  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Clamping ....................................................................... 10  
Application Notes........................................................................... 11  
Supply (VS) Connections........................................................... 11  
Enable Pin (ENB) Operation.................................................... 11  
Applications Information.............................................................. 12  
Unidirectional High-Side Current Sensing ............................ 12  
Bidirectional High-Side Current Sensing ............................... 12  
Motor Control Current Sensing ............................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 10  
Amplifier Core............................................................................ 10  
REVISION HISTORY  
4/13—Rev. A to Rev. B  
Added 8-Lead LFCSP.........................................................Universal  
Changes to General Description Section ...................................... 1  
Added Figure 3, Renumbered Sequentially .................................. 5  
Changes to Table 3 ............................................................................ 5  
Added Figure 37.............................................................................. 13  
Updated Outline Dimensions ....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
2/11—Rev. 0 to Rev. A  
Changes to Features.......................................................................... 1  
1/11—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
Data Sheet  
AD8218  
SPECIFICATIONS  
TOPR = −40°C to +125°C, TA = 25°C, RL = 25 kΩ (RL is the output load resistor), input common-mode voltage (VCM) = 4 V, unless  
otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
GAIN  
Initial  
Accuracy  
20  
0.1  
V/V  
%
VO ≥ 0.1 V dc, TA  
Accuracy over Temperature  
Gain vs. Temperature  
0.35  
%
TOPR  
TOPR  
5
ppm/°C  
VOLTAGE OFFSET  
Offset Voltage (RTI1)  
Over Temperature (RTI1)  
Offset Drift  
200  
300  
µV  
µV  
nV/°C  
25°C  
TOPR  
TOPR  
100  
130  
INPUT  
Bias Current2  
µA  
µA  
V
mV  
dB  
TA, input common mode = 4 V, VS = 4 V  
TOPR, input common mode = 4 V, VS = 4 V  
Common-mode continuous  
Differential input voltage  
TOPR  
220  
80  
250  
Common-Mode Input Voltage Range  
Differential Input Voltage Range3  
Common-Mode Rejection (CMRR)  
4
0
90  
110  
OUTPUT  
Output Voltage Range Low  
Output Voltage Range High  
Output Impedance  
0.01  
V
V
VS − 0.1  
+150  
TA  
2
INTERNAL REFERENCE (ENB PIN CONNECTED TO GND)  
Initial Value  
Voltage at OUT with a differential input of  
0 V and a common-mode input of 4 V  
80  
mV  
Offset (RTI1)  
Offset Drift (RTO4)  
−150  
µV  
µV/°C  
VS = NC or VS = 5 V  
10  
REFERENCE INPUT (REF, PIN 7)  
Input Impedance  
Input Current  
Input Voltage Range  
Input-to-Output Gain  
DYNAMIC RESPONSE  
Small-Signal −3 dB Bandwidth  
Slew Rate  
1.5  
MΩ  
µA  
V
Dependent on VREF/1.5 MΩ  
ENB not connected to GND  
3
0
60  
5
1
0.0001  
V/V  
450  
1
kHz  
V/µs  
NOISE  
0.1 Hz to 10 Hz (RTI1)  
Spectral Density, 1 kHz (RTI1)  
POWER SUPPLY  
2.3  
110  
µV p-p  
nV/√Hz  
Operating Range (Pin 2 Floating)  
4
4
80  
V
V
Power regulated from common mode,  
VS pin floating  
VS Range (Pin 2)  
5.5  
800  
VS must be less than 5.5 V if standalone  
supply is used  
Quiescent Current over Temperature  
Power Supply Rejection Ratio (PSRR)  
TEMPERATURE RANGE  
µA  
dB  
Throughout input common mode  
TOPR  
90  
110  
For Specified Performance  
−40  
+125  
°C  
1 RTI = referred to input.  
2 Refer to Figure 9 for more information on the input bias current. This current varies based on the input common-mode voltage. The input bias current flowing to the  
+IN pin is also the supply current to the internal LDO.  
3 The differential input voltage is specified as 250 mV because the output is internally clamped to 5.2 V. This ensures that the output voltage does not exceed the typical  
ADC input range, preventing damage. The AD8218 can survive up to 5 V differentially but will only amplify ~250 mV correctly due to the output clamping function.  
4 RTO = referred to output.  
Rev. B | Page 3 of 16  
 
