AD7794 [ADI]

Low Power, 24-Bit Sigma-Delta ADC with In-Amp and Embedded Reference (6 Channel); 低功耗,24位Σ- Δ型ADC仪表放大器和嵌入式基准( 6频道)
AD7794
型号: AD7794
厂家: ADI    ADI
描述:

Low Power, 24-Bit Sigma-Delta ADC with In-Amp and Embedded Reference (6 Channel)
低功耗,24位Σ- Δ型ADC仪表放大器和嵌入式基准( 6频道)

仪表放大器
文件: 总21页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, 24-Bit Sigma-Delta ADC with In-  
Amp and Embedded Reference (6 Channel)  
Preliminary Technical Data  
AD7794  
FEATURES  
APPLICATIONS  
Six Differential Analog Inputs  
Temperature measurement  
Pressure measurement  
Weigh scales  
Low Noise Programmable Gain Instrumentation-Amp  
RMS noise: 80 nV (Gain = 64)  
Bandgap Reference with 5 ppm/ C Drift typ  
Power  
Supply: 2.7 V to 5.25 V operation  
Normal: 400 µA typ  
GENERAL DESCRIPTION  
The AD7794 is a low power, complete analog front end for  
low frequency measurement applications. It contains a low  
noise 24-bit ∑-∆ ADC with six differential inputs. The on-chip  
low noise instrumentation amplifier means that signals of small  
amplitude can be interfaced directly to the ADC.  
Power-down: 1 µA max  
Update Rate: 4 Hz to 500 Hz  
Simultaneous 50 Hz/60 Hz Rejection  
Internal Clock Oscillator  
Reference Detect  
The device contains a precision low noise, low drift internal  
reference for absolute measurements. An external reference can  
also be used if ratiometric measurements are required. Other  
on-chip features include programmable excitation current  
sources and a bias voltage generator for temperature applica-  
tions along with 100 nA burnout currents. For pressure and  
weighscale applications, a low-side power switch is available to  
power down the bridge between conversions to minimize the  
power consumption of the system. The device can be operated  
with the internal clock or, alternatively, an external clock can be  
used if synchronizing several devices. The output data rate  
from the part is software programmable and can be varied from  
4 Hz to 500 Hz.  
Programmable Current Sources (10 µA/200 µA/1 mA)  
On-Chip Bias Voltage Generator  
100 nA Burnout Currents  
Low Side Power Switch  
Independent Interface Power Supply  
24-Lead TSSOP Package  
INTERFACE  
3-wire serial  
SPI®, QSPI™, MICROWIRE™, and DSP compatible  
Schmitt trigger on SCLK  
The part operates with a power supply from 2.7 V to 5.25 V. It  
consumes a current of 450 uA maximum and is housed in a 24-  
lead TSSOP package.  
FUNCTIONAL BLOCK DIAGRAM  
AIN4(+)/REFIN2(+) REFIN1(+) AIN4(-)/REFIN2(-) REFIN1(-)  
GND  
AV  
DD  
V
BIAS  
REFERENCE  
DETECT  
BANDGAP  
REFERENCE  
V
DD  
AIN1(+)  
AIN1(-)  
AIN2(+)  
GND  
SERIAL  
INTERFACE  
AND  
CONTROL  
LOGIC  
DOUT/RDY  
DIN  
AIN2(-)  
AIN3(+)  
AIN3(-)  
SIGMA DELTA  
ADC  
IN-AMP  
SCLK  
CS  
MUX  
AIN5(+)/IOUT2  
AIN5(-)/IOUT1  
AIN6(+)/P1  
AIN6(-)/P2  
GND  
TEMP  
SENSOR  
DVDD  
INTERNAL  
CLOCK  
AD7794  
V
PSW  
DD  
GND  
CLK  
REV.PrE  
6/04.  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD7794  
Preliminary Technical Data  
TABLE OF CONTENTS  
AD7794—Specifications.................................................................. 3  
Timing Characteristics, .................................................................... 9  
Absolute Maximum Ratings.......................................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 14  
On-chip Registers ........................................................................... 15  
Communications Register (RS2, RS1, RS0 = 0, 0, 0).............. 15  
FULL-SCALE Register (RS2, RS1, RS0 = 1, 1, 1; Power-  
on/Reset = 0x5xxxx5) ................................................................ 21  
ADC Circuit Information.............................................................. 22  
Overview ..................................................................................... 22  
Noise Performance..................................................................... 22  
Digital Interface.......................................................................... 23  
Single Conversion Mode ....................................................... 24  
Continuous Conversion Mode............................................. 24  
Continuous Read Mode ........................................................ 25  
Circuit Description......................................................................... 26  
Analog Input Channel ............................................................... 26  
Bipolar/Unipolar Configuration .............................................. 26  
Data Output Coding .................................................................. 26  
Reference ..................................................................................... 26  
VDD Monitor................................................................................ 27  
Grounding and Layout .............................................................. 27  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
Status Register (RS2, RS1, RS0 = 0, 0, 0; Power-on/Reset =  
0x88)............................................................................................. 16  
Mode Register (RS2, RS1, RS0 = 0, 0, 1; Power-on/Reset =  
0x000A)........................................................................................ 16  
Configuration Register (rs2, RS1, RS0 = 0, 1, 0; Power-  
on/Reset = 0x0710) .................................................................... 18  
Data Register (RS2, RS1, RS0 = 0, 1, 1; Power-on/Reset =  
0x000000) .................................................................................... 20  
ID Register (RS2, RS1, RS0 = 1, 0, 0; Power-on/Reset = 0xxF)  
....................................................................................................... 20  
IO Register (RS2, RS1, RS0 = 1, 0, 1; Power-on/Reset = 0x00)  
....................................................................................................... 20  
OFFSET Register (RS2, RS1, RS0 = 1, 1, 0; Power-on/Reset =  
0x800000) .................................................................................... 21  
REVISION HISTORY  
REV.PrE, June 2004: Initial Version  
REV.PrE 6/04 | Page 2  
Preliminary Technical Data  
AD7794—SPECIFICATIONS1  
AD7794  
Table 1. (AVDD = 2.7 V to 5.25 V; DVDD = 2.7 V to 5.25 V; GND = 0 V; all specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
AD7794B  
Unit  
Test Conditions/Comments  
AD7794 (CHOP ENABLED)  
Output Update Rate  
4
Hz min nom  
Hz max nom  
Bits min  
Bits p-p  
Bits p-p  
Settling Time = 2/Output Update Rate  
500  
24  
16  
19  
No Missing Codes2  
Resolution (pk – pk)  
fADC ≤125 Hz  
Gain = 128, 16.6 Hz Update Rate, VREF = 2.5 V  
Gain = 1, 16.6 Hz Update Rate, VREF = 2.5 V  
Output Noise and Update Rates  
Integral Nonlinearity  
See Tables in ADC  
Description  
15  
25  
3
ppm of FSR max 3.5 ppm typ. Gain = 1 to 32  
ppm of FSR max 5 ppm typ, Gain = 64 or 128  
µV typ  
Offset Error3  
Offset Error Drift vs. Temperature4  
Full-Scale Error3, 5  
10  
10  
0.5  
3
nV/°C typ  
µV typ  
ppm/°C typ  
ppm/°C typ  
dB min  
Gain Drift vs. Temperature4  
Gain = 1 or 2  
Gain = 4 to 128  
100 dB typ, AIN = FS/2  
Power Supply Rejection  
ANALOG INPUTS  
90  
Differential Input Voltage Ranges  
REFIN/Gain  
V nom  
REFIN = REFIN(+) – REFIN(–) or Internal Reference,  
Gain = 1 to 128  
Absolute AIN Voltage Limits2  
Unbuffered Mode  
GND – 30 mV  
AVDD + 30 mV  
GND + 100 mV  
AVDD – 100 mV  
GND + 300 mV  
AVDD – 1.1  
V min  
V max  
V min  
V max  
V min  
V max  
V min  
Gain = 1 or 2  
Gain = 1 or 2  
Gain = 4 to 128  
Gain = 4 to 128  
Buffered Mode  
In-Amp Enabled  
Common Mode Voltage  
Analog Input Current  
0.5  
Buffered Mode or In-Amp Enabled  
Average Input Current2  
Average Input Current Drift  
Unbuffered Mode  
200  
2
pA max  
pA/°C typ  
Gain = 1 or 2  
Average Input Current  
Average Input Current Drift  
400  
50  
nA/V typ  
pA/V/°C typ  
nA max  
Input current varies with input voltage.  
1
AIN6(+) / AIN6(-)  
Normal Mode Rejection2  
Internal Clock  
@ 50 Hz, 60 Hz  
@ 50 Hz  
70  
84  
90  
dB min  
dB min  
dB min  
80 dB typ, 50 1 Hz, 60 1 Hz, FS[3:0] = 10106  
90 dB typ, 50 1 Hz, FS[3:0] = 10016  
100 dB typ, 60 1 Hz, FS[3:0] = 10006  
@ 60 Hz  
External Clock  
@ 50 Hz, 60 Hz  
@ 50 Hz  
@ 60 Hz  
Common Mode Rejection  
@DC  
@ 50 Hz, 60 Hz2  
@ 50 Hz, 60 Hz2  
80  
94  
90  
dB min  
dB min  
dB min  
90 dB typ, 50 1 Hz, 60 1 Hz, FS[3:0] = 10106  
100 dB typ, 50 1 Hz, FS[3:0] = 10016  
100 dB typ, 60 1 Hz, FS[3:0] = 10006  
AIN = +FS/2  
90  
100  
100  
dB min  
dB min  
dB min  
FS[3:0] = 10106  
50 1 Hz, 60 1 Hz, FS[3:0] = 10106  
50 1 Hz (FS[3:0] = 10016), 60 1 Hz (FS[3:0] =  
10006)  
REV.PrE 6/04 | Page 3  
AD7794  
Preliminary Technical Data  
Parameter  
AD7794B  
Unit  
Test Conditions/Comments  
REFERENCE INPUT  
Internal Reference Initial Accuracy  
Internal Reference Drift  
1.17 0.01ꢀ  
5
15  
2
V min/max  
ppm/°C typ  
ppm/°C max  
µV RMS  
Internal Reference Noise  
Gain = 1, Update Rate = 16.6 Hz. Includes ADC  
Noise.  
External REFIN Voltage  
Reference Voltage Range2  
2.5  
0.1  
V nom  
V min  
REFIN = REFIN(+) – REFIN(–)  
AVDD  
V max  
V min  
V max  
nA/V typ  
nA/V/°C typ  
Absolute REFIN Voltage Limits2  
GND – 30 mV  
AVDD + 30 mV  
400  
Average Reference Input Current  
Average Reference Input Current Drift  
Normal Mode Rejection2  
0.03  
Same as for Analog  
Inputs  
Common Mode Rejection  
Reference Detect Levels  
Same as for Analog  
Inputs  
0.3  
V min  
V max  
NOXREF Bit Inactive if VREF < 0.3 V  
NOXREF Bit Active if VREF > 0.65 V  
0.65  
REV.PrE 6/04 | Page 4  
Preliminary Technical Data  
AD7794  
Parameter  
AD7794B  
Unit  
Test Conditions/Comments  
Settling Time = 1/Output Update Rate  
fADC ≤125 Hz  
AD7794 (CHOP DISABLED)  
Output Update Rate  
4
500  
24  
15.5  
18.5  
Hz min nom  
Hz max nom  
Bits min  
Bits p-p  
Bits p-p  
No Missing Codes2  
Resolution  
Gain = 128, 16.6 Hz Update Rate, VREF = 2.5 V  
Gain = 1, 16.6 Hz Update Rate, VREF = 2.5 V  
Output Noise and Update Rates  
Integral Nonlinearity  
See Tables in ADC  
Description  
15  
25  
200/Gain  
ppm of FSR max 3.5 ppm of FSR typ. Gain = 1 to 32  
ppm of FSR max 5 ppm of FSR typ, Gain = 64 or 128  
Offset Error3  
µV typ  
Without Calibration  
Offset Error Drift vs. Temperature4  
Full-Scale Error3, 5  
200/Gain  
nV/°C typ  
µV typ  
ppm/°C typ  
ppm/°C typ  
dB min  
10  
0.5  
3
Gain Drift vs. Temperature4  
Gain = 1 or 2  
Gain = 4 to 128  
100 dB typ, AIN = FS/2  
Power Supply Rejection  
ANALOG INPUTS  
80  
Differential Input Voltage Ranges  
REFIN/Gain  
V nom  
REFIN = REFIN(+) – REFIN(–) or Internal Reference,  
Gain = 1 to 128  
Absolute AIN Voltage Limits2  
Unbuffered Mode  
GND – 30 mV  
AVDD + 30 mV  
GND + 100 mV  
AVDD – 100 mV  
GND + 100 mV  
AVDD – 1.1  
V min  
V max  
V min  
V max  
V min  
V max  
V min  
Gain = 1 or 2  
Gain = 1 or 2  
Gain = 4 to 128  
Gain = 4 to 128  
Buffered Mode  
In-Amp Enabled  
Common Mode Voltage  
Analog Input Current  
0.5  
Buffered Mode or In-Amp Enabled  
Average Input Current2  
Average Input Current Drift  
Unbuffered Mode  
200  
2
pA max  
pA/°C typ  
Gain = 1 or 2  
Average Input Current  
Average Input Current Drift  
400  
50  
nA/V typ  
pA/V/°C typ  
nA max  
Input current varies with input voltage.  
1
AIN6(+) / AIN6(-)  
Normal Mode Rejection2  
Internal Clock  
@ 50 Hz, 60 Hz  
@ 50 Hz  
60  
80  
90  
dB min  
dB min  
dB min  
70 dB typ, 50 1 Hz, 60 1 Hz, FS[3:0] = 10106  
90 dB typ, 50 1 Hz, FS[3:0] = 10016  
100 dB typ, 60 1 Hz, FS[3:0] = 10006  
@ 60 Hz  
External Clock  
@ 50 Hz, 60 Hz  
@ 50 Hz  
60  
94  
90  
dB min  
dB min  
dB min  
70 dB typ, 50 1 Hz, 60 1 Hz, FS[3:0] = 10106  
100 dB typ, 50 1 Hz, FS[3:0] = 10016  
100 dB typ, 60 1 Hz, FS[3:0] = 10006  
AIN = +FS/2  
@ 60 Hz  
Common Mode Rejection  
@DC  
@ 50 Hz, 60 Hz2  
@ 50 Hz, 60 Hz2  
80  
80  
80  
dB min  
dB min  
dB min  
FS[3:0] = 10106  
50 1 Hz, 60 1 Hz, FS[3:0] = 10106  
50 1 Hz (FS[3:0] = 10016), 60 1 Hz (FS[3:0] =  
10006)  
REFERENCE INPUT  
Internal Reference Initial Accuracy  
Internal Reference Drift  
1.17 0.01ꢀ  
5
15  
V min/max  
ppm/°C typ  
ppm/°C max  
REV.PrE 6/04 | Page 5  
AD7794  
Preliminary Technical Data  
Parameter  
AD7794B  
Unit  
Test Conditions/Comments  
Internal Reference Noise  
2
µV RMS  
Gain = 1, Update Rate = 16.6 Hz. Includes ADC  
Noise.  
External REFIN Voltage  
Reference Voltage Range2  
2.5  
0.1  
V nom  
V min  
REFIN = REFIN(+) – REFIN(–)  
V DD  
V max  
V min  
V max  
nA/V typ  
nA/V/°C typ  
Absolute REFIN Voltage Limits2  
GND – 30 mV  
AVDD + 30 mV  
400  
Average Reference Input Current  
Average Reference Input Current Drift  
Normal Mode Rejection2  
0.03  
Same as for Analog  
Inputs  
Common Mode Rejection  
Reference Detect Levels  
Same as for Analog  
Inputs  
0.3  
V min  
V max  
NOXREF Bit Inactive if VREF < 0.3 V  
NOXREF Bit Active if VREF > 0.65 V  
0.65  
REV.PrE 6/04 | Page 6  
Preliminary Technical Data  
AD7794  
Parameter  
AD7794B  
Unit  
µA nom  
Test Conditions/Comments  
EXCITATION CURRENT SOURCES (IEXC1 and IEXC2)  
Output Current  
10/200/1000  
Initial Tolerance at 25°C  
Drift  
Initial Current Matching at 25°C  
Drift Matching  
5
200  
1
20  
2.1  
0.3  
AVDD – 0.6  
AVDD – 1  
GND – 30 mV  
ꢀ typ  
ppm/°C typ  
ꢀ typ  
ppm/°C typ  
ppm/V max  
ppm/V typ  
V max  
Matching between IEXC1 and EXC2. VOUT = 0 V  
AVDD = 5 V 5ꢀ. Typically 1.25 ppm/V  
Line Regulation (VDD  
)
Load Regulation  
Output Compliance  
Current Sources Programmed to 10 µA or 200 µA  
Current Sources Programmed to 1 mA  
V max  
V min  
BIAS VOLTAGE GENERATOR  
VBIAS  
VBIAS Generator Start-Up Time  
TEMPERATURE SENSOR  
Accuracy  
AVDD/2  
TBD  
V nom  
ms/nF typ  
Dependent on the Capacitance connected to AIN  
TBD  
°C typ  
LOW SIDE POWER SWITCH  
RON  
5
AVDD = 5 V  
max  
max  
mA max  
7
AVDD = 3 V  
Allowable Current  
20  
Continuous Current  
DIGITAL OUTPUTS (P1 & P2)  
VOH, Output High Voltage2  
VOL, Output Low Voltage2  
VOH, Output High Voltage2  
VOL, Output Low Voltage2  
Floating-State Leakage Current  
Floating-State Output Capacitance  
INTERNAL/EXTERNAL CLOCK  
AVDD – 0.6  
0.4  
4
0.4  
1
10  
V min  
V max  
V min  
V max  
µA max  
pF typ  
AVDD = 3 V, ISOURCE = 100 µA  
AVDD = 3 V, ISINK = 100 µA  
AVDD = 5 V, ISOURCE = 200 µA  
AVDD = 5 V, ISINK = 800 µA  
Internal Clock  
Fequency  
Duty Cycle  
64 2ꢀ  
50:50  
0.01  
64 2ꢀ  
50:50  
0.01  
Drift  
External Clock  
Frequency  
64  
64  
Duty Cycle  
45:55  
45:55  
LOGIC INPUTS  
All Inputs Except SCLK, DIN and CLK2  
VINL, Input Low Voltage  
0.8  
0.4  
2.0  
V max  
V max  
V min  
DVDD = 5 V  
DVDD = 3 V  
DVDD = 3 V or 5 V  
VINH, Input High Voltage  
SCLK and DIN (Schmitt-Triggered  
Input)2  
VT(+)  
VT(–)  
VT(+) – VT(–)  
VT(+)  
VT(–)  
1.4/2  
V min/V max  
V min/V max  
V min/V max  
V min/V max  
V min/V max  
V min/V max  
DVDD = 5 V  
DVDD = 5 V  
DVDD = 5 V  
DVDD = 3 V  
DVDD = 3 V  
DVDD = 3 V  
0.8/1.4  
0.3/0.85  
0.9/2  
0.4/1.1  
0.3/0.85  
VT(+) - VT(–)  
CLK2  
VINL, Input Low Voltage  
VINL, Input Low Voltage  
VINH, Input High Voltage  
0.8  
0.4  
3.5  
V max  
V max  
V min  
DVDD = 5 V  
DVDD = 3 V  
DVDD = 5 V  
REV.PrE 6/04 | Page 7  
AD7794  
Preliminary Technical Data  
Parameter  
AD7794B  
Unit  
V min  
µA max  
Test Conditions/Comments  
VINH, Input High Voltage  
Input Currents  
2.5  
1
DVDD = 3 V  
VIN = DVDD or GND  
Input Capacitance  
10  
pF typ  
All Digital Inputs  
LOGIC OUTPUTS (Including CLK)  
VOH, Output High Voltage2  
VOL, Output Low Voltage2  
VOH, Output High Voltage2  
VOL, Output Low Voltage2  
Floating-State Leakage Current  
Floating-State Output Capacitance  
Data Output Coding  
DVDD – 0.6  
0.4  
4
0.4  
V min  
V max  
V min  
V max  
µA max  
pF typ  
DVDD = 3 V, ISOURCE = 100 µA  
DVDD = 3 V, ISINK = 100 µA  
DVDD = 5 V, ISOURCE = 200 µA  
DVDD = 5 V, ISINK = 1.6 mA (DOUT/  
RDY  
)/800 µA (CLK)  
1
10  
Offset Binary  
SYSTEM CALIBRATION2  
V max  
V max  
V min  
V min  
V min  
Full-Scale Calibration Limit  
Zero-Scale Calibration Limit  
Input Span  
1.05 x FS  
-1.05 x FS  
0.8 x FS  
2.1 x FS  
POWER REQUIREMENTS7  
Power Supply Voltage  
AVDD – GND  
2.7/5.25  
2.7/5.25  
V min/max  
V min/max  
DVDD – GND  
Power Supply Currents  
IDD Current  
150  
175  
µA max  
µA max  
125 µA typ, Unbuffered Mode, Ext. Reference  
150 µA typ, Buffered Mode, In-Amp Bypassed, Ext  
Ref  
380  
450  
1
µA max  
µA max  
µA max  
330 µA typ, In-Amp used, Ext. Ref  
400 µA typ, In-Amp used, Int Ref  
IDD (Power-Down Mode)  
1 Temperature Range –40°C to +105°C.  
2 Specification is not production tested but is supported by characterization data at initial product release.  
3 Following a self-calibration, this error will be in the order of the noise for the programmed gain and update rate selected. A system calibration will completely remove  
this error.  
4 Recalibration at any temperature will remove these errors.  
5 Full-scale error applies to both positive and negative full-scale and applies at the factory calibration conditions (AVDD = 4 V).  
6 FS[3:0] are the four bits used in the mode register to select the output word rate.  
7 Digital inputs equal to DVDD or GND.  
REV.PrE 6/04 | Page 8  
Preliminary Technical Data  
TIMING CHARACTERISTICS8, 9  
AD7794  
Table 2. (AVDD = 2.7 V to 5.25 V; DVDD = 2.7 V to 5.25; GND = 0 V, Input Logic 0 = 0 V, Input Logic 1 = DVDD, unless otherwise  
noted.)  
Limit at TMIN, TMAX  
(B Version)  
Parameter  
Unit  
Conditions/Comments  
SCLK High Pulsewidth  
SCLK Low Pulsewidth  
t3  
t4  
100  
100  
ns min  
ns min  
Read Operation  
t1  
0
ns min  
ns max  
ns max  
ns min  
ns max  
ns max  
ns min  
ns max  
ns max  
ns min  
CS Falling Edge to DOUT/RDY Active Time  
DVDD = 4.75 V to 5.25 V  
DVDD = 2.7 V to 3.6 V  
SCLK Active Edge to Data Valid Delay11  
DVDD = 4.75 V to 5.25 V  
DVDD = 2.7 V to 3.6 V  
Bus Relinquish Time after CS Inactive Edge  
60  
80  
0
60  
80  
10  
80  
100  
10  
10  
t2  
12, 13  
t5  
t6  
SCLK Inactive Edge to CS Inactive Edge  
SCLK Inactive Edge to DOUT/RDY High  
t7  
Write Operation  
t8  
0
ns min  
ns min  
ns min  
ns min  
CS Falling Edge to SCLK Active Edge Setup Time11  
Data Valid to SCLK Edge Setup Time  
Data Valid to SCLK Edge Hold Time  
CS Rising Edge to SCLK Edge Hold Time  
t9  
t10  
t11  
30  
25  
0
8 Sample tested during initial release to ensure compliance. All input signals are specified with tR = tF = 5 ns (10ꢀ to 90ꢀ of DVDD) and timed from a voltage level of 1.6 V.  
9 See Figure 2 and Figure 3.  
10 These numbers are measured with the load circuit of  
Figure 1 and defined as the time required for the output to cross the VOL or VOH limits.  
11 SCLK active edge is falling edge of SCLK.  
12 These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit of  
Figure 1. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the  
timing characteristics are the true bus relinquish times of the part and, as such, are independent of external bus loading capacitances.  
13 RDY  
RDY  
is high,  
returns high after a read of the ADC. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while  
although care should be taken to ensure that subsequent reads do not occur close to the next output update. In continuous read mode, the digital word can be read  
only once.  
REV.PrE 6/04 | Page 9  
AD7794  
Preliminary Technical Data  
