AD810AR-REEL7 [ADI]

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, PLASTIC, SOIC-8;
AD810AR-REEL7
型号: AD810AR-REEL7
厂家: ADI    ADI
描述:

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, PLASTIC, SOIC-8

放大器 光电二极管
文件: 总17页 (文件大小:564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power  
Video Op Amp with Disable  
a
AD810  
CO NNECTIO N D IAGRAM  
FEATURES  
High Speed  
8-P in P lastic Mini-D IP (N), SO IC (R)  
and Cer dip (Q ) P ackages  
80 MHz Bandw idth (3 dB, G = +1)  
75 MHz Bandw idth (3 dB, G = +2)  
1000 V/ s Slew Rate  
50 ns Settling Tim e to 0.1% (VO = 10 V Step)  
Ideal for Video Applications  
30 MHz Bandw idth (0.1 dB, G = +2)  
0.02% Differential Gain  
OFFSET  
1
2
8
7
6
DISABLE  
AD810  
NULL  
–IN  
+V  
S
+IN  
3
4
OUTPUT  
OFFSET  
NULL  
5
–V  
S
TOP VIEW  
0.04؇ Differential Phase  
Low Noise  
2.9 nV/ Hz Input Voltage Noise  
13 pA/ Hz Inverting Input Current Noise  
Low Pow er  
8.0 m A Supply Current m ax  
2.1 m A Supply Current (Pow er-Dow n Mode)  
High Perform ance Disable Function  
Turn-Off Tim e 100 ns  
Break Before Make Guaranteed  
Input to Output Isolation of 64 dB (OFF State)  
Flexible Operation  
P RO D UCT D ESCRIP TIO N  
T he AD810 is a composite and HDT V compatible, current  
feedback, video operational amplifier, ideal for use in systems  
such as multimedia, digital tape recorders and video cameras.  
T he 0.1 dB flatness specification at bandwidth of 30 MHz  
(G = +2) and the differential gain and phase of 0.02% and  
0.04° (NT SC) make the AD810 ideal for any broadcast quality  
video system. All these specifications are under load conditions  
of 150 (one 75 back terminated cable).  
T he AD810 is ideal for power sensitive applications such as  
video cameras, offering a low power supply current of 8.0 mA  
max. T he disable feature reduces the power supply current to  
only 2.1 mA, while the amplifier is not in use, to conserve  
power. Furthermore the AD810 is specified over a power supply  
range of ±5 V to ±15 V.  
Specified for ؎5 V and ؎15 V Operation  
؎2.9 V Output Sw ing Into a 150 Load (VS = ؎5 V)  
APPLICATIONS  
Professional Video Cam eras  
Multim edia System s  
NTSC, PAL & SECAM Com patible System s  
Video Line Driver  
ADC/ DAC Buffer  
T he AD810 works well as an ADC or DAC buffer in video  
systems due to its unity gain bandwidth of 80 MHz. Because the  
AD810 is a transimpedance amplifier, this bandwidth can be  
maintained over a wide range of gains while featuring a low  
noise of 2.9 nV/Hz for wide dynamic range applications.  
DC Restoration Circuits  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
GAIN = +2  
GAIN = +2  
R
R
f
= 715Ω  
= 150Ω  
= 3.58MHz  
F
L
–45  
R
= 150Ω  
L
PHASE  
GAIN  
C
–90  
100 IRE  
MODULATED RAMP  
1
0
–135  
–180  
V
S
= ±15V  
±5V  
GAIN  
–225  
–270  
0.08  
0.06  
0.04  
–1  
–2  
PHASE  
±2.5V  
V
= ±15V  
S
–3  
–4  
±5V  
0.02  
0
±2.5V  
–5  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1
10  
100  
FREQUENCY – MHz  
1000  
SUPPLY VOLTAGE – ± Volts  
Closed-Loop Gain and Phase vs. Frequency, G = +2,  
Differential Gain and Phase vs. Supply Voltage  
RL = 150, RF = 715 Ω  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
AD810* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD810 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
Universal Evaluation Board for Single High Speed  
Operational Amplifiers  
DISCUSSIONS  
View all AD810 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
AD810: Low Power Video Op Amp with Disable Data  
Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AD810: Military Data Sheet  
User Guides  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
UG-135: Evaluation Board for Single, High Speed  
Operational Amplifiers (8-Lead SOIC and Exposed Paddle)  
TOOLS AND SIMULATIONS  
AD810 SPICE Macro-Model  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Tutorials  
MT-034: Current Feedback (CFB) Op Amps  
MT-051: Current Feedback Op Amp Noise Considerations  
MT-057: High Speed Current Feedback Op Amps  
MT-059: Compensating for the Effects of Input  
Capacitance on VFB and CFB Op Amps Used in Current-to-  
Voltage Converters  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
(@ T = +25؇C and V = ؎15 V dc, R = 150 unless otherwise noted)  
AD810–SPECIFICATIONS  
A
S
L
AD 810A  
Typ  
AD 810S1  
Typ  
P ar am eter  
Conditions  
VS  
Min  
Max  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
3 dB Bandwidth  
(G = +2) RFB = 715  
(G = +2) RFB = 715  
(G = +1) RFB = 1000  
(G = +10) RFB = 270  
(G = +2) RFB = 715  