 
 
 
 
 
AD8218  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Maximum Input Voltage ( +IN, −IN to GND)  
Differential Input Voltage (+IN to –IN)  
Human Body Model (HBM) ESD Rating  
Operating Temperature Range (TOPR  
Storage Temperature Range  
Output Short-Circuit Duration  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
−0.3 V to +85 V  
5 V  
2000 V  
−40°C to +125°C  
−65°C to +150°C  
Indefinite  
)
ESD CAUTION  
Rev. B | Page 4 of 16  
 
 
Data Sheet  
AD8218  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
+IN  
1
2
3
4
8
7
6
5
–IN  
+IN  
1
2
3
4
8
7
6
5
–IN  
AD8218  
TOP VIEW  
(Not to Scale)  
V
REF  
NC  
S
V
REF  
NC  
S
AD8218  
TOP VIEW  
(Not to Scale)  
ENB  
GND  
ENB  
GND  
OUT  
OUT  
NC = NO CONNECT.  
DO NOT CONNECT TO THIS PIN.  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PAD NEEDS TO BE CONNECTED TO PIN 4 (GND).  
Figure 2. MSOP Pin Configuration  
Figure 3. LFCSP Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
+IN  
VS  
ENB  
GND  
OUT  
NC  
REF  
−IN  
Noninverting Input.  
Supply Pin. Bypass with a standard 0.1 μF capacitor.  
Enable. Connect to GND to enable the internal 80 mV reference.  
Ground.  
Output.  
No Connect. Do not connect to this pin.  
Reference Input. Connect to a low impedance voltage.  
Inverting Input.  
EPAD  
Exposed Pad. The exposed pad needs to be connected to Pin 4 (GND). Applies to LFCSP only.  
Rev. B | Page 5 of 16  
 
AD8218  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
27  
24  
21  
18  
15  
12  
9
40  
38  
36  
34  
32  
30  
28  
26  
24  
6
3
0
1k  
10k  
100k  
1M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 4. Typical Input Offset vs. Temperature  
Figure 7. Typical Small-Signal Bandwidth (VOUT = 200 mV p-p)  
140  
10  
9
130  
120  
110  
100  
90  
8
7
6
5
4
3
2
1
–40°C  
+25°C  
+125°C  
0
80  
–1  
–2  
–3  
–4  
–5  
70  
60  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
100  
1000  
10k  
100k  
1M  
DIFFERENTIAL INPUT (mV)  
FREQUENCY (Hz)  
Figure 5. Typical CMRR vs. Frequency  
Figure 8. Total Output Error vs. Differential Input Voltage  
800  
500  
450  
400  
350  
300  
250  
200  
150  
100  
700  
600  
500  
400  
300  
200  
100  
0
+IN  
–IN  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
INPUT COMMON-MODE VOLTAGE (V)  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 6. Typical Gain Error vs. Temperature  
Figure 9. Input Bias Current vs. Input Common-Mode Voltage  
(Differential Input Voltage = 5 mV, VS = NC)  
Rev. B | Page 6 of 16  
 