+1.6 V  
50 pF  
Figure 1. Load Circuit for Timing Characterization  
CS (I)  
t6  
t1  
t5  
MSB  
LSB  
t7  
DOUT/RDY (O)  
t2  
t3  
SCLK (I)  
t4  
04227-0-003  
I = INPUT, O = OUTPUT  
Figure 2. Read Cycle Timing Diagram  
CS (I)  
t11  
t8  
SCLK (I)  
DIN (I)  
t9  
t10  
MSB  
LSB  
04227-0-004  
I = INPUT, O = OUTPUT  
Figure 3. Write Cycle Timing Diagram  
REV.PrE 6/04 | Page 10  
Preliminary Technical Data  
AD7794  
ABSOLUTE MAXIMUM RATINGS  
Table 3. (TA= 25°C, unless otherwise noted.)  
Parameter  
Rating  
AVDD to GND  
DVDD to GND  
–0.3 V to +7 V  
–0.3 V to +7 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V toA VDD + 0.3 V  
10 mA  
–40°C to +105°C  
–65°C to +150°C  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Analog Input Voltage to GND  
Reference Input Voltage to GND  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
AIN/Digital Input Current  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
TSSOP  
θJA Thermal Impedance  
θJC Thermal Impedance  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
97.9°C/W  
14°C/W  
215°C  
220°C  
Infrared (15 sec)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
REV.PrE 6/04 | Page 11  
AD7794  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
24  
23  
22  
21  
20  
SCLK  
CLK  
DIN  
DOUT/RDY  
DVDD  
AVDD  
GND  
CS  
NC  
AIN6(+)/P1  
AD7794  
TOP VIEW  
(Not To Scale)  
6
7
8
9
19  
18  
17  
16  
AIN6(-)/P2  
AIN1(+)  
AIN1(-)  
PSW  
AIN4(-)/REFIN2(-)  
AIN4(+)/REFIN2(+)  
AIN5(-)/IOUT1  
AIN2(+)  
10  
11  
12  
15  
14  
13  
AIN2(-)  
AIN3(+)  
AIN3(-)  
AIN5(+)/IOUT2  
REFIN1(-)  
REFIN1(+)  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin  
No. Mnemonic  
Function  
1
SCLK  
Serial Clock Input for Data Transfers to and from the ADC. The SCLK has a Schmitt-triggered input, making the  
interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in  
a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information being trans-  
mitted to or from the ADC in smaller batches of data.  
2
3
CLK  
CS  
Clock In/Clock Out. The internal clock can be made available at this pin. Alternatively, the internal clock can  
be disabled and the ADC can be driven by an external clock. This allows several ADCs to be driven from a  
common clock, allowing simultaneous conversions to be performed.  
Chip Select Input. This is an active low logic input used to select the ADC. CS can be used to select the ADC in  
systems with more than one device on the serial bus or as a frame synchronization signal in communicating  
with the device. CS can be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and  
DOUT used to interface with the device.  
4
5
NC  
AIN6(+)/P1  
No Connect  
Analog Input/Digital Output pin. AIN6(+) is the positive terminal of the differential analog input pair  
AIN6(+)/AIN6(-). Alternatively, this pin can function as a general purpose output bit referenced between AVDD  
and GND  
6
AIN6(–)/P2  
Analog Input/ Digital Output pin. AIN6(–) is the negative terminal of the differential analog input pair  
AIN6(+)/AIN6(-). Alternatively, this pin can function as a general purpose output bit referenced between AVDD  
and GND  
7
8
9
10  
11  
12  
13  
AIN1(+)  
AIN1(-)  
AIN2(+)  
AIN2(-)  
AIN3(+)  
AIN3(-)  
REFIN1(+)  
Analog Input. AIN1(+) is the positive terminal of the differential analog input pair AIN1(+)/AIN1(-).  
Analog Input. AIN1(–) is the negative terminal of the differential analog input pair AIN1(+)/AIN1(-).  
Analog Input. AIN2(+) is the positive terminal of the differential analog input pair AIN2(+)/AIN2(-).  
Analog Input. AIN2(–) is the negative terminal of the differential analog input pair AIN2(+)/AIN2(-).  
Analog Input. AIN3(+) is the positive terminal of the differential analog input pair AIN3(+)/AIN3(-).  
Analog Input. AIN3(–) is the negative terminal of the differential analog input pair AIN3(+)/AIN3(-).  
Positive Reference Input. An external reference can be applied between REFIN1(+) and REFIN1(-). REFIN1(+)  
can lie anywhere between VDD and GND + 0.1 V. The nominal reference voltage (REFIN1(+) – REFIN1(–)) is 2.5  
V, but the part functions with a reference from 0.1 V to AVDD  
.
14  
15  
REFIN1(-)  
AIN5(+)/IOUT2  
Negative Reference Input. This reference input can lie anywhere between GND and AVDD – 0.1 V.  
Analog Input/Output of Internal Excitation Current Source.  
AIN5(+) is the positive terminal of the differential analog input pair AIN5(+)/AIN5(-).  
Alternatively, the internal excitation current source can be made available at this pin. The excitation current  
source is programmable so that the current can be 10 uA, 200 uA or 1 mA. Either IEXC1 or IEXC2 can be  
switched to this output  
16  
AIN5(-)/IOUT1  
Analog Input/Output of Internal Excitation Current Source.  
REV.PrE 6/04 | Page 12  
Preliminary Technical Data  
AD7794  
Pin  
No. Mnemonic  
Function  
AIN5(-) is the negative terminal of the differential analog input pair AIN5(+)/AIN5(-).  
Alternatively, the internal excitation current source can be made available at this pin. The excitation current  
source is programmable so that the current can be 10 uA, 200 uA or 1 mA. Either IEXC1 or IEXC2 can be  
switched to this output.  
17  
18  
AIN4(+)/REFIN2(+) Analog Input/Positive Reference Input.  
AIN4(+) is the positive terminal of the differential analog input pair AIN4(+)/AIN4(-).  
This pin can aso function as a reference input. REFIN2(+) can lie anywhere between AVDD and GND + 0.1 V.  
The nominal reference voltage (REFIN2(+) – REFIN2(–)) is 2.5 V, but the part functions with a reference from 0.1  
V to AVDD  
.
AIN4(-)/REFIN2(-)  
Analog Input/Negative Reference Input.  
AIN4(-) is the negative terminal of the differential analog input pair AIN4(+)/AIN4(-).  
This pin also functions as the negative reference input for REFIN2. This reference input can lie anywhere  
between GND and AVDD – 0.1 V.  
19  
20  
21  
22  
PSW  
GND  
AVDD  
D VDD  
Low Side Power Switch to GND.  
Ground Reference Point.  
Supply Voltage, 2.7 V to 5.25 V.  
Serial Interface Supply Voltage, 2.7 V to 5.25 V. DVDD is independent of AVDD. Therefore, the serial interface can  
be operated at 3 V with AVDD at 5 V or vice versa.  
23  
DOUT/RDY  
Serial Data Output/Data Ready Output. DOUT/RDY serves a dual purpose . It functions as a serial data output pin  
to access the output shift register of the ADC. The output shift register can contain data from any of the  
