AD7943BRZ [ADI]

3.3 V/5 V Multiplyingnull; 3.3 V / 5 V Multiplyingnull
AD7943BRZ
型号: AD7943BRZ
厂家: ADI    ADI
描述:

3.3 V/5 V Multiplyingnull
3.3 V / 5 V Multiplyingnull

文件: 总16页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+3.3 V/+5 V Multiplying  
12-Bit DACs  
a
AD7943/AD7945/AD7948  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
12-Bit Multiplying DACs  
V
R
FB  
DD  
Guaranteed Specifications with +3.3 V/+5 V Supply  
0.5 LSBs INL and DNL  
Low Power: 5 W typ  
AD7943  
I
I
OUT1  
12-BIT DAC  
V
REF  
OUT2  
Fast Interface  
CLR  
LD1  
LD2  
AGND  
SRO  
40 ns Strobe Pulsewidth (AD7943)  
40 ns Write Pulsewidth (AD7945, AD7948)  
Low Glitch: 60 nV-s with Amplifier Connected  
Fast Settling: 600 ns to 0.01% with AD843  
DAC REGISTER  
INPUT SHIFT REGISTER  
SRI  
APPLICATIONS  
Battery-Powered Instrumentation  
Laptop Computers  
Upgrades for All 754x Series DACs (5 V Designs)  
STB1 STB2  
STB4 DGND  
STB3  
V
R
DD  
FB  
GENERAL DESCRIPTION  
AD7945  
I
OUT1  
The AD7943, AD7945 and AD7948 are fast 12-bit multiplying  
DACs that operate from a single +5 V supply (Normal Mode)  
and a single +3.3 V to +5 V supply (Biased Mode). The  
AD7943 has a serial interface, the AD7945 has a 12-bit parallel  
interface, and the AD7948 has an 8-bit byte interface. They will  
replace the industry-standard AD7543, AD7545 and AD7548  
in many applications, and they offer superior speed and power  
consumption performance.  
12-BIT DAC  
12  
V
REF  
AGND  
CS  
WR  
INPUT LATCH  
12  
DB11–DB0  
DGND  
R
V
FB  
DD  
The AD7943 is available in 16-lead DIP, 16-lead SOP (Small  
Outline Package) and 20-lead SSOP (Shrink Small Outline  
Package).  
I
OUT1  
V
12-BIT DAC  
12  
REF  
AGND  
AD7948  
The AD7945 is available in 20-lead DIP, 20-lead SOP and 20-  
lead SSOP.  
DF/DOR  
DATA OVERRIDE LOGIC  
12  
CTRL  
The AD7948 is available in 20-lead DIP, 20-lead SOP and 20-  
lead SSOP.  
DAC REGISTER  
LDAC  
WR  
12  
CONTROL  
LOGIC  
INPUT REGISTERS  
CSLSB  
CSMSB  
12  
DATA STEERING LOGIC  
8
DB7–DB0  
DGND  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD7943/AD7945/AD7948–SPECIFICATIONS1  
(AD7943: VDD = +4.5 V to +5.5 V; VIOUT1 = VIOUT2 = AGND = 0 V; VREF = +10 V; TA = TMIN to TMAX, unless otherwise noted.  
AD7945, AD7948: VDD = +4.5 V to +5.5 V; VIOUT1 = AGND = 0 V; VREF = +10 V; TA = TMIN to TMAX, unless otherwise noted.)  
NORMAL MODE  
Parameter  
B Grades2 T Grade2, 3 Units  
Test Conditions/Comments  
ACCURACY  
Resolution  
12  
12  
Bits  
1 LSB = VREF/212 = 2.44 mV when VREF = 10 V  
Relative Accuracy  
Differential Nonlinearity  
±0.5  
±0.5  
±0.5  
±0.5  
LSB max  
LSB max  
All Grades Guaranteed Monotonic over  
Temperature  
Gain Error  
T
MIN to TMAX  
±2  
2
5
±2  
2
5
LSB max  
ppm FSR/°C typ  
ppm FSR/°C max  
Gain Temperature Coefficient4  
Output Leakage Current  
IOUT1  
@ +25°C  
TMIN to TMAX  
10  
100  
10  
100  
nA max  
nA max  
See Terminology Section  
Typically 20 nA over Temperature  
REFERENCE INPUT  
Input Resistance  
6
12  
6
12  
kmin  
kmax  
Typical Input Resistance = 9 kΩ  
DIGITAL INPUTS  
V
V
INH, Input High Voltage  
INL, Input Low Voltage  
2.4  
0.8  
±1  
10  
2.4  
0.8  
±1  
10  
V min  
V max  
µA max  
pF max  
IINH, Input Current  
CIN, Input Capacitance4  
DIGITAL OUTPUT (AD7943 SRO)  
For 1 CMOS Load  
Output Low Voltage (VOL  
Output High Voltage (VOH  
)
0.2  
VDD – 0.2  
0.2  
VDD – 0.2  
V max  
V min  
)
POWER REQUIREMENTS  
V
DD Range  
4.5/5.5  
4.5/5.5  
V min/V max  
Power Supply Sensitivity4  
Gain/VDD  
DD (AD7943)  
–75  
5
–75  
5
dB typ  
µA max  
I
VINH = VDD – 0.1 V min, VINL = 0.1 V max.  
SRO Open Circuit. No STB Signal. Typically  
1 µA. Typically 100 µA with a 1 MHz STB  
Frequency. At Input Levels of 0.8 V and 2.4 V,  
IDD Is Typically 2.5 mA.  
IDD (AD7945, AD7948)  
5
5
µA max  
VINH = VDD – 0.1 V min, VINL = 0.1 V max.  
Typically 1 µA. At Input Levels of 0.8 V and  
2.4 V, IDD Is Typically 2.5 mA.  
NOTES  
1The AD7943, AD7945 and AD7948 are specified in the normal current mode configuration and in the biased current mode for single-supply applications.  
Figures 14 and 15 are examples of normal mode operation.  
2Temperature ranges as follows: B Grades: –40°C to +85°C; T Grade: –55°C to +125°C.  
3The T Grade applies to the AD7945 only.  
4Guaranteed by design.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD7943/AD7945/AD7948  
SPECIFICATIONS1  
(AD7943: VDD = +3 V to +5.5 V; VIOUT1 = VIOUT2 = AGND = 1.23 V; VREF = +0 V to 2.45 V; TA = TMIN to TMAX, unless other-  
wise noted. AD7945, AD7948: VDD = +3 V to +5.5 V; VIOUT1 = AGND = 1.23 V; VREF = +0 V to 2.45 V; TA = TMIN to TMAX, unless otherwise noted.)  
BIASED MODE  
Parameter  
A Grades2 Units  
Test Conditions/Comments  
ACCURACY  
Resolution  
12  
Bits  
1 LSB = (VIOUT1 – VREF)/212 = 300 µV When  
VIOUT1 = 1.23 V and VREF = 0 V  
Relative Accuracy  
Differential Nonlinearity  
±1  
±0.9  
LSB max  
LSB max  
All Grades Guaranteed Monotonic  
over Temperature  
Gain Error @ +25°C  
TMIN to TMAX  
±3  
±4  
2
LSB max  
LSB max  
ppm FSR/°C typ  
ppm FSR/°C max  
Gain Temperature Coefficient3  
5
Output Leakage Current  
IOUT1  
@ +25°C  
TMIN to TMAX  
Input Resistance  
See Terminology Section  
10  
100  
nA max  
nA max  
Typically 20 nA over Temperature  
This Varies with DAC Input Code  
@ IOUT2 Pin (AD7943)  
@ AGND Pin (AD7945, AD7948)  
6
6
kmin  
kmin  
DIGITAL INPUTS  
V
INH, Input High Voltage @ VDD = +5 V  
2.4  
V min  
V min  
V max  
V max  
µA max  
pF max  
VINH, Input High Voltage @ VDD = +3.3 V 2.1  
VINL, Input Low Voltage @ VDD = +5 V  
VINL, Input Low Voltage @ VDD = +3.3 V  
IINH, Input Current  
0.8  
0.6  
±1  
10  
CIN, Input Capacitance3  
DIGITAL OUTPUT (SRO)  
For 1 CMOS Load  
Output Low Voltage (VOL  
)
0.2  
V max  
Output High Voltage (VOH  
)
VDD – 0.2 V min  
POWER REQUIREMENTS  
VDD Range  
3.0/5.5  
V min/V max  
Power Supply Sensitivity3  
Gain/VDD  
–75  
5
dB typ  
µA max  
IDD (AD7943)  
VINH = VDD – 0.1 V min, VINL = 0.1 V max.  
SRO Open Circuit; No STB Signal; Typically  
1 µA. Typically 100 µA with 1 MHz STB  
Frequency.  
VINH = VDD – 0.1 V min, VINL = 0.1 V max.  
Typically 1 µA.  
IDD (AD7945, AD7948)  
5
µA max  
NOTES  
1These specifications apply with the devices biased up at 1.23 V for single supply applications. The model numbering reflects this by means of a “–B” suffix  
(for example: AD7943AN-B). Figure 16 is an example of Biased Mode Operation.  
2Temperature ranges as follows: A Versions: –40°C to +85°C.  
3Guaranteed by design.  
Specifications subject to change without notice.  
REV. B  
–3–  
AD7943/AD7945/AD7948  
AC PERFORMANCE CHARACTERISTICS  
(AD7943: VDD = +4.5 V to +5.5 V; VIOUT1 = VIOUT2 = AGND = 0 V. AD7945, AD7948: VDD = +4.5 V to +5.5 V; VIOUT1 =AGND =  
0 V. VREF = 6 V rms, 1 kHz sine wave; TA = TMIN to TMAX; DAC output op amp is AD843; unless otherwise noted.) These characteristics are in-  
cluded for Design Guidance and are not subject to test.  
NORMAL MODE  
Parameter  
B Grades  
T Grade  
Units  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
600  
700  
ns typ  
To 0.01% of Full-Scale Range. VREF =  
+10 V; DAC Latch Alternately Loaded with  
All 0s and All 1s  
Digital to Analog Glitch Impulse  
60  
60  
nV-s typ  
Measured with VREF = 0 V. DAC Latch  
Alternately Loaded with All 0s and All 1s  
DAC Latch Loaded with All 0s  
All 1s Loaded to DAC  
All 0s Loaded to DAC  
Feedthrough to the DAC Output with LD1,  
LD2 High and Alternate Loading of All 0s  
and All 1s into the Input Shift Register  
Feedthrough to the DAC Output with CS  
High and Alternate Loading of All 0s and  
All 1s to the DAC Bus  
Multiplying Feedthrough Error  
Output Capacitance  
–75  
60  
30  
5
–75  
60  
30  
5
dB max  
pF max  
pF max  
nV-s typ  
Digital Feedthrough (AD7943)  
Digital Feedthrough (AD7945, AD7948) 5  
5
nV-s typ  
Total Harmonic Distortion  
Output Noise Spectral Density  
@ 1 kHz  
–83  
35  
–83  
35  
dB typ  
nV/Hz typ All 1s Loaded to DAC. VREF = 0 V. Output  
Op Amp Is OP07  
Specifications subject to change without notice.  
AC PERFORMANCE CHARACTERISTICS  
(AD7943: VDD = +3 V to +5.5 V; VIOUT1 = VIOUT2 = AGND = 1.23 V. AD7945, AD7948: VDD = +3 V to +5.5 V; VIOUT1 = AGND =  
1.23 V. VREF = 1 kHz, 2.45 V p-p, sine wave biased at 1.23 V; DAC output op amp is AD820; TA = TMIN to TMAX; unless otherwise noted.) These  
characteristics are included for Design Guidance and are not subject to test.  
BIASED MODE  
Parameter  
A Grades  
Units  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
5
µs typ  
To 0.01% of Full-Scale Range. VREF = 0 V  
DAC Latch Alternately Loaded with All 0s and All 1s  
VREF = 1.23 V. DAC Register Alternately Loaded  
with All 0s and All 1s  
Digital to Analog Glitch Impulse  
60  
nV-s typ  
Multiplying Feedthrough Error  
Output Capacitance  
–75  
60  
30  
5
dB max  
pF max  
pF max  
nV-s typ  
DAC Latch Loaded with All 0s  
All 1s Loaded to DAC  
All 0s Loaded to DAC  
Feedthrough to the DAC Output with LD1, LD2  
High and Alternate Loading of All 0s and All 1s  
into the Input Shift Register  
Digital Feedthrough  
Digital Feedthrough (AD7945, AD7948)  
5
nV-s typ  
Feedthrough to the DAC Output with CS High  
and Alternate Loading of All 0s and All 1s to the  
DAC Bus  
Total Harmonic Distortion  
Output Noise Spectral Density  
@ 1 kHz  
–83  
25  
dB typ  
nV/Hz typ  
All 1s Loaded to DAC. VREF = 1.23 V  
Specifications subject to change without notice.  
–4–  
REV. B  
AD7943/AD7945/AD7948  
AD7943 TIMING SPECIFICATIONS1  
(TA = TMIN to TMAX, unless otherwise noted)  
Limit @  
Limit @  
Parameter  
VDD = +3 V to +3.6 V  
VDD = +4.5 V to +5.5 V  
Units  
Description  
2
tSTB  
tDS  
tDH  
tSRI  
tLD  
60  
15  
35  
55  
55  
55  
0
40  
10  
25  
35  
35  
35  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
STB Pulsewidth  
Data Setup Time  
Data Hold Time  
SRI Data Pulsewidth  
Load Pulsewidth  
CLR Pulsewidth  
Min Time Between Strobing Input Shift  
Register and Loading DAC Register  
STB Clocking Edge to SRO Data Valid Delay  
tCLR  
tASB  
3
tSV  
60  
35  
ns max  
NOTES  
1All input signals are specified with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V. tr and tf should not exceed 1 µs on any digital input.  
2STB mark/space ratio range is 60/40 to 40/60.  
3tSV is measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.8 V or 2.4 V.  