 
Data Sheet  
AD8218  
500  
450  
400  
350  
300  
250  
200  
INPUT  
5mV/DIV  
OUTPUT  
100mV/DIV  
1µs/DIV  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 10. Supply Current vs. Temperature (VS = 5 V, VCM = 12 V)  
Figure 13. Fall Time (Differential Input = 10 mV)  
INPUT  
100mV/DIV  
INPUT  
5mV/DIV  
OUTPUT  
2V/DIV  
OUTPUT  
100mV/DIV  
1µs/DIV  
5µs/DIV  
Figure 11. Rise Time (Differential Input = 10 mV)  
Figure 14. Fall Time (Differential Input = 200 mV)  
INPUT  
200mV/DIV  
INPUT  
100mV/DIV  
OUTPUT  
2V/DIV  
OUTPUT  
2V/DIV  
5µs/DIV  
5µs/DIV  
Figure 12. Rise Time (Differential Input = 200 mV)  
Figure 15. Differential Overload Recovery, Rising  
Rev. B | Page 7 of 16  
AD8218  
Data Sheet  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
INPUT  
200mV/DIV  
OUTPUT  
2V/DIV  
5µs/DIV  
TEMPERATURE (°C)  
Figure 16. Differential Overload Recovery, Falling  
Figure 19. Maximum Output Source Current vs. Temperature  
5.010  
82.0  
81.5  
81.0  
80.5  
80.0  
79.5  
79.0  
5.000  
4.990  
4.980  
4.970  
4.960  
4.950  
4.940  
4.930  
4.920  
4.910  
4.900  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
OUTPUT SOURCE CURRENT (mA)  
Figure 17. Internal Reference Voltage vs. Temperature  
Figure 20. Output Voltage Swing from Rail vs. Output Source Current  
(VS = 5 V, VS = NC, VCM = 12 V, Pin 1 (+IN) and Pin 8 (−IN) Shorted, Pin 3 (ENB)  
Shorted to Pin 4 (GND))  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
250  
200  
150  
100  
50  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT (mA)  
Figure 18. Maximum Output Sink Current vs. Temperature  
Figure 21. Output Voltage Range from GND vs. Output Sink Current  
Rev. B | Page 8 of 16  
Data Sheet  
AD8218  
500  
400  
300  
200  
100  
0
INPUT  
50V/DIV  
OUTPUT  
1V/DIV  
500ns/DIV  
–4  
–3  
–2  
–1  
0
1
2
3
4
GAIN DRIFT (ppm/°C)  
Figure 22. Common-Mode Step Response, Rising  
Figure 25. Gain Drift Distribution  
140  
120  
100  
80  
INPUT  
50V/DIV  
OUTPUT  
1V/DIV  
60  
40  
20  
0
–0.6  
1µs/DIV  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
OFFSET DRIFT (µV/°C)  
Figure 26. Input Offset Drift Distribution  
Figure 23. Common-Mode Step Response, Falling  
180  
150  
120  
90  
250  
200  
150  
100  
50  
60  
30  
0
0
–200  
–100  
0
100  
200  
–5  
0
5
10  
15  
V
(µV)  
INTERNAL REF OFFSET DRIFT (µV/°C)  
OSI  
Figure 24. Input Offset Distribution  
Figure 27. Internal REF Offset Drift Distribution,  
Referred to Output (RTO)  
Rev. B | Page 9 of 16  
AD8218  
Data Sheet  
THEORY OF OPERATION  
The AD8218 is configured as a difference amplifier. The  
transfer function is  
AMPLIFIER CORE  
In typical applications, the AD8218 amplifies a small differential  
input voltage generated by the load current flowing through  
a shunt resistor. The AD8218 rejects high common-mode vol-  
tages (up to 80 V) and provides a ground-referenced, buffered  
output. Figure 28 shows a simplified schematic of the AD8218.  
OUT = ((R4/R1) × (V1 V2)) + VREF  
Resistors R4 and R1 are matched to within 0.01% and have  
values of 1.5 MΩ and 75 kΩ, respectively, meaning an input-  
to-output total gain of 20 V/V for the AD8218. The difference  
between V1 and V2 is the voltage across the shunt resistor, or  
VIN. Therefore, the input-to-output transfer function of the  
AD8218 is  
5V  
C
F
I
LOAD  
GND  
V
S
I
CHARGE  
R4  
OUT (V) = (20 × VIN) + VREF  
AD8218  
The AD8218 accurately amplifies the input differential signal,  
rejecting high voltage common modes ranging from 4 V to 80 V.  
–IN  
+IN  
R1  
V
V
2
SHUNT  
OUT  
LOAD  
1
The main amplifier uses a novel zero-drift architecture, providing  
the end user with breakthrough temperature stability. The  
offset drift is typically less than 100 nV/°C. This performance  
leads to optimal accuracy and dynamic range.  
R2  
4V  
R3  
LDO  
TO  
80V  
ENB  
REF  
GND  
V
REF  
OUTPUT CLAMPING  
After the input common-mode voltage in the application is  
above 5.2 V, the internal LDO output of the AD8218 also  
reaches its maximum value of 5.2 V, which is the maximum  
output range of the AD8218. Because in typical applications  
the output interfaces with a converter, clamping the AD8218  
output voltage to 5.2 V ensures that the ADC input is not  
damaged due to excessive overvoltage.  
Figure 28. Simplified Schematic  
Rev. B | Page 10 of 16  
 