on-chip data or control registers. In addition, DOUT/RDY operates as a data ready pin,  
going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin will go  
high before the next update occurs.  
The DOUT/RDY falling edge can be used as an interrupt to a processor, indicating that valid data is available.  
With an external serial clock, the data can be read using the DOUT/RDY pin. With CS low, the data/control word  
informa-tion is placed on the DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK rising edge.  
The end of a conversion is also indicated by the RDY bit in the status register. When CS is high, the DOUT/RDY  
pin is three-stated but the RDY bit remains active.  
24  
DIN  
Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control  
registers within the ADC, the register selection bits of the communications register identifying the appropriate  
register.  
REV.PrE 6/04 | Page 13  
AD7794  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
REV.PrE 6/04 | Page 14  
Preliminary Technical Data  
ON-CHIP REGISTERS  
AD7794  
The ADC is controlled and configured via a number of on-chip registers, which are described on the following pages. In the following  
descriptions, set implies a Logic 1 state and cleared implies a Logic 0 state, unless otherwise stated.  
COMMUNICATIONS REGISTER (RS2, RS1, RS0 = 0, 0, 0)  
The communications register is an 8-bit write-only register. All communications to the part must start with a write operation to the com-  
munications register. The data written to the communications register determines whether the next operation is a read or write operation,  
and to which register this operation takes place. For read or write operations, once the subsequent read or write operation to the selected  
register is complete, the interface returns to where it expects a write operation to the communications register. This is the default state of  
the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications regis-  
ter. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high returns the ADC to  
this default state by resetting the entire part. Table 5 outlines the bit designations for the communications register. CR0 through CR7 indi-  
cate the bit location, CR denoting the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in  
brackets indicates the power-on/reset default status of that bit.  
CR7  
CR6  
CR5  
CR4  
CR3  
CR2  
CR1  
CR0  
WEN(0)  
R/W(0)  
RS2(0)  
RS1(0)  
RS0(0)  
CREAD(0)  
0(0)  
0(0)  
Table 5. Communications Register Bit Designations  
Bit Location  
Bit Name  
Description  
CR7  
WEN  
Write Enable Bit. A 0 must be written to this bit so that the write to the communications register actually  
occurs. If a 1 is the first bit written, the part will not clock on to subsequent bits in the register. It will stay  
at this bit location until a 0 is written to this bit. Once a 0 is written to the WEN bit, the next seven bits  
will be loaded to the communications register.  
CR6  
R/W  
A 0 in this bit location indicates that the next operation will be a write to a specified register. A 1 in this  
position indicates that the next operation will be a read from the designated register.  
CR5–CR3  
CR2  
RS2–RS0  
CREAD  
Register Address Bits. These address bits are used to select which of the ADC’s registers are being  
selected during this serial interface communication. See Table 6.  
Continuous Read of the Data Register. When this bit is set to 1 (and the data register is selected), the  
serial interface is configured so that the data register can be continuously read, i.e., the contents of the  
data register are placed on the DOUT pin automatically when the SCLK pulses are applied. The commu-  
nications register does not have to be written to for data reads. To enable continuous read mode, the  
instruction 01011100 must be written to the communications register. To exit the continuous read  
mode, the instruction 01011000 must be written to the communications register while the RDY pin is  
low. While in continuous read mode, the ADC monitors activity on the DIN line so that it can receive the  
instruction to exit continuous read mode. Additionally, a reset will occur if 32 consecutive 1s are seen on  
DIN. Therefore, DIN should be held low in continuous read mode until an instruction is to be written to  
the device.  
CR1–CR0  
0
These bits must be programmed to logic 0 for correct operation.  
Table 6. Register Selection  
RS2  
RS1  
RS0  
Register  
Register Size  
8-Bit  
8-Bit  
16-Bit  
16-Bit  
24-Bit  
8-Bit  
0
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
1
0
Communications Register during a Write Operation  
Status Register during a Read Operation  
Mode Register  
Configuration Register  
Data Register  
ID Register  
1
0
1
IO Register  
8-Bit  
1
1
1
1
0
1
Offset Register  
Full-ScaleRegister  
24-Bit  
24-Bit  
REV.PrE 6/04 | Page 15  
AD7794  
Preliminary Technical Data  
STATUS REGISTER (RS2, RS1, RS0 = 0, 0, 0; POWER-ON/RESET = 0x88)  
The status register is an 8-bit read-only register. To access the ADC status register, the user must write to the communications register,  
select the next operation to be a read, and load bits RS2, RS1 and RS0 with 0. Table 7 outlines the bit designations for the status register.  
SR0 through SR7 indicate the bit locations, SR denoting the bits are in the status register. SR7 denotes the first bit of the data stream. The  
number in brackets indicates the power-on/reset default status of that bit.  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR1  
SR0  
RDY(1)  
ERR(0)  
NOREF(0)  
0(0)  
1(1)  
CH2(0)  
CH1(0)  
CH0(0)  
Table 7. Status Register Bit Designations  
Bit Location  
Bit Name  
Description  
SR7  
RDY  
Ready bit for ADC. Cleared when data is written to the ADC data register. The RDY bit is set automatically  
after the ADC data register has been read or a period of time before the data register is updated with a  
new conversion result to indicate to the user not to read the conversion data. It is also set when the part  
is placed in power-down mode. The end of a conversion is indicated by the DOUT/RDY pin also. This pin  
can be used as an alternative to the status register for monitoring the ADC for conversion data.  
SR6  
SR5  
ERR  
ADC Error Bit. This bit is written to at the same time as the RDY bit. Set to indicate that the result written  
to the ADC data register has been clamped to all 0s or all 1s. Error sources include overrange,  
underrange or the absence of a reference voltage. Cleared by a write operation to start a conversion.  
NOREF  
No External Reference Bit. Set to indicate that the selected reference (REFIN1 or REFIN2) is at a voltage  
that is below a specified threshold. When set, conversion results are clamped to all ones.  
Cleared to indicate that a valid reference is applied to the selected reference pins.  
The NOXREF bit is enabled by setting the REF_DET bit in the Configuration register to 1. The ERR bit is  
also set if the voltage applied to the selected reference input is invalid.  
SR4  
0
This bit is automatically cleared.  
SR3  
1
This bit is automatically set.  
SR2–SR0  
CH2–CH0  
These bits indicate which channel is being converted by the ADC.  
MODE REGISTER (RS2, RS1, RS0 = 0, 0, 1; POWER-ON/RESET = 0x000A)  
The mode register is a 16-bit register from which data can be read or to which data can be written. This register is used to select the oper-  
ating mode, the update rate and the clock source. Table 8 outlines the bit designations for the mode register. MR0 through MR15 indicate  
the bit locations, MR denoting the bits are in the mode register. MR15 denotes the first bit of the data stream. The number in brackets  
indicates the power-on/reset default status of that bit. Any write to the setup register resets the modulator and filter and sets the  
bit.  
RDY  
MR15  
MD2(0)  
MR7  
MR14  
MD1(0)  
MR6  
MR13  
MD0(0)  
MR5  
MR12  
MR11  
0(0)  
MR10  
0(0)  
MR9  
0(0)  
MR8  
PSW(0)  
MR4  
0(0)  
MR3  
FS3(1)  
MR2  
FS2(0)  
MR1  
FS1(1)  
MR0  
FS0(0)  
CLK1(0)  
CLK0(0)  
0(0)  
CHOP-DIS (0)  
Table 8. Mode Register Bit Designations  
Bit Location  
Bit Name  
Description  
MR15–MR13  
MD2–MD0  
Mode Select Bits. These bits select the operational mode of the AD7794 (See  
Table 9).  
MR12  
PSW  
Power Switch Control Bit.  
Set by user to close the power switch PSW to GND. The power switch can sink up to 20 mA.  
Cleared by user to open the power switch.  
When the ADC is placed in power-down mode, the power switch is opened.  
These bits must be programmed with a Logic 0 for correct operation.  
MR11-MR8  
MR7-MR6  
0
CLK1-CLK0  
These bits are used to select the clock source for the AD7794. Either the on-chip 64 kHz clock can be  
used or an external clock can be used. The ability to use an external clock is useful as it allows several  
AD7794 devices to be synchronised. Also, 50 Hz/60 Hz rejection is improved when an accurate external  
clock drives the AD7794.  
REV.PrE 6/04 | Page 16  
Preliminary Technical Data  
AD7794  
Bit Location  
Bit Name  
Description  
CLK1 CLK0 ADC Clock Source  
0
0
1
1
0
1
0
1
Internal 64 kHz Clock, Internal Clock is not available at the CLK pin  
Internal 64 kHz Clock. This clock is made available at the CLK pin  
External 64 kHz Clock used. The external clock can have a 45:55 duty cycle.  
External Clock used. This external clock is divided by 2 within the AD7794. This  
allows the user to supply a clock which has a duty cycle worse than a 45:55 duty  
cycle to the AD7794, for example, a 128 kHz clock.  
MR5  
MR4  
0
This bit must be programmed with a Logic 0 for correct operation.  
CHOP-DIS  
This bit is used to enable or disable chopping. On power-up or following a reset, CHOP-DIS is cleared so  
chopping is enabled. When CHOP-DIS is set, chopping is disabled.  
MR3-MR0  
FS3-FS0  
Filter Update Rate Select Bits (see Table 10).  
Table 9. Operating Modes  
MD2  
MD1  
MD0  
Mode  
0
0
0
Continuous Conversion Mode (Default).  
In continuous conversion mode, the ADC continuously performs conversions and places the result in the data  
register. RDY goes low when a conversion is complete. The user can read these conversions by placing the  
device in continuous read mode whereby the conversions are automatically placed on the DOUT line when  
SCLK pulses are applied. Alternatively, the user can instruct the ADC to output the conversion by writing to  
the communications register. After power-on, the first conversion is available after a period 2/ fADC when  
chopping is enabled or 1/ fADC when chopping is disabled. Subsequent conversions are available at a  
frequency of fADC with chopping either enabled or disabled,  
0
0
1
Single Conversion Mode.  
In single conversion mode, the ADC is placed in power-down mode when conversions are not being  
performed. When single conversion mode is selected, the ADC powers up and performs a single conversion,  
which occurs after a period 2/fADC when chopping is enabled or 1/ fADC when chopping is disabled. The  
conversion result in placed in the data register, RDY goes low, and the ADC returns to power-down mode.  
The conversion remains in the data register and RDY remains active (low) until the data is read or another  
conversion is performed.  
0
0
1
1
1
0
0
1
0
Idle Mode.  
In Idle Mode, the ADC Filter and Modulator are held in a reset state although the modulator clocks are still  
provided  
Power-Down Mode.  
In power down mode, all the AD7794 circuitry is powered down including the current sources, power switch,  
burnout currents, bias voltage generator and CLKOUT circuitry.  
Internal Zero-Scale Calibration.  
An internal short is automatically connected to the enabled channel. A calibration takes 2 conversion cycles  
to complete when chopping is enabled and 1 conversion cycle when chopping is disabled. RDY goes high  
when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle  
mode following a calibration. The measured offset coefficient is placed in the offset register of the selected  
channel  
1
0
1
Internal Full-Scale Calibration.  
The fullscale input voltage is automatically connected to the selected analog input for this calibration.  
The full-scale error of the AD7794 is calbrated at a gain of 1 using the internal reference in the factory. When  
a channel is operated with a gain of 1 and the internal reference is selected, this factory-calibrated value is  
loaded into the full-scale register when a full-scale calibration is initiated.  
When an external reference is selected at a gain of 1, an internal fullscale calibration can be performed. When  
the gain equals 1, a calibration takes 2 conversion cycles to complete when chopping is enabled and 1  
conversion cycle when chopping is disabled.  
For higher gains, 4 conversion cycles are required to perform the fullscale calibration when chopping is  
enabled and 2 conversion cycles when chopping is disabled.  
RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is  
placed in idle mode following a calibration. The measured fullscale coefficient is placed in the fullscale  
register of the selected channel.  
Internal full-scale calibrations cannot be performed when the gain equals 128. With this gain setting, a  
system full-scale calibration can be performed.  
REV.PrE 6/04 | Page 17  
AD7794  
Preliminary Technical Data  
A fullscale calibration is required each time the gain of a channel is changed.  
1
1
0
1
System Offset Calibration.  
User should connect the system zero-scale input to the .channel input pins as selected by the CH2-CH0 bits.  
A system offset calibration takes 2 conversion cycles to complete when chopping is enabled and one  
conversion cycle when chopping is disabled. RDY goes high when the calibration is initiated and returns low  
when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured  
offset coefficient is placed in the offset register of the selected channel.  
1
1
System Full-Scale Calibration.  
User should connect the system full-scale input to the .channel input pins as selected by the CH2-CH0 bits.  
A calibration takes 2 conversion cycles to complete when chopping is enabled and one conversion cycle  
when chopping is disabled.. RDY goes high when the calibration is initiated and returns low when the  
calibration is complete. The ADC is placed in idle mode following a calibration. The measured fullscale  
coefficient is placed in the fullscale register of the selected channel.  
A fullscale calibration is required each time the gain of a channel is changed.  
Table 10. Update Rates Available (Chopping Enabled)  
Tsettle  
(ms)  
FS3  
0
FS2  
0
FS1  
0
FS0  
0
fADC (Hz)  
x
Rejection@ 50 Hz / 60 Hz (Internal Clock)  
x
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
500  
250  
125  
62.5  
50  
5
8
16  
32  
0
1
0
1
40  
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
41.6  
33.3  
19.6  
16.6  
16.6  
12.5  
10  
8.33  
6.25  
4.17  
48  
60  
101  
120  
120  
160  
200  
240  
320  
480  
90 dB (60 Hz only)  
84 dB (50 Hz only)  
70 dB (50 Hz and 60 Hz)  
67 dB (50 Hz and 60 Hz)  
69 dB (50 Hz and 60 Hz)  
73 dB (50 Hz and 60 Hz)  
74 dB (50 Hz and 60 Hz)  
79 dB (50 Hz and 60 Hz)  
1
1
1
1
With chopping disabled, the update rates remain unchanged but the settling time for each update rate is reduced by a factor of 2. The  
rejection at 50 Hz/60 Hz for a 16.6 Hz update rate degrades to 60 dB.  
CONFIGURATION REGISTER (RS2, RS1, RS0 = 0, 1, 0; POWER-ON/RESET = 0x0710)  
The configuration register is a 16-bit register from which data can be read or to which data can be written. This register is used to configure  
the ADC for unipolar or bipolar mode, enable or disable the buffer, enable or disable the burnout currents, select the gain and select the ana-  
log input channel. Table 11 outlines the bit designations for the filter register. CON0 through CON15 indicate the bit locations, CON  
denoting the bits are in the configuration register. CON15 denotes the first bit of the data stream. The number in brackets indicates the  
power-on/reset default status of that bit.  
CON15  
CON14  
CON13  
BO(0)  
CON12  
U/B (0)  
CON4  
CON11  
0(0)  
CON10  
G2(1)  
CON9  
G1(1)  
CON8  
G0(1)  
VBIAS1(0)  
CON7  
VBIAS0(0)  
CON6  
CON5  
CON3  
CH3(0)  
CON2  
CH2(0)  
CON1  
CH1(0)  
CON0  
CH0(0)  
REFSEL1(0)  
REFSEL0(0)  
REF_DET(0)  
BUF(1)  
REV.PrE 6/04 | Page 18  
Preliminary Technical Data  
AD7794  
Table 11. Configuration Register Bit Designations  
Bit  
Location Bit Name  
Description  
Bias Voltage Generator Enable. The negative terminal of the analog inputs can b e biased up to VDD/2.  
CON15–  
CON14  
0
VBIAS1  
VBIAS0  
Bias Voltage  
0
0
1
1
0
1
0
1
Bias Voltage Generator Disabled  
Bias Voltage Generator connected to AIN1(-)  
Bias Voltage Generator connected to AIN2(-)  
Bias Voltage Generator connected to AIN3(-)  
CON13  
CON12  
BO  
This bit must be programmed with a Logic 0 for correct operation.  
Burnout Current Enable Bit. When this bit is set to 1 by the user, the 100 nA current sources in the signal  
path are enabled. When BO = 0, the burnout currents are disabled. The burnout currents can be enabled  
only when the buffer or in-amp is active.  
Unipolar/Bipolar Bit. Set by user to enable unipolar coding, i.e., zero differential input will result in  
0x000000 output and a full-scale differential input will result in 0xFFFFFF output. Cleared by the user to  
enable bipolar coding. Negative full-scale differential input will result in an output code of 0x000000,  
zero differential input will result in an output code of 0x800000, and a positive full-scale differential  
input will result in an output code of 0xFFFFFF.  
U/B  
CON11  
CON10-  
CON8  
0
This bit must be programmed with a Logic 0 for correct operation.  
Gain Select Bits.  
Written by the user to select the ADC input range as follows  
G2-G0  
G2  
0
G1  
0
G0  
0
Gain  
ADC Input Range (2.5V Reference)  
1 (In-Amp not used)  
2.5 V  
0
0
1
2 (In-Amp not used)  
1.25 V  
0
1
0
4
625 mV  
312.5 mV  
156.2 mV  
78.125 mV  
39.06 mV  
19.53 mV  
0
1
1
8
1
0
0
16  
32  
64  
128  
1
0
1
1
1
0
1
1
1
CON7-  
CON6  
REFSEL1/REFSEL0 Reference Select Bits. The reference source for the ADC is selected using these bits.  
REFSEL1  
REFSEL0 Reference Source  
0
0
1
1
0
1
0
1
External Reference applied between REFIN1(+) and REFIN1(-)  
External Reference applied between REFIN2(+) and REFIN2(-)  
Internal 1.17 V Reference  
Reserved  
CON5  
CON4  
REF_DET  
BUF  
Enables the Reference Detect Function.  
When set, the NOXREF bit in the status register indicates when the external reference being used by the  
ADC is open circuit or less than 0.5 V.  
When cleared, the reference detect function is disabled.  
Configures the ADC for buffered or unbuffered mode of operation. If cleared, the ADC operates in  
unbuffered mode, lowering the power consumption of the device. If set, the ADC operates in buffered  
mode, allowing the user to place source impedances on the front end without contributing gain errors  
to the system. For gains of 1 and 2, the buffer can be enabled or disabled. For higher gains, the buffer is  
automatically enabled.  
CON3-  
CON0  
CH3-CH0  
Channel Select bits.  
Written by the user to select the active analog input channel to the ADC.  
CH3  
0
CH2 CH1 CH0 Channel  
Calibration Pair  
0
0
0
0
0
0
1
1
0
1
0
1
AIN1(+) – AIN1(-)  
AIN2(+) – AIN2(-)  
AIN3(+) – AIN3(-)  