Specifications subject to change without notice.  
tSTB  
STB1,  
STB2,  
STB4  
STB3  
tDH  
tDS  
tSRI  
DB11(N)  
(MSB)  
DB10(N)  
SRI  
DB0(N)  
tLD, tCLR  
tASB  
LD1,  
LD2,  
CLR  
tSV  
DB0(N–1)  
DB10(N–1)  
SRO  
Figure 1. AD7943 Timing Diagram  
I
1.6mA  
OL  
TO OUTPUT  
PIN  
+2.1V  
C
L
50pF  
200A  
I
OH  
Figure 2. Load Circuit for Digital Output Timing Specifications  
REV. B  
–5–  
AD7943/AD7945/AD7948  
AD7945 TIMING SPECIFICATIONS1  
(TA = TMIN to TMAX, unless otherwise noted)  
Limit @  
Limit @  
Parameter  
VDD = +3 V to +3.6 V  
VDD = +4.5 V to +5.5 V  
Units  
Description  
tDS  
tDH  
tCS  
tCH  
tWR  
35  
10  
60  
0
20  
10  
40  
0
ns min  
ns min  
ns min  
ns min  
ns min  
Data Setup Time  
Data Hold Time  
Chip Select Setup Time  
Chip Select Hold Time  
Write Pulsewidth  
60  
40  
NOTES  
1All input signals are specified with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
Specifications subject to change without notice.  
tCS  
tCH  
CS  
tWR  
WR  
tDS  
tDH  
DB11–DB0  
DATA VALID  
Figure 3. AD7945 Timing Diagram  
AD7948 TIMING SPECIFICATIONS1  
(TA = TMIN to TMAX, unless otherwise noted)  
Limit @  
Limit @  
Parameter  
VDD = +3 V to +3.6 V  
VDD = +4.5 V to +5.5 V  
Units  
Description  
tDS  
tDH  
tCWS  
tCWH  
tLWS  
tLWH  
tWR  
45  
10  
0
0
0
0
60  
30  
10  
0
0
0
0
40  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Data Setup Time  
Data Hold Time  
CSMSB or CSLSB to WR Setup Time  
CSMSB or CSLSB to WR Hold Time  
LDAC to WR Setup Time  
LDAC to WR Hold Time  
Write Pulsewidth  
NOTES  
1All input signals are specified with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
Specifications subject to change without notice.  
tCWH  
tCWS  
CSMSB  
tCWH  
tCWS  
CSLSB  
tLWH  
tLWS  
LDAC  
tWR  
tWR  
WR  
tDH  
tDH  
tDS  
tDS  
DATA  
VALID  
DATA  
VALID  
DB7–DB0  
Figure 4. AD7948 Timing Diagram  
–6–  
REV. B  
AD7943/AD7945/AD7948  
SOP Package, Power Dissipation . . . . . . . . . . . . . . . . . 450 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 75°C/W  
Lead Temperature, Soldering  
ABSOLUTE MAXIMUM RATINGS1  
(TA = +25°C unless otherwise noted)  
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . .–0.3 V to +6 V  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
SSOP Package, Power Dissipation . . . . . . . . . . . . . . . . 875 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 132°C/W  
Lead Temperature, Soldering  
I
OUT1 to DGND . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
IOUT2 to DGND . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
AGND to DGND . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Digital Input Voltage to DGND . . . . . . –0.3 V to VDD + 0.3 V  
VRFB, VREF to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . ±15 V  
Input Current to Any Pin Except Supplies2 . . . . . . . . ±10 mA  
Operating Temperature Range  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
Industrial (A, B Versions) . . . . . . . . . . . . . –40°C to +85°C  
Extended (T Version) . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
DIP Package, Power Dissipation . . . . . . . . . . . . . . . . 670 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 116°C/W  
Lead Temperature, Soldering, (10 sec) . . . . . . . . . . +260°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Transient currents of up to 100 mA will not cause SCR latch-up.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7943/AD7945/AD7948 feature proprietary ESD protection circuitry, perma-  
nent damage may occur on devices subjected to high energy electrostatic discharges. Therefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
ORDERING GUIDE  
Temperature  
Range  
Linearity  
Error (LSBs)  
Nominal  
Supply Voltage  
Package  
Option1  
Model  
AD7943BN  
AD7943BR  
AD7943BRS  
AD7943AN-B  
AD7943ARS-B  
AD7945BN  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
±0.5  
±0.5  
±0.5  
±1  
+5 V  
+5 V  
+5 V  
+3.3 V to +5 V  
+3.3 V to +5 V  
+5 V  
+5 V  
+5 V  
+3.3 V to +5 V  
+3.3 V to +5 V  
+5 V  
+5 V  
+5 V  
+5 V  
+3.3 V to +5 V  
+3.3 V to +5 V  
N-16  
R-16  
RS-20  
N-16  
RS-20  
N-20  
R-20  
RS-20  
N-20  
RS-20  
Q-20  
N-20  
R-20  
±1  
±0.5  
±0.5  
±0.5  
±1  
±1  
±1  
±0.5  
±0.5  
±0.5  
±1  
AD7945BR  
AD7945BRS  
AD7945AN-B  
AD7945ARS-B  
AD7945TQ  
AD7948BN  
AD7948BR  
AD7948BRS  
AD7948AN-B  
AD7948ARS-B  
RS-20  
N-20  
RS-20  
±1  
NOTE  
1N = Plastic DIP; R = SOP (Small Outline Package); RS = SSOP (Shrink Small Outline Package); Q = Cerdip.  
REV. B  
–7–  
AD7943/AD7945/AD7948  
TERMINOLOGY  
Output Capacitance  
Relative Accuracy  
This is the capacitance from the IOUT1 pin to AGND.  
Relative Accuracy or endpoint linearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for zero error and full-scale error and is normally  
expressed in Least Significant Bits or as a percentage of full-  
scale reading.  
Output Voltage Settling Time  
This is the amount of time it takes for the output to settle to a  
specified level for a full-scale input change. For these devices, it  
is specified both with the AD843 as the output op amp in the  