(G = +2) RFB = 715  
VO = 20 V p-p,  
RL = 400 Ω  
RL = 150 Ω  
RL = 400 Ω  
10 V Step, G = –1  
10 V Step, G = –1  
f = 3.58 MHz  
±5 V  
40  
55  
40  
50  
13  
15  
50  
75  
80  
65  
22  
30  
40  
55  
40  
50  
13  
15  
50  
75  
80  
65  
22  
30  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
±15 V  
±15 V  
±15 V  
±5 V  
0.1 dB Bandwidth  
Full Power Bandwidth  
Slew Rate2  
±15 V  
±15 V  
±5 V  
16  
16  
MHz  
V/µs  
V/µs  
ns  
ns  
%
350  
1000  
50  
125  
0.02  
0.04  
0.04  
350  
1000  
50  
125  
0.02  
0.04  
0.04  
±15 V  
±15 V  
±15 V  
±15 V  
±5 V  
Settling T ime to 0.1%  
Settling T ime to 0.01%  
Differential Gain  
0.05  
0.07  
0.07  
0.05  
0.07  
0.07  
f - 3.58 MHz  
f = 3.58 MHz  
f = 3.58 MHz  
%
Differential Phase  
±15 V  
±5 V  
Degrees  
Degrees  
0.045 0.08  
0.045 0.08  
T otal Harmonic Distortion  
f = 10 MHz, VO = 2 V p-p  
RL = 400 , G = +2  
±15 V  
–61  
–61  
dBc  
INPUT OFFSET VOLT AGE  
Offset Voltage Drift  
±5 V, ±15 V  
±5 V, ±15 V  
1.5  
2
7
6
7.5  
1.5  
4
15  
6
15  
mV  
mV  
µV/°C  
T MIN–T MAX  
INPUT BIAS CURRENT  
–Input  
+Input  
T MIN–T MAX  
T MIN–T MAX  
±5 V, ±15 V  
±5 V, ±15 V  
0.7  
2
5
7.5  
0.8  
2
5
10  
µA  
µA  
OPEN-LOOP  
T MIN–T MAX  
T RANSRESIST ANCE  
VO = ±10 V, RL = 400 Ω  
VO = ±2.5 V, RL = 100 Ω  
±15 V  
±5 V  
1.0  
0.3  
3.5  
1.2  
1.0  
0.2  
3.5  
1.0  
MΩ  
MΩ  
OPEN-LOOP  
T MIN–T MAX  
DC VOLT AGE GAIN  
VO = ±10 V, RL = 400 Ω  
VO = ±2.5 V, RL = 100 Ω  
±15 V  
±5 V  
86  
76  
100  
88  
80  
72  
100  
88  
dB  
dB  
COMMON-MODE REJECT ION  
VOS  
T MIN–T MAX  
VCM = ±12 V  
VCM = ±2.5 V  
T MIN–T MAX  
±15 V  
±5 V  
±5 V, ±15 V  
56  
52  
64  
60  
0.1  
56  
50  
64  
60  
0.1  
dB  
dB  
µA/V  
±Input Current  
0.4  
0.3  
0.4  
0.3  
POWER SUPPLY REJECT ION  
VOS  
±Input Current  
±4.5 V to ±18 V  
T MIN–T MAX  
T MIN–T MAX  
65  
72  
0.05  
60  
72  
0.05  
dB  
µA/V  
INPUT VOLT AGE NOISE  
INPUT CURRENT NOISE  
f = 1 kHz  
±5 V, ±15 V  
2.9  
2.9  
nV/Hz  
–IIN, f = 1 kHz  
+IIN, f = 1 kHz  
±5 V, ±15 V  
±5 V, ±15 V  
13  
1.5  
13  
1.5  
pA/Hz  
pA/Hz  
INPUT COMMON-MODE  
VOLT AGE RANGE  
±5 V  
±15 V  
±2.5  
±12  
±3.0  
±13  
±2.5  
±12  
±3  
±13  
V
V
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing3  
RL = 150 , TMIN–T MAX  
RL = 400 Ω  
±5 V  
±15 V  
±2.5  
±12.5 ±12.9  
±2.9  
±2.5  
±12.5 ±12.9  
±2.9  
V
V
RL = 400 , TMIN–T MAX  
±15 V  
±12  
±12  
V
Short-Circuit Current  
Output Current  
±15 V  
±5 V, ±15 V  
150  
60  
150  
60  
mA  
mA  
T MIN–T MAX  
40  
30  
OUT PUT RESIST ANCE  
Open Loop (5 MHz)  
15  
15  
INPUT CHARACT ERIST ICS  
Input Resistance  
+Input  
–Input  
+Input  
±15 V  
±15 V  
±15 V  
2.5  
10  
40  
2
2.5  
10  
40  
2
MΩ  
pF  
Input Capacitance  
DISABLE CHARACT ERIST ICS4  
OFF Isolation  
OFF Output Impedance  
f = 5 MHz, See Figure 43  
See Figure 43  
64  
64  
dB  
(RF + RG)ʈ13 pF  
(RF+ RG)ʈ13 pF  
–2–  
REV. A  
AD810  
AD 810A  
Typ  
AD 810S1  
Typ  
P ar am eter  
Conditions  
VS  
Min  
Max  
Min  
Max  
Units  
T urn On T ime5  
T urn Off T ime  
Disable Pin Current  
ZOUT = Low, See Figure 54  
ZOUT = High  
Disable Pin = 0 V  
170  
100  
50  
170  
100  
50  
ns  
ns  
µA  
µA  
±5 V  
±15 V  
75  
400  
75  
400  
290  
290  
Min Disable Pin Current to  
Disable  
T MIN–T MAX  
±5 V, ±15 V  
30  
30  
µA  
POWER SUPPLY  
Operating Range  
+25°C to T MAX  
T MIN  
±2.5  
±3.0  
±18  
±18  
7.5  
8.0  
10.0  
2.3  
±2.5  
±3.5  
±18  
±18  
7.5  
8.0  
11.0  
2.3  
V
V
Quiescent Current  
±5 V  
±15 V  
±5 V, ±15 V  
±5 V  
±15 V  
6.7  
6.8  
8.3  
1.8  
2.1  
6.7  
6.8  
9
1.8  
2.1  
mA  
mA  
mA  
mA  
mA  
T MIN–T MAX  
Power-Down Current  
NOT ES  
2.8  
2.8  
1See Analog Devices Military Data Sheet for 883B Specifications.  
2Slew rate measurement is based on 10% to 90% rise time with the amplifier configured for a gain of –10.  
3Voltage Swing is defined as useful operating range, not the saturation range.  
4Disable guaranteed break before make.  
5T urn On T ime is defined with ±5 V supplies using complementary output CMOS to drive the disable pin.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS1  
MAXIMUM P O WER D ISSIP ATIO N  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2 . . . . . . . Observe Derating Curves  
Output Short Circuit Duration . . . . Observe Derating Curves  
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Storage T emperature Range  
Plastic DIP . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Cerdip . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Small Outline IC . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Operating T emperature Range  
