AD8039ARTZ-REEL [ADI]

Low Power, 350 MHz Voltage Feedback Amplifiers; 低功耗, 350 MHz电压反馈放大器
AD8039ARTZ-REEL
型号: AD8039ARTZ-REEL
厂家: ADI    ADI
描述:

Low Power, 350 MHz Voltage Feedback Amplifiers
低功耗, 350 MHz电压反馈放大器

放大器
文件: 总17页 (文件大小:533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, 350 MHz  
Voltage Feedback Amplifiers  
AD8038/AD8039  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AD8038  
Low power: 1 mA supply current/amp  
High speed  
350 MHz, −3 dB bandwidth (G = +1)  
425 V/μs slew rate  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
DISABLE  
+V  
S
V
OUT  
–V  
NC  
S
NC = NO CONNECT  
Low cost  
Figure 1. 8-lead SOIC (R)  
Low noise  
8 nV/√Hz @ 100 kHz  
600 fA/√Hz @ 100 kHz  
Low input bias current: 750 nA maximum  
Low distortion  
−90 dB SFDR @ 1 MHz  
AD8038  
V
1
2
3
5
+V  
S
OUT  
–V  
S
+IN  
4
–IN  
−65 dB SFDR @ 5 MHz  
Figure 2. 5-Lead SC70 (KS)  
Wide supply range: 3 V to 12 V  
Small packaging: 8-lead SOT-23, 5-lead SC70, and 8-lead SOIC  
AD8039  
V
1
2
3
4
8
7
6
5
+V  
OUT1  
–IN1  
S
APPLICATIONS  
V
OUT2  
Battery-powered instrumentation  
Filters  
+IN1  
–IN2  
+IN2  
–V  
S
A/D drivers  
Level shifting  
Buffering  
NC = NO CONNECT  
Figure 3. 8-Lead SOIC (R) and 8-Lead SOT-23 (RJ)  
Photo multipliers  
GENERAL DESCRIPTION  
The AD8038 (single) and AD8039 (dual) amplifiers are high speed  
(350 MHz) voltage feedback amplifiers with an exceptionally low  
quiescent current of 1.0 mA/amplifier typical (1.5 mA maximum).  
The AD8038 single amplifier in the 8-lead SOIC package has a  
disable feature. Despite being low power and low cost, the amplifier  
provides excellent overall performance. Additionally, it offers a  
high slew rate of 425 V/μs and a low input offset voltage of 3 mV  
maximum.  
The AD8039 amplifier is available in a 8-lead SOT-23 package,  
and the single AD8038 is available in both an 8-lead SOIC and a  
5-lead SC70 package. These amplifiers are rated to work over  
the industrial temperature range of −40°C to +85°C.  
24  
G = +10  
21  
18  
15  
12  
G = +5  
The Analog Devices, Inc., proprietary XFCB process allows low  
noise operation (8 nV/√Hz and 600 fA/√Hz) at extremely low  
quiescent currents. Given a wide supply voltage range (3 V to 12 V),  
wide bandwidth, and small packaging, the AD8038 and AD8039  
amplifiers are designed to work in a variety of applications  
where power and space are at a premium.  
9
6
3
G = +2  
G = +1  
0
–3  
–6  
The AD8038 and AD8039 amplifiers have a wide input common-  
mode range of 1 V from either rail and swing to within 1 V of each  
rail on the output. These amplifiers are optimized for driving  
capacitive loads up to 15 pF. If driving larger capacitive loads, a small  
series resistor is needed to avoid excessive peaking or overshoot.  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 4. Small Signal Frequency Response for Various Gains,  
OUT = 500 mV p-p, VS = 5 V  
V
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.  
 
IMPORTANT LINKS for the AD8038_8039*  
Last content update 08/19/2013 03:00 am  
DOCUMENTATION  
PARAMETRIC SELECTION TABLES  
Find Similar Products By Operating Parameters  
High Speed Amplifiers Selection Table  
AN-649: Using the Analog Devices Active Filter Design Tool  
AN-581: Biasing and Decoupling Op Amps in Single Supply  
Applications  
AN-402: Replacing Output Clamping Op Amps with Input Clamping  
Amps  
AN-417: Fast Rail-to-Rail Operational Amplifiers Ease Design  
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE  
dBm/dBu/dBv Calculator  
Constraints in Low Voltage High Speed Systems  
MT-060: Choosing Between Voltage Feedback and Current Feedback  
Op Amps  
Analog Filter Wizard 2.0  
MT-059: Compensating for the Effects of Input Capacitance on VFB  
Power Dissipation vs Die Temp  
ADIsimOpAmp™  
and CFB Op Amps Used in Current-to-Voltage Converters  
MT-058: Effects of Feedback Capacitance on VFB and CFB Op Amps  
MT-056: High Speed Voltage Feedback Op Amps  
OpAmp Stability  
AD8038/AD8039 SPICE Macro-Model  
MT-053: Op Amp Distortion: HD, THD, THD + N, IMD, SFDR, MTPR  
MT-052: Op Amp Noise Figure: Don’t Be Mislead  
MT-050: Op Amp Total Output Noise Calculations for Second-Order  
System  
DESIGN COLLABORATION COMMUNITY  
MT-049: Op Amp Total Output Noise Calculations for Single-Pole  
System  
MT-048: Op Amp Noise Relationships: 1/f Noise, RMS Noise, and  
Equivalent Noise Bandwidth  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
MT-047: Op Amp No  
Follow us on Twitter: www.twitter.com/ADI_News  
MT-033: Voltage Feedback Op Amp Gain and Bandwidth  
MT-032: Ideal Voltage Feedback (VFB) Op Amp  
A Stress-Free Method for Choosing High-Speed Op Amps  
FOR THE AD8038  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
UG-112: Universal Evaluation Board for Single, High Speed Op Amps  
Offered in SC-70 Packages  
UG-101: Evaluation Board User Guide  
FOR THE AD8039  
Telephone our Customer Interaction Centers toll free:  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
AD8039-EP: Low Power, 350 MHz Voltage Feedback Amplifier  
AD8039-DSCC: Microcircuit, Linear, Low Power, 350 MHz Voltage  
Feedback Amplifier, Monolithic Silicon Military Data sheet  
India:  
1800-419-0108  
8-800-555-45-90  
Russia:  
AN-348: Avoiding Passive-Component Pitfalls  
AN-356: User’s Guide to Applying and Measuring Operational  
Amplifier Specifications  
Quality and Reliability  
Lead(Pb)-Free Data  
UG-019: Universal Evaluation Board for Dual, High Speed Op Amps  
Offered in 8-Lead SOT-23 Packages  
SAMPLE & BUY  
AD8038  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
AD8039  
View the Evaluation Boards and Kits page for the AD8038  
View Price & Packaging  
View the Evaluation Boards and Kits page for the AD8039  
Symbols and Footprints for the AD8038  
Request Evaluation Board  
Request Samples Check Inventory & Purchase  
Symbols and Footprints for the AD8039  
Find Local Distributors  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD8038/AD8039  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Disable ......................................................................................... 13  
Power Supply Bypassing............................................................ 13  
Grounding................................................................................... 13  
Input Capacitance ...................................................................... 13  
Output Capacitance ................................................................... 13  
Input-to-Output Coupling........................................................ 13  
Applications Information.............................................................. 14  
Low Power ADC Driver ............................................................ 14  
Low Power Active Video Filter................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Maximum Power Dissipation ..................................................... 5  
Output Short Circuit.................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Layout, Grounding, and Bypassing Considerations .................. 13  
REVISION HISTORY  
8/09—Rev. F to Rev. G  
5/02—Rev. A to Rev. B  
Changes to Applications Section and General Description  
Section................................................................................................ 1  
Changes to Disable Section and Grounding Section................. 13  
Changes to Low Power ADC Driver Section and Low Power  
Active Video Filter Section............................................................ 14  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 16  
Add Part Number AD8038 ...............................................Universal  
Changes to Product Title..................................................................1  
Changes to Features ..........................................................................1  
Changes to Product Description .....................................................1  
Changes to Connection Diagram....................................................1  
Update to Specifications ...................................................................2  
Update to Maximum Power Dissipation........................................4  
Update to Output Short Circuit.......................................................4  
Update to Ordering Guide ...............................................................4  
Change to Figure 2 ............................................................................4  
Change to TPC 2 ...............................................................................5  
Change to TPC 18 .............................................................................6  
Change to TPC 27 .............................................................................7  
Change to TPC 29 .............................................................................8  
Change to TPC 30 .............................................................................8  
Change to TPC 31 .............................................................................8  
Added TPC 36....................................................................................8  
Added TPC 37....................................................................................9  
Edits to Low Power Active Video Filter....................................... 10  
Change to Figure 4 ......................................................................... 10  
8/04—Rev. E to Rev. F  
Changes to Figure 4........................................................................ 10  
8/03—Rev. D to Rev. E  
Change to TPC 34............................................................................. 8  
7/03—Rev. C to Rev. D  
Changes to Ordering Guide ............................................................ 4  
Updated TPC 35 Caption ................................................................ 8  
6/03—Rev. B to Rev. C  
Updated Connection Diagrams...................................................... 1  
Updated Ordering Guide................................................................. 4  
Updated Outline Dimensions....................................................... 11  
4/02—Rev. 0 to Rev. A  
Changes to Features ..........................................................................1  
Update Specifications................................................................... 2, 3  
Edits to TPC 19..................................................................................7  
Rev. G | Page 2 of 16  
 