normal current mode and with the AD820 in the biased current  
mode.  
Differential Nonlinearity  
Digital to Analog Glitch Impulse  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity.  
This is the amount of charge injected into the analog output  
when the inputs change state. It is specified as the area of the  
glitch in nV-s. It is measured with the reference input connected  
to AGND and the digital inputs toggled between all 1s and all  
0s. As with Settling Time, it is specified with both the AD817  
and the AD820.  
Gain Error  
Gain Error is a measure of the output error between an ideal  
DAC and the actual device output. It is measured with all 1s  
in the DAC after offset error has been adjusted out and is ex-  
pressed in Least Significant Bits. Gain error is adjustable to  
zero with an external potentiometer.  
AC Feedthrough Error  
This is the error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal, when all 0s are  
loaded in the DAC.  
Output Leakage Current  
Digital Feedthrough  
Output leakage current is current which flows in the DAC lad-  
der switches when these are turned off. For the IOUT1 terminal,  
it can be measured by loading all 0s to the DAC and measuring  
the IOUT1 current. Minimum current will flow in the IOUT2 line  
when the DAC is loaded with all 1s.  
When the device is not selected, high frequency logic activity on  
the device digital inputs is capacitively coupled through the  
device to show up as noise on the IOUT1 pin and subsequently on  
the op amp output. This noise is digital feedthrough.  
PIN CONFIGURATIONS  
DIP/SOP/SSOP  
DIP/SOP  
SSOP  
DIP/SOP/SSOP  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
1
2
20  
19  
18  
17  
16  
15  
R
V
R
V
R
V
I
I
I
R
V
I
I
OUT1  
FB  
FB  
FB  
OUT1  
OUT1  
FB  
OUT1  
I
AGND  
DGND  
DB11  
DB10  
DB9  
AGND  
DGND  
OUT2  
REF  
DD  
REF  
DD  
REF  
DD  
REF  
DD  
OUT2  
3
3
V
V
V
V
AGND  
STB1  
LD1  
AGND  
AD7943  
TOP VIEW  
(Not to Scale)  
AD7945  
TOP VIEW  
(Not to Scale)  
AD7948  
TOP VIEW  
(Not to Scale)  
AD7943  
TOP VIEW  
(Not to Scale)  
4
4
STB1  
NC  
CLR  
NC  
WR  
WR  
CS  
CSMSB  
CLR  
5
5
CSLSB  
LDAC  
DGND  
STB4  
DF/DOR  
NC  
6
CTRL  
6
SRO  
SRI  
NC  
DB0  
DB1  
DB2  
DB3  
DB4  
LD1  
14 DGND  
DB8  
7
DB7 (MSB)  
DB6  
7
14 DB0 (LSB)  
STB3  
LD2  
DB7  
8
13  
8
13  
12  
11  
DB1  
DB2  
DB3  
SRO  
SRI  
STB4  
STB2  
DB6  
9
12  
DB5  
9
STB3  
DB5  
10  
DB4  
STB2 10  
11  
10  
LD2  
NC = NO CONNECT  
–8–  
REV. B  
AD7943/AD7945/AD7948  
AD7943 PIN FUNCTION DESCRIPTIONS  
Pin Mnemonic Description  
IOUT1  
DAC current output terminal 1.  
IOUT2  
DAC current output terminal 2. This should be connected to the AGND pin.  
AGND  
This pin connects to the back gates of the current steering switches. In normal operation, it should be connected  
to the signal ground of the system. In biased single-supply operation it may be biased to some voltage between  
0 V and the 1.23 V. See Figure 11 for more details.  
STB1  
This is the Strobe 1 input. Data is clocked into the input shift register on the rising edge of this signal. STB3  
must be high. STB2, STB4 must be low.  
LD1, LD2  
SRI  
Active low inputs. When both of these are low, the DAC register is updated and the output will change to  
reflect this.  
Serial Data Input. Data on this line will be clocked into the input shift register on one of the Strobe inputs,  
when they are enabled.  
STB2  
This is the Strobe 2 input. Data is clocked into the input shift register on the rising edge of this signal.  
STB3 must be high. STB1, STB4 must be low.  
STB3  
This is the Strobe 3 input. Data is clocked into the input shift register on the falling edge of this signal. STB1,  
STB2, STB4, must be low.  
STB4  
This is the Strobe 4 input. Data is clocked into the input shift register on the rising edge of this signal. STB3  
must be high. STB1, STB2 must be low.  
DGND  
CLR  
Digital Ground.  
Asynchronous CLR input. When this input is taken low, all 0s are loaded to the DAC latch.  
VDD  
Power supply input. This is nominally +5 V for Normal Mode Operation and +3.3 V to +5 V for Biased  
Mode Operation.  
VREF  
RFB  
DAC reference input.  
DAC feedback resistor pin.  
AD7945 PIN FUNCTION DESCRIPTIONS  
Pin Mnemonic Description  
IOUT1  
DAC current output terminal 1.  
AGND  
This pin connects to the back gates of the current steering switches. The DAC IOUT2 terminal is also connected  
internally to this point.  
DGND  
DB11–DB0  
CS  
Digital Ground.  
Digital Data Inputs.  
Active Low, Chip Select Input.  
Active Low, Write Input.  
WR  
VDD  
Power supply input. This is nominally +5 V for Normal Mode Operation and +3.3 V to +5 V for Biased Mode  
Operation.  
VREF  
RFB  
DAC reference input.  
DAC feedback resistor pin.  
REV. B  
–9–  
AD7943/AD7945/AD7948  
AD7948 PIN FUNCTION DESCRIPTIONS  
Pin Mnemonic Description  
IOUT1  
AGND  
DAC current output terminal 1. Normally terminated at the virtual ground of output amplifier.  
Analog Ground Pin. This pin connects to the back gates of the current steering switches. The DAC IOUT2  
terminal is also connected internally to this point.  
DGND  
Digital Ground Pin.  
CSMSB  
