AD8091ARTZ-R21 [ADI]

Low Cost, High Speed Rail-to-Rail Amplifiers;
AD8091ARTZ-R21
型号: AD8091ARTZ-R21
厂家: ADI    ADI
描述:

Low Cost, High Speed Rail-to-Rail Amplifiers

文件: 总20页 (文件大小:292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Speed  
Rail-to-Rail Amplifiers  
AD8091/AD8092  
CONNECTION DIAGRAMS  
FEATURES  
Low cost single (AD8091) and dual (AD8092) amplifiers  
Fully specified at +3 V, +5 V, and 5 V supplies  
Single-supply operation  
Output swings to within 25 mV of either rail  
High speed and fast settling on 5 V  
110 MHz, −3 dB bandwidth (G = +1)  
145 V/μs slew rate  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
AD8091  
+V  
S
V
OUT  
–V  
S
NC  
NC = NO CONNECT  
Figure 1. SOIC-8 (R-8)  
50 ns settling time to 0.1%  
AD8091  
V
1
2
3
5
+V  
S
OUT  
Good video specifications (G = +2)  
Gain flatness of 0.1 dB to 20 MHz; RL = 150 Ω  
0.03% differential gain error; RL = 1 kΩ  
0.03%differential phase error; RL = 1 kΩ  
Low distortion  
–V  
S
+IN  
4
–IN  
Figure 2. SOT23-5 (RJ-5)  
−80 dBc total harmonic @ 1 MHz; RL = 100 Ω  
Outstanding load drive capability  
Drives 45 mA, 0.5 V from supply rails  
Drives 50 pF capacitive load (G = +1)  
Low power of 4.4 mA per amplifier  
AD8092  
OUT1  
–IN1  
1
2
3
4
8
7
6
5
+V  
S
OUT  
–IN2  
+IN2  
+IN1  
–V  
S
APPLICATIONS  
NC = NO CONNECT  
Figure 3. MSOP-8 and SOIC-8 (RM-8, R-8)  
Coaxial cable drivers  
Active filters  
Video switchers  
Professional cameras  
CCD imaging systems  
CDs/DVDs  
Clock buffers  
The AD8091/AD8092 offer a low power supply current and can  
operate on a single 3 V power supply. These features are ideally  
suited for portable and battery-powered applications where size  
and power are critical.  
GENERAL DESCRIPTION  
The AD8091 (single) and AD8092 (dual) are low cost, voltage  
feedback, high speed amplifiers designed to operate on +3 V,  
+5 V, or ±5 V supplies. The AD8091/AD8092 have true single-  
supply capability, with an input voltage range extending 200 mV  
below the negative rail and within 1 V of the positive rail.  
The wide bandwidth and fast slew rate make these amplifiers  
useful in many general-purpose, high speed applications where  
dual power supplies of up to ±± V and single supplies from +3  
V to +12 V are needed.  
Despite their low cost, the AD8091/AD8092 provide excellent  
overall performance and versatility. The output voltage swing  
extends to within 25 mV of each rail, providing the maximum  
output dynamic range with excellent overdrive recovery. This  
makes the AD8091/AD8092 useful for video electronics, such  
as cameras, video switchers, or any high speed portable equip-  
ment. Low distortion and fast settling make them ideal for  
active filter applications.  
This low cost performance is offered in an 8-lead SOIC  
(AD8091/AD8092), a tiny SOT23-5 (AD8091), and an MSOP  
(AD8092).  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved.  
 
AD8091/AD8092  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Power Supply Bypassing............................................................ 12  
Grounding................................................................................... 12  
Input Capacitance ...................................................................... 12  
Input-to-Output Coupling........................................................ 12  
Driving Capacitive Loads.............................................................. 13  
Overdrive Recovery ................................................................... 13  
Active Filters ............................................................................... 13  
Sync Stripper............................................................................... 14  
Single-Supply Composite Video Line Driver ......................... 14  
Outline Dimensions....................................................................... 1±  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ ±  
ESD Caution.................................................................................. ±  
Maximum Power Dissipation ..................................................... 7  
Typical Performance Characteristics ............................................. 8  
Layout, Grounding, and Bypassing Considerations .................. 12  
REVISION HISTORY  
9/07—Rev. B to Rev. C  
Changes to Applications Section .................................................... 1  
Updated Outline Dimensions....................................................... 1±  
Changes to Ordering Guide .......................................................... 17  
3/05—Rev. A to Rev. B  
Changes to Format .............................................................Universal  
Changes to Features.......................................................................... 1  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
5/02–Rev. 0 to Rev. A  
Edits to Product Description .......................................................... 1  
Edit to TPC ± .................................................................................... 7  
Edits to TPCs 21–24....................................................................... 10  
Edits to Figure 3.............................................................................. 11  
2/02—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
 
AD8091/AD8092  
SPECIFICATIONS  
TA = 25°C, VS = 5 V, RL = 2 kΩ to 2.5 V, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = −1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
70  
110  
50  
20  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RL = 150 Ω to 2.5 V, RF = 806 Ω  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
G = −1, VO = 2 V step  
G = +1, VO = 2 V p-p  
G = −1, VO = 2 V step  
100  
145  
35  
50  
V/μs  
MHz  
ns  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion (See Figure 11)  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error (NTSC)  
fC = 5 MHz, VO = 2 V p-p, G = +2  
f = 10 kHz  
f = 10 kHz  
G = +2, RL = 150 Ω to 2.5 V  
RL = 1 kΩ to 2.5 V  
G = +2, RL = 150 Ω to 2.5 V  
RL = 1 kΩ to 2.5 V  
−67  
16  
dB  
nV/√Hz  
fA/√Hz  
%
850  
0.09  
0.03  
0.19  
0.03  
−60  
%
Differential Phase Error (NTSC)  
Degrees  
Degrees  
dB  
Crosstalk  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.7  
10  
25  
mV  
mV  
μV/°C  
μA  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
2.5  
TMIN to TMAX  
3.25  
0.75  
μA  
μA  
dB  
dB  
dB  
dB  
Input Offset Current  
Open-Loop Gain  
0.1  
98  
96  
82  
78  
RL = 2 kΩ to 2.5 V  
TMIN to TMAX  
RL = 150 Ω to 2.5 V  
TMIN to TMAX  
86  
76  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
290  
1.4  
−0.2 to +4  
88  
kΩ  
pF  
V
VCM = 0 V to 3.5 V  
72  
dB  
RL = 10 kΩ to 2.5 V  
RL = 2 kΩ to 2.5 V  
RL = 150 Ω to 2.5 V  
VOUT = 0.5 V to 4.5 V  
TMIN to TMAX  
Sourcing  
Sinking  
G = +1  
0.015 to 4.985  
0.025 to 4.975  
0.200 to 4.800  
45  
45  
80  
130  
50  
V
V
V
mA  
mA  
mA  
mA  
pF  
0.100 to 4.900  
0.300 to 4.625  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
12  
5
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.4  
80  
mA  
dB  
°C  
ΔVS = 1 V  
70  
−40  
+85  
Rev. C | Page 3 of 20  
 
AD8091/AD8092  
TA = 25°C, VS = +3 V, RL = 2 kΩ to +1.5 V, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = −1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
70  
110  
50  
17  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
RL = 150 Ω to 2.5 V, RF = 402 Ω  
Slew Rate  
Full Power Response  
Settling Time to 0.1%  
G = −1, VO = 2 V step  
G = +1, VO = 1 V p-p  
G = −1, VO = 2 V step  
90  
135  
65  
55  
V/μs  
MHz  
ns  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion (see Figure 11)  
fC = 5 MHz, VO = 2 V p-p, G = −1,  
RL = 100 Ω to 1.5 V  
−47  
dB  
Input Voltage Noise  
f = 10 kHz  
16  
nV/√Hz  
Input Current Noise  
f = 10 kHz  
600  
fA/√Hz  
Differential Gain Error (NTSC)  
G = +2, VCM = 1 V  
RL = 150 Ω to 1.5 V  
RL = 1 kΩ to 1.5 V  
G = +2, VCM = 1 V  
RL = 150 Ω to 1.5 V  
RL = 1 kΩ to 1.5 V  
f = 5 MHz, G = +2  
0.11  
0.09  
%
%
Differential Phase Error (NTSC)  
0.24  
0.10  
−60  
Degrees  
Degrees  
dB  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
1.6  
10  
25  
mV  
mV  
μV/°C  
μA  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
10  
1.3  
2.6  
TMIN to TMAX  
3.25  
0.8  
μA  
μA  
dB  
dB  
dB  
dB  
Input Offset Current  
Open-Loop Gain  
0.15  
96  
94  
82  
76  
RL = 2 kΩ  
80  
74  
TMIN to TMAX  
RL = 150 Ω  
TMIN to TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
290  
1.4  
−0.2 to +2.0  
88  
kΩ  
pF  
V
VCM = 0 V to 1.5 V  
72  
dB  
RL = 10 kΩ to 1.5 V  
RL = 2 kΩ to 1.5 V  
RL = 150 Ω to 1.5 V  
VOUT = 0.5 V to 2.5 V  
TMIN to TMAX  
Sourcing  
Sinking  
G = +1  
0.01 to 2.99  
0.02 to 2.98  
0.125 to 2.875  
45  
45  
60  
90  
45  
V
V
V
mA  
mA  
mA  
mA  
pF  
0.075 to 2.9  
0.20 to 2.75  
Output Current  
Short Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.2  
80  
4.8  
mA  
dB  
°C  
ΔVS = +0.5 V  
68  
−40  
+85  
Rev. C | Page 4 of 20  
AD8091/AD8092  
TA = 25°C, VS = ±5 V, RL = 2 kΩ to ground, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = +1, VO = 0.2 V p-p  
G = −1, +2, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p,  
RL = 150 Ω, RF = 1.1 kΩ  
70  
110  
50  
20  
MHz  
MHz  
MHz  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
G = −1, VO = 2 V step  
G = +1, VO = 2 V p-p  
G = −1, VO = 2 V step  
105  
170  
40  
50  
V/μs  
MHz  
ns  
Full Power Response  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion (see Figure 11) fC = 5 MHz, VO = 2 V p-p, G = +2  
−71  
16  
dB  
Input Voltage Noise  
f = 10 kHz  
nV/√Hz  
fA/√Hz  
%
Input Current Noise  
f = 10 kHz  
900  
0.02  
0.02  
0.11  
0.02  
−60  
Differential Gain Error (NTSC)  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
%
Differential Phase Error (NTSC)  
G = +2, RL = 150 Ω  
RL = 1 kΩ  
Degrees  
Degrees  
dB  
Crosstalk  
f = 5 MHz, G = +2  
DC PERFORMANCE  
Input Offset Voltage  
1.8  
11  
27  
mV  
mV  
μV/°C  
μA  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
10  
1.4  
2.6  
TMIN to TMAX  
3.5  
μA  
Input Offset Current  
Open-Loop Gain  
0.1  
96  
96  
82  
80  
0.75  
μA  
dB  
dB  
dB  
RL = 2 kΩ  
88  
78  
TMIN to TMAX  
RL = 150 Ω  
TMIN to TMAX  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
290  
1.4  
−5.2 to +4.0  
88  
kΩ  
pF  
V
VCM = −5 V to +3.5 V  
72  
dB  
RL = 10 kΩ  
−4.98 to +4.98  
V
RL = 2 kΩ  
RL = 150 Ω  
−4.85 to +4.85  
−4.45 to +4.30  
−4.97 to +4.97  
−4.60 to +4.60  
V
V
Output Current  
VOUT = −4.5 V to +4.5 V  
TMIN to TMAX  
Sourcing  
Sinking  
G = +1 (AD8091/AD8092)  
45  
45  
100  
160  
50  
mA  
mA  
mA  
mA  
pF  
Short Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
12  
V
Quiescent Current/Amplifier  
Power Supply Rejection Ratio  
OPERATING TEMPERATURE RANGE  
4.8  
80  
5.5  
mA  
dB  
°C  
ΔVS = 1 V  
68  
−40  
+85  
Rev. C | Page 5 of 20  
AD8091/AD8092  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage  
Power Dissipation  
12.6 V  
See Figure 4  
VS  
Common-Mode Input Voltage  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering 10 sec)  
2.5 V  
See Figure 4  
−65°C to +125°C  
−40°C to +85°C  
300°C  
ESD CAUTION  
Rev. C | Page 6 of 20  
 
AD8091/AD8092  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the AD8091/AD8092  
package is limited by the associated rise in junction temperature  
(TJ) on the die. The plastic encapsulating the die locally reaches  
the junction temperature. At approximately 150°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit may change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8091/AD8092.  
Exceeding a junction temperature of 175°C for an extended  
period of time can result in changes in the silicon devices,  
potentially causing failure.  
If the rms signal levels are indeterminate, then consider the  
worst case when VOUT = VS/4 for RL to midsupply  
2
V
4
RL  
S
PD =  
(
VS × IS +  
)
In single-supply operation with RL referenced to −VS, the worst  
case is VOUT = VS/2.  
Airflow increases heat dissipation, effectively reducing θJA. Also,  
more metal directly in contact with the package leads from  
metal traces, through holes, ground, and power planes reduces  
the θJA. Care must be taken to minimize parasitic capacitances  
at the input leads of high speed op amps as discussed in the  
Input Capacitance section.  
The still-air thermal properties of the package (θJA), the ambient  
temperature (TA), and the total power dissipated in the package  
(PD) can be used to determine the junction temperature of the die.  
The junction temperature can be calculated as  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the SOIC-8  
(125°C/W), SOT23-5 (180°C/W), and MSOP-8 (150°C/W) on a  
JEDEC standard four-layer board.  
TJ =TA +  
(
PD ×θJA  
)
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming that the load (RL) is referenced  
to midsupply, then the total drive power is VS/2 × IOUT, some of  
which is dissipated in the package and some in the load  
(VOUT × IOUT). The difference between the total drive power and  
the load power is the drive power dissipated in the package.  
2.0  
T
= 150°C  
J
1.5  
1.0  
0.5  
0
SOIC-8  
MSOP-8  
PD = quiescent power +  
(
total drive power load power  
)
SOT23-5  
2
VS VOUT  
VOUT  
RL  
PD =  
(
VS × IS  
)
+
×
2
RL  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
RMS output voltages should be considered. If RL is referenced to  
−VS, as in single-supply operation, then the total drive power is  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs.  
Temperature for a Four-Layer Board  
VS × IOUT  
.
Rev. C | Page 7 of 20  
 
 
AD8091/AD8092  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
2
G = +2  
F
R
= 2k  
1
0
G = +5  
F
–1  
–2  
–3  
–4  
R
= 2kΩ  
G = +1  
= 0Ω  
G = +10  
= 2kΩ  
R
R
F
F
V
= 5V  
V
= 5V  
S
S
–5 GAIN AS SHOWN  
G = +2  
R
R
V
AS SHOWN  
= 2kΩ  
= 0.2V p-p  
R
R
V
= 150kΩ  
= 806Ω  
= 0.2V p-p  
F
L
L
F
–6  
O
O
–7  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 5. Normalized Gain vs. Frequency; VS = +5 V  
Figure 8. 0.1 dB Gain Flatness vs. Frequency; G = +2  
3
2
9
8
V
= +3V  
V
= +5V  
S
S
1
7
0
6
V
V
= +5V  
= 2V p-p  
S
–1  
–2  
–3  
–4  
–5  
–6  
–7  
5
O
V
= ±5V  
S
V
V
= ±5V  
= 4V p-p  
S
4
O
3
2
V
AS SHOWN  
S
1
V
AS SHOWN  
G = +2  
S
G = +1  
R
V
R
R
V
= 2kΩ  
= 2kΩ  
AS SHOWN  
L
F
0
= 2kΩ  
= 0.2V p-p  
L
O
O
–1  
0.1  
1
10  
100  
500  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Gain vs. Frequency vs. Supply  
Figure 9. Large Signal Frequency Response; G = +2  
3
2
70  
60  
V
R
= 5V  
= 2k  
S
L
–40°C  
1
50  
0
40  
+85°C  
+25°C  
GAIN  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
30  
0
20  
–45  
PHASE  
10  
–90  
V
= 5V  
S
G = +1  
0
–135  
–180  
R
V
= 2kΩ  
= 0.2V p-p  
L
50° PHASE  
MARGIN  
–10  
–20  
O
TEMPERATURE AS SHOWN  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
Figure 7. Gain vs. Frequency vs. Temperature  
Figure 10. Open-Loop Gain and Phase vs. Frequency  
Rev. C | Page 8 of 20  
 
AD8091/AD8092  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0.10  
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
R
= 150  
L
NTSC SUBSCRIBER (3.58MHz)  
V
= 2V p-p  
O
V
R
= 3V, G = –1  
S
= 2k, R = 100Ω  
F
L
V
R
= 5V, G = +2  
S
= 2k, R = 100Ω  
F
L
V
R
= 5V, G = +1  
= 100Ω  
S
R
= 1kΩ  
L
V
= 5, G = +2  
S
L
R
F
= 2k, R AS SHOWN  
L
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.10  
0.05  
R
= 1kΩ  
L
V
= 5V, G = +1  
S
0
R
= 2kΩ  
L
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
V
R
= 5V, G = +2  
S
R
= 150Ω  
L
= 2k, R = 2kΩ  
F
L
V
= 5, G = +2  
S
R
F
= 2k, R AS SHOWN  
L
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
1
2
3
4
5
6
7
8
9 10  
FUNDAMENTAL FREQUENCY (MHz)  
MODULATING RAMP LEVEL (IRE)  
Figure 11. Total Harmonic Distortion  
Figure 14. Differential Gain and Phase Errors  
–30  
–40  
1000  
100  
10  
V
= 5V  
S
10MHz  
–50  
–60  
–70  
–80  
5MHz  
–90  
1MHz  
–100  
–110  
–120  
–130  
V
R
= 5V  
= 2kΩ  
S
L
G = +2  
1
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V p-p)  
FREQUENCY (Hz)  
Figure 12. Worst Harmonic vs. Output Voltage  
Figure 15. Input Voltage Noise vs. Frequency  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
10  
1
V
= 5V  
S
V
= 5V  
S
G = –1  
R
R
= 2kΩ  
= 2kΩ  
F
L
0.1  
10  
0.1  
1
10  
50  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 13. Low Distortion Rail-to-Rail Output Swing  
Figure 16. Input Current Noise vs. Frequency  
Rev. C | Page 9 of 20  
 
AD8091/AD8092  
–10  
20  
10  
V
R
R
V
= 5V  
V
= 5V  
S
S
= 2k  
= 2kΩ  
= 2V p-p  
F
L
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
O
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–PSRR  
+PSRR  
0.1  
1
10  
100  
500  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. AD8092 Crosstalk (Output-to-Output) vs. Frequency  
Figure 20. PSRR vs. Frequency  
0
70  
V
= 5V  
V
= 5V  
S
S
G = –1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
60  
50  
40  
30  
20  
10  
0
R
= 2k  
L
0.03  
0.1  
1
10  
100  
500  
0.5  
1.0  
1.5  
2.0  
FREQUENCY (MHz)  
INPUT STEPS (V p-p)  
Figure 18. CMRR vs. Frequency  
Figure 21. Settling Time vs. Input Step  
100.000  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
S
V = 5V  
S
V
= +85°C  
OH  
G = +1  
31.000  
10.000  
3.100  
1.000  
0.310  
0.100  
0.031  
0.010  
V
= +25°C  
OH  
V
= –40°C  
OH  
V
= +85°C  
OL  
V
= +25°C  
OL  
V
= –40°C  
OL  
0.1  
1
10  
100  
500  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
LOAD CURRENT (mA)  
FREQUENCY (MHz)  
Figure 19. Closed-Loop Output Resistance vs. Frequency  
Figure 22. Output Saturation Voltage vs. Load Current  
Rev. C | Page 10 of 20  
AD8091/AD8092  
100  
90  
V
= 5V  
S
R
= 2kΩ  
L
G = +2  
R
= 2kΩ  
= 1V p-p  
L
V
IN  
3.5V  
R
= 150Ω  
L
2.5V  
1.5V  
80  
70  
V
= 5V  
0.5  
S
60  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT VOLTAGE (V)  
Figure 23. Open-Loop Gain vs. Output Voltage  
Figure 26. Large Signal Step Response; VS = +5 V, G = +2  
V
= 0.1V p-p  
V = 5V  
S
G = –1  
IN  
G = +1  
R
V
= 2k  
= 3V  
R
R
= 2kΩ  
= 2kΩ  
L
S
F
L
5V  
1.50V  
2.5V  
20mV  
20ns  
1V  
2µs  
Figure 24. 100 mV Step Response; G = +1  
Figure 27. Output Swing; G = −1, RL = 2 kΩ  
V
= ±5V  
S
V
= 5V  
S
4V  
3V  
2V  
1V  
G = +1  
R
G = +1  
= 2kΩ  
= 2kΩ  
L
R
L
2.60V  
2.50V  
2.40V  
–1V  
–2V  
–3V  
–4V  
1V  
20ns  
50mV  
20ns  
Figure 25. 200 mV Step Response; VS = +5 V, G = +1  
Figure 28. Large Signal Step Response; VS = 5 V, G = +1  
Rev. C | Page 11 of 20  
AD8091/AD8092  
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS  
The lengths of the high frequency bypass capacitor leads are  
POWER SUPPLY BYPASSING  
most critical. A parasitic inductance in the bypass grounding  
works against the low impedance created by the bypass  
capacitor. Place the ground leads of the bypass capacitors at the  
same physical location. Because load currents flow from the  
supplies as well, the ground for the load impedance should be at  
the same physical location as the bypass capacitor grounds. For  
the larger value capacitors, which are intended to be effective at  
lower frequencies, the current return path distance is less  
critical.  
Power supply pins are actually inputs, and care must be taken so  
that a noise-free stable dc voltage is applied. The purpose of  
bypass capacitors is to create low impedances from the supply  
to ground at all frequencies, thereby shunting or filtering a  
majority of the noise.  
Decoupling schemes are designed to minimize the bypassing  
impedance at all frequencies with a parallel combination of  
capacitors. Chip capacitors of 0.01 μF or 0.001 μF (X7R or  
NPO) are critical and should be as close as possible to the  
amplifier package. Larger chip capacitors, such as the 0.1 μF  
capacitor, can be shared among a few closely spaced active  
components in the same signal path. A 10 μF tantalum  
capacitor is less critical for high frequency bypassing and, in  
most cases, only one per board is needed at the supply inputs.  
INPUT CAPACITANCE  
Along with bypassing and ground, high speed amplifiers can  
be sensitive to parasitic capacitance between the inputs and  
ground. A few pF of capacitance reduces the input impedance  
at high frequencies, in turn increasing the amplifiers gain and  
causing peaking of the frequency response or even oscillations,  
if severe enough. It is recommended that the external passive  
components, which are connected to the input pins, be placed  
as close as possible to the inputs to avoid parasitic capacitance.  
The ground and power planes must be kept at a distance of at  
least 0.05 mm from the input pins on all layers of the board.  
GROUNDING  
A ground plane layer is important in densely packed PC boards  
to spread the current-minimizing parasitic inductances.  
However, an understanding of where the current flows in a  
circuit is critical to implementing effective high speed circuit  
design. The length of the current path is directly proportional to  
the magnitude of parasitic inductances and thus the high  
frequency impedance of the path. High speed currents in an  
inductive ground return create an unwanted voltage noise.  
INPUT-TO-OUTPUT COUPLING  
The input and output signal traces should not be parallel to  
minimize capacitive coupling between the inputs and output  
and to avoid any positive feedback.  
Rev. C | Page 12 of 20  
 
 
AD8091/AD8092  
DRIVING CAPACITIVE LOADS  
10000  
1000  
100  
10  
A highly capacitive load reacts with the output of the amplifiers,  
causing a loss in phase margin and subsequent peaking or even  
oscillation, as shown in Figure 29 and Figure 30. There are two  
methods to effectively minimize its effect.  
V
= 5V  
S
£30%  
OVERSHOOT  
R
= 3Ω  
S
Put a small value resistor in series with the output to isolate  
the load capacitor from the amplifiers output stage.  
Increase the phase margin with higher noise gains or by  
adding a pole with a parallel resistor and capacitor from  
−IN to the output.  
R
= 0Ω  
S
R
R
F
G
R
S
V
IN  
100mV STEP  
V
OUT  
8
C
L
50Ω  
6
1
4
1
2
3
4
5
6
A
(V/V)  
CL  
2
Figure 31. Capacitive Load Drive vs. Closed-Loop Gain  
0
OVERDRIVE RECOVERY  
–2  
–4  
–6  
Overdrive of an amplifier occurs when the output range and/or  
input range is exceeded. The amplifier must recover from this  
overdrive condition. The AD8091/AD8092 recover within ±0 ns  
from negative overdrive and within 45 ns from positive  
overdrive, as shown in Figure 32.  
V
= 5V  
S
–8  
–10  
–12  
G = +1  
R
C
= 2kΩ  
= 50pF  
= 200mV p-p  
L
L
V
O
0.1  
1
10  
100  
500  
V
= ±5V  
S
FREQUENCY (MHz)  
G = +5  
R
R
= 2kΩ  
= 2kΩ  
F
L
Figure 29. Closed-Loop Frequency Response: CL = 50 pF  
INPUT 1V/DIV  
OUTPUT 2V/DIV  
V
= 5V  
S
G = +1  
R
C
= 2kΩ  
= 50pF  
L
L
2.60V  
2.55V  
2.50V  
2.45V  
2.40V  
V/DIV AS SHOWN  
100ns  
Figure 32. Overdrive Recovery  
50mV  
100ns  
ACTIVE FILTERS  
Active filters at higher frequencies require wider bandwidth op  
amps to work effectively. Excessive phase shift produced by  
lower frequency op amps can significantly impact active filter  
performance.  
Figure 30. 200 mV Step Response: CL = 50 pF  
As the closed-loop gain is increased, the larger phase margin  
allows for large capacitor loads with less peaking. Adding a low  
value resistor in series with the load at lower gains has the same  
effect. Figure 31 shows the effect of a series resistor for various  
voltage gains. For large capacitive loads, the frequency response  
of the amplifier is dominated by the series resistor and capaci-  
tive load.  
Figure 33 shows an example of a 2 MHz biquad bandwidth filter  
that uses three op amps. Such circuits are sometimes used in  
medical ultrasound systems to lower the noise bandwidth of the  
analog signal before A/D conversion. Note that the unused  
amplifiers’ inputs should be tied to ground.  
Rev. C | Page 13 of 20  
 
 
 
 
 
AD8091/AD8092  
VIDEO WITHOUT SYNC  
VIDEO WITH SYNC  
C1  
50pF  
R6  
1kΩ  
R2  
2kΩ  
R4  
2kΩ  
C2  
R1  
3kΩ  
V
50pF  
BLANK  
GROUND  
+0.4V  
R3  
2
3
V
IN  
2kΩ  
R5  
2kΩ  
1
6
5
GROUND  
7
2
3
3V OR 5V  
6
V
OUT  
AD8092  
+
AD8092  
0.1µF  
10µF  
AD8091  
Figure 33. 2 MHz Biquad Band-Pass Filter  
7
V
3
2
IN  
TO A/D  
6
AD8091  
100Ω  
4
The frequency response of the circuit is shown in Figure 34.  
R2  
1kΩ  
0
R1  
1kΩ  
–10  
–20  
–30  
–40  
+0.8V  
(OR 2 × V  
)
BLANK  
Figure 35. Sync Stripper  
SINGLE-SUPPLY COMPOSITE VIDEO LINE DRIVER  
Many composite video signals have their blanking level at  
ground and have video information that is both positive and  
negative. Such signals require dual-supply amplifiers to pass  
them. However, by ac level-shifting, a single-supply amplifier  
can be used to pass these signals. The following complications  
may arise from such techniques.  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Signals of bounded peak-to-peak amplitude that vary in duty  
cycle require larger dynamic swing capacity than their  
(bounded) peak-to-peak amplitude after they are ac-coupled.  
As a worst case, the dynamic signal swing approaches twice the  
peak-to-peak value. One of two conditions that define the  
maximum dynamic swing requirements is a signal that is  
mostly low but goes high with a duty cycle that is a small  
fraction of a percent. The opposite condition defines the second  
condition.  
Figure 34. Frequency Response of 2 MHz Band-Pass Biquad Filter  
SYNC STRIPPER  
Synchronizing pulses are sometimes carried on video signals so  
as not to require a separate channel to carry the synchronizing  
information. However, for some functions, such as A/D  
conversion, it is not desirable to have the sync pulses on the  
video signal. These pulses reduce the dynamic range of the  
video signal and do not provide any useful information for such  
a function.  
The worst case of composite video is not quite this demanding.  
One bounding condition is a signal that is mostly black for an  
entire frame but has a white (full amplitude) minimum width  
spike at least once in a frame.  
A sync stripper removes the synchronizing pulses from a video  
signal while passing all the useful video information. Figure 35  
shows a practical single-supply circuit that uses only a single  
AD8091. It is capable of directly driving a reverse terminated  
video line.  
The other extreme is a full white video signal. The blanking  
intervals and sync tips of such a signal have negative-going  
excursions in compliance with the composite video  
specifications. The combination of horizontal and vertical  
blanking intervals limit such a signal to being at the highest  
(white) level for a maximum of about 75% of the time.  
The video signal plus sync is applied to the noninverting input  
with the proper termination. The amplifier gain is set equal to 2  
via the two 1 kΩ resistors in the feedback circuit. A bias voltage  
must be applied to R1 for the input signal to have the sync  
pulses stripped at the proper level.  
As a result of the duty cycles between the two extremes, a 1 V  
p-p composite video signal that is multiplied by a gain of 2  
requires about 3.2 V p-p of dynamic voltage swing at the output  
for an op amp to pass a composite video signal of arbitrary  
varying duty cycle without distortion.  
The blanking level of the input video pulse is the desired place  
to remove the sync information. The amplifier multiplies this  
level by 2. This level must be at ground at the output in order  
for the sync stripping action to take place. Because the gain of  
the amplifier from the input of R1 to the output is −1, a voltage  
equal to 2 × VBLANK must be applied to make the blanking level  
come out at ground.  
Rev. C | Page 14 of 20  
 
 
 
 
AD8091/AD8092  
Some circuits use a sync tip clamp to hold the sync tips at a  
relatively constant level to lower the amount of dynamic signal  
swing required. However, these circuits can have artifacts like  
sync tip compression unless they are driven by a source with a  
very low output impedance. The AD8091/AD8092 have  
adequate signal swing when running on a single 5 V supply to  
handle an ac-coupled composite video signal.  
The feedback circuit provides unity gain for the dc biasing of  
the input and provides a gain of 2 for any signals that are in the  
video bandwidth. The output is ac-coupled and terminated to  
drive the line.  
The capacitor values provide minimum tilt or field time  
distortion of the video signal. These values are required for  
video that is considered to be studio or broadcast quality.  
However, if a lower consumer grade of video, sometimes  
referred to as consumer video, is all that is desired, the values  
and the cost of the capacitors can be reduced by as much as a  
factor of 5 with minimum visible degradation in the picture.  
The input to the circuit shown in Figure 3± is a standard  
composite (1 V p-p) video signal that has the blanking level at  
ground. The input network level shifts the video signal by  
means of ac coupling. The noninverting input of the op amp is  
biased to half of the supply voltage.  
5V  
4.99k  
+
4.99kΩ  
10µF  
+
0.1µF  
6
10µF  
47µF  
+
7
COMPOSITE  
VIDEO IN  
R
BT  
75Ω  
3
1000µF  
+
R
T
V
10kΩ  
AD8091  
OUT  
75Ω  
R
75Ω  
L
2
4
0.1µF  
R
F
1kΩ  
R
G
1kΩ  
220µF  
Figure 36. Single-Supply Composite Video Line Driver  
Rev. C | Page 15 of 20  
 
AD8091/AD8092  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
3.20  
3.00  
2.80  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
PIN 1  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.65 BSC  
0.95  
0.85  
0.75  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.10 MAX  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
SEATING  
PLANE  
COPLANARITY  
0.10  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 37. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Figure 38. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
2.90 BSC  
5
4
3
2.80 BSC  
1.60 BSC  
1
2
PIN 1  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 39. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
Rev. C | Page 16 of 20  
 
AD8091/AD8092  
ORDERING GUIDE  
Model  
AD8091AR  
AD8091AR-REEL  
AD8091AR-REEL7  
AD8091ARZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
R-8  
R-8  
R-8  
R-8  
Branding  
8-Lead SOIC  
8-Lead SOIC, 13”Tape and Reel  
8-Lead SOIC, 7”Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13”Tape and Reel  
8-Lead SOIC, 7”Tape and Reel  
5-Lead SOT-23  
5-Lead SOT-23, 13Tape and Reel  
5-Lead SOT-23, 7Tape and Reel  
5-Lead SOT-23  
5-Lead SOT-23, 7Tape and Reel  
5-Lead SOT-23, 13Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13”Tape and Reel  
8-Lead SOIC, 7”Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13”Tape and Reel  
8-Lead SOIC, 7”Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
AD8091ARZ-REEL1  
AD8091ARZ-REEL71  
AD8091ART-R2  
AD8091ART-REEL  
AD8091ART-REEL7  
AD8091ARTZ-R21  
AD8091ARTZ-R71  
AD8091ARTZ-RL1  
AD8092AR  
AD8092AR-REEL  
AD8092AR-REEL7  
AD8092ARZ1  
AD8092ARZ-REEL1  
AD8092ARZ-REEL71  
AD8092ARM  
R-8  
R-8  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
R-8  
R-8  
R-8  
R-8  
R-8  
HVA  
HVA  
HVA  
HVA#  
HVA#  
HVA#  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
HWA  
HWA  
HWA  
HWA#  
HWA#  
HWA#  
AD8092ARM-REEL  
AD8092ARM-REEL7  
AD8092ARMZ1  
AD8092ARMZ-REEL1  
AD8092ARMZ-REEL71  
1 Z = RoHS Compliant Part. # denotes lead-free, may be top or bottom marked.  
Rev. C | Page 17 of 20  
 
 
AD8091/AD8092  
NOTES  
Rev. C | Page 18 of 20  
AD8091/AD8092  
NOTES  
Rev. C | Page 19 of 20  
AD8091/AD8092  
NOTES  
©2002–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02859-0-9/07(C)  
Rev. C | Page 20 of 20  
 

相关型号:

AD8091ARTZ-R7

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8091ARTZ-R71

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8091ARTZ-RL

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8091ARTZ-RL1

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8091ARZ

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8091ARZ

OP-AMP, 27000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8091ARZ-REEL

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8091ARZ-REEL

OP-AMP, 27000 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8091ARZ-REEL1

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8091ARZ-REEL7

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI

AD8091ARZ-REEL7

OP-AMP, 27000uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8091ARZ-REEL71

Low Cost, High Speed Rail-to-Rail Amplifiers
ADI