AD8038/AD8039  
SPECIFICATIONS  
TA = 25°C, VS = 5 V, RL = 2 kΩ, Gain = +1, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.5 V p-p  
G = +2, VO = 0.5 V p-p  
G = +1, VO = 2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, VO = 2 V step, RL = 2 kΩ  
G = +2, 1 V overdrive  
G = +2, VO = 2 V step  
300  
350  
175  
100  
45  
425  
50  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Overdrive Recovery Time  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
SFDR  
400  
18  
ns  
Second Harmonic  
Third Harmonic  
Second Harmonic  
Third Harmonic  
Crosstalk, Output-to-Output (AD8039)  
Input Voltage Noise  
Input Current Noise  
fC = 1 MHz, VO = 2 V p-p, RL = 2 kΩ  
fC = 1 MHz, VO = 2 V p-p, RL = 2 kΩ  
fC = 5 MHz, VO = 2 V p-p, RL = 2 kΩ  
fC = 5 MHz, VO = 2 V p-p, RL = 2 kΩ  
f = 5 MHz, G = +2  
−90  
−92  
−65  
−70  
−70  
8
dBc  
dBc  
dBc  
dBc  
dB  
nV/√Hz  
fA/√Hz  
f = 100 kHz  
f = 100 kHz  
600  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Open-Loop Gain  
0.5  
4.5  
400  
3
25  
70  
3
mV  
μV/°C  
nA  
nA/°C  
nA  
dB  
750  
VO = 2.5 V  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
DC Output Voltage Swing  
Capacitive Load Drive  
POWER SUPPLY  
10  
2
4
MΩ  
pF  
V
RL = 1 kΩ  
VCM = 2.5 V  
61  
67  
dB  
RL = 2 kΩ, saturated output  
30% overshoot, G = +2  
4
20  
V
pF  
Operating Range  
3.0  
12  
V
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
1.0  
−77  
−70  
1.5  
mA  
dB  
dB  
−Supply  
+Supply  
−71  
−64  
POWER-DOWN DISABLE1  
Turn-On Time  
Turn-Off Time  
Disable Voltage—Part is Off  
Disable Voltage—Part is On  
Disabled Quiescent Current  
Disabled In/Out Isolation  
180  
700  
+VS − 4.5  
+VS − 2.5  
0.2  
ns  
ns  
V
V
mA  
dB  
f = 1 MHz  
−60  
1 Only available in AD8038 8-lead SOIC package.  
Rev. G | Page 3 of 16  
 
AD8038/AD8039  
TA = 25°C, VS = 5 V, RL = 2 kΩ to VS/2, Gain = +1, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, VO = 2 V p-p  
G = +2, VO = 0.2 V p-p  
G = +1, VO = 2 V step, RL = 2 kΩ  
G = +2, 1 V overdrive  
G = +2, VO = 2 V step  
275  
300  
150  
30  
45  
365  
50  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Overdrive Recovery Time  
Settling Time to 0.1%  
NOISE/HARMONIC PERFORMANCE  
SFDR  
340  
18  
ns  
Second Harmonic  
Third Harmonic  
Second Harmonic  
Third Harmonic  
Crosstalk, Output-to-Output  
Input Voltage Noise  
Input Current Noise  
fC = 1 MHz, VO = 2 V p-p, RL = 2 kΩ  
fC = 1 MHz, VO = 2 V p-p, RL = 2 kΩ  
fC = 5 MHz, VO = 2 V p-p, RL = 2 kΩ  
fC = 5 MHz, VO = 2 V p-p, RL = 2 kΩ  
f = 5 MHz, G = +2  
−82  
−79  
−60  
−67  
−70  
8
dBc  
dBc  
dBc  
dBc  
dB  
nV/√Hz  
fA/√Hz  
f = 100 kHz  
f = 100 kHz  
600  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
0.8  
3
400  
3
30  
70  
3
mV  
ꢀV/°C  
nA  
nA/°C  
nA  
dB  
750  
Open-Loop Gain  
VO = 2.5 V  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
DC Output Voltage Swing  
Capacitive Load Drive  
POWER SUPPLY  
10  
2
1.0 − 4.0  
65  
MΩ  
pF  
V
RL = 1 kΩ  
VCM = 1 V  
59  
dB  
RL = 2 kΩ, saturated output  
30% overshoot  
0.9 − 4.1  
20  
V
pF  
Operating Range  
3
12  
V
Quiescent Current per Amplifier  
Power Supply Rejection Ratio  
POWER-DOWN DISABLE1  
Turn-On Time  
0.9  
−71  
1.5  
mA  
dB  
−65  
210  
700  
+VS − 4.5  
+VS − 2.5  
0.2  
ns  
ns  
V
V
mA  
dB  
Turn-Off Time  
Disable Voltage—Part is Off  
Disable Voltage—Part is On  
Disabled Quiescent Current  
Disabled In/Out Isolation  
f = 1 MHz  
−60  
1 Only available in AD8038 8-lead SOIC package.  
Rev. G | Page 4 of 16  
 