Chip Select Most Significant Byte. Active Low Input. Used in combination with WR to load external data into  
the input register or in combination with LDAC and WR to load external data into both input and DAC registers.  
DF/DOR  
Data Format/Data Override. When this input is low, data in the DAC register is forced to one of two override  
codes selected by CTRL. When the override signal is removed, the DAC output returns to reflect the value in  
the DAC register. With DF/DOR high, CTRL selects either a left or right justified input data format. For normal  
operation, DF/DOR is held high. See Table I.  
Table I. Truth Table for DF/DOR CTRL  
DF/DOR  
CTRL  
Function  
0
0
1
1
0
1
0
1
DAC Register Contents Overridden by All 0s  
DAC Register Contents Overridden by All 1s  
Left-Justified Input Data Selected  
Right-Justified Input Data Selected  
CTRL  
Control Input. See DF/DOR description.  
DB7–DB0  
LDAC  
Digital Data Inputs.  
Load DAC input, active low. This signal, in combination with others, is used to load the DAC register from  
either the input register or the external data bus.  
CSLSB  
Chip Select Least Significant (LS) Byte. Active Low Input. Used in combination with WR to load external data  
into the input register or in combination with WR and LDAC to load external data into both input and DAC  
registers.  
Table II. Truth Table for AD7948 Write Operation  
WR  
CSMSB  
CSLSB  
LDAC  
Function  
0
0
0
0
0
1
1
1
0
0
1
X
0
0
1
1
1
X
1
0
1
0
0
X
Load LS Byte to Input Register  
Load LS Byte to Input Register and DAC Register  
Load MS Byte to Input Register  
Load MS Byte to Input Register and DAC Register  
Load Input Register to DAC Register  
No Data Transfer  
WR  
Write input, active low. This active low signal, in combination with others is used in loading external data into  
the AD7948 input register and in transferring data from the input register to the DAC register.  
VDD  
Power supply input. This is nominally +5 V for Normal Mode Operation and +3.3 V to +5 V for Biased Mode  
Operation.  
VREF  
RFB  
DAC reference input.  
DAC feedback resistor pin.  
–10–  
REV. B  
AD7943/AD7945/AD7948  
Typical Performance Curves  
0.5  
0.50  
0.25  
V
V
= +5V  
DD  
V
T
= +5V  
DD  
= +10V  
REF  
= +25؇C  
OP AMP = AD843  
= +25؇C  
A
0.4  
0.3  
0.2  
OP AMP = AD843  
T
A
0.00  
–0.25  
–0.50  
0.1  
0
2
4
6
8
10  
1024  
3072  
4095  
2048  
0
V
– Volts  
INPUT CODE  
REF  
Figure 5. Differential Nonlinearity Error vs.  
REF (Normal Mode)  
Figure 7. All Codes Linearity In Normal Mode (VDD = +5 V)  
V
1.0  
0.9  
6
V
= +5V  
DD  
V
T
= +3.3V  
DD  
T
= +25؇C  
A
= +25؇C  
OP AMP = AD843  
A
5
4
3
2
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
OP AMP = AD820  
1
0
0.1  
0
2
4
6
8
10  
0.2  
0.4  
0.6  
|V  
0.8  
1.0  
| – Volts  
1.2  
1.4  
V
– Volts  
– V  
REF  
REF  
BIAS  
Figure 6. Integral Nonlinearity Error vs.  
VREF (Normal Mode)  
Figure 8. Linearity Error vs. VREF (Biased Mode)  
REV. B  
–11–  
AD7943/AD7945/AD7948  
1.00  
V
V
V
= +3.3V  
DD  
= 0V  
REF  
= 1.23V  
BIAS  
5V  
200ns  
OP AMP = AD820  
= +25؇C  
0.50  
0.00  
T
A
100  
90  
V
T
= +5V  
DD  
= +25؇C  
A
V
= 0V  
REF  
OP AMP = AD711  
AD711 OUTPUT  
10  
–0.50  
–1.00  
0%  
50mV  
200ns  
0
2048  
3072  
4095  
1024  
INPUT CODE  
Figure 9. All Codes Linearity in Biased Mode  
(VDD = +3.3 V)  
Figure 11. Digital-to-Analog Glitch Impulse  
–50  
–55  
–60  
0
V = +5V  
DD  
V
= +5V  
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
T = +25؇C  
T
= +25؇C  
= 6V rms  
A
A
V = 20V p-p  
IN  
OP AMP = AD711  
V
IN  
DAC LOADED WITH ALL 1S  
OP AMP = AD711  
–65  
–70  
–75  
–80  
–85  
–90  
DAC LOADED WITH ALL 0S  
–80  
–90  
–95  
–100  
–100  
100  
1k  
10k  
FREQUERCY – Hz  
100k  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
Figure 10. Total Harmonic Distortion vs. Frequency  
Figure 12. Multiplying Frequency Response vs.  
Digital Code  
–12–  
REV. B  
AD7943/AD7945/AD7948  
GENERAL DESCRIPTION  
UNIPOLAR BINARY OPERATION  
D/A Section  
(Two-Quadrant Multiplication)  
The AD7943, AD7945 and AD7948 are 12-bit current-output  
D/A converters. A simplified circuit diagram is shown in Fig-  
ure 13. The DAC architecture is segmented. This means that  
the 2 MSBs of the 12-bit data word are decoded to drive the  
three switches A, B and C. The remaining 10 bits of the data  
word drive the switches S0 to S9 in a standard inverting R-2R  
ladder configuration.  
Figure 14 shows the standard unipolar binary connection dia-  
gram for the AD7943, AD7945 and AD7948. When VIN is an  
ac signal, the circuit performs two-quadrant multiplication.  
Resistors R1 and R2 allow the user to adjust the DAC gain  
error. With a specified gain error of 2 LSBs over temperature,  
these are not necessary in many applications. Circuit offset is  
due completely to the output amplifier offset. It can be re-  
moved by adjusting the amplifier offset voltage. Alternatively,  
choosing a low offset amplifier makes this unnecessary.  
Each of the switches A to C steers 1/4 of the total reference  
current into either IOUT1 or IOUT2 with the remaining 1/4 of the  
total current passing through the R-2R section. Switches S9 to  