AIN4(+) – AIN4(-)  
0
1
2
3
0
0
0
REV.PrE 6/04 | Page 19  
AD7794  
Preliminary Technical Data  
Bit  
Location Bit Name  
Description  
0
0
0
1
1
1
0
0
1
0
1
0
AIN5(+) – AIN5(-)  
AIN6(+) – AIN6(-)  
Temp Sensor  
3
3
Automatically selects the internal  
reference and sets the gain to 1  
0
1
1
1
VDD Monitor  
Automatically selects the internal 1.17 V  
reference and sets the gain to 1/6  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AIN1(-) – AIN1(-)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
DATA REGISTER (RS2, RS1, RS0 = 0, 1, 1; POWER-ON/RESET = 0x000000)  
The conversion result from the ADC is stored in this data register. This is a read-only register. On completion of a read operation from  
this register, the  
bit/pin is set.  
RDY  
ID REGISTER (RS2, RS1, RS0 = 1, 0, 0; POWER-ON/RESET = 0xXF)  
The Identification Number for the AD7794 is stored in the ID register. This is a read-only register.  
IO REGISTER (RS2, RS1, RS0 = 1, 0, 1; POWER-ON/RESET = 0x00)  
The I/O register is an 8-bit register from which data can be read or to which data can be written. This register is used to enable the excitation  
currents and select the value of the excitation currents. Table 12 outlines the bit designations for the IO register. IO0 through IO7 indicate  
the bit locations, IO denoting the bits are in the IO register. IO7 denotes the first bit of the data stream. The number in brackets indicates the  
power-on/reset default status of that bit.  
IO7  
IO6  
IO5  
IO4  
IO3  
IO2  
IO1  
IO0  
0(0)  
IOEN(0)  
IO2DAT(0)  
IO1DAT(0)  
IEXCDIR1(0)  
IEXCDIR0(0)  
IEXCEN1(0)  
IEXCEN0(0)  
Table 12 Filter Register Bit Designations  
Bit Location Bit Name Description  
This bit must be programmed with a Logic 0 for correct operation.  
IO7  
IO6  
0
IOEN  
Configures the pins AIN6(+)/P2 and AIN6(-)/P2 are analog input pins or digital output pins.  
When this bit is set, the pins are configured as digital output pins P1 and P2.  
When this bit is cleared, these pins are configured as analog input pins AIN6(+) and AIN6(-).  
IO5-IO4  
IO3-IO2  
IO2DAT/IO1DAT P2/P1 Data.  
When IOEN is set, the data for the digital output pins P1 and P2 is written to bits IO2DAT and IO1DAT.  
Direction of Current Sources Select bits.  
IEXCDIR1 IEXCDIR0 Current Source Direction  
IEXCDIR1–  
IEXCDIR0  
0
0
1
1
0
1
0
1
Current Source IEXC1 connected to pin IOUT1, Current Source IEXC2  
connected to pin IOUT2  
Current Source IEXC1 connected to pin IOUT2, Current Source IEXC2  
connected to pin IOUT1  
Both Current Sources connected to pin IOUT1. Permitted only when the  
current sources are set to 10 uA or 200 uA  
Both Current Sources connected to pin IOUT2. Permitted only when the  
current sources are set to 10 uA or 200 uA  
IO3-IO2  
IEXCEN1–  
These bits are used to enable and disable the current sources along with selecting the value of the  
REV.PrE 6/04 | Page 20  
Preliminary Technical Data  
AD7794  
Bit Location Bit Name  
Description  
excitation currents.  
IEXCEN0  
IEXCEN1  
IEXCEN0  
Current Source Value  
0
0
1
1
0
1
0
1
Excitation Currents Disabled  
10 uA  
200 uA  
1 mA  
OFFSET REGISTER (RS2, RS1, RS0 = 1, 1, 0; POWER-ON/RESET = 0x800000)  
The offset register holds the offset calibration coefficient for the ADC. The power-on-reset value of the internal zero-scale calibration  
coefficient register is 800000 hex. The AD7794 has 4 offset registers. Channels AIN1 to AIN3 have dedicated offset registers while chan-  
nels AIN4, AIN5 and AIN6 share an offset register. Each of these registers is a 24-bit read/write register. This register is used in  
conjunction with its associated full-scale register to form a register pair. The power-on-reset value is automatically overwritten if an in-  
ternal or system zero-scale calibration is initiated by the user. The AD7794 must be placed in power down mode or idle mode when  
writing to the offset register.  
FULL-SCALE REGISTER (RS2, RS1, RS0 = 1, 1, 1; POWER-ON/RESET = 0x5XXXX5)  
The full-scale registers is a 24-bit register that holds the full-scale calibration coefficient for the ADC. The AD77794 has 4 full-scale  
registers. Channels AIN1, AIN2 and AIN3 have dedicated full-scale registers while channels AIN4, AIN5 and AIN6 share a register. The  
full-scale registers are read/write registers. However, when writing to the full-scale registers, the ADC must be placed in power down  
mode or idle mode. These registers are configured on power-on with factory-calibrated internal full-scale calibration coefficients, the  
factory calibration being performed with the gain set to 1 and using the internal reference. Therefore, every device will have different  
default coefficients. These default values are used when the device is operated with a gain of 1 and when the internal reference is selected.  
For other gains or when the external reference is used at a gain of 1, these default coefficients will be automatically overwritten if an  
internal or system full-scale calibration is initiated by the user. A full-scale calibration should be performed when the gain is changed.  
TYPICAL APPLICATION (FLOWMETER)  
VDD  
REFIN1(+)  
AVDD  
V
GND  
IN+  
IN-  
OUT+  
AIN1(+)  
AIN1(-)  
OUT-  
DD  
IN+  
IN-  
SERIAL  
INTERFACE  
AND  
CONTROL  
LOGIC  
DOUT/RDY  
DIN  
AIN2(+)  
AIN2(-)  
OUT-  
OUT+  
SIGMA DELTA  
ADC  
IN-AMP  
MUX  
SCLK  
CS  
AIN3(+)  
AIN3(-)  
IOUT1  
GND  
DD  
V
DVDD  
INTERNAL  
CLOCK  
R
CM  
AD7794  
REFIN1(-)  
PSW  
GND  
CLK  
REV.PrE 6/04 | Page 21  

相关型号:

AD7794BRU

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

AD7794BRU-REEL

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

AD7794BRUZ

6-CH 24-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PDSO24, ROHS COMPLIANT, MO-153AD, TSSOP-24
ROCHESTER

AD7794BRUZ-REEL

6-CH 24-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PDSO24, ROHS COMPLIANT, MO-153AD, TSSOP-24
ROCHESTER

AD7794BRUZ-REEL1

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

AD7794BRUZ1

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

AD7794CRUZ

6-CH 24-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PDSO24, ROHS COMPLIANT, MO-153AD, TSSOP-24
ROCHESTER

AD7794CRUZ-REEL1

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

AD7794CRUZ1

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

AD7794_07

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

AD7794_15

6-Channel, Low Noise, Low Power
ADI

AD7795

6-Channel, Low Noise, Low Power
ADI