T he maximum power that can be safely dissipated by the  
AD810 is limited by the associated rise in junction temperature.  
For the plastic packages, the maximum safe junction tempera-  
ture is 145°C. For the cerdip package, the maximum junction  
temperature is 175°C. If these maximums are exceeded momen-  
tarily, proper circuit operation will be restored as soon as the die  
temperature is reduced. Leaving the device in the “overheated”  
condition for an extended period can result in device burnout.  
T o ensure proper operation, it is important to observe the  
derating curves.  
AD810A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD810S . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . +300°C  
2.4  
2.2  
8-PIN  
2.0  
MINI-DIP  
1.8  
1.6  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum raring conditions for extended periods may affect device reliability.  
28-Pin Plastic Package: θJA = 90°C/Watt; 8-Pin Cerdip Package: θJA = 110°C/Watt;  
8-Pin SOIC Package: θJA = 150°C/Watt.  
1.4  
8-PIN  
1.2  
1.0  
CERDIP  
8-PIN  
MINI-DIP  
8-PIN  
SOIC  
0.8  
0.6  
0.4  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
AMBIENT TEMPERATURE –  
°
C
ESD SUSCEP TIBILITY  
ESD (electrostatic discharge) sensitive device. Electrostatic  
charges as high as 4000 volts, which readily accumulate on the  
human body and on test equipment, can discharge without  
detection. Although the AD810 features ESD protection  
circuitry, permanent damage may still occur on these devices if  
they are subjected to high energy electrostatic discharges.  
T herefore, proper ESD precautions are recommended to avoid  
any performance degradation or loss of functionality.  
Maxim um Power Dissipation vs. Tem perature  
While the AD810 is internally short circuit protected, this may  
not be sufficient to guarantee that the maximum junction  
temperature is not exceeded under all conditions.  
SEE TEXT  
+V  
0.1µF  
S
10kΩ  
7
1
2
3
O RD ERING GUID E  
5
6
AD810  
4
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
0.1µF  
Model  
–V  
S
AD810AN  
AD810AR  
AD810AR-REEL  
–40°C to +85°C 8-Pin Plastic DIP N-8  
–40°C to +85°C 8-Pin Plastic SOIC R-8  
–40°C to +85°C 8-Pin Plastic SOIC R-8  
Offset Null Configuration  
5962-9313201MPA –55°C to +125°C 8-Pin Cerdip  
Q-8  
REV. A  
–3–  
Typical Characteristics  
AD810  
20  
20  
15  
10  
15  
10  
NO LOAD  
NO LOAD  
R
= 150Ω  
L
R
= 150Ω  
L
5
0
5
0
0
5
10  
SUPPLY VOLTAGE – ±Volts  
15  
20  
0
5
10  
SUPPLY VOLTAGE – ±Volts  
15  
20  
Figure 1. Input Com m on-Mode Voltage Range vs.  
Supply Voltage  
Figure 2. Output Voltage Swing vs. Supply  
35  
10  
30  
9
8
7
±15V SUPPLY  
V
= ±15V  
S
25  
V
= ±5V  
S
20  
15  
6
5
10  
±5V SUPPLY  
5
4
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10  
100  
1k  
10k  
JUNCTION TEMPERATURE – °C  
LOAD RESISTANCE – Ohms  
Figure 3. Output Voltage Swing vs. Load Resistance  
Figure 4. Supply Current vs. J unction Tem perature  
10  
10  
8
8
6
4
6
NONINVERTING INPUT  
4
2
V
= ±5V, ±15V  
S
V
= ±5V  
S
2
0
0
V
= ±15V  
–2  
S
–2  
–4  
INVERTING INPUT  
= ±5V, ±15V  
–4  
–6  
V
S
–6  
–8  
–8  
–10  
–10  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
–60 –40 –20  
20  
40  
60  
80  
100 120 140  
0
JUNCTION TEMPERATURE – °C  
JUNCTION TEMPERATURE –  
°
C
Figure 6. Input Offset Voltage vs. J unction Tem perature  
Figure 5. Input Bias Current vs. Tem perature  
–4–  
REV. A  
AD810  
Typical Characteristics–  
120  
100  
250  
200  
150  
100  
50  
V
= ±15V  
S
V
= ±15V  
S
80  
60  
V
5V  
S
40  
V
= ±5V  
S
20  
–60 –40 –20  
0
+20 +40 +60 +80 +100 +120 +140  
–60 –40 –20  
0
+20 +40 +60 +80 +100 +120 +140  
JUNCTION TEMPERATURE –  
°
C
JUNCTION TEMPERATURE –  
°
C
Figure 8. Linear Output Current vs. Tem perature  
Figure 7. Short Circuit Current vs. Tem perature  
1M  
10.0  
V
= ±5V  
GAIN = 2  
= 715Ω  
S
100k  
R
F
1.0  
10k  
1k  
V
= ±15V  
S
0.1  
0.01  
100  
100k  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 10. Output Resistance vs. Frequency,  
Disabled State  
Figure 9. Closed-Loop Output Resistance vs. Frequency  
100  
100  
10  
1
30  
V
= ±15V  
S
V
= ±5V TO ±15V  
S
25  
20  
15  
±
INVERTING INPUT  
CURRENT NOISE  
OUTPUT LEVEL FOR 3% THD  
= 400Ω  
R
L
10  
VOLTAGE NOISE  
10  
5
V
= ±5V  
S
NONINVERTING INPUT  
CURRENT NOISE  
1
100k  
0
100k  
10  
100  
1k  
FREQUENCY – Hz  
10k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 12. Input Voltage and Current Noise vs. Frequency  