S0 steer binarily weighted currents into either IOUT1 or IOUT2. If  
IOUT1 and IOUT2 are kept at the same potential, a constant cur-  
rent flows in each ladder leg, regardless of digital input code.  
Thus, the input resistance seen at VREF is always constant. It is  
equal to R/2. The VREF input may be driven by any reference  
voltage or current, ac or dc that is within the Absolute Maxi-  
mum Ratings.  
A1 should be chosen to suit the application. For example, the  
OP07 is ideal for very low bandwidth applications (10 kHz or  
R2 10⍀  
RFB  
C1  
I
I
OUT1  
OUT2  
V
REF  
A1  
V
DAC  
V
OUT  
IN  
R1 20⍀  
A1: OP07  
AD711  
AD843  
AD845  
AD7943/45/48  
The device provides access to the VREF, RFB, and IOUT1 termi-  
nals of the DAC. This makes the device extremely versatile and  
allows it to be configured in several different operating modes.  
Examples of these are shown in the following sections. The  
AD7943 also has a separate IOUT2 pin. In the AD7945 and  
AD7948 this is internally tied to AGND.  
AGND  
SIGNAL GROUND  
NOTES  
1. ONLY ONE DAC IS SHOWN FOR CLAIRITY.  
2. DIGITAL INPUT CONNECTIONS ARE OMITTED.  
3. C1 PHASE COMPENSATION (5 – 15pF) MAY BE REQUIRED  
WHEN USING HIGH SPEED AMPLIFIER.  
When an output amplifier is connected in the standard configu-  
ration of Figure 14, the output voltage is given by:  
Figure 14. Unipolar Binary Operation  
lower) while the AD711 is suitable for medium bandwidth ap-  
plications (200 kHz or lower). For high bandwidth applications  
of greater than 200 kHz, the AD843 and AD847 offer very fast  
settling times.  
VOUT = –D × VREF  
where D is the fractional representation of the digital word  
loaded to the DAC. D can be set from 0 to 4095/4096, since it  
has 12-bit resolution.  
The code table for Figure 14 is shown in Table III.  
V
REF  
Table III. Unipolar Binary Code  
R
R
R
Digital Input  
Analog Output  
(VOUT as Shown in Figure 14)  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
MSB  
LSB  
C
B
A
S9  
S8  
S0  
1111 1111 1111  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0000 0000 0001  
0000 0000 0000  
–VREF (4095/4096)  
–VREF (2049/4096)  
–VREF (2048/4096)  
–VREF (2047/4096)  
–VREF (1/4096)  
R/2  
R
FB  
I
OUT1  
I
OUT2  
SHOWN FOR ALL 1S ON DAC  
Figure 13. Simplified D/A Circuit Diagram  
–VREF (0/4096) = 0  
NOTE  
Nominal LSB size for the circuit of Figure 14 is given by: VREF (1/4096).  
REV. B  
–13–  
AD7943/AD7945/AD7948  
BIPOLAR OPERATION  
SINGLE SUPPLY APPLICATIONS  
(Four-Quadrant Multiplication)  
The “-B” versions of the devices are specified and tested for  
single supply applications. Figure 16 shows the recommended  
circuit for operation with a single +5 V to +3.3 V supply. The  
IOUT2 and AGND terminals are biased to 1.23 V. Thus, with 0 V  
applied to the VREF terminal, the output will go from 1.23 V (all  
0s loaded to the DAC) to 2.46 V (all 1s loaded). With 2.45 V  
applied to the VREF terminal, the output will go from 1.23 V (all  
0s loaded) to 0.01 V (all 1s loaded). It is important when con-  
sidering INL in a single-supply system to realize that most  
single-supply amplifiers cannot sink current and maintain zero  
volts at the output. In Figure 16, with VREF = 2.45 V the re-  
quired sink current is 200 µA. The minimum output voltage  
level is 10 mV. Op amps like the OP295 are capable of main-  
taining this level while sinking 200 µA.  
Figure 15 shows the standard connection diagram for bipolar  
operation of the AD7943, AD7945 and AD7948. The coding is  
offset binary as shown in Table IV. When VIN is an ac signal,  
the circuit performs four-quadrant multiplication. Resistors R1  
and R2 are for gain error adjustment and are not needed in  
many applications where the device gain error specifications are  
adequate. To maintain the gain error specifications, resistors  
R3, R4 and R5 should be ratio matched to 0.01%.  
R4 20k⍀  
R2 10⍀  
R5  
20k⍀  
RFB  
C1  
I
I
OUT1  
OUT2  
V
V
IN  
REF  
R3  
A1  
DAC  
Figure 16 shows the IOUT2 and AGND terminals being driven  
by an amplifier. This is to maintain the bias voltage at 1.23 V  
as the impedance seen looking into the IOUT2 terminal changes.  
This impedance is code dependent and varies from infinity (all  
0s loaded in the DAC) to about 6 kminimum. The AD589  
has a typical output resistance of 0.6 and it can be used to  
drive the terminals directly. However, this will cause a typical  
linearity degradation of 0.2 LSBs. If this is unacceptable then  
the buffer amplifier is necessary. Figure 9 shows the typical  
linearity performance of the AD7943/AD7945/AD7948 when  
used as in Figure 16 with VDD set at +3.3 V and VREF = 0 V.  
10k⍀  
R1 20⍀  
A2  
V
OUT  
AD7943/45/48  
AGND  
SIGNAL GROUND  
NOTES  
1. ONLY ONE DAC IS SHOWN FOR CLAIRITY.  
2. DIGITAL INPUT CONNECTIONS ARE OMITTED.  
3. C1 PHASE COMPENSATION (5 – 15pF) MAY BE REQUIRED  
WHEN USING HIGH SPEED AMPLIFIER, A1.  
Figure 15. Bipolar Operation (Four-Quadrant  
Multiplication)  
Suitable dual amplifiers for use with Figure 15 are the OP270  
(low noise, low bandwidth, 15 kHz), the AD712 (medium  
bandwidth, 200 kHz) or the AD827 (wide bandwidth, 1 MHz).  
+3.3V  
V
RFB  
DAC  
DD  
C1  
Table IV. Bipolar (Offset Binary) Code  
I
I
OUT1  
OUT2  
V
REF  
V
A1  
V
IN  
OUT  
Table Digital Input  
MSB LSB  
Analog Output  
(VOUT as Shown in Figure 15)  
A1: OP295  
AD822  
AD7943/45/48  
DGND  
OP283  
AGND  
1111 1111 1111  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0000 0000 0001  
0000 0000 0000  
NOTE  
+VREF (2047/2048)  
+VREF (1/2048)  
+5V  
+VREF (0/2048) = 0  
–VREF (1/2048)  
5.6k⍀  
A1  
AD589  
–VREF (2047/2048)  
–VREF (2048/2048) = –VREF  
SIGNAL GROUND  
Figure 16. Single Supply System  
Nominal LSB size for the circuit of Figure 15 is given by: VREF (1/2048).  
–14–  
REV. B  
AD7943/AD7945/AD7948  
MICROPROCESSOR INTERFACING  
AD7945 to MC68000 Interface  
AD7943 to ADSP-2101 Interface  
Figure 19 shows the MC68000 interface to the AD7945. The  
appropriate data is written into the DAC in one MOVE instruc-  
tion to the appropriate memory location.  
Figure 17 shows the AD7943 to ADSP-2101 interface diagram.  
The DSP is set up for alternate inverted framing with an inter-  
nally generated SCLK. TFS from the ADSP-2101 drives the  
STB1 input on the AD7943. The serial word length should be  
set at 12. This is done by making SLEN = 11 (1011 binary).  
The SLEN field is Bits 3–0 in the SPORT control register  
(0x3FF6 for SPORT0 and 0x3FF2 for SPORT1).  
A1 – A23  
MC68000  
ADDRESS  
DECODE  
AS  
CS  
With the 16 MHz version of the ADSP-2101, the maximum  
output SCLK is 8 MHz. The AD7943 setup and hold time of  
10 ns and 25 ns mean that it is compatible with the DSP when  
running at this speed.  
AD7945  
DTACK  
WR  
R/W  
The OUTPUT FLAG drives both LD1 and LD2 and is brought  
low to update the DAC register and change the analog output.  
DB11 – DB0  
D15 – D0  
+5V  
AD7943  
ADSP-2101  
CLR  
Figure 19. AD7945 to MC68000 Interface  
AD7948 to Z80 Interface  
Figure 20 is the interface between the AD7948 and the 8-bit  
bus of the Z80 processor. Three write operations are needed to  
load the DAC. The first two load the MS byte and the LS byte  
and the third brings the LDAC low to update the output.  
TFS  
STB1  
STB3  
SRI  
SCLK  
DT  
OUTPUT FLAG  
LD1  
LD2  
STB2  
STB4  
A0 – A15  
ADDRESS BUS  
Figure 17. AD7943 to ADSP-2101 Interface  
AD7943 to DSP56001 Interface  
Z80  
CSMSB  
ADDRESS  
DECODE  
CSLSB  
LDAC  
MREQ  
WR  
Figure 18 shows the interface diagram for the AD7943 to the  
DSP56001. The DSP56001 is configured for normal mode  
synchronous operation with gated clock. The serial clock, SCK,  
is set up as an output from the DSP and the serial word length  
is set for 12 bits (WL0 = 1, WL1 = 0, in Control Register A).  
SCK from the DSP56001 is applied to the AD7943 STB3 in-  
put. Data from the DSP56000 is valid on the falling edge of  
SCK and this is the edge which clocks the data into the AD7943  
shift register. STB1, STB2 and STB4 are tied low on the  
AD7943 to permanently enable the STB3 input.  
AD7948  
WR  
DB7 – DB0  
D7 – D0  
DATA BUS  
Figure 20. AD7948 to Z80 Interface  
When the 12-bit serial word has been written to the AD7943,  
the LD1, LD2 inputs are brought low to update the DAC  
register.  
+5V  
AD7943  
DSP56001  
CLR  
STB3  
SCK  
STD  
SRI  
OUTPUT FLAG  
LD1  
LD2  
STB1  
STB2  
STB4  
Figure 18. AD7943 to DSP56001 Interface  
REV. B  
–15–  
AD7943/AD7945/AD7948  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Plastic DIP (N-16)  
16-Lead SOP (R-16)  
0.4133 (10.50)  
0.3977 (10.00)  
0.840 (21.34)  
0.745 (18.92)  
16  
9
16  
1
9
8
0.280 (7.11)  
0.240 (6.10)  
0.325 (8.26)  
0.195 (4.95)  
0.115 (2.93)  
0.300 (7.62)  
1
8
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
PIN 1  
0.160 (4.06)  
0.115 (2.93)  
x 45°  
0.0118 (0.30)  
0.0040 (0.10)  
0.015 (0.381)  
0.008 (0.204)  
0.100  
(2.54)  
BSC  
0.070 (1.77) SEATING  
0.022 (0.558)  
0.014 (0.356)  
PLANE  
0.045 (1.15)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
20-Lead Plastic DIP (N-20)  
20-Lead Cerdip (Q-20)  
0.005 (0.13) MIN  
20  
0.098 (2.49) MAX  
1.060 (26.90)  
0.925 (23.50)  
11  
20  
1
11  
0.310 (7.87)  
0.280 (7.11)  
0.220 (5.59)  
10  
0.240 (6.10)  
10  
1
0.325 (8.25)  
0.195 (4.95)  
0.115 (2.93)  
0.320 (8.13)  
0.290 (7.37)  
0.300 (7.62)  
PIN 1  
1.060 (26.92) MAX  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.060 (1.52)  
0.015 (0.38)  
0.210 (5.33)  
MAX  
0.200 (5.08)  
0.130  
(3.30)  
MIN  
MAX  
0.150  
(3.81)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
0.023 (0.58)  
0.014 (0.36)  
0.100  
(2.54)  
BSC  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
15°  
0°  
20-Lead SOP (R-20)  
20-Lead SSOP (RS-20)  
0.295 (7.50)  
0.5118 (13.00)  
0.4961 (12.60)  
0.271 (6.90)  
20  
11  
20  
11  
10  
1
10  
1
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
x 45°  
0.0098 (0.25)  
0.07 (1.78)  
0.078 (1.98)  
0.068 (1.73)  
PIN 1  
0.066 (1.67)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.037 (0.94)  
0.022 (0.559)  
0.0500 0.0192 (0.49)  
8°  
0°  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0256  
(0.65)  
BSC  
(1.27)  
0.0138 (0.35)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
BSC  
0.005 (0.127)  
–16–  
REV. B  

相关型号:

AD7943BRZ-REEL

+3.3 V/+5 V Multiplying 12-Bit DAC With a Serial Interface
ADI

AD7943_15

3.3 V/5 V Multiplying 12-Bit DACs
ADI

AD7944

3mW, 100kSPS, 14-Bit ADC in 6-Lead SOT-23
ADI

AD7944BCP

IC 1-CH 14-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO10, 3 X 3 MM, CSP-10, Analog to Digital Converter
ADI

AD7944BCPZ

14-Bit, 2.5 MSPS, PulSAR 15.5 mW ADC in LFCSP
ADI

AD7944BCPZ-RL7

14-Bit, 2.5 MSPS, PulSAR 15.5 mW ADC in LFCSP
ADI

AD7945

+3.3 V/+5 V Multiplying 12-Bit DACs
ADI

AD7945AN-B

+3.3 V/+5 V Multiplying 12-Bit DACs
ADI

AD7945AN-B

暂无描述
ROCHESTER

AD7945ANZ-B

+3.3 V/+5 V Multiplying 12-Bit DAC With a Parallel Interface
ADI

AD7945ANZ-B

PARALLEL, WORD INPUT LOADING, 5 us SETTLING TIME, 12-BIT DAC, PDIP20, PLASTIC, DIP-20
ROCHESTER

AD7945ARS-B

+3.3 V/+5 V Multiplying 12-Bit DACs
ADI