AD8038/AD8039  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
2.0  
1.5  
1.0  
0.5  
0
Parameter  
Rating  
Supply Voltage  
12.6 V  
SOIC-8  
SOT-23-8  
SC70-5  
Power Dissipation  
See Figure 5  
VS  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
4 V  
−65°C to +125°C  
−40°C to +85°C  
300°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
–55  
–25  
5
35  
65  
95  
125  
AMBIENT TEMPERATURE (°C)  
Figure 5. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
RMS output voltages should be considered. If RL is referenced to  
VS−, as in single-supply operation, then the total drive power is  
VS × IOUT. If the rms signal levels are indeterminate, consider the  
worst case, when VOUT = VS /4 for RL to midsupply  
MAXIMUM POWER DISSIPATION  
PD = (VS × IS) + (VS/4)2/RL  
The maximum safe power dissipation in the AD8038/AD8039  
package is limited by the associated rise in junction temperature  
(TJ) on the die. The plastic encapsulating the die locally reaches  
the junction temperature. At approximately 150°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit may change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the AD8038/AD8039.  
Exceeding a junction temperature of 175°C for an extended  
time can result in changes in the silicon devices, potentially  
causing failure.  
In single-supply operation with RL referenced to VS−, worst case  
is VOUT = VS /2.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
from metal traces, throughholes, ground, and power planes reduce  
the θJA. Care must be taken to minimize parasitic capacitances at  
the input leads of high speed op amps as discussed in the  
Layout, Grounding, and Bypassing Considerations section.  
Figure 5 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 8-lead SOIC  
(125°C/W), 5-lead SC70 (210°C/W), and 8-lead SOT-23  
(160°C/W) packages on a JEDEC standard 4-layer board.  
The still-air thermal properties of the package and PCB (θJA),  
ambient temperature (TA), and total power dissipated in the  
package (PD) determine the junction temperature of the die.  
The junction temperature can be calculated as  
θ
JA values are approximations.  
OUTPUT SHORT CIRCUIT  
TJ = TA + (PD × θJA)  
Shorting the output to ground or drawing excessive current  
from the AD8038/AD8039 will likely cause a catastrophic failure.  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent power  
is the voltage between the supply pins (VS) multiplied by the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, then the total drive power is VS/2 × IOUT, some of which  
is dissipated in the package and some in the load (VOUT × IOUT).  
The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
ESD CAUTION  
PD = quiescent power + (total drive power load power)  
PD = [VS × IS] + [(VS/2) × (VOUT/RL)] − [VOUT2/RL]  
Rev. G | Page 5 of 16  
 
 
AD8038/AD8039  
TYPICAL PERFORMANCE CHARACTERISTICS  
Default Conditions: 5 V, CL = 5 pF, G = +2, RG = RF = 1 kΩ, RL = 2 kΩ, VO = 2 V p-p, Frequency = 1 MHz, TA = 25°C.  
24  
21  
18  
15  
12  
9
7
6
5
4
3
2
1
0
G = +10  
G = +5  
R
= 2k  
L
R
= 500Ω  
L
G = +2  
G = +1  
6
R
= 1kΩ  
3
L
0
–3  
–6  
0.1  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response for Various Gains,  
VOUT = 500 mV p-p  
Figure 9. Small Signal Frequency Response for Various RL,  
VS = 5 V, VOUT = 500 mV p-p  
7
8
7
6
5
4
3
2
1
0
V
= ±1.5V  
S
R
= 2k  
L
6
5
4
3
2
1
0
V
= ±2.5V  
S
V
= ±5V  
S
R = 500Ω  
L
R
= 1kΩ  
L
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 7. Small Signal Frequency Response for Various Supplies,  
VOUT = 500 mV p-p  
Figure 10. Large Signal Frequency Response for Various RL,  
VOUT = 3 V p-p, VS = 5 V  
7
6
8
R
= 2kΩ  
L
7
6
5
4
3
2
1
0
R
= 2kΩ  
L
5
4
3
2
1
0
R
= 500Ω  
L
R
= 500Ω  
L
R
= 1kΩ  
L
R
= 1kΩ  
L
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 8. Small Signal Frequency Response for Various RL,  
VS = 5 V, VOUT = 500 mV p-p  
Figure 11. Large Signal Frequency Response for Various RL,  
OUT = 4 V p-p, VS = 5 V  
V
Rev. G | Page 6 of 16  
 
AD8038/AD8039  
5
4
80  
70  
60  
50  
40  
30  
20  
10  
0
180  
135  
90  
C
= 15pF  
= 10pF  
L
3
C
L
2
PHASE  
1
0
GAIN  
45  
–1  
–2  
–3  
–4  
–5  
C
= 5pF  
L
0
–10  
–20  
–45  
1000  
0.01  
0.1  
1
10  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Open-Loop Gain and Phase, VS = 5 V  
Figure 12. Small Signal Frequency Response for Various CL,  
VOUT = 500 mV p-p, VS = 5 V, G = +1  
9
6
7
5
C
= 15pF  
L
–40°C  
+25°C  
3
C
= 10pF  
L
3
1
+85°C  
–1  
–3  
–5  
C
= 5pF  
L
0
–3  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Frequency Response vs. Temperature,  
Gain = +2, VS = 5 V, VOUT = 2 V p-p  
Figure 13. Small Signal Frequency Response for Various CL,  
VOUT = 500 mV p-p, VS = 5 V, G = +1  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
2
R
= 500HD2  
V
= 200mV  
L
OUT  
1
0
V
= 1V  
OUT  
R
= 500HD3  
L
–1  
–2  
–3  
–4  
–5  
–6  
V
= 500mV  
= 2V  
OUT  
R
= 2kHD3  
L
R
= 2kHD2  
L
V
OUT  
1
2
3
4
5
6
7
8
9
10  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
Figure 17. Harmonic Distortion vs. Frequency for Various Loads,  
VS = 5 V, VOUT = 2 V p-p, G = +2  
Figure 14. Frequency Response for Various Output Voltage Levels  
Rev. G | Page 7 of 16  
 
 
AD8038/AD8039  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–45  
–50  
10MHz HD2  
R
= 500HD2  
L
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
5MHz HD2  
5MHz HD3  
R
= 500HD3  
10MHz HD3  
L
R
= 2kHD3  
1MHz HD3  
L
R
3
= 2kHD2  
1MHz HD2  
L
1
2
4
5
6
7
8
9
10  
1
2
3
4
FREQUENCY (MHz)  
AMPLITUDE (V p-p)  
Figure 18. Harmonic Distortion vs. Frequency for Various Loads,  
VS = 5 V, VOUT = 2 V p-p, G = +2  
Figure 21. Harmonic Distortion vs. VOUT Amplitude for Various Frequencies,  
VS = 5 V, G = +2  
–45  
–50  
10MHz HD2  
G = +1 HD2  
–60  
–55  
10MHz HD3  
G = +2 HD2  
5MHz HD2  
–65  
–70  
5MHz HD3  
G = +2 HD3  
–75  
–80  
1MHz HD3  
G = +1 HD3  
1MHz HD2  
–85  
–90  
–100  
–95  
1.0  
1
2
3
4
5
6
7
8
9
10  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (MHz)  
AMPLITUDE (V p-p)  
Figure 19. Harmonic Distortion vs. Frequency for Various Gains,  
VS = 5 V, VOUT = 2 V p-p  
Figure 22. Harmonic Distortion vs. Amplitude for Various Frequencies,  
VS = 5 V, G = +2  
1000  
100  
10  
–50  
G = +1 HD2  
–60  
G = +2 HD2  
–70  
G = +2 HD3  
–80  
G = +1 HD3  
–90  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–100  
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
)
Hz  
Y (M  
ENC  
QU  
FRE  
Figure 23. Input Voltage Noise vs. Frequency  
Figure 20. Harmonic Distortion vs. Frequency for Various Gains,  
VS = 5 V, VOUT = 2 V p-p  
Rev. G | Page 8 of 16  
AD8038/AD8039  
100k  
10k  
1k  
C
R
= 25pF WITH  
SNUB  
L
= 19.6  
C
= 5pF  
L
C
= 10pF  
L
50mV/DIV  
5ns/DIV  
100  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 27. Small Signal Transient Response for Various CL, VS = 5 V  
Figure 24. Input Current Noise vs. Frequency  
R
= 500  
C
R
= 25pF WITH  
SNUB  
L
R
= 2kΩ  
L
L
= 19.6Ω  
C
= 5pF  
L
C
= 10pF  
L
50mV/DIV  
5ns/DIV  
50mV/DIV  
5ns/DIV  
Figure 25. Small Signal Transient Response for Various RL, VS = 5 V  
Figure 28. Small Signal Transient Response for Various CL, VS = 5 V  
R = 2k  
L
R
= 500Ω  
L
R
= 500Ω  
L
R
= 2kΩ  
L
2.5V  
50mV/DIV  
5ns/DIV  
500mV/DIV  
5ns/DIV  
Figure 26. Small Signal Transient Response for Various RL, VS = 5 V  
Figure 29. Large Signal Transient Response for Various RL, VS = 5 V  
Rev. G | Page 9 of 16  
 
 
AD8038/AD8039  
IN  
R
= 2kΩ  
L
R
= 500Ω  
L
OUT  
1V/DIV  
5ns/DIV  
2V/DIV  
50ns/DIV  
Figure 33. Input Overdrive Recovery, Gain = +1  
Figure 30. Large Signal Transient Response for Various RL, VS = 5 V  
C
= 25pF  
L
IN  
OUT  
C
= 5pF  
L
2.5V  
INPUT 1V/DIV  
OUTPUT 2V/DIV  
500mV/DIV  
5ns/DIV  
50ns/DIV  
Figure 31. Large Signal Transient Response for Various CL, VS = 5 V  
Figure 34. Output Overdrive Recovery, Gain = +2  
C
= 10pF  
V = ±5V  
S
G = +2  
2mV/DIV  
L
V
= 2V p-p  
OUT  
C
= 5pF  
L
ERROR  
VOLTAGE  
+0.1%  
0
t = 0  
–0.1%  
V
IN  
500mV/DIV  
5ns/DIV  
0.5V/DIV  
5ns/DIV  
Figure 35. 0.1% Settling Time VOUT = 2 V p-p  
Figure 32. Large Signal Transient Response for Various CL, VS = 5 V  
Rev. G | Page 10 of 16  
AD8038/AD8039  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–PSRR  
SIDE B  
+PSRR  
SIDE A  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 36. AD8039 Crosstalk, VIN = 1 V p-p, Gain = +1  
Figure 39. PSRR vs. Frequency  
9
8
7
6
5
4
3
2
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
= ±5V  
S
V
= +5V  
V = ±5V  
S
S
V
= +5V  
S
0
100  
200  
300  
()  
400  
500  
1
10  
100  
1000  
R
LOAD  
FREQUENCY (MHz)  
Figure 40. Output Swing vs. Load Resistance  
Figure 37. CMRR vs. Frequency, VIN = 1 V p-p  
1.25  
1.00  
0.75  
0.50  
0.25  
0
1000  
100  
10  
1
V
= ±5V  
S
V
= +5V  
S
0.1  
0.01  
0
2
4
6
8
10  
12  
0.1  
1
10  
100  
1000  
SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
Figure 41. AD8038 Supply Current vs. Supply Voltage  
Figure 38. Output Impedance vs. Frequency  
Rev. G | Page 11 of 16  
AD8038/AD8039  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 42. AD8038 Input-Output Isolation (G = +2, RL = 2 kΩ, VS = 5 V)  
Rev. G | Page 12 of 16  
 
AD8038/AD8039  
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS  
DISABLE  
INPUT CAPACITANCE  
The AD8038 in the 8-lead SOIC package provides a disable  
feature. This feature disables the input from the output (see  
Figure 42 for input-output isolation) and reduces the quiescent  
Along with bypassing and ground, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and ground. A  
few picofarads of capacitance reduces the input impedance at  
high frequencies, in turn increasing the gain of the amplifiers,  
causing peaking of the frequency response, or even oscillations  
if severe enough. It is recommended that the external passive  
components that are connected to the input pins be placed as  
close as possible to the inputs to avoid parasitic capacitance.  
The ground and power planes must be kept at a distance of at  
least 0.05 mm from the input pins on all layers of the board.  
DISABLE  
current from typically 1 mA to 0.2 mA. When the  
node is pulled below 4.5 V from the positive supply rail, the part  
DISABLE  
becomes disabled. To enable the part, the  
to be pulled to greater than (VS – 2.5).  
node needs  
POWER SUPPLY BYPASSING  
Power supply pins are actually inputs, and care must be taken  
so that a noise-free stable dc voltage is applied. The purpose of  
bypass capacitors is to create low impedances from the supply  
to ground at all frequencies, thereby shunting or filtering a  
majority of the noise.  
OUTPUT CAPACITANCE  
To a lesser extent, parasitic capacitances on the output can cause  
peaking of the frequency response. Two methods to minimize  
this effect include the following:  
Decoupling schemes are designed to minimize the bypassing  
impedance at all frequencies with a parallel combination of  
capacitors. The 0.01 μF or 0.001 ꢀF (X7R or NPO) chip capacitors  
are critical and should be placed as close as possible to the  
amplifier package. Larger chip capacitors, such as 0.1 ꢀF  
capacitors, can be shared among a few closely spaced active  
components in the same signal path. A 10 ꢀF tantalum capacitor  
is less critical for high frequency bypassing and, in most cases,  
only one per board is needed at the supply inputs.  
Put a small value resistor in series with the output to isolate  
the load capacitor from the output stage of the amplifier, see  
Figure 12, Figure 13, Figure 27, and Figure 28.  
Increase the phase margin with higher noise gains or add  
a pole with a parallel resistor and capacitor from −IN to  
the output.  
INPUT-TO-OUTPUT COUPLING  
The input and output signal traces should not be parallel to  
minimize capacitive coupling between the inputs and outputs,  
avoiding any positive feedback.  
GROUNDING  
A ground plane layer is important in densely packed PC boards  
to spread the current minimizing parasitic inductances. However,  
an understanding of where the current flows in a circuit is critical  
to implementing effective high speed circuit design. The length  
of the current path is directly proportional to the magnitude of  
parasitic inductances and, therefore, the high frequency impedance  
of the path. High speed currents in an inductive ground return  
create an unwanted voltage noise.  
The length of the high frequency bypass capacitor leads is most  
critical. A parasitic inductance in the bypass grounding works  
against the low impedance created by the bypass capacitor. Because  
load currents flow from the supplies as well, the ground for the  
load impedance should be at the same physical location as the  
bypass capacitor grounds. For the larger value capacitors, which  
are intended to be effective at lower frequencies, the current  
return path distance is less critical.  
Rev. G | Page 13 of 16  
 
 
AD8038/AD8039  
APPLICATIONS INFORMATION  
LOW POWER ADC DRIVER  
LOW POWER ACTIVE VIDEO FILTER  
1k  
2.5V  
Some composite video signals derived from a digital source  
contain clock feedthrough that can limit picture quality. Active  
filters made from op amps can be used in this application, but  
they consume 25 mW to 30 mW for each channel. In power-  
sensitive applications, this can be too much, requiring the use  
of passive filters that can create impedance matching problems  
when driving any significant load.  
+5V  
0.1µF  
10µF  
3V  
0.1µF  
10µF  
8
1kΩ  
1kΩ  
1kΩ  
REF  
VINP  
3
2
50Ω  
1
V
IN  
0V  
1kΩ  
1kΩ  
AD9203  
AD8039  
The AD8038 can be used to make an effective low-pass active  
filter that consumes one-fifth of the power consumed by an  
active filter made from an op amp. Figure 44 shows a circuit  
that uses a AD8038 with 2.5 V supplies to create a three-pole  
Sallen-Key filter. This circuit uses a single RC pole in front of a  
standard 2-pole active section.  
6
5
50Ω  
7
VINN  
4
1kΩ  
10µF  
0.1µF  
–5V  
1kΩ  
R
1  
F
680pF  
Figure 43. Schematic to Drive AD9203 with the AD8039  
+2.5V  
The AD9203 is a low power (125 mW on a 5 V supply), 40 MSPS  
10-bit converter. As such, the low power, high performance  
AD8039 is an appropriate amplifier choice to drive it.  
10µF  
0.1µF  
R1  
R2  
R3  
V
AD8038  
OUT  
200Ω  
49949.9Ω  
R5  
75Ω  
V
IN  
In low supply voltage applications, differential analog inputs  
are needed to increase the dynamic range of the ADC inputs.  
Differential driving can also reduce second and other even-order  
distortion products. The AD8039 can be used to make a dc-  
coupled, single-ended-to-differential driver for driving these  
ADCs. Figure 43 is a schematic of such a circuit for driving the  
AD9203, 10-bit, 40 MSPS ADC.  
R4  
49.9Ω  
C1  
100pF  
C3  
33pF  
10µF  
0.1µF  
–2.5V  
Figure 44. Low-Pass Filter for Video  
Figure 45 shows the frequency response of this filter. The  
response is down 3 dB at 6 MHz; therefore, it passes the video  
band with little attenuation. The rejection at 27 MHz is 45 dB,  
which provides more than a factor of 100 in suppression of the  
clock components at this frequency.  
The AD9203 works best when the common-mode voltage at the  
input is at the midsupply or 2.5 V. The output stage design of  
the AD8039 makes it ideal for driving these types of ADCs.  
10  
In this circuit, one of the op amps is configured in the inverting  
mode, and the other is in the noninverting mode. However, to  
provide better bandwidth matching, each op amp is configured  
for a noise gain of +2. The inverting op amp is configured for a  
gain of −1, and the noninverting op amp is configured for a gain  
of +2. Each has a very similar ac response. The input signal to  
the noninverting op amp is divided by 2 to normalize its voltage  
level and make it equal to the inverting output.  
0
–10  
–20  
–30  
–40  
–50  
–60  
The outputs of the op amps are centered at 2.5 V, which is the  
midsupply level of the ADC. This is accomplished by first taking  
the 2.5 V reference output of the ADC and dividing it by 2 with  
a pair of 1 kꢁ resistors. The resulting 1.25 V is applied to the  
positive input of each op amp. This voltage is then multiplied by  
the gain of the op amps to provide a 2.5 V level at each output.  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 45. Video Filter Response  
Rev. G | Page 14 of 16  
 
 
 
 
AD8038/AD8039  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 46. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
2.20  
2.00  
1.80  
1.35  
1.25  
1.15  
2.40  
2.10  
1.80  
5
1
4
3
2
PIN 1  
1.00  
0.90  
0.70  
0.65 BSC  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.30  
0.15  
0.22  
0.08  
0.10 M  
AX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AA  
Figure 47. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
Rev. G | Page 15 of 16  
 
AD8038/AD8039  
3.00  
2.90  
2.80  
8
1
7
6
3
5
4
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
PIN 1  
INDICATOR  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
0.22 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.60  
0.45  
0.30  
0.15 MAX  
0.05 MIN  
8°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.38 MAX  
0.22 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-BA  
Figure 48. 8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range Package Description  
Package Option Branding  
AD8038AR  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Standard Small Outline Package [SOIC_N]  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD8038AR-REEL  
AD8038AR-REEL7  
AD8038ARZ1  
AD8038ARZ-REEL1  
AD8038ARZ-REEL71  
AD8038AKSZ-R21  
AD8038AKSZ-REEL1  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
5-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-5  
5-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-5  
5-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-5  
H1C  
H1C  
H1C  
AD8038AKSZ-REEL71 −40°C to +85°C  
AD8039AR  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Small Outline Transistor Package [SOT-23]  
8-Lead Small Outline Transistor Package [SOT-23]  
8-Lead Small Outline Transistor Package [SOT-23]  
8-Lead Small Outline Transistor Package [SOT-23]  
8-Lead Small Outline Transistor Package [SOT-23]  
8-Lead Small Outline Transistor Package [SOT-23]  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
AD8039AR-REEL  
AD8039AR-REEL7  
AD8039ARZ1  
AD8039ARZ-REEL1  
AD8039ARZ-REEL71  
AD8039ART-R2  
AD8039ART-REEL  
AD8039ART-REEL7  
AD8039ARTZ-R21  
AD8039ARTZ-REEL1  
HYA  
HYA  
HYA  
HYA#  
HYA#  
HYA#  
AD8039ARTZ-REEL71 −40°C to +85°C  
1 Z = RoHS Compliant Part, # denotes RoHS compliant part may be top or bottom marked..  
©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02951-0-8/09(G)  
Rev. G | Page 16 of 16  
 
 
 

相关型号:

AD8039ARTZ-REEL7

Low Power, 350 MHz Voltage Feedback Amplifiers
ADI

AD8039ARZ

Low Power, 350 MHz Voltage Feedback Amplifiers
ADI

AD8039ARZ-REEL

Low Power, 350 MHz Voltage Feedback Amplifiers
ADI

AD8039ARZ-REEL7

Low Power, 350 MHz Voltage Feedback Amplifiers
ADI

AD8039ARZ1

Low Power, 350 MHz Voltage Feedback Amplifiers
ADI

AD8039_15

Low Power, 350 MHz Voltage Feedback Amplifiers
ADI

AD8040

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI

AD8040AR

Low Power, High Speed Rail-to-Rail Input/Output Amplifier
ADI