Figure 11. Large Signal Frequency Response  
REV. A  
–5–  
Typical Characteristics  
AD810  
80  
70  
100  
R
= 715Ω  
F
90  
A
= +2  
V
60  
50  
40  
30  
20  
10  
80  
70  
60  
V
= ±15V  
S
V
= ±5V  
S
50  
CURVES ARE FOR WORST CASE  
CONDITION WHERE ONE SUPPLY  
IS VARIED WHILE THE OTHER IS  
HELD CONSTANT  
40  
30  
20  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
10k  
FREQUENCY – Hz  
Figure 13. Com m on-Mode Rejection vs. Frequency  
Figure 14. Power Supply Rejection vs. Frequency  
–40  
–40  
±15V SUPPLIES  
V
R
= 2V p-p  
O
–60  
–80  
GAIN = +2  
= 400Ω  
= 100Ω  
L
V
= ±5V  
S
R
GAIN = +2  
L
–60  
–80  
2nd HARMONIC  
V
= 20V p-p  
OUT  
3rd HARMONIC  
2nd HARMONIC  
3rd HARMONIC  
–100  
–120  
V
= ±15V  
–100  
–120  
S
V
= 2V p-p  
OUT  
2nd  
3rd  
2nd  
3rd  
–140  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 15. Harm onic Distortion vs. Frequency (RL = 100 )  
Figure 16. Harm onic Distortion vs. Frequency (RL = 400 )  
10  
8
1200  
R
= 400Ω  
L
6
1000  
800  
600  
400  
0.01%  
4
2
0.1%  
GAIN = –10  
GAIN = +10  
R
R
= R = 1kΩ  
F
G
0
= 400Ω  
L
–2  
–4  
–6  
0.1%  
0.01%  
GAIN = +2  
–8  
–10  
200  
2
4
6
8
10  
12  
14  
16  
18  
0
20  
40  
60  
80  
100 120 140 160 180 200  
SUPPLY VOLTAGE – ±Volts  
SETTLING TIME – ns  
Figure 17. Output Swing and Error vs. Settling Tim e  
Figure 18. Slew Rate vs. Supply Voltage  
–6–  
REV. A  
Typical Characteristics, Noninverting Connection–AD810  
1V  
R
20nS  
F
100  
90  
V
+V  
IN  
S
0.1µF  
V
TO  
O
TEKTRONIX  
P6201 FET  
PROBE  
R
G
7
2
3
V
O
6
AD810  
4
V
O
V
IN  
R
L
0.1µF  
10  
HP8130  
PULSE  
50Ω  
0%  
GENERATOR  
–V  
S
1V  
Figure 19. Noninverting Am plifier Connection  
Figure 20. Sm all Signal Pulse Response, Gain = +1,  
RF = 1 k, RL = 150 , VS = ±15 V  
0
0
GAIN = +1  
GAIN = +1  
–45  
–45  
R
= 150Ω  
L
R
= 1kΩ  
PHASE  
L
PHASE  
–90  
–90  
1
0
–135  
–180  
–135  
–180  
1
0
V
S
= ±15V  
V
= ±15V  
S
±5V  
±5V  
±2.5V  
–225  
–270  
–1  
–2  
–225  
–270  
–1  
–2  
GAIN  
±2.5V  
GAIN  
V
= ±15V  
S
V
= ±15V  
S
–3  
–4  
–5  
–3  
–4  
±5V  
±5V  
±2.5V  
±2.5V  
–5  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 21. Closed-Loop Gain and Phase vs. Frequency,  
Figure 22. Closed-Loop Gain and Phase vs. Frequency,  
G= +1. RF = 1 kfor ±15 V, 910 for ±5 V and ±2.5 V  
G= +1, RF = 1 kfor ±15 V, 910 for ±5 V and ±2.5 V  
110  
200  
G = +1  
180  
G = +1  
100  
90  
R
V
= 1kΩ  
R
V
= 150Ω  
= 250mV p-p  
L
L
PEAKING 1dB  
160  
= 250mV p-p  
O
O
PEAKING 1dB  
80  
70  
140  
120  
100  
R
= 750Ω  
F
60  
PEAKING 0.1 dB  
R
= 750Ω  
PEAKING 0.1dB  
F
50  
40  
80  
60  
R
= 1kΩ  
F
R
= 1kΩ  
F
40  
20  
30  
20  
R
F
= 1.5kΩ  
R
= 1.5kΩ  
F
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE – ±Volts  
SUPPLY VOLTAGE – ±Volts  
Figure 23. Bandwidth vs. Supply Voltage,  
Figure 24. –3 dB Bandwidth vs. Supply Voltage  
Gain = +1, RL = 150 Ω  
G = +1, RL = 1 kΩ  
REV. A  
–7–  
AD810  
Typical Characteristics, Noninverting Connection  
100mV  
20nS  
1V  
50nS  
100  
90  
100  
V
IN  
V
IN 90  
V
V
O
O
10  
10  
0%  
0%  
1V  
10V  
Figure 26. Large Signal Pulse Response, Gain = +10,  
RF = 442 , RL = 400 , VS = ±15 V  
Figure 25. Sm all Signal Pulse Response, Gain = +10,  
RF = 442 , RL = 150 , VS = ±15 V  
0
GAIN = +10  
0
GAIN = +10  
R
R
= 270Ω  
= 150Ω  
F
L
–45  
–45  
R
R
= 270Ω  
= 1kΩ  
F
L
PHASE  
PHASE  
–90  
–90  
–135  
21  
20  
21  
20  
19  
18  
17  
16  
15  
–135  
–180  
–180  
–225  
V
= ±15V  
S
V
= ±15V  
S
19  
18  
17  
–225  
–270  
±5V  
±5V  
GAIN  
GAIN  
–270  
V
= ±15V  
S
V
= ±15V  
±5V  
S
±2.5V  
±2.5V  
±5V  
16  
15  
±2.5V  
±2.5V  
1
1000  
10  
100  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 28. Closed-Loop Gain and Phase vs. Frequency,  
G = +10, RL = 1 kΩ  
Figure 27. Closed-Loop Gain and Phase vs. Frequency,  
G = +10, RL = 150 Ω  
G = +10  
100  
100  
R
= 1kΩ  
L
G = +10  
90  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 250m V p-p  
O
R
= 150Ω  
L
80  
70  
60  
50  
40  
30  
20  
V
= 250mV p-p  
O
PEAKING 0.5dB  
R
R
= 232Ω  
= 442Ω  
F
PEAKING 0.5dB  
R
= 232Ω  
F
PEAKING 0.1dB  
PEAKING 0.1dB  
F
R
= 442Ω  
= 1kΩ  
F
R
F
R
= 1kΩ  
F
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE – ±Volts  
SUPPLY VOLTAGE – ±Volts  
Figure 29. –3 dB Bandwidth vs. Supply Voltage,  
Figure 30. –3 dB Bandwidth vs. Supply Voltage,  
Gain = +10, RL = 1 kΩ  
Gain = +10, RL = 150 Ω  
–8–  
REV. A  
AD810  
Typical Characteristics, Inverting Connection–  
1V  
20nS  
R
F
100  
90  
V
IN  
+V  
S
0.1µF  
0.1µF  
V
TO  
O
TEKTRONIX  
P6201 FET  
PROBE  
R
G
7
V
2
3
IN  
V
HP8130  
PULSE  
V
O
6
AD810  
4
O
GENERATOR  
R
L
10  
0%  
1V  
–V  
S
Figure 31. Inverting Am plifier Connection  
Figure 32. Sm all Signal Pulse Response, Gain = –1,  
RF = 681 , RL = 150 , VS = ±5 V  
180  
180  
135  
GAIN = –1  
GAIN = –1  
135  
90  
R
= 150Ω  
L
PHASE  
PHASE  
R
= 1kΩ  
L
90  
45  
0
1
0
45  
1
0
0
V
= ±15V  
V
S
= ±15V  
S
±5V  
±5V  
–45  
–1  
–45  
–1  
GAIN  
GAIN  
±2.5V  
±2.5V  
–90  
–90  
–2  
–3  
–4  
–2  
–3  
–4  
V
= ±15V  
±5V  
V
= ±15V  
±5V  
S
S
±2.5V  
±2.5V  
–5  
–5  
1
1
10  
100  
1000  
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 33. Closed-Loop Gain and Phase vs. Frequency  
G = –1, RL = 150 , RF = 681 for ±15 V, 620 for ±5 V  
and ±2.5 V  
Figure 34. Closed-Loop Gain and Phase vs. Frequency,  
G = –1, RL = 1 k, RF = 681 for VS = ±15 V, 620 for  
±5 V and ±2.5 V  
G = –1  
100  
180  
R
= 150  
L
G = –1  
160  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 250mV p-p  
O
R
V
= 1kΩ  
L
PEAKING 1.0dB  
140  
120  
100  
80  
= 250mV p-p  
O
R
= 500Ω  
= 681Ω  
F
PEAKING 1.0dB  
R
F
= 500Ω  
PEAKING 0.1dB  
R
F
60  
PEAKING 0.1dB  
R
F
= 649Ω  
= 1kΩ  
40  
R
6
= 1kΩ  
F
R
F
20  
2
4
6
8
10  
12  
14  
16  
18  
2
4
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE – ±Volts  
SUPPLY VOLTAGE – ±Volts  
Figure 35. –3 dB Bandwidth vs. Supply Voltage,  
Figure 36. –3 dB Bandwidth vs. Supply Voltage,  
Gain = –1, RL = 150 Ω  
Gain = –1, RL = 1 kΩ  
REV. A  
–9–  
AD810  
Typical Characteristics, Inverting Connection  
1V  
100mV  
20nS  
50nS  
100  
90  
100  
90  
V
V
IN  
IN  
V
V
O
O
10  
10  
0%  
0%  
10V  
1V  
Figure 38. Large Signal Pulse Response, Gain = –10,  
Figure 37. Sm all Signal Pulse Response, Gain = –10,  
RF = 442 , RL = 400 , VS = ±15 V  
RF = 442 , RL = 150 , VS = ±15 V  
180  
180  
GAIN = –10  
GAIN = –10  
135  
90  
135  
90  
R
R
= 249Ω  
= 1kΩ  
F
L
PHASE  
PHASE  
R
R
= 249Ω  
= 150Ω  
F
L
45  
21  
20  
19  
18  
17  
16  
15  
21  
20  
19  
18  
17  
16  
15  
45  
0
0
V = ±15V  
S
V
= ±15V  
S
–45  
–45  
–90  
±5V  
±5V  
GAIN  
GAIN  
±2.5V  
–90  
±2.5V  
V
= ±15V  
S
V
= ±15V  
±5V  
S
±5V  
±2.5V  
±2.5V  
1
1
10  
100  
1000  
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 40. Closed-Loop Gain and Phase vs. Frequency,  
Figure 39. Closed-Loop Gain and Phase vs. Frequency,  
G = –10, RL = 1 kΩ  
G = –10, RL = 150 Ω  
100  
100  
G = –10  
NO PEAKING  
G = –10  
NO PEAKING  
90  
80  
70  
60  
50  
40  
30  
20  
R
= 150Ω  
90  
80  
70  
60  
50  
40  
30  
20  
R
V
= 1kΩ  
L
L
V
= 250mV p- p  
= 250mV p- p  
O
O
R
= 249Ω  
F
R
= 249Ω  
F
R
= 442Ω  
F
R
= 442Ω  
= 750Ω  
F
R
F
R
= 750Ω  
F
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE – ±Volts  
SUPPLY VOLTAGE – ±Volts  
Figure 41. –3 dB Bandwidth vs. Supply Voltage, G = –10,  
Figure 42. –3 dB Bandwidth vs. Supply Voltage, G = –10,  
RL = 150 Ω  
RL = 1 kΩ  
–10–  
REV. A  
AD810  
Applications–  
GENERAL D ESIGN CO NSID ERATIO NS  
P RINTED CIRCUIT BO ARD LAYO UT  
T he AD810 is a current feedback amplifier optimized for use in  
high performance video and data acquisition systems. Since it  
uses a current feedback architecture, its closed-loop bandwidth  
depends on the value of the feedback resistor. T able I below  
contains recommended resistor values for some useful closed-  
loop gains and supply voltages. As you can see in the table, the  
closed-loop bandwidth is not a strong function of gain, as it  
would be for a voltage feedback amp. T he recommended  
resistor values will result in maximum bandwidths with less than  
0.1 dB of peaking in the gain vs. frequency response.  
As with all wideband amplifiers, PC board parasitics can affect  
the overall closed-loop performance. Most important are stray  
capacitances at the output and inverting input nodes. (An added  
capacitance of 2 pF between the inverting input and ground will  
add about 0.2 dB of peaking in the gain of 2 response, and  
increase the bandwidth to 105 MHz.) A space (3/16" is plenty)  
should be left around the signal lines to minimize coupling.  
Also, signal lines connecting the feedback and gain resistors  
should be short enough so that their associated inductance does  
not cause high frequency gain errors. Line lengths less than 1/4"  
are recommended.  
T he –3 dB bandwidth is also somewhat dependent on the power  
supply voltage. Lowering the supplies increases the values of  
internal capacitances, reducing the bandwidth. T o compensate  
for this, smaller values of feedback resistor are sometimes used  
at lower supply voltages. T he characteristic curves illustrate that  
bandwidths of over 100 MHz on 30 V total and over 50 MHz  
on 5 V total supplies can be achieved.  
Q UALITY O F CO AX CABLE  
Optimum flatness when driving a coax cable is possible only  
when the driven cable is terminated at each end with a resistor  
matching its characteristic impedance. If coax were ideal, then  
the resulting flatness would not be affected by the length of the  
cable. While outstanding results can be achieved using  
inexpensive cables, some variation in flatness due to varying  
cable lengths is to be expected.  
Table I. 3 dB Bandwidth vs. Closed-Loop Gain and  
Resistance Values (RL = 150 )  
P O WER SUP P LY BYP ASSING  
VS = ؎15 V  
Adequate power supply bypassing can be critical when  
optimizing the performance of a high frequency circuit.  
Inductance in the power supply leads can contribute to resonant  
circuits that produce peaking in the amplifier's response. In  
addition, if large current transients must be delivered to the  
load, then bypass capacitors (typically greater than 1 µF) will be  
required to provide the best settling time and lowest distortion.  
Although the recommended 0.1 µF power supply bypass  
capacitors will be sufficient in most applications, more elaborate  
bypassing (such as using two paralleled capacitors) may be  
required in some cases.  
Closed-Loop  
Gain  
–3 dB BW  
(MH z)  
RFB  
RG  
+1  
+2  
+10  
–1  
–10  
1 kΩ  
80  
75  
65  
70  
65  
715 Ω  
270 Ω  
681 Ω  
249 Ω  
715 Ω  
30 Ω  
681 Ω  
24.9 Ω  
VS = ؎5 V  
Closed-Loop  
Gain  
–3 dB BW  
(MH z)  
RFB  
RG  
+1  
+2  
+10  
–1  
–10  
910 Ω  
715 Ω  
270 Ω  
620 Ω  
249 Ω  
50  
50  
50  
55  
50  
P O WER SUP P LY O P ERATING RANGE  
715 Ω  
30 Ω  
620 Ω  
24.9 Ω  
T he AD810 will operate with supplies from ±18 V down to  
about ±2.5 V. On ±2.5 V the low distortion output voltage  
swing will be better than 1 V peak to peak. Single supply  
operation can be realized with excellent results by arranging for  
the input common-mode voltage to be biased at the supply  
midpoint.  
ACH IEVING VERY FLAT GAIN RESP O NSE AT  
H IGH FREQ UENCY  
Achieving and maintaining gain flatness of better than 0.1 dB  
above 10 MHz is not difficult if the recommended resistor  
values are used. T he following issues should be considered to  
ensure consistently excellent results.  
O FFSET NULLING  
A 10 kpot connected between Pins 1 and 5, with its wiper  
connected to V+, can be used to trim out the inverting input  
current (with about ±20 µA of range). For closed-loop gains  
above about 5, this may not be sufficient to trim the output  
offset voltage to zero. T ie the pot's wiper to ground through a  
large value resistor (50 kfor ±5 V supplies, 150 kfor ±15 V  
supplies) to trim the output to zero at high closed-loop gains.  
CH O ICE O F FEED BACK AND GAIN RESISTO R  
Because the 3 dB bandwidth depends on the feedback resistor,  
the fine scale flatness will, to some extent, vary with feedback  
resistor tolerance. It is recommended that resistors with a 1%  
tolerance be used if it is desired to maintain exceptional flatness  
over a wide range of production lots.  
REV. A  
–11–  
AD810  
CAP ACITIVE LO AD S  
When used with the appropriate feedback resistor, the AD810  
can drive capacitive loads exceeding 1000 pF directly without  
oscillation. By using the curves in Figure 45 to chose the resistor  
value, less than 1 dB of peaking can easily be achieved without  
sacrificing much bandwidth. Note that the curves were  
generated for the case of a 10 kload resistor, for smaller load  
resistances, the peaking will be less than indicated by Figure 45.  
1000  
100  
10  
V
= ±5V  
S
V
= ±15V  
S
Another method of compensating for large load capacitances is  
to insert a resistor in series with the loop output as shown in  
Figure 43. In most cases, less than 50 is all that is needed to  
achieve an extremely flat gain response.  
GAIN = +2  
= 1kΩ  
R
L
1
Figures 44 to 46 illustrate the outstanding performance that can  
be achieved when driving a 1000 pF capacitor.  
0
1k  
2k  
3k  
4k  
FEEDBACK RESISTOR – Ω  
R
F
Figure 45. Max Load Capacitance for Less than 1 dB of  
Peaking vs. Feedback Resistor  
0.1µF  
+V  
S
1.0µF  
R
G
7
5V  
100nS  
2
R
(OPTIONAL)  
S
VIN  
100  
90  
6
V
AD810  
4
O
3
V
C
R
L
IN  
1.0µF  
0.1µF  
L
R
T
–V  
S
V
OUT  
Figure 43. Circuit Options for Driving a Large  
Capacitive Load  
0%  
5V  
G = +2  
V
= ±15V  
S
9
6
3
0
R = 10kΩ  
C
Figure 46. AD810 Driving a 1000 pF Load,  
Gain = +2, RF = 750 , RS = 11 , RL = 10 kΩ  
L
= 1000pF  
L
D ISABLE MO D E  
R
R
= 750Ω  
= 11Ω  
F
S
By pulling the voltage on Pin 8 to common (0 V), the AD810  
can be put into a disabled state. In this condition, the supply  
current drops to less than 2.8 mA, the output becomes a high  
impedance, and there is a high level of isolation from input to  
output. In the case of a line driver for example, the output  
impedance will be about the same as for a 1.5 kresistor (the  
feedback plus gain resistors) in parallel with a 13 pF capacitor  
(due to the output) and the input to output isolation will be  
better than 65 dB at 1 MHz.  
R
R
= 4.5kΩ  
= 0  
F
S
–3  
–6  
–9  
1
10  
100  
FREQUENCY – MHz  
Leaving the disable pin disconnected (floating) will leave the  
AD810 operational in the enabled state.  
Figure 44. Perform ance Com parison of Two Methods for  
Driving a Large Capacitive Load  
In cases where the amplifier is driving a high impedance load,  
the input to output isolation will decrease significantly if the  
input signal is greater than about 1.2 V peak to peak. T he  
isolation can be restored back to the 65 dB level by adding a  
dummy load (say 150 ) at the amplifier output. T his will  
attenuate the feedthrough signal. (T his is not an issue for  
multiplexer applications where the outputs of multiple AD810s  
are tied together as long as at least one channel is in the ON  
state.) T he input impedance of the disable pin is about 35 kin  
parallel with a few pF. When grounded, about 50 µA flows out  
–12–  
REV. A  
AD810  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
of the disable the disable pin for ±5 V supplies. If driven by  
complementary output CMOS logic (such as the 74HC04), the  
disable time (until the output goes high impedance) is about  
100 ns and the enable time (to low impedance output) is about  
170 ns on ±5 V supplies. T he enable time can be extended to  
about 750 ns by using open drain logic such as the 74HC05.  
GAIN = +2  
R
R
f
= 715Ω  
= 150Ω  
= 3.58MHz  
F
L
C
100 IRE  
MODULATED RAMP  
When operated on ±15 V supplies, the AD810 disable pin may  
be driven by open drain logic such as the 74C906. In this case,  
adding a 10 kpull-up resistor from the disable pin to the plus  
supply will decrease the enable time to about 150 ns. If there is  
a nonzero voltage present on the amplifier's output at the time it  
is switched to the disabled state, some additional decay time will  
be required for the output voltage to relax to zero. T he total  
time for the output to go to zero will generally be about 250 ns  
and is somewhat dependent on the load impedance.  
GAIN  
0.08  
0.06  
0.04  
PHASE  
0.02  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SUPPLY VOLTAGE – ± Volts  
Figure 49. Differential Gain and Phase vs. Supply Voltage  
O P ERATIO N AS A VID EO LINE D RIVER  
T he AD810 is designed to offer outstanding performance at  
closed-loop gains of one or greater. At a gain of 2, the AD810  
makes an excellent video line driver. T he low differential gain  
and phase errors and wide –0.1 dB bandwidth are nearly  
independent of supply voltage and load (as seen in Figures 49  
and 50).  
+0.1  
R
= 150Ω  
L
±15V  
±5V  
0
–0.1  
±2.5  
715Ω  
715Ω  
+0.1  
0
+V  
R = 1k  
L
S
0.1µF  
0.1µF  
±15V  
±5V  
–0.1  
7
75Ω  
CABLE  
2
3
75Ω  
75Ω  
CABLE  
V
6
±2.5  
OUT  
AD810  
4
V
IN  
75Ω  
1M  
10M  
FREQUENCY – Hz  
100M  
100k  
75Ω  
–V  
S
Figure 50. Fine-Scale Gain (Norm alized) vs. Frequency  
for Various Supply Voltages, Gain = +2, RF = 715 Ω  
Figure 47. A Video Line Driver Operating at a Gain of +2  
110  
G = +2  
100  
0
PEAKING 1.0dB  
R
= 150Ω  
GAIN = +2  
L
90  
80  
70  
60  
50  
40  
30  
20  
–45  
R
= 150Ω  
V
= 250mV p-p  
L
O
R
= 500  
PHASE  
GAIN  
F
–90  
1
0
–135  
–180  
V
= ±15V  
S
R
= 750  
PEAKING 0.1dB  
F
±5V  
–225  
–270  
–1  
–2  
±2.5V  
R
= 1k  
F
V
= ±15V  
S
–3  
–4  
±5V  
±2.5V  
–5  
2
4
6
8
10  
12  
14  
16  
18  
1
10  
100  
FREQUENCY – MHz  
1000  
SUPPLY VOLTAGE - ±Volts  
Figure 48. Closed-Loop Gain and Phase vs. Frequency,  
Figure 51. –3 dB Bandwidth vs. Supply Voltage,  
G = +2, RL = 150, RF = 715 Ω  
Gain = +2, RL = 150 Ω  
REV. A  
–13–  
AD810  
2:1 VID EO MULTIP LEXER  
750Ω  
750Ω  
T he outputs of two AD810s can be wired together to form a  
2:1 mux without degrading the flatness of the gain response.  
Figure 54 shows a recommended configuration which results in  
–0.1 dB bandwidth of 20 MHz and OFF channel isolation of  
77 dB at 10 MHz on ±5 V supplies. T he time to switch between  
channels is about 0.75 µs when the disable pins are driven by  
open drain output logic. Adding pull-up resistors to the logic  
outputs or using complementary output logic (such as the  
74HC04) reduces the switching time to about 180 ns. T he  
switching time is only slightly affected by the signal level.  
+5V  
0.1µF  
7
AD810  
8
2
3
6
V
A
75Ω  
CABLE  
IN  
4
0.1µF  
75Ω  
V
OUT  
75Ω  
–5V  
75Ω  
750Ω  
750Ω  
+5V  
0.1µF  
7
2
3
500mV  
500nS  
AD810  
6
V
B
IN  
100  
90  
0.1µF  
4
8
75Ω  
–5V  
V
SW  
10  
74HC04  
0%  
5V  
Figure 54. A Fast Switching 2:1 Video Mux  
Figure 52. Channel Switching Tim e for the 2:1 Mux  
0
PHASE  
–40  
–45  
0.5  
0
–90  
–50  
–60  
–135  
–180  
–0.5  
GAIN  
–1.0  
–225  
–270  
–1.5  
–2.0  
–70  
–80  
–90  
V
= ±5V  
S
–2.5  
–3.0  
1
10  
FREQUENCY – MHz  
100  
1
10  
100  
FREQUENCY – MHz  
Figure 55. 2:1 Mux ON Channel Gain and Phase vs.  
Frequency  
Figure 53. 2:1 Mux OFF Channel Feedthrough vs.  
Frequency  
–14–  
REV. A  
AD810  
N:1 MULTIP LEXER  
1kΩ  
A multiplexer of arbitrary size can be formed by combining the  
desired number of AD810s together with the appropriate  
selection logic. T he schematic in Figure 58 shows a  
recommendation for a 4:1 mux which may be useful for driving  
a high impedance such as the input to a video A/D converter  
(such as the AD773). T he output series resistors effectively  
compensate for the combined output capacitance of the OFF  
channels plus the input capacitance of the A/D while  
maintaining wide bandwidth. In the case illustrated, the –0.1 dB  
bandwidth is about 20 MHz with no peaking. Switching time  
and OFF channel isolation (for the 4:1 mux) are about 250 ns  
and 60 dB at 10 MHz, respectively.  
+V  
S
0.1µF  
7
2
3
33Ω  
6
AD810  
4
V
V
V
, A  
IN  
8
75Ω  
SELECT A  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
–V  
S
1kΩ  
+V  
S
0.1µF  
6
7
2
3
0
PHASE  
33Ω  
AD810  
4
, B  
–45  
IN  
8
0.5  
0
–90  
75Ω  
SELECT B  
–135  
–180  
–V  
S
V
OUT  
–0.5  
–1.0  
1kΩ  
GAIN  
+V  
S
–225  
V
= ±15V  
S
R
C
L
L
0.1µF  
R
C
= 10kΩ  
–1.5  
–2.0  
–2.5  
L
= 10pF  
7
L
2
3
33Ω  
6
AD810  
4
, C  
IN  
8
–3.0  
1
10  
FREQUENCY – MHz  
100  
75Ω  
SELECT C  
–V  
S
Figure 56. 4:1 Mux ON Channel Gain and Phase vs.  
Frequency  
1kΩ  
+V  
S
0.1µF  
6
–30  
–40  
–50  
7
2
3
33Ω  
AD810  
4
V
, D  
IN  
8
75Ω  
SELECT D  
–V  
S
–60  
–70  
Figure 58. A 4:1 Multiplexer Driving a High Im pedance  
1
10  
100  
FREQUENCY – MHz  
Figure 57. 4:1 Mux OFF Channel Feedthrough vs.  
Frequency  
REV. A  
–15–  
AD810  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
P lastic Mini-D IP (N) P ackage  
8
5
0.25  
(6.35)  
0.31  
(7.87)  
PIN 1  
1
4
0.30 (7.62)  
REF  
0.39 (9.91) MAX  
0.035 ±0.01  
(0.89 ±0.25)  
0.165 ±0.01  
(4.19 ±0.25)  
0.011 ±0.003  
(0.28 ±0.08)  
0.18 ±0.03  
(4.57 ±0.76)  
0.125  
(3.18)  
MIN  
15°  
0°  
0.018  
±0.003  
(0.46 ±0.08)  
0.10  
(2.54)  
0.033  
(0.84)  
NOM  
SEATING  
PLANE  
BSC  
Cer dip (Q ) P ackage  
0.055 (1.40) MAX  
0.005 (0.13) MIN  
8
5
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
4
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
15°  
0°  
0.023 (0.58)  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
SEATING  
PLANE  
0.014 (0.36)  
8-P in SO IC (R) P ackage  
0.150 (3.81)  
8
5
0.244 (6.20)  
0.228 (5.79)  
0.157 (3.99)  
0.150 (3.81)  
PIN 1  
1
4
0.020 (0.051) x 45  
CHAMF  
°
0.190 (4.82)  
0.170 (4.32)  
0.197 (5.01)  
0.189 (4.80)  
8
0
°
°
0.090  
(2.29)  
0.102 (2.59)  
0.094 (2.39)  
0.010 (0.25)  
0.004 (0.10)  
10  
°
0°  
0.019 (0.48)  
0.014 (0.36)  
0.050  
(1.27)  
BSC  
0.030 (0.76)  
0.018 (0.46)  
0.098 (0.2482)  
0.075 (0.1905)  
All brand or product names mentioned are trademarks or registered trademarks of their respective holders.  
–16–  
REV. A  

相关型号:

AD810ARZ

Low Power Video Op Amp with Disable
ADI

AD810ARZ-REEL

Low Power Video Op Amp with Disable
ADI

AD810ARZ-REEL7

Low Power Video Op Amp with Disable
ADI

AD810SQ/883B

IC OP-AMP, 15000 uV OFFSET-MAX, 100 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier
ADI

AD810XXXXX

REED SWITCH NORMALY OPEN, DRY CONTACT
CELDUC

AD811

High Performance Video Op Amp
ADI

AD8110

260 MHz, 16 x 8 Buffered Video Crosspoint Switches
ADI

AD8110-EB

260 MHz, 16 x 8 Buffered Video Crosspoint Switches
ADI

AD8110AST

260 MHz, 16 x 8 Buffered Video Crosspoint Switches
ADI

AD8110ASTZ

260 MHz, 16  8 Buffered Video Crosspoint Switches
ADI

AD8110_15

260 MHz, 16 8 Buffered Video Crosspoint Switches
ADI

AD8111

260 MHz, 16 x 8 Buffered Video Crosspoint Switches
ADI