 
 
 
Data Sheet  
AD8218  
APPLICATION NOTES  
SUPPLY (VS) CONNECTIONS  
ENABLE PIN (ENB) OPERATION  
The AD8218 includes an internal LDO, which allows the user  
to leave the VS pin floating, powering the AD8218 directly from  
the voltage present at Pin 1 (+IN), provided this voltage is in the  
4 V to 80 V range. A typical connection for the part in this  
configuration is shown in Figure 29.  
The AD8218 includes an internal reference that can be enabled  
by connecting Pin 3 (ENB) to ground. This mode of operation  
is shown in Figure 31.  
I
LOAD  
4V  
TO  
80V  
SHUNT  
I
I
BATTERY  
LOAD  
CHARGE  
LOAD  
–IN  
+IN  
4V  
TO  
80V  
SHUNT  
V
S
BATTERY  
REF  
LOAD  
AD8218  
–IN  
+IN  
OUT  
ENB  
V
S
REF  
2.5V  
GND  
AD8218  
OUT  
ENB  
GND  
Figure 31. Enabling the Internal 80 mV Reference  
In this configuration, the internal 80 mV reference is activated,  
and the output of the AD8218 is 80 mV when the differential  
input voltage is 0 V and the voltage at Pin 7 (REF) is also 0 V. This  
internal reference is useful in unidirectional current measurements  
where the current being monitored has a very wide range. Setting  
the output starting point to 80 mV means that when the load  
current through the shunt resistor is 0 A, the output is 80 m V.  
This ensures that the output errors due to initial offset and the  
output saturation range of the amplifier are overcome. In this  
mode, the transfer function of the AD8218 becomes  
Figure 29. Operation with No VS Connection  
The AD8218 can also be powered from a separate low impedance  
supply at Pin 2 (VS); however, this voltage can only be in the 4 V  
to 5.5 V range. In cases where the high voltage bus is susceptible  
to noise, transients, or high voltage fluctuations and a 5 V supply is  
available, the AD8218 can be used in the mode depicted in  
Figure 30.  
I
I
LOAD  
CHARGE  
4V  
TO  
80V  
SHUNT  
BATTERY  
LOAD  
OUT (V) = OUT (V) = (20 × VIN) + 0.08 V  
–IN  
+IN  
V
S
REF  
If Pin 3 is connected to ground, and therefore the internal  
reference is enabled, 80 mV must always be added to the  
transfer function of the AD8218.  
C
5V  
2.5V  
F
AD8218  
OUT  
ENB  
GND  
Figure 30. 5 V Supply Operation  
Rev. B | Page 11 of 16  
 
 
 
 
 
 
AD8218  
Data Sheet  
APPLICATIONS INFORMATION  
V
S
UNIDIRECTIONAL HIGH-SIDE CURRENT SENSING  
I
LOAD  
R4  
AD8218  
In the unidirectional high-side current sensing configuration,  
the shunt resistor is referenced to the battery (see Figure 32).  
High voltage is present at the inputs of the current sense amplifier.  
When the shunt is battery referenced, the AD8218 produces a  
linear ground-referenced analog output. The supply pin, VS, of the  
AD8218 can either be connected to a 5 V supply or left floating (see  
the Supply (VS) Connections section).  
–IN  
+IN  
R1  
V
2
1
SHUNT  
OUT  
LOAD  
V
R2  
R3  
LDO  
2.5V  
BATTERY  
(4V TO 80V)  
ENB  
REF  
GND  
V
S
I
LOAD  
R4  
AD8218  
Figure 34. Bidirectional Operation Using a 2.5 V Reference Input  
–IN  
+IN  
R1  
V
2
SHUNT  
OUT  
LOAD  
The output transfer function curve for bidirectional operation  
V
1
using a 2.5 V reference input is shown in Figure 35.  
R2  
R3  
LDO  
BATTERY  
(4V TO 80V)  
ENB  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
REF  
GND  
Figure 32. Unidirectional Operation with ENB Connected to GND  
The output transfer function curve for unidirectional operation  
with ENB connected to GND is shown in Figure 33.  
320  
280  
240  
200  
160  
120  
80  
–0.15  
–0.10  
–0.05  
0
0.05  
0.10  
0.15  
INPUT VOLTAGE (V)  
Figure 35. Transfer Function When Using a 2.5 V Reference Input  
MOTOR CONTROL CURRENT SENSING  
The AD8218 is a practical, accurate solution for high-side  
current sensing in motor control applications. In cases where  
the shunt resistor is referenced to a battery and the current  
flowing is bidirectional (as shown in Figure 36), the AD8218  
monitors the current with no additional supply pin necessary.  
BATTERY  
40  
0
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (mV)  
Figure 33. Output Transfer Function with ENB Connected to GND  
BIDIRECTIONAL HIGH-SIDE CURRENT SENSING  
I
MOTOR  
Inputting a voltage at Pin 7 (REF) offsets the output of the AD8218  
and allows for bidirectional current sensing. The transfer function  
from the REF pin to the output is 1 V/V. For example, a 2.5 V REF  
input offsets the output of the AD8218 to 2.5 V. See Figure 34  
for typical connections. The user must ensure that the voltage  
applied at Pin 7 (REF) is from a low impedance source.  
MOTOR  
–IN  
+IN  
V
S
REF  
V
REF  
AD8218  
OUT  
ENB  
GND  
Figure 36. High-Side Current Sensing in Motor Control  
Rev. B | Page 12 of 16  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD8218  
OUTLINE DIMENSIONS  
1.75  
1.65  
1.50  
2.00 BSC  
5
8
3.00 BSC  
1.90  
1.80  
1.65  
EXPOSED  
PAD  
0.20 MIN  
4
1
PIN 1  
INDICATOR  
INDEX  
AREA  
0.50  
0.40  
0.30  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.15 REF  
COPLANARITY  
0.08  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.50  
Figure 37. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
2 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-4)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 38. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
CP-8-4  
CP-8-4  
RM-8  
RM-8  
Branding  
Y5A  
Y5A  
Y3K  
Y3K  
AD8218BCPZ-RL  
AD8218BCPZ-WP  
AD8218BRMZ  
AD8218BRMZ-RL  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
1 Z = RoHS Compliant Part.  
Rev. B | Page 13 of 16  
 
 
AD8218  
NOTES  
Data Sheet  
Rev. B | Page 14 of 16  
 
Data Sheet  
NOTES  
AD8218  
Rev. B | Page 15 of 16  
AD8218  
NOTES  
Data Sheet  
©2011–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09592-0-4/13(B)  
Rev. B | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY