AD8061ART-R2 [ADI]

Low Cost, 300 MHz Rail-to-Rail Amplifiers; 低成本, 300 MHz轨到轨放大器
AD8061ART-R2
型号: AD8061ART-R2
厂家: ADI    ADI
描述:

Low Cost, 300 MHz Rail-to-Rail Amplifiers
低成本, 300 MHz轨到轨放大器

放大器
文件: 总20页 (文件大小:461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, 300 MHz  
Rail-to-Rail Amplifiers  
AD8061/AD8062/AD8063  
FEATURES  
APPLICATIONS  
Low cost  
Imaging  
Single (AD8061), dual (AD8062)  
Single with disable (AD8063)  
Rail-to-rail output swing  
Photodiode preamps  
Professional video and cameras  
Hand sets  
Low offset voltage: 6 mV  
DVDs/CDs  
High speed  
300 MHz, −3 dB bandwidth (G = 1)  
650 V/μs slew rate  
Base stations  
Filters  
ADC drivers  
8.5 nV/√Hz at 5 V  
CONNECTION DIAGRAMS  
35 ns settling time to 0.1% with 1 V step  
Operates on 2.7 V to 8 V supplies  
Input voltage range = −0.2 V to +3.2 V with VS = 5  
Excellent video specs (RL = 150 Ω, G = 2)  
Gain flatness 0.1 dB to 30 MHz  
0.01% differential gain error  
0.04° differential phase error  
35 ns overload recovery  
AD8062  
AD8061/  
AD8063  
V
+V  
V
1
2
3
4
8
7
6
5
OUT1  
–IN1  
S
DISABLE  
1
2
3
4
8
7
6
5
NC  
–IN  
+IN  
(AD8063 ONLY)  
OUT2  
+V  
V
S
–IN2  
+IN2  
+IN1  
OUT  
–V  
NC  
S
–V  
S
(Not to Scale)  
(Not to Scale)  
NC = NO CONNECT  
Figure 1. 8-Lead SOIC (R)  
Figure 2. 8-Lead SOIC (R)/MSOP (RM)  
Low power  
6.8 mA/amplifier typical supply current  
AD8063 400 μA when disabled  
AD8061  
AD8063  
V
+V  
S
1
2
3
6
5
4
V
5
+V  
S
OUT  
1
2
3
OUT  
–V  
S
DISABLE  
–IN  
–V  
S
+IN  
4
–IN  
+IN  
(Not to Scale)  
(Not to Scale)  
Figure 3. 6-Lead SOT-23 (RT)  
Figure 4. 5-Lead SOT-23 (RT)  
GENERAL DESCRIPTION  
The AD8061, AD8062, and AD8063 are rail-to-rail output  
voltage feedback amplifiers offering ease of use and low cost.  
They have bandwidth and slew rate typically found in current  
feedback amplifiers. All have a wide input common-mode  
voltage range and output voltage swing, making them easy to  
use on single supplies as low as 2.7 V.  
3
0
R
= 50Ω  
F
V
R
= 0.2V p-p  
= 1kΩ  
= 1V  
O
R
= 0Ω  
L
F
V
BIAS  
–3  
–6  
Despite being low cost, the AD8061, AD8062, and AD8063  
provide excellent overall performance. For video applications  
their differential gain and phase errors are 0.01% and 0.04° into  
a 150 Ω load, along with 0.1 dB flatness out to 30 MHz. Addi-  
tionally, they offer wide bandwidth to 300 MHz along with  
650 V/μs slew rate.  
R
F
OUT  
IN  
R
L
50Ω  
–9  
±
V
BIAS  
–12  
The AD8061, AD8062, and AD8063 offer a typical low power  
of 6.8 mA/amplifier, while being capable of delivering up to  
50 mA of load current. The AD8063 has a power-down disable  
feature that reduces the supply current to 400 μA. These features  
make the AD8063 ideal for portable and battery-powered  
applications where size and power are critical.  
1
10  
100  
1k  
FREQUENCY (MHz)  
Figure 5. Small Signal Response, RF = 0 Ω, 50 Ω  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD8061/AD8062/AD8063  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Overload Behavior and Recovery ............................................ 15  
Capacitive Load Drive ............................................................... 15  
Disable Operation ...................................................................... 16  
Board Layout Considerations................................................... 16  
Applications..................................................................................... 17  
Single-Supply Sync Stripper...................................................... 17  
RGB Amplifier............................................................................ 17  
Multiplexer .................................................................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ..................................................... 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Circuit Description......................................................................... 14  
Headroom Considerations........................................................ 14  
REVISION HISTORY  
12/05—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Change to Features and General Description............................... 1  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
5/01—Rev. B to Rev. C  
Replaced TPC 9 with new graph .................................................... 7  
11/00—Rev. A to Rev. B  
2/00—Rev. 0 to Rev. A  
11/99—Revision 0: Initial Version  
Rev. D | Page 2 of 20  
 
AD8061/AD8062/AD8063  
SPECIFICATIONS  
TA = 25°C, VS = 5 V, RL = 1 kΩ, VO = 1 V, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
150  
60  
320  
115  
280  
30  
650  
500  
35  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
−3 dB Large Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
G = 1, VO = 0.2 V p-p  
G = 1, VO = 2 V step, RL = 2 kΩ  
G = 2, VO = 2 V step, RL = 2 kΩ  
G = 2, VO = 2 V step  
500  
300  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = 2, AD8062  
f = 100 kHz  
f = 100 kHz  
G = 2, RL = 150 Ω  
G = 2, RL = 150 Ω  
f = 10 MHz  
f = 5 MHz  
−77  
−50  
−90  
8.5  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
%
Degrees  
dBc  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Third Order Intercept  
SFDR  
1.2  
0.01  
0.04  
28  
62  
dB  
DC PERFORMANCE  
Input Offset Voltage  
1
2
3.5  
3.5  
4
6
6
mV  
mV  
μV/°C  
μA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
9
9
TMIN to TMAX  
μA  
Input Offset Current  
Open-Loop Gain  
0.3  
70  
90  
4.5  
μA  
dB  
dB  
VO = 0.5 V to 4.5 V, RL = 150 Ω  
VO = 0.5 V to 4.5 V, RL = 2 kΩ  
68  
74  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing—Load Resistance  
Is Terminated at Midsupply  
Output Current  
13  
1
MΩ  
pF  
V
−0.2 to +3.2  
80  
VCM = –0.2 V to +3.2 V  
62  
dB  
RL = 150 Ω  
RL = 2 kΩ  
VO = 0.5 V to 4.5 V  
30% overshoot: G = 1, RS = 0 Ω  
G = 2, RS = 4.7 Ω  
0.3  
0.25  
25  
0.1 to 4.5  
0.1 to 4.9  
50  
25  
300  
4.75  
4.85  
V
V
mA  
pF  
pF  
Capacitive Load Drive, VOUT = 0.8 V  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off  
DISABLE Voltage—On  
40  
ns  
ns  
V
300  
2.8  
3.2  
V
POWER SUPPLY  
Operating Range  
2.7  
72  
5
8
9.5  
V
Quiescent Current per Amplifier  
Supply Current when Disabled (AD8063 Only)  
Power Supply Rejection Ratio  
6.8  
0.4  
80  
mA  
mA  
dB  
∆VS = 2.7 V to 5 V  
Rev. D | Page 3 of 20  
 
AD8061/AD8062/AD8063  
TA = 25°C, VS = 3 V, RL = 1 kΩ, VO = 1 V, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
150  
60  
300  
115  
250  
30  
280  
230  
40  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
–3 dB Large Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
G = 1, VO = 0.2 V p-p  
G = 1, VO = 1 V step, RL = 2 kΩ  
G = 2, VO = 1.5 V step, RL = 2 kΩ  
G = 2, VO = 1 V step  
190  
180  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = 2  
f = 100 kHz  
f = 100 kHz  
−60  
−44  
−90  
8.5  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
1.2  
DC PERFORMANCE  
Input Offset Voltage  
1
2
6
6
mV  
mV  
μV/°C  
μA  
μA  
μA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
3.5  
3.5  
4
0.3  
70  
90  
8.5  
8.5  
4.5  
TMIN to TMAX  
Input Offset Current  
Open-Loop Gain  
VO = 0.5 V to 2.5 V, RL = 150 Ω  
VO = 0.5 V to 2.5 V, RL = 2 kΩ  
66  
74  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
13  
1
MΩ  
pF  
V
−0.2 to +12  
80  
VCM = –0.2 V to +1.2 V  
dB  
RL = 150 Ω  
RL = 2 kΩ  
VO = 0.5 V to 2.5 V  
30% overshoot, G = 1, RS = 0 Ω  
G = 2, RS = 4.7 Ω  
0.3  
0.3  
0.1 to 2.87  
0.1 to 2.9  
25  
25  
300  
2.85  
2.90  
V
V
mA  
pF  
pF  
Output Current  
Capacitive Load Drive, VOUT = 0.8 V  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off  
DISABLE Voltage—On  
40  
ns  
ns  
V
300  
0.8  
1.2  
V
POWER SUPPLY  
Operating Range  
2.7  
72  
3
9
V
Quiescent Current per Amplifier  
Supply Current when Disabled (AD8063 Only)  
Power Supply Rejection Ratio  
6.8  
0.4  
80  
mA  
mA  
dB  
Rev. D | Page 4 of 20  
AD8061/AD8062/AD8063  
TA = 25°C, VS = 2.7 V, RL = 1 kΩ, VO = 1 V, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
G = 1, VO = 0.2 V p-p, VO dc = 1 V  
G = 1, VO = 0.7 V step, RL = 2 kΩ  
G = 2, VO = 1.5 V step, RL = 2 kΩ  
G = 2, VO = 1 V step  
150  
60  
300  
115  
230  
30  
150  
130  
40  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
110  
95  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = 2  
f = 100 kHz  
f = 100 kHz  
–60  
–44  
–90  
8.5  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
1.2  
DC PERFORMANCE  
Input Offset Voltage  
1
2
6
6
mV  
mV  
μV/°C  
μA  
μA  
μA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
3.5  
3.5  
4
0.3  
70  
90  
TMIN to TMAX  
8.5  
4.5  
Input Offset Current  
Open-Loop Gain  
VO = 0.5 V to 2.2 V, RL = 150 Ω  
VO = 0.5 V to 2.2 V, RL = 2 kΩ  
63  
74  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
13  
1
MΩ  
pF  
V
–0.2 to +0.9  
0.8  
VCM = –0.2 V to +0.9 V  
dB  
RL = 150 Ω  
RL = 2 kΩ  
VO = 0.5 V to 2.2 V  
30% overshoot: G = 1, RS = 0 Ω  
G = 2, RS = 4.7 Ω  
0.3  
0.25  
0.1 to 2.55  
0.1 to 2.6  
25  
2.55  
2.6  
V
V
mA  
pF  
pF  
Output Current  
Capacitive Load Drive, VOUT = 0.8 V  
25  
300  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
40  
ns  
ns  
V
300  
0.5  
0.9  
DISABLE  
DISABLE  
Voltage—Off  
Voltage—On  
V
POWER SUPPLY  
Operating Range  
2.7  
8
V
Quiescent Current per Amplifier  
Supply Current when Disabled (AD8063 Only)  
Power Supply Rejection Ratio  
6.8  
0.4  
80  
8.5  
mA  
mA  
dB  
Rev. D | Page 5 of 20  
AD8061/AD8062/AD8063  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
Supply Voltage  
Internal Power Dissipation1  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods  
may affect device reliability.  
Rating  
8 V  
8-lead SOIC (R)  
0.8 W  
0.5 W  
0.5 W  
0.6 W  
5-lead SOT-23 (RT)  
6-lead SOT-23 (RT)  
8-lead MSOP (RM)  
MAXIMUM POWER DISSIPATION  
Input Voltage (Common-Mode)  
(−VS − 0.2 V) to (+VS − 1.8 V)  
The maximum power that can be safely dissipated by the  
AD806x is limited by the associated rise in junction temperature.  
The maximum safe junction temperature for plastic encapsulated  
devices is determined by the glass transition temperature of the  
plastic, approximately 150°C. Temporarily exceeding this limit  
may cause a shift in parametric performance due to a change in  
the stresses exerted on the die by the package. Exceeding a junc-  
tion temperature of 175°C for an extended period can result in  
device failure. While the AD806x is internally short-circuit  
protected, this may not be sufficient to guarantee that the  
maximum junction temperature (150°C) is not exceeded  
under all conditions.  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
R-8, RM-8, SOT-23-5, SOT-23-6  
Operating Temperature Range −40°C to +85°C  
VS  
Observe Power Derating Curves  
−65°C to +125°C  
Lead Temperature Range  
(Soldering 10 sec)  
300°C  
1Specification is for device in free air.  
8-Lead SOIC: θJA = 160°C/W; θJC = 56°C/W.  
5-Lead SOT-23: θJA = 240°C/W; θJC = 92°C/W.  
6-Lead SOT-23: θJA = 230°C/W; θJC = 92°C/W.  
8-Lead MSOP: θJA = 200°C/W; θJC = 44°C/W.  
To ensure proper operation, it is necessary to observe the  
maximum power derating curves.  
2.0  
T
= 150°C  
8-LEAD SOIC  
PACKAGE  
J
1.5  
1.0  
0.5  
0
MSOP  
SOT-23-5, -6  
–50 –40 –30  
90  
–20 –10  
0
10 20 30 40 50 60 70 80  
C)  
AMBIENT TEMPERATURE (  
°
Figure 6. Maximum Power Dissipation vs. Temperature for  
AD8061/AD8062/AD8063  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. D | Page 6 of 20  
 
 
AD8061/AD8062/AD8063  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
1.2  
G = 1  
1.0  
+V  
@ +85°C  
OUT  
0
–3  
–6  
+V  
@ +25°C  
OUT  
0.8  
0.6  
0.4  
0.2  
0
G = 2  
G = 5  
+V  
@ –40  
°
C
OUT  
–V  
@ –40°C  
OUT  
V
R
V
= 0.2V p-p  
= 1kΩ  
O
–9  
–V  
@ +85  
80  
°C  
L
OUT  
= 1V  
BIAS  
–V  
@ +25°C  
OUT  
50  
–12  
1
1
1
10  
100  
1k  
1k  
1k  
10  
20  
30  
40  
60  
70  
90  
0
FREQUENCY (MHz)  
LOAD CURRENT (mA)  
Figure 7. Output Saturation Voltage vs. Load Current  
Figure 10. Small Signal Frequency Response  
18  
16  
14  
12  
10  
8
3
V
R
V
= 1.0V p-p  
= 1kΩ  
O
AD8062  
L
G = 1  
= 1V  
BIAS  
0
–3  
–6  
G = 2  
AD8061  
G = 5  
6
4
–9  
2
0
–12  
5
8
2
3
4
6
7
10  
100  
SINGLE POWER SUPPLY (V)  
FREQUENCY (MHz)  
Figure 11. Large Signal Frequency Response  
Figure 8. ISUPPLY vs. VSUPPLY  
3
3
R
= 50Ω  
F
V
V
= 5V  
= 0.2V p-p  
S
O
0
–3  
–6  
R
= 1kΩ  
L
V
R
V
= 0.2V p-p  
= 1kΩ  
= 1V  
0
–3  
–6  
O
V
= 1V  
BIAS  
R
= 0Ω  
L
F
BIAS  
G = –1  
G = –2  
G = –5  
R
F
R
F
OUT  
IN  
OUT  
R
L
IN  
R
50  
Ω
L
–9  
50  
Ω
–9  
V
BIAS  
V
BIAS  
–12  
1
10  
100  
1k  
–12  
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Small Signal Response, RF = 0 Ω, 50 Ω  
Figure 12. Small Signal Frequency Response  
Rev. D | Page 7 of 20  
 
AD8061/AD8062/AD8063  
3
0
V
V
R
= 5V  
= 1V p-p  
= 1kΩ  
V
= 5V  
S
S
–10  
R
= 1kΩ  
O
L
G = 1  
L
–20  
–30  
0
V
= 1V  
BIAS  
G = –1  
2ND @ 1MHz  
–3  
–40  
–50  
3RD @ 10MHz  
G = –2  
–6  
–60  
–70  
G = –5  
–9  
–80  
–90  
3RD @ 1MHz  
2.5  
2ND @ 10MHz  
1.5 2.0  
–12  
–100  
0.5  
1.0  
3.5  
1
3.0  
10  
100  
1k  
FREQUENCY (MHz)  
INPUT SIGNAL BIAS (V)  
Figure 13. Large Signal Frequency Response  
Figure 16. Harmonic Distortion for a 1 V p-p Signal vs. Input Signal DC Bias  
–40  
0.1  
0
604  
Ω
V
R
V
G = 1  
= 0.2V p-p  
= 1kΩ  
V
= 2.7V  
O
S
10μF  
5V  
L
+
–50  
–60  
= 1V  
BIAS  
0.1μF  
1kΩ  
50  
Ω
1MΩ INPUT  
52.3Ω  
–0.1  
–0.2  
0.1  
1.25V  
μF  
+
1k  
(R  
Ω
LOAD  
V
= 5V  
S
dc  
)
–70  
–80  
V
= 3V  
S
2ND H  
–0.3  
–0.4  
–90  
–100  
–110  
3RD H  
–0.5  
1
FREQUENCY (MHz, START = 10kHz, STOP = 30MHz)  
50  
1
0.01  
0.1  
10  
100  
1k  
10  
FREQUENCY (MHz)  
Figure 14. 0.1 dB Flatness  
Figure 17. Harmonic Distortion for a 1 V p-p Output Signal vs.  
Input Signal DC Bias  
80  
200  
150  
100  
50  
–30  
V
R
= 5V  
= 1kΩ  
S
L
–40  
–50  
G = 5  
= 1V p-p  
60  
40  
V
SERIES 1  
O
2ND  
3RD  
10MHz  
–60  
SERIES 2  
0
–70  
20  
–50  
–100  
–150  
–200  
–250  
–300  
–80  
2ND  
0
–90  
3RD  
2ND  
5MHz  
–100  
–110  
–120  
1MHz  
– 20  
3RD  
– 40  
0.01  
0.1  
1
10  
100  
1k  
0
1
5
2
3
4
FREQUENCY (MHz)  
OUTPUT SIGNAL DC BIAS (V)  
Figure 15. AD8062 Open-Loop Gain and Phase vs. Frequency,  
VS = 5 V, RL = 1 kΩ  
Figure 18. Harmonic Distortion vs. Output Signal DC Bias  
Rev. D | Page 8 of 20  
 
 
 
AD8061/AD8062/AD8063  
–40  
–50  
V
R
G = 2  
= 5V  
S
0.01  
0
= R = 1kΩ  
F
L
2ND @ 10MHz  
–0.01  
–0.02  
–0.04  
–0.06  
–60  
–70  
–80  
–90  
5V  
+
10  
0.1  
1k  
μF  
1M  
INPUT  
TO  
Ω
μ
F
50  
Ω
Ω
50  
Ω
Ω
2ND @ 2MHz  
1k  
Ω
3589A  
1k  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
2ND @ 500kHz  
0.02  
0
3RD @ 2MHz  
–0.02  
–0.04  
–0.06  
–100  
–110  
3RD @ 500kHz  
1.0  
3.5  
4.0  
4.5  
1.5  
2.0  
2.5  
3.0  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
RTO OUTPUT (V p-p)  
Figure 19. Harmonic Distortion vs. Output Signal Amplitude  
Figure 22. Differential Gain and Phase Error, G = 2,  
NTSC Input Signal, RL = 1 kΩ, VS = 5 V  
–30  
V
= 5V  
S
R = R = 1k  
Ω
I
L
0.010  
0.005  
0
–40  
–50  
–60  
V
= 2V p-p  
O
G = 2  
S1 3RD HARMONIC/  
DUAL 2.5V SUPPLY  
–0.005  
–0.010  
±
S1 2ND HARMONIC/  
DUAL 2.5V SUPPLY  
–70  
–80  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
±
S1 2ND HARMONIC/  
SINGLE +5V SUPPLY  
0.04  
0.03  
0.02  
0.01  
0
–90  
–100  
–110  
S1 3RD HARMONIC/  
SINGLE +5V SUPPLY  
–0.01  
–0.02  
0.01  
0.1  
1
10  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
FREQUENCY (MHz, START = 10kHz, STOP = 30MHz)  
Figure 20. Harmonic Distortion vs. Frequency  
Figure 23. Differential Gain and Phase Error, G = 2,  
NTSC Input Signal, RL = 150 Ω, VS = 5 V  
1.0  
1000  
V
= 5V  
S
FALLING EDGE  
R
G = 1  
= 1kΩ  
0.9  
0.8  
L
900  
800  
700  
600  
500  
V
R
G = 1  
= 5V  
= 1kΩ  
S
L
0.7  
0.6  
RISING EDGE  
0.5  
0.4  
0.3  
0.2  
0.1  
400  
300  
200  
100  
0
0
0
0.1  
0.2  
TIME (μs)  
0.3  
0.4  
0.5  
1.5  
OUTPUT STEP AMPLITUDE (V)  
3.0  
1.0  
2.0  
2.5  
Figure 21. 400 mV Pulse Response  
Figure 24. Slew Rate vs. Output Step Amplitude  
Rev. D | Page 9 of 20  
AD8061/AD8062/AD8063  
1400  
V
= ±2.5V  
S
G = 1  
= 1kΩ  
FALLING EDGE  
V
R
IN  
L
1200  
1000  
800  
V
= ±4V  
S
2.5V  
FALLING EDGE  
= +5V  
V
S
V
OUT  
600  
400  
200  
0
RISING EDGE  
V
= ±4V  
S
0V  
RISING EDGE  
V
= +5V  
S
500mV/DIV  
0
20  
40  
60  
80 100 120 140 160  
TIME (ns)  
180 200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT STEP (V)  
Figure 28. Input Overload Recovery, Input Step = 0 V to 2 V  
Figure 25. Slew Rate vs. Output Step Amplitude, G = 2, RL = 1 kΩ, VS = 5 V  
1k  
V
= ±2.5V  
S
G = 5  
= 1kΩ  
V
R
= 5V  
= 1kΩ  
S
R
L
L
V
OUT  
2.5V  
1.0V  
100  
10  
1
V
IN  
0V  
500mV/DIV  
0
20  
40  
60  
80 100 120 140 160  
TIME (ns)  
180 200  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 29. Output Overload Recovery, Input Step = 0 V to 1 V  
Figure 26. Voltage Noise vs. Frequency  
0
100  
10  
1
V
= 0.2V p-p  
CM  
–10  
–20  
–30  
R
V
= 100  
Ω
V
R
= 5V  
= 1kΩ  
L
S
= ±2.5V  
SIDE 2  
S
L
SIDE 1  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
604  
Ω
604  
Ω
50  
Ω
V
154  
Ω
IN  
200mV p-p  
154  
Ω
57.6  
Ω
0
10  
0.01  
0.1  
1
10  
100  
500  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 27. Current Noise vs. Frequency  
Figure 30. CMRR vs. Frequency  
Rev. D | Page 10 of 20  
AD8061/AD8062/AD8063  
0
–10  
–20  
7
6
5
4
3
2
1
0
Δ
V = 0.2V p-p  
S
V
= 5V  
S
R
= 1kΩ  
= 5V  
L
S
V
PSRR  
+PSRR  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.01  
0.1  
1
10  
100  
500  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
DISABLE VOLTAGE  
Figure 31. PSRR vs. Frequency Delta  
DISABLE  
Voltage vs. Supply Current  
Figure 34.  
–20  
–30  
6
5
V
G = 2  
= 5V  
1kΩ  
1kΩ  
S
V
+2.5V  
f
= 10MHz  
@ 1.3V  
DISABLE  
IN  
–40  
BIAS  
R
= 100Ω  
L
OUT  
–50  
4
IN  
1k  
Ω
50Ω  
–60  
–2.5V  
3
–70  
INPUT = SIDE 2  
INPUT = SIDE 1  
2
–80  
–90  
V
V
= 5V  
S
1
= 400mV rms  
IN  
–100  
–110  
–120  
R
G = 2  
= 1kΩ  
L
0
V
OUT  
–1  
0.01  
0.1  
1
10  
100  
500  
0
0.4  
0.8  
1.2  
1.6  
2.0  
FREQUENCY (MHz)  
TIME (μs)  
Figure 32. AD8062 Crosstalk, VOUT = 2.0 V p-p, RL = 1 kΩ, G = 2, VS = 5 V  
DISABLE  
Function, Voltage = 0 V to 5 V  
Figure 35.  
1k  
100  
10  
0
V
V
R
= 5V  
= 0.2V p-p  
= 1kΩ  
= 1V  
V
V
R
V
= 5V  
= 0.2V p-p  
= 1kΩ  
S
S
O
O
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
L
L
V
= 1V  
BIAS  
BIAS  
1
0.1  
0.01  
0.1  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 36. Output Impedance vs. Frequency,  
VOUT = 0.2 V p-p, RL = 1 kΩ, VS = 5 V  
Figure 33. Disabled Output Isolation Frequency Response  
Rev. D | Page 11 of 20  
 
 
 
AD8061/AD8062/AD8063  
V
R
= 5V  
= 1kΩ  
V
G = 2  
= 5V  
S
S
L
R
= 1kΩ  
L
V
= 1V p-p  
IN  
3.5V  
2.5V  
1.5V  
+0.1%  
–0.1%  
1kΩ  
1kΩ  
R
= 1kΩ  
L
50Ω  
500mV/DIV  
10 20  
t = 0  
0
30  
40  
50  
60  
70  
80  
90  
100  
20ns/DIV  
TIME (ns)  
Figure 37. Output Settling Time to 0.1%  
Figure 40. 1 V Step Response  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
G = 2  
R
V
= 5V  
S
FALLING EDGE  
= 1kΩ  
= 100mV  
L
2.6V  
IN  
RISING EDGE  
2.5V  
2.4V  
V
R
G = 1  
= 5V  
= 1kΩ  
S
L
20mV/DIV  
0
0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
1.0  
1.5  
OUTPUT VOLTAGE STEP  
2.0  
2.5  
TIME (ns)  
Figure 41. 100 mV Step Response  
Figure 38. Settling Time vs. VOUT  
V
= 5V  
S
G = –1  
V
G = 2  
R
V
= 5V  
S
R
R
= 1kΩ  
= 1kΩ  
F
L
= R = 1kΩ  
F
L
= 4V p-p  
IN  
4.86  
2.43  
0V  
0V  
1V  
2μs  
2μs/DIV  
1V/DIV  
Figure 39. Output Swing  
Figure 42. Output Rail-to-Rail Swing  
Rev. D | Page 12 of 20  
AD8061/AD8062/AD8063  
V
G = 2  
R
V
= 5V  
S
V
G = 1  
R
= 5V  
S
= R = 1kΩ  
L
F
= 1kΩ  
L
= 2V p-p  
IN  
2.6V  
2.5V  
2.4V  
4.5V  
2.5V  
0.5V  
50mV/DIV  
10  
1V/DIV  
5
0
5
15  
20  
25  
30  
35  
40  
45  
50  
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
TIME (ns)  
TIME (ns)  
Figure 44. 2 V Step Response  
Figure 43. 200 mV Step Response  
Rev. D | Page 13 of 20  
AD8061/AD8062/AD8063  
CIRCUIT DESCRIPTION  
The AD8061/AD8062/AD8063 family is comprised of high  
speed voltage feedback op amps. The high slew rate input stage  
is a true, single-supply topology, capable of sensing signals at or  
below the minus supply rail. The rail-to-rail output stage can  
pull within 30 mV of either supply rail when driving light loads  
and within 0.3 V when driving 150 Ω. High speed perform-  
ance is maintained at supply voltages as low as 2.7 V.  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
–2.8  
–3.2  
–3.6  
–4.0  
HEADROOM CONSIDERATIONS  
These amplifiers are designed for use in low voltage systems.  
To obtain optimum performance, it is useful to understand the  
behavior of the amplifier as input and output signals approach  
the amplifiers headroom limits.  
–0.5  
0
0.5  
1.0  
1.5  
V
2.0  
(V)  
2.5  
3.0  
3.5  
4.0  
CM  
The AD806xs input common-mode voltage range extends  
from the negative supply voltage (actually 200 mV below this),  
or ground for single-supply operation, to within 1.8 V of the  
positive supply voltage. Thus, at a gain of 2, the AD806x can  
provide full rail-to-rail output swing for supply voltage as low as  
3.6 V, assuming the input signal swing from −VS (or ground) to  
+VS/2. At a gain of 3, the AD806x can provide a rail-to-rail  
output range down to 2.7 V total supply voltage.  
Figure 45. VOS vs. Common-Mode Voltage, VS = 5 V  
2
0
V
V
V
V
V
= 3.0  
= 3.1  
= 3.2  
= 3.3  
= 3.4  
CM  
CM  
CM  
CM  
CM  
–2  
–4  
–6  
–8  
Exceeding the headroom limit is not a concern for any inverting  
gain on any supply voltage, as long as the reference voltage at  
the amplifiers positive input lies within the amplifiers input  
common-mode range.  
0.1  
1
10  
100  
1k  
10k  
The input stage is the headroom limit for signals when the  
amplifier is used in a gain of 1 for signals approaching the  
positive rail. Figure 45 shows a typical offset voltage vs.  
input common-mode voltage for the AD806x amplifier on  
a 5 V supply. Accurate dc performance is maintained from  
approximately 200 mV below the minus supply to within  
1.8 V of the positive supply. For high-speed signals, however,  
there are other considerations. Figure 46 shows −3 dB  
bandwidth vs. dc input voltage for a unity-gain follower. As  
the common-mode voltage approaches the positive supply,  
the amplifier holds together well, but the bandwidth begins to  
drop at 1.9 V within +VS.  
FREQUENCY (MHz)  
Figure 46. Unity-Gain Follower Bandwidth vs. Input Common Mode, VS = 5 V  
Higher frequency signals require more headroom than lower  
frequencies to maintain distortion performance. Figure 47  
illustrates how the rising edge settling time for the amplifier  
configured as a unity-gain follower stretches out as the top of  
a 1 V step input approaches and exceeds the specified input  
common-mode voltage limit.  
For signals approaching the minus supply and inverting gain  
and high positive gain configurations, the headroom limit is  
the output stage. The AD806x amplifiers use a common emitter  
style output stage. This output stage maximizes the available  
output range, limited by the saturation voltage of the output  
transistors. The saturation voltage increases with the drive  
current the output transistor is required to supply, due to the  
output transistors’ collector resistance. The saturation voltage is  
estimated using the equation VSAT = 25 mV + IO × 8 Ω, where IO  
is the output current, and 8 Ω is a typical value for the output  
transistors’ collector resistance.  
This manifests itself in increased distortion or settling time.  
Figure 16 plots the distortion of a 1 V p-p signal with the  
AD806x amplifier used as a follower on a 5 V supply vs. signal  
common-mode voltage. Distortion performance is maintained  
until the input signal center voltage gets beyond 2.5 V, as the  
peak of the input sine wave begins to run into the upper  
common-mode voltage limit.  
Rev. D | Page 14 of 20  
 
 
 
AD8061/AD8062/AD8063  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
VOLTAGE STEP  
FROM 2.4V TO 3.4V  
2V TO 3V STEP  
2.1V TO 3.1V STEP  
VOLTAGE STEP  
FROM 2.4V TO 3.6V  
2.2V TO 3.2V STEP  
2.3V TO 3.3V STEP  
VOLTAGE STEP  
FROM 2.4V TO 3.8V,  
4V AND 5V  
2.4V TO 3.4V STEP  
0
100  
200  
300  
400  
500  
600  
0
4
8
12  
16  
20  
24  
28  
32  
TIME (ns)  
TIME (ns)  
Figure 48. Pulse Response for G = 1 Follower,  
Input Step Overloading the Input Stage  
Figure 47. Output Rising Edge for 1 V Step at  
Input Headroom Limits, G = 1, VS = 5 V, 0 V  
Output  
As the saturation point of the output stage is approached, the  
output signal shows increasing amounts of compression and  
clipping. As in the input headroom case, the higher frequency  
signals require a bit more headroom than lower frequency  
signals. Figure 16, Figure 17, and Figure 18 illustrate this point,  
plotting typical distortion vs. output amplitude and bias for  
gains of 2 and 5.  
Output overload recovery is typically within 40 ns after the  
amplifiers input is brought to a nonoverloading value. Figure 49  
shows output recovery transients for the amplifier recovering  
from a saturated output from the top and bottom supplies to a  
point at midsupply.  
5.0  
4.6  
OVERLOAD BEHAVIOR AND RECOVERY  
Input  
OUTPUT VOLTAGE  
4.2  
5V TO 2.5V  
3.8  
OUTPUT VOLTAGE  
3.4  
The specified input common-mode voltage of the AD806x  
is −200 mV below the negative supply to within 1.8 V of  
the positive supply. Exceeding the top limit results in lower  
bandwidth and increased settling time as seen in Figure 46  
and Figure 47. Pushing the input voltage of a unity-gain  
follower beyond 1.6 V within the positive supply leads to the  
behavior shown in Figure 48—an increasing amount of output  
error and much increased settling time. Recovery time from  
input voltages 1.6 V or closer to the positive supply is approxi-  
mately 35 ns, which is limited by the settling artifacts caused by  
transistors in the input stage coming out of saturation.  
0V TO 2.5V  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
INPUT VOLTAGE  
EDGES  
R
5V  
R
V
IN  
2.5V  
V
O
0.6  
0.2  
0.2  
0
10  
20  
30  
40  
TIME (ns)  
50  
60  
70  
Figure 49. Overload Recovery, G = −1, VS = 5 V  
The AD806x family does not exhibit phase reversal, even for  
input voltages beyond the voltage supply rails. Going more  
than 0.6 V beyond the power supplies will turn on protection  
diodes at the input stage, which will greatly increase the devices  
current draw.  
CAPACITIVE LOAD DRIVE  
The AD806x family is optimized for bandwidth and speed, not  
for driving capacitive loads. Output capacitance creates a pole  
in the amplifier’s feedback path, leading to excessive peaking  
and potential oscillation. If dealing with load capacitance is a  
requirement of the application, the two strategies to consider  
are as follows:  
1. Use a small resistor in series with the amplifier’s output and  
the load capacitance.  
2. Reduce the bandwidth of the amplifiers feedback loop by  
increasing the overall noise gain.  
Rev. D | Page 15 of 20  
 
 
 
 
AD8061/AD8062/AD8063  
VCC  
Figure 50 shows a unity-gain follower using the series resistor  
strategy. The resistor isolates the output from the capacitance  
and, more importantly, creates a zero in the feedback path that  
compensates for the pole created by the output capacitance.  
2V  
TO AMPLIFIER  
BIAS  
DISABLE  
R
SERIES  
V
AD8061  
O
C
LOAD  
VEE  
V
IN  
Figure 52. Disable Circuit of the AD8063  
Figure 50. Series Resistor Isolating Capacitive Load  
DISABLE  
Figure 34 shows the AD8063 supply current vs.  
voltage. Figure 35 plots the output seen when the AD8063 input  
DISABLE  
Voltage feedback amplifiers like those in the AD806x family are  
able to drive more capacitive load without excessive peaking  
when used in higher gain configurations, because the increased  
noise gain reduces the bandwidth of the overall feedback loop.  
Figure 51 plots the capacitance that produces 30% overshoot vs.  
noise gain for a typical amplifier.  
is driven with a 10 MHz sine wave, and the  
is toggled  
from 0 V to 5 V, illustrating the parts turn-on and turn-off  
time. Figure 33 shows the input/output isolation response with  
the AD8063 shut off.  
10k  
BOARD LAYOUT CONSIDERATIONS  
Maintaining the high speed performance of the AD806x family  
requires the use of high speed board layout techniques and low  
parasitic components.  
R
= 4.7  
S
1k  
100  
10  
The PCB should have a ground plane covering unused portions  
of the component side of the board to provide a low impedance  
path. Remove the ground plane near the package to reduce  
parasitic capacitance.  
R
= 0  
S
Proper bypassing is critical. Use a ceramic 0.1 μF chip capacitor  
to bypass both supplies. Locate the chip capacitor within 3 mm  
of each power pin. Additionally, connect in parallel a 4.7 μF to  
10 μF tantalum electrolytic capacitor to provide charge for fast,  
large signal changes at the output.  
1
2
3
4
5
CLOSED-LOOP GAIN  
Figure 51. Capacitive Load vs. Closed-Loop Gain  
Minimizing parasitic capacitance at the amplifiers inverting  
input pin is very important. Locate the feedback resistor close to  
the inverting input pin. The value of the feedback resistor may  
come into play—for instance, 1 kΩ interacting with 1 pF of  
parasitic capacitance creates a pole at 159 MHz. Use stripline  
design techniques for signal traces longer than 25 mm. Design  
them with either 50 Ω or 75 Ω characteristic impedance and  
proper termination at each end.  
DISABLE OPERATION  
The internal circuit for the AD8063 disable function is shown  
DISABLE  
in Figure 52. When the  
node is pulled below 2 V  
from the positive supply, the supply current decreases from  
typically 6.5 mA to under 400 μA, and the AD8063 output  
will enter a high impedance state. If the  
connected and allowed to float, the AD8063 stays biased at  
full power.  
DISABLE  
node is not  
Rev. D | Page 16 of 20  
 
 
 
 
AD8061/AD8062/AD8063  
APPLICATIONS  
The circuit can be modified to provide the sync stripping  
function for such a waveform. Instead of connecting RG to  
ground, connect it to a dc voltage that is two times the black  
level of the input signal. The gain from the +input to the output  
is two, which means the black level will be amplified by two to  
the output. However, the gain through RG is –unity to the  
output. It takes a dc level of twice the input black level to shift  
the black level to ground at the output. When this occurs, the  
sync will be stripped, and the active video will be passed as in  
the ground-referenced case.  
SINGLE-SUPPLY SYNC STRIPPER  
When a video signal contains synchronization pulses, it is  
sometimes desirable to remove them prior to performing  
certain operations. In the case of A-to-D conversion, the sync  
pulses consume some of the dynamic range, so removing them  
increases the converters available dynamic range for the video  
information.  
Figure 53 shows a basic circuit for creating a sync stripper using  
the AD8061 powered by a single supply. When the negative  
supply is at ground potential, the lowest potential to which the  
output can go is ground. This feature is exploited to create a  
waveform whose lowest amplitude is the black level of the video  
and does not include the sync level.  
RED  
DAC  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
MONITOR  
#1  
GREEN  
DAC  
BLUE  
DAC  
3V  
0.1μF  
10μF  
75Ω  
7
3
2
1kΩ  
VIDEO IN  
VIDEO OUT  
6
75Ω  
AD8061  
3V  
75Ω  
R
1kΩ  
4
F
0.1μF  
10μF  
7
1kΩ  
2
3
R
1kΩ  
G
PIN NUMBERS ARE  
FOR 8-LEAD PACKAGE  
75Ω  
RED  
75Ω  
6
AD8061  
4
Figure 53. Single 3 V Sync Stripper Using AD8061  
1kΩ  
In this case, the input video signal has its black level at ground, so  
it comes out at ground at the input. Since the sync level is below  
the black level, it will not show up at the output. However, all of  
the active video portion of the waveform will be amplified by a  
gain of two and then be normalized to unity gain by the back-  
terminated transmission line. Figure 54 is an oscilloscope plot  
of the input and output waveforms.  
3V  
8
MONITOR  
#2  
0.1μF  
10μF  
1kΩ  
1kΩ  
2
75Ω  
75Ω  
GREEN  
1
AD8062  
3
5
75Ω  
BLUE  
7
AD8062  
75Ω  
6
1
4
1kΩ  
INPUT  
Figure 55. RGB Cable Driver Using AD8061 and AD8062  
RGB AMPLIFIER  
2
Most RGB graphics signals are created by video DAC outputs  
that drive a current through a resistor to ground. At the video  
black level, the current goes to zero, and the voltage of the video  
is also zero. Before the availability of high speed rail-to rail op  
amps, it was essential that an amplifier have a negative supply  
to amplify such a signal. Such an amplifier is necessary if one  
wants to drive a second monitor from the same DAC outputs.  
OUTPUT  
10μs  
500mV  
Figure 54. Input and Output Waveforms for a Single-Supply  
Video Sync Stripper Using an AD8061  
However, high speed, rail-to-rail output amplifiers like the  
AD8061 and AD8062 accept ground level input signals and  
output ground level signals. They are used as RGB signal  
amplifiers. A combination of the AD8061 (single) and the  
AD8062 (dual) amplifies the three video channels of an RGB  
system. Figure 55 shows a circuit that performs this function.  
Some video signals with sync are derived from single-supply  
devices, such as video DACs. These signals can contain sync,  
but the whole waveform is positive, and the black level is not  
at ground but at some positive voltage.  
Rev. D | Page 17 of 20  
 
 
 
 
AD8061/AD8062/AD8063  
The SELECT signal and the output waveforms for this circuit  
are shown in Figure 57. For synchronization clarity, two differ-  
ent frequency synthesizers, whose time bases are locked to each  
other, generate the signals.  
MULTIPLEXER  
The AD8063 has a disable pin used to power down the ampli-  
fier to save power or to create a mux circuit. If two (or more)  
AD8063 outputs are connected together, and only one is enabled,  
then only the signal of the enabled amplifier will appear at the  
output. This configuration is used to select from various input  
signal sources. Additionally, the same input signal is applied to  
different gain stages, or differently tuned filters, to make a gain-  
step amplifier or a selectable frequency amplifier.  
2μs  
OUTPUT  
Figure 56 shows a schematic of two AD8063s used to create a  
mux that selects between two inputs. One of these is a 1 V p-p,  
3 MHz sine wave; the other is a 2 V p-p, 1 MHz sine wave.  
SELECT  
+4V  
1V  
2V  
0.1μF  
10μF  
10μF  
Figure 57. AD8063 Mux Output  
1
TIME  
BASE  
OUT  
49.9Ω  
AD8063  
1V p-p  
3MHz  
0.1μF  
1kΩ  
–4V  
+4V  
V
49.9Ω  
OUT  
1kΩ  
49.9Ω  
0.1μF  
10μF  
10μF  
1
49.9Ω  
AD8063  
4V  
2V p-p  
1MHz  
TIME  
BASE  
IN  
0.1μF  
1kΩ  
1kΩ  
HCO4  
SELECT  
Figure 56. Two-to-One Multiplexer Using Two AD8063s  
Rev. D | Page 18 of 20  
 
 
 
AD8061/AD8062/AD8063  
OUTLINE DIMENSIONS  
2.90 BSC  
5.00 (0.1968)  
4.80 (0.1890)  
5
4
3
2.80 BSC  
1.60 BSC  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
2
4.00 (0.1574)  
3.80 (0.1497)  
PIN 1  
0.95 BSC  
1.90  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
1.30  
1.15  
0.90  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
1.45 MAX  
8°  
0.22  
0.08  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
Figure 58. 5-Lead Small Outline Transistor Package [SOT-23]  
Figure 59. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
(RT-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
2.90 BSC  
3.00  
BSC  
6
1
5
2
4
3
2.80 BSC  
1.60 BSC  
8
1
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
PIN 1  
1.30  
1.15  
0.90  
0.65 BSC  
1.10 MAX  
1.45 MAX  
0.15  
0.00  
0.22  
0.08  
0.80  
0.60  
0.40  
10°  
4°  
0°  
0.60  
0.45  
0.30  
8°  
0°  
0.50  
0.30  
0.38  
0.22  
COPLANARITY  
0.10  
0.23  
0.08  
0.15 MAX  
SEATING  
PLANE  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178AB  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 60. 6-Lead Small Outline Transistor Package [SOT-23]  
Figure 61. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
(RT-6)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
Rev. D | Page 19 of 20  
 
AD8061/AD8062/AD8063  
ORDERING GUIDE  
Model  
AD8061AR  
Temperature Range  
Package Description  
Package Option  
R-8  
Branding  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
–40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead SOIC  
AD8061AR-REEL  
AD8061AR-REEL7  
AD8061ARZ1  
8-Lead SOIC, 13-Inch Tape and Reel  
8-Lead SOIC, 7-Inch Tape and Reel  
8-Lead SOIC  
R-8  
R-8  
R-8  
R-8  
AD8061ARZ-REEL1  
AD8061ARZ-REEL71  
AD8061ART-R2  
AD8061ART-REEL  
AD8061ART-REEL7  
AD8061ARTZ-R21  
AD8061ARTZ-REEL1  
AD8061ARTZ-REEL71  
AD8062AR  
AD8062AR-REEL  
AD8062AR-REEL7  
AD8062ARZ1  
AD8062ARZ-RL1  
AD8062ARZ-R71  
AD8062ARM  
AD8062ARM-REEL  
AD8062ARM-REEL7  
AD8062ARMZ3  
AD8062ARMZ-RL3  
AD8062ARMZ-R73  
AD8063AR  
AD8063AR-REEL  
AD8063AR-REEL7  
AD8063ARZ1  
AD8063ARZ-REEL1  
AD8063ARZ-REEL71  
AD8063ART-R2  
AD8063ART-REEL  
AD8063ART-REEL7  
AD8063ARTZ-R21  
AD8063ARTZ-REEL1  
AD8063ARTZ-REEL71  
8-Lead SOIC, 13-Inch Tape and Reel  
8-Lead SOIC, 7-Inch Tape and Reel  
5-Lead SOT-23, 250 piece Tape and Reel  
5-Lead SOT-23, 13-Inch Tape and Reel  
5-Lead SOT-23, 7-Inch Tape and Reel  
5-Lead SOT-23, 250 piece Tape and Reel  
5-Lead SOT-23, 13-Inch Tape and Reel  
5-Lead SOT-23, 7-Inch Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13-Inch Tape and Reel  
8-Lead SOIC, 7-Inch Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13-Inch Tape and Reel  
8-Lead SOIC, 7-Inch Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13-Inch Tape and Reel  
8-Lead MSOP, 7-Inch Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13-Inch Tape and Reel  
8-Lead MSOP, 7-Inch Tape and Reel  
8-Lead SOIC  
8-Lead SOIC, 13-Inch Tape and Reel  
8-Lead SOIC, 7-Inch Tape and Reel  
8-Lead SOIC  
R-8  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
R-8  
R-8  
R-8  
R-8  
R-8  
HGA  
HGA  
HGA  
H0D2  
H0D2  
H0D2  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
HCA  
HCA  
HCA  
#HCA  
#HCA  
#HCA  
8-Lead SOIC, 13-Inch Tape and Reel  
8-Lead SOIC, 7-Inch Tape and Reel  
6-Lead SOT-23, 250 Piece Tape and Reel  
6-Lead SOT-23, 13-Inch Tape and Reel  
6-Lead SOT-23, 7-Inch Tape and Reel  
6-Lead SOT-23, 250 Piece Tape and Reel  
6-Lead SOT-23, 13-Inch Tape and Reel  
6-Lead SOT-23, 7-Inch Tape and Reel  
R-8  
RT-6  
RT-6  
RT-6  
RT-6  
RT-6  
RT-6  
HHA  
HHA  
HHA  
H0E4  
H0E4  
H0E4  
1 Z = Pb-free part.  
2 New branding after data code 0542, previously branded HGA.  
3 Z = Pb-free part, # denotes lead-free product may be top or bottom marked.  
4 New branding after data code 0542, previously branded HHA.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C01065-0-12/05(D)  
Rev. D | Page 20 of 20  
 
 
 
 
 
 
 
 

相关型号:

AD8061ART-REEL

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061ART-REEL7

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061ARTZ-R2

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061ARTZ-REEL

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061ARTZ-REEL7

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061ARZ

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061ARZ-REEL

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061ARZ-REEL7

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061_05

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061_07

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8061_15

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8062

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI