AD7658-1YSTZ-500RL7 [ADI]

IC 6-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PQFP64, LEAD FREE, MS-026BCD, LQFP-64, Analog to Digital Converter;
AD7658-1YSTZ-500RL7
型号: AD7658-1YSTZ-500RL7
厂家: ADI    ADI
描述:

IC 6-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PQFP64, LEAD FREE, MS-026BCD, LQFP-64, Analog to Digital Converter

CD 转换器
文件: 总32页 (文件大小:1368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
250 kSPS, 6-Channel, Simultaneous  
Sampling, Bipolar 16-/14-/12-Bit ADC  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
Six independent ADCs  
CC  
CC  
CONVSTB  
V
CONVSTC  
CONVSTA  
DD  
True bipolar analog inputs  
CS  
SER/PAR  
Pin-/software-selectable ranges: ±10 V, ±± V  
Fast throughput rate: 2±0 kSPS  
iCMOSTM process technology  
Low power  
TBD mW at 2±0 kSPS with ± V supplies  
Wide input bandwidth  
TBD dB SNR at ±0 kHz input frequency  
On-chip reference and reference buffers  
Parallel, serial, and daisy-chain interface modes  
High speed serial interface  
SPI®-/QSPI™-/MICROWIRE™-/DSP-compatible  
Standby mode: 100 µW max  
CLK  
OSC  
CONTROL  
LOGIC  
V
DRIVE  
STBY  
REF  
BUF  
OUTPUT  
DRIVERS  
D
OUT  
A
V
V
T/H  
T/H  
16/14/12-BIT SAR  
16/14/12-BIT SAR  
1
SCLK  
2
3
OUTPUT  
DRIVERS  
D
OUT  
B
BUF  
V
T/H  
T/H  
16/14/12-BIT SAR  
16/14/12-BIT SAR  
OUTPUT  
DRIVERS  
D
OUT  
C
V
4
DATA/  
CONTROL  
LINES  
OUTPUT  
DRIVERS  
BUF  
64-lead LQFP  
16/14/12-BIT SAR  
V
V
T/H  
5
RD  
WR  
APPLICATIONS  
16/14/12-BIT SAR  
T/H  
V
6
Power line monitoring systems  
Instrumentation and control systems  
Multi-axis positioning systems  
AD7656-1/AD7657-1/AD7658-1  
AGND  
SS  
DGND  
Figure 1.  
GENERAL DESCRIPTION  
CONVST pins allow independent, simultaneous sampling of  
the three ADC pairs. The AD7656-1/AD7657-1/AD7658-1 all  
have a high speed parallel and serial interface, allowing the  
devices to interface with microprocessors or DSPs. In serial  
interface mode, the parts have a daisy-chain feature that allows  
multiple ADCs to connect to a single serial interface. The  
AD7656-1/ AD7657-1/AD7658-1 can accommodate true  
bipolar input signals in the 4 × VREF range and 2 × VREF range.  
The AD7656-1/ AD7657-1/AD7658-1 also contain an on-chip  
2.5 V reference.  
The AD7656-1/AD7657-1/AD7658-11 contain six 16-/14-/12-  
bit, fast, low power, successive approximation ADCs all in the  
one package that is designed on the iCMOS process (industrial  
CMOS). iCMOS is a process combining high voltage silicon  
with submicron CMOS and complementary bipolar  
technologies. It enables the development of a wide range of high  
performance analog ICs, capable of 33 V operation in a  
footprint that no previous generation of high voltage parts  
could achieve. Unlike analog ICs using conventional CMOS  
processes, iCMOS components can accept bipolar input signals  
while providing increased performance, which dramatically  
reduces power consumption and package size.  
PRODUCT HIGHLIGHTS  
1. Six 16-/14-/12-bit, 250 kSPS ADCs on board.  
2. Six true bipolar, high impedance analog inputs.  
3. Parallel and high speed serial interfaces.  
The AD7656-1/AD7657-1/AD7658-1 feature throughput rates  
up to 250 kSPS. The parts contain low noise, wide bandwidth,  
track-and-hold amplifiers that can handle input frequencies  
up to 12 MHz.  
The conversion process and data acquisition are controlled  
using CONVST signals and an internal oscillator. Three  
1 Protected by U.S. Patent No. 6,731,232.  
Rev. PrC  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 14  
Terminology.................................................................................... 18  
Theory of Operation ...................................................................... 20  
Converter Details ....................................................................... 20  
ADC Transfer Function............................................................. 21  
Reference Section ....................................................................... 21  
Typical Connection Diagram ................................................... 21  
Driving the Analog Inputs ........................................................ 22  
Interface Section......................................................................... 22  
Application Hints ........................................................................... 29  
Layout .......................................................................................... 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD7656.......................................................................................... 3  
AD7657.......................................................................................... 5  
AD7658.......................................................................................... 7  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
REVISION HISTORY  
Rev. PrC| Page 2 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
SPECIFICATIONS  
AD76±6-1  
VREF = 2.5 V internal/external, AVCC = 4.75 V to 5.25 V, DVCC = 4.75 V to 5.25 V, VDRIVE = 2.7 V to 5.25 V;  
For 4 × VREF range: VDD = 10 V to 16.5 V, VSS = −10 V to −16.5 V; For 2 × VREF range: VDD = 5 V to 16.5 V, VSS = −5 V to −16.5 V;  
f
SAMPLE = 250 kSPS, TA = TMIN to TMAX, unless otherwise noted.1  
Table 1.  
Parameter  
B Version1 Y Version1 Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Signal-to-Noise + Distortion (SINAD)2  
fIN = 50 kHz sine wave  
84  
85.5  
85  
86.5  
−90  
−92  
−100  
−100  
84  
85.5  
85  
86.5  
−90  
−92  
−100  
−100  
dB min  
dB typ  
dB min  
dB typ  
dB max  
dB typ  
dB typ  
dB typ  
Signal-to-Noise Ratio (SNR)2  
Total Harmonic Distortion (THD)2  
VDD/VSS  
VDD/VSS  
=
=
5 V to 10 V  
12 V to 16.5 V  
Peak Harmonic or Spurious Noise (SFDR)2  
Intermodulation Distortion (IMD)2  
Second-Order Terms  
Third-Order Terms  
Aperture Delay  
fa = 50 kHz, fb = 49 kHz  
−112  
−107  
10  
4
35  
−112  
−107  
10  
4
35  
dB typ  
dB typ  
ns max  
ns max  
ps typ  
Aperture Delay Matching  
Aperture Jitter  
Channel-to-Channel Isolation2  
Full Power Bandwidth  
−100  
12  
2
−100  
12  
2
dB typ  
MHz typ  
MHz typ  
fIN on unselected channels up to 100 kHz  
@ −3 dB  
@ −0.1 dB  
DC ACCURACY  
Resolution  
16  
16  
Bits  
No Missing Codes  
15  
16  
3
1
14  
16  
4.5  
1
Bits min  
Bits min  
LSB max  
LSB typ  
@ 25°C  
Integral Nonlinearity2  
Positive Full-Scale Error2  
Positive Full-Scale Error Matching2  
Bipolar Zero-Scale Error2  
Bipolar Zero-Scale Error Matching2  
Negative Full-Scale Error2  
Negative Full-Scale Error Matching2  
ANALOG INPUT  
0.75  
0.35  
0.023  
0.038  
0.75  
0.35  
0.75  
0.35  
0.023  
0.038  
0.75  
0.35  
% FS max  
% FS max  
% FS max  
% FS max  
% FS max  
% FS max  
0.22% FSR typical  
0.004% FSR typical  
0.22% FSR typical  
See Table 8 for min VDD/VSS for each range  
RNG bit/RANGE pin = 0  
Input Voltage Ranges  
4 ꢀ VREF  
4 ꢀ VREF  
V
2 ꢀ VREF  
2 ꢀ VREF  
V
RNG bit/RANGE pin = 1  
DC Leakage Current  
Input Capacitance3  
1
10  
14  
1
10  
14  
µA max  
pF typ  
pF typ  
4 ꢀ VREF range when in track  
2 ꢀ VREF range when in track  
REFERENCE INPUT/OUTPUT  
Reference Input Voltage Range  
DC Leakage Current  
2.5  
1
18.5  
2.5  
1
18.5  
V min/max  
µA max  
pF typ  
Input Capacitance3  
REFEN/DIS = 1  
1,000 hours  
Reference Output Voltage  
Long-Term Stability  
Reference Temperature Coefficient  
2.49/2.51  
2.49/2.51  
V min/max  
ppm typ  
ppm/°C max  
ppm/°C typ  
150  
25  
6
150  
25  
6
Rev. PrC | Page 3 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
Parameter  
B Version1 Y Version1 Unit  
Test Conditions/Comments  
LOGIC INPUTS  
Input High Voltage (VINH  
)
0.7 ꢀ VDRIVE 0.7 ꢀ VDRIVE V min  
0.3 ꢀ VDRIVE 0.3 ꢀ VDRIVE V max  
Input Low Voltage (VINL  
)
Input Current (IIN)  
1
10  
1
10  
µA max  
pF max  
Typically 10 nA, VIN = 0 V or VDRIVE  
Input Capacitance (CIN)3  
LOGIC OUTPUTS  
Output High Voltage (VOH  
Output Low Voltage (VOL  
Floating-State Leakage Current  
Floating-State Output Capacitance3  
Output Coding  
)
VDRIVE − 0.2 VDRIVE − 0.2 V min  
ISOURCE = 200 µA  
ISINK = 200 µA  
)
0.2  
1
10  
0.2  
1
10  
V max  
µA max  
pF max  
Twos complement  
CONVERSION RATE  
Conversion Time  
3.1  
550  
250  
3.1  
550  
250  
µs max  
ns max  
kSPS  
Track-and-Hold Acquisition Time2, 3  
Throughput Rate  
Parallel interface mode only  
POWER REQUIREMENTS  
VDD  
5/15  
5/15  
V nom min/max For 4 x VREF range, VDD = 10 V to 16.5 V  
VSS  
−5/−15  
−5/−15  
V nom min/max For 4 x VREF range, VDD = −10 V to −16.5 V  
AVCC  
5
5
V nom  
DVCC  
5
5
V nom  
VDRIVE  
ITOTAL  
3/5  
3/5  
V nom min/max  
Digital I/PS = 0 V or VDRIVE  
Normal Mode (Static)  
(Includes IAVCC, IVDD, IVSS, IVDRIVE, IDVCC  
Normal Mode (Operational)  
(Includes IAVCC, IVDD, IVSS, IVDRIVE, IDVCC  
ISS (Operational)  
28  
28  
mA max  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
VSS = −16.5 V  
fSAMPLE = 250 kSPS, AVCC = DVCC = VDRIVE = 5.25 V,  
VDD = 16.5 V, VSS = −16.5 V  
VSS = −16.5 V, fSAMPLE = 250 kSPS  
VDD = 16.5 V, fSAMPLE = 250 kSPS  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
)
)
TBD  
TBD  
mA max  
0.25  
0.25  
7
0.25  
0.25  
7
mA max  
mA max  
mA max  
IDD (Operational)  
Partial Power-Down Mode  
V
SS = −16.5 V  
Full Power-Down Mode (STBY Pin)  
Power Dissipation  
80  
80  
µA max  
SCLK on or off, AVCC = DVCC = VDRIVE = 5.25 V,  
VDD = 16.5 V, VSS = −16.5 V  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
VSS = −16.5 V  
Normal Mode (Static)  
143  
TBD  
35  
143  
TBD  
35  
mW max  
mW max  
mW max  
µW max  
Normal Mode (Operational)  
Partial Power-Down Mode  
Full Power-Down Mode (STBY Pin)  
fSAMPLE = 250 kSPS  
100  
100  
1 Temperature ranges are as follows: B version is −40°C to +85°C, Y version is −40°C to +125°C.  
2 See the Terminology section.  
3 Sample tested during initial release to ensure compliance.  
Rev. PrC| Page 4 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
AD76±7-1  
VREF = 2.5 V internal/external, AVCC = 4.75 V to 5.25 V, DVCC = 4.75 V to 5.25 V, VDRIVE = 2.7 V to 5.25 V;  
For 4 × VREF range: VDD = 10 V to 16.5 V, VSS = −10 V to −16.5 V; For 2 × VREF range: VDD = 5 V to 16.5 V, VSS = −5 V to −16.5 V;  
f
SAMPLE = 250 kSPS, TA = TMIN to TMAX, unless otherwise noted.1  
Table 2.  
Parameter  
B Version1 Y Version1 Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Signal-to-Noise + Distortion (SINAD)2  
Signal-to-Noise Ratio (SNR)2  
fIN = 50 kHz sine wave  
81.5  
82.5  
83.5  
−90  
−92  
−100  
81.5  
82.5  
83.5  
−89  
−92  
−100  
dB min  
dB min  
dB typ  
dB max  
dB typ  
dB typ  
Total Harmonic Distortion (THD)2  
Peak Harmonic or Spurious Noise (SFDR)2  
Intermodulation Distortion (IMD)2  
Second-Order Terms  
Third-Order Terms  
Aperture Delay  
Aperture Delay Matching  
Aperture Jitter  
Channel-to-Channel Isolation2  
fa = 50 kHz, fb = 49 kHz  
−109  
−104  
10  
4
35  
−100  
12  
2
−109  
−104  
10  
4
35  
−100  
12  
2
dB typ  
dB typ  
ns max  
ns max  
ps typ  
dB typ  
MHz typ  
MHz typ  
fIN on unselected channels up to 100 kHz  
@ −3 dB  
@ −0.1 dB  
Full Power Bandwidth  
DC ACCURACY  
Resolution  
14  
14  
Bits  
No Missing Codes  
Integral Nonlinearity2  
14  
1.5  
1
14  
1.5  
1
Bits min  
LSB max  
LSB typ  
Positive Full-Scale Error2  
Positive Full-Scale Error Matching2  
Bipolar Zero-Scale Error2  
Bipolar Zero-Scale Error Matching2  
Negative Full-Scale Error2  
Negative Full-Scale Error Matching2  
ANALOG INPUT  
0.61  
0.3  
0.0305  
0.0427  
0.61  
0.3  
0.61  
0.3  
0.0305  
0.0427  
0.61  
0.3  
% FS max  
% FS max  
% FS max  
% FS max  
% FS max  
% FS max  
0.183% FSR typical  
0.015 % FSR typical  
0.183% FSR typical  
See Table 8 for min VDD/VSS for each range  
RNG bit/RANGE pin = 0  
RNG bit/RANGE pin = 1  
Input Voltage Ranges  
4 ꢀ VREF  
2 ꢀ VREF  
1
10  
14  
4 ꢀ VREF  
2 ꢀ VREF  
1
10  
14  
V
V
DC Leakage Current  
Input Capacitance3  
µA max  
pF typ  
pF typ  
4 ꢀ VREF range when in track  
2 ꢀ VREF range when in track  
REFERENCE INPUT/OUTPUT  
Reference Input Voltage Range  
DC Leakage Current  
2.5  
1
18.5  
2.5  
1
18.5  
V min/max  
µA max  
pF typ  
Input Capacitance3  
REFEN/DIS = 1  
1,000 hours  
Reference Output Voltage  
Long-Term Stability  
Reference Temperature Coefficient  
2.49/2.51  
2.49/2.51  
V min/max  
ppm typ  
ppm/°C max  
ppm/°C typ  
150  
25  
6
150  
25  
6
LOGIC INPUTS  
Input High Voltage (VINH  
)
0.7 ꢀ VDRIVE 0.7 ꢀ VDRIVE V min  
0.3 ꢀ VDRIVE 0.3 ꢀ VDRIVE V max  
Input Low Voltage (VINL  
)
Input Current (IIN)  
Input Capacitance (CIN)3  
1
10  
1
10  
µA max  
pF max  
Typically 10 nA, VIN = 0 V or VDRIVE  
Rev. PrC | Page 5 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
Parameter  
B Version1 Y Version1 Unit  
Test Conditions/Comments  
LOGIC OUTPUTS  
Output High Voltage (VOH  
Output Low Voltage (VOL  
Floating-State Leakage Current  
Floating-State Output Capacitance3  
Output Coding  
)
VDRIVE − 0.2 VDRIVE − 0.2 V min  
ISOURCE = 200 µA  
ISINK = 200 µA  
)
0.2  
1
10  
0.2  
1
10  
V max  
µA max  
pF max  
Twos complement  
CONVERSION RATE  
Conversion Time  
3.1  
550  
250  
3.1  
550  
250  
µs max  
ns max  
kSPS  
Track-and-Hold Acquisition Time2, 3  
Throughput Rate  
Parallel interface mode only  
POWER REQUIREMENTS  
VDD  
5/15  
5/15  
V nom min/max For 4 x VREF range, VDD = 10 V to 16.5 V  
VSS  
−5/−15  
−5/−15  
V nom min/max For 4 x VREF range, VDD = −10 V to −16.5 V  
AVCC  
5
5
V nom  
DVCC  
5
5
V nom  
VDRIVE  
ITOTAL  
3/5  
3/5  
V nom min/max  
Digital I/PS = 0 V or VDRIVE  
Normal Mode (Static)  
(Includes IAVCC, IVDD, IVSS, IVDRIVE, IDVCC  
Normal Mode (Operational)  
(Includes IAVCC, IVDD, IVSS, IVDRIVE, IDVCC  
ISS (Operational)  
28  
28  
mA max  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
VSS = −16.5 V  
fSAMPLE = 250 kSPS, AVCC = DVCC = VDRIVE = 5.25 V,  
VDD = 16.5 V, VSS = −16.5 V  
VSS = −16.5 V, fSAMPLE = 250 kSPS  
VDD = 16.5 V, fSAMPLE = 250 kSPS  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
VSS = −16.5 V  
)
)
TBD  
TBD  
mA max  
0.25  
0.25  
7
0.25  
0.25  
7
mA max  
mA max  
mA max  
IDD (Operational)  
Partial Power-Down Mode  
Full Power-Down Mode (STBY Pin)  
Power Dissipation  
80  
80  
µA max  
SCLK on or off, AVCC = DVCC = VDRIVE = 5.25 V,  
VDD = 16.5 V, VSS = −16.5 V  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
V
SS = −16.5 V  
Normal Mode (Static)  
143  
TBD  
35  
143  
TBD  
35  
mW max  
mW max  
mW max  
µW max  
Normal Mode (Operational)  
Partial Power-Down Mode  
Full Power-Down Mode (STBY Pin)  
fSAMPLE = 250 kSPS  
100  
100  
1 Temperature ranges are as follows: B version is −40°C to +85°C, Y version is −40°C to +125°C.  
2 See the Terminology section.  
3 Sample tested during initial release to ensure compliance.  
Rev. PrC| Page 6 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
AD76±8-1  
VREF = 2.5 V internal/external, AVCC = 4.75 V to 5.25 V, DVCC = 4.75 V to 5.25 V, VDRIVE = 2.7 V to 5.25 V;  
For 4 × VREF range: VDD = 10 V to 16.5 V, VSS = −10 V to −16.5 V; For 2 × VREF range: VDD = 5 V to 16.5 V, VSS = −5 V to −16.5 V;  
f
SAMPLE = 250 kSPS, TA = TMIN to TMAX, unless otherwise noted.1  
Table 3.  
Parameter  
B Version1 Y Version1 Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Signal-to-Noise + Distortion (SINAD)2  
fIN = 50 kHz sine wave  
73  
73  
dB min  
dB typ  
dB max  
dB typ  
dB typ  
73.5  
−88  
−92  
−97  
73.5  
−88  
−92  
−97  
Total Harmonic Distortion (THD)2  
Peak Harmonic or Spurious Noise (SFDR)2  
Intermodulation Distortion (IMD)2  
Second-Order Terms  
Third-Order Terms  
Aperture Delay  
fa = 50 kHz, fb = 49 kHz  
−106  
−101  
10  
4
35  
−106  
−101  
10  
4
35  
dB typ  
dB typ  
ns max  
ns max  
ps typ  
Aperture Delay Matching  
Aperture Jitter  
Channel-to-Channel Isolation2  
Full Power Bandwidth  
−100  
12  
2
−100  
12  
2
dB typ  
MHz typ  
MHz typ  
fIN on unselected channels up to 100 kHz  
@ −3 dB  
@ −0.1 dB  
DC ACCURACY  
Resolution  
No Missing Codes  
12  
12  
0.7  
1
0.6104  
0.366  
3
12  
12  
0.7  
1
0.6104  
0.366  
3
Bits  
Bits min  
LSB max  
LSB max  
% FS max  
% FS max  
LSB max  
LSB max  
% FS max  
% FS max  
Differential Nonlinearity  
Integral Nonlinearity2  
Positive Full-Scale Error2  
Positive Full-Scale Error Matching2  
Bipolar Zero-Scale Error2  
Bipolar Zero-Scale Error Matching2  
Negative Full-Scale Error2  
Negative Full-Scale Error Matching2  
ANALOG INPUT  
0.244% FSR typical  
0.0488% FSR typical  
0.244% FSR typical  
3
3
0.6104  
0.366  
0.6104  
0.366  
See Table 8 for min VDD/VSS for each range  
RNG bit/RANGE pin = 0  
RNG bit/RANGE pin = 1  
Input Voltage Ranges  
4 ꢀ VREF  
2 ꢀ VREF  
1
10  
14  
4 ꢀ VREF  
2 ꢀ VREF  
1
10  
14  
V
V
DC Leakage Current  
Input Capacitance3  
µA max  
pF typ  
pF typ  
4 ꢀ VREF range when in track  
2 ꢀ VREF range when in track  
REFERENCE INPUT/OUTPUT  
Reference Input Voltage Range  
DC Leakage Current  
2.5  
1
18.5  
2.5  
1
18.5  
V min/max  
µA max  
pF typ  
Input Capacitance3  
REFEN/DIS = 1  
1,000 hours  
Reference Output Voltage  
Long-Term Stability  
Reference Temperature Coefficient  
2.49/2.51  
2.49/2.51  
V min/max  
ppm typ  
ppm/°C max  
ppm/°C typ  
150  
25  
6
150  
25  
6
LOGIC INPUTS  
Input High Voltage (VINH  
)
0.7 ꢀ VDRIVE 0.7 ꢀ VDRIVE V min  
0.3 ꢀ VDRIVE 0.3 ꢀ VDRIVE V max  
Input Low Voltage (VINL  
)
Input Current (IIN)  
Input Capacitance (CIN)3  
1
10  
1
10  
µA max  
pF max  
Typically 10 nA, VIN = 0 V or VDRIVE  
Rev. PrC | Page 7 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
Parameter  
B Version1 Y Version1 Unit  
Test Conditions/Comments  
LOGIC OUTPUTS  
Output High Voltage (VOH  
Output Low Voltage (VOL  
Floating-State Leakage Current  
Floating-State Output Capacitance3  
Output Coding  
)
VDRIVE − 0.2 VDRIVE − 0.2 V min  
ISOURCE = 200 µA  
ISINK = 200 µA  
)
0.2  
1
10  
0.2  
1
10  
V max  
µA max  
pF max  
Twos complement  
CONVERSION RATE  
Conversion Time  
3.1  
550  
250  
3.1  
550  
250  
µs max  
ns max  
kSPS  
Track-and-Hold Acquisition Time2, 3  
Throughput Rate  
Parallel interface mode only  
POWER REQUIREMENTS  
VDD  
5/15  
5/15  
V nom min/max For 4 x VREF range, VDD = 10 V to 16.5 V  
VSS  
−5/−15  
−5/−15  
V nom min/max For 4 x VREF range, VDD = −10 V to −16.5 V  
AVCC  
5
5
V nom  
DVCC  
5
5
V nom  
VDRIVE  
ITOTAL  
3/5  
3/5  
V nom min/max  
Digital I/PS = 0 V or VDRIVE  
Normal Mode (Static)  
(Includes IAVCC, IVDD, IVSS, IVDRIVE, IDVCC  
Normal Mode (Operational)  
(Includes IAVCC, IVDD, IVSS, IVDRIVE, IDVCC  
ISS (Operational)  
28  
28  
mA max  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
VSS = −16.5 V  
fSAMPLE = 250 kSPS, AVCC = DVCC = VDRIVE = 5.25 V,  
VDD = 16.5 V, VSS = −16.5 V  
VSS = −16.5 V, fSAMPLE = 250 kSPS  
VDD = 16.5 V, fSAMPLE = 250 kSPS  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
VSS = −16.5 V  
)
)
TBD  
TBD  
mA max  
0.25  
0.25  
7
0.25  
0.25  
7
mA max  
mA max  
mA max  
IDD (Operational)  
Partial Power-Down Mode  
Full Power-Down Mode (STBY Pin)  
Power Dissipation  
80  
80  
µA max  
SCLK on or off, AVCC = DVCC = VDRIVE = 5.25 V,  
VDD = 16.5 V, VSS = −16.5 V  
AVCC = DVCC = VDRIVE = 5.25 V, VDD = 16.5 V,  
V
SS = −16.5 V  
Normal Mode (Static)  
143  
TBD  
35  
143  
TBD  
35  
mW max  
mW max  
mW max  
µW max  
Normal Mode (Operational)  
Partial Power-Down Mode  
Full Power-Down Mode (STBY Pin)  
fSAMPLE = 250 kSPS  
100  
100  
1 Temperature ranges are as follows: B version is −40°C to +85°C, Y version is −40°C to +125°C  
2 See the Terminology section.  
3 Sample tested during initial release to ensure compliance.  
Rev. PrC| Page 8 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
TIMING SPECIFICATIONS  
AVCC/DVCC = 4.75 V to 5.25 V, VDD = 5 V to 16.5 V, VSS = −5 V to −16.5 V, VDRIVE = 2.7 V to 5.25 V, VREF = 2.5 V internal/external,  
TA = TMIN to TMAX, unless otherwise noted.1  
Table 4.  
Limit at TMIN, TMAX  
Parameter  
PARALLEL MODE  
tCONVERT  
Unit  
Description  
VDRIVE < 4.7± V  
VDRIVE = 4.7± V to ±.2± V  
3
150  
3
150  
µs typ  
ns min  
Conversion time, internal clock  
Minimum quiet time required between bus relinquish  
and start of next conversion  
tQUIET  
tACQ  
t10  
t1  
550  
25  
60  
2
550  
25  
60  
2
ns min  
ns min  
ns min  
ms max  
µs max  
Acquisition time  
Minimum CONVST low pulse  
CONVST high to BUSY high  
STBY rising edge to CONVST rising edge  
Partial power-down mode  
tWAKE-UP  
25  
25  
PARALLEL WRITE OPERATION  
t11  
t12  
t13  
t14  
t15  
15  
0
15  
0
ns min  
ns min  
ns min  
ns min  
ns min  
WR pulse width  
CS to WR setup time  
5
5
CS to WR hold time  
5
5
Data setup time before WR rising edge  
Data hold after WR rising edge  
5
5
PARALLEL READ OPERATION  
t2  
0
0
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns max  
ns min  
BUSY to RD delay  
t3  
0
0
CS to RD setup time  
t4  
0
0
CS to RD hold time  
t5  
45  
45  
10  
12  
6
36  
36  
10  
12  
6
RD pulse width  
t6  
Data access time after RD falling edge  
Data hold time after RD rising edge  
Bus relinquish time after RD rising edge  
Minimum time between reads  
t7  
t8  
t9  
SERIAL INTERFACE  
fSCLK  
t16  
18  
12  
18  
12  
MHz max Frequency of serial read clock  
ns max  
ns max  
ns min  
ns min  
ns min  
ns max  
Delay from CS until SDATA three-state disabled  
2
t17  
22  
22  
Data access time after SCLK rising edge/CS falling edge  
SCLK low pulse width  
SCLK high pulse width  
SCLK to data valid hold time after SCLK falling edge  
CS rising edge to SDATA high impedance  
t18  
t19  
t20  
t21  
0.4 tSCLK  
0.4 tSCLK  
10  
0.4 tSCLK  
0.4 tSCLK  
10  
18  
18  
1 Sample tested during initial release to ensure compliance. All input signals are specified with tR = tF = 5 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 V.  
2 A buffer is used on the data output pins for this measurement.  
200µA  
I
OL  
TO OUTPUT  
PIN  
1.6V  
C
L
25pF  
200µA  
I
OH  
Figure 2. Load Circuit for Digital Output Timing Specification  
Rev. PrC | Page 9 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to AGND, DGND  
VSS to AGND, DGND  
VDD to AVCC  
AVCC to AGND, DGND  
DVCC to AVCC  
−0.3 V to +16.5 V  
+0.3 V to −16.5 V  
VCC − 0.3 V to 16.5 V  
−0.3 V to +7 V  
−0.3 V to AVCC + 0.3 V  
−0.3 V to +7 V  
DVCC to DGND, AGND  
AGND to DGND  
−0.3 V to +0.3 V  
VDRIVE to DGND  
−0.3 V to +DVCC + 0.3 V  
VSS − 0.3 V to VDD + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to AVCC + 0.3 V  
Analog Input Voltage to AGND1  
Digital Input Voltage to DGND  
Digital Output Voltage to GND  
REFIN to AGND  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. These  
specifications apply to a four-layer board.  
Input Current to Any Pin Except  
Supplies2  
10 mA  
Table 6. Thermal Resistance  
Package Type  
Operating Temperature Range  
B Version  
Y Version  
Storage Temperature Range  
Junction Temperature  
Pb/SN Temperature, Soldering  
Reflow (10 sec to 30 sec)  
θJA  
θJC  
Unit  
−40°C to +85°C  
−40°C to +125°C  
−65°C to +150°C  
150°C  
64-Lead LQFP  
45  
11  
°C/W  
240(+0)°C  
Pb-Free Temperature, Soldering Reflow 260(+0)°C  
1 If the analog inputs are being driven from alternative VDD and VSS supply  
circuitry, a 240 Ω series resistor should be placed on the analog inputs.  
2 Transient currents of up to 100 mA do not cause SCR latch-up.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrC| Page 10 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
DB14/REFBUF  
V6  
EN/DIS  
DB13  
PIN 1  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AV  
AV  
V5  
CC  
CC  
3
DB12  
DB11  
4
5
DB10/DOUT C  
DB9/DOUT B  
DB8/DOUT A  
DGND  
AGND  
AGND  
V4  
6
AD7656-1/AD7657-1/AD7658-1  
7
TOP VIEW  
8
(Not to Scale)  
AV  
AV  
V3  
CC  
CC  
9
V
DRIVE  
10  
11  
12  
13  
14  
15  
16  
DB7/HBEN/DCEN  
DB6/SCLK  
AGND  
AGND  
V2  
DB5/DCIN A  
DB4/DCIN B  
DB3/DCIN C  
DB2/SEL C  
AV  
AV  
V1  
CC  
CC  
DB1/SEL B  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
54, 56, 58  
REFCAPA, REFCAPB,  
REFCAPC  
Decoupling capacitors are connected to these pins. This decouples the reference buffer for each  
ADC pair. Each REFCAP pin should be decoupled to AGND using a 1 µF.  
33, 36, 39,  
42, 45, 48  
V1 to V6  
Analog Input 1 to 6. These are six single-ended analog inputs. In hardware mode, the analog input  
range on these channels is determined by the RANGE pin. In software mode, it is determined by bits  
RNGC to RNGA of the control register (see Table 10).  
32, 37, 38, 43, AGND  
44, 49, 52, 53,  
Analog Ground. Ground reference point for all analog circuitry on the AD7656-1/AD7657-1/AD7658-  
1.  
55, 57, 59  
All analog input signals and any external reference signal should be referred to this AGND voltage.  
All 11 of these AGND pins should be connected to the AGND plane of a system. The AGND and  
DGND voltages should ideally be at the same potential and must not be more than 0.3 V apart,  
even on a transient basis.  
26  
DVCC  
Digital Power, 4.75 V to 5.25 V. The DVCC and AVCC voltages should ideally be at the same potential  
and must not be more than 0.3 V apart, even on a transient basis. This supply should be decoupled  
to DGND, and 10 µF and 100 nF decoupling capacitors should be placed on the DVCC pin.  
9
VDRIVE  
Logic Power Supply Input. The voltage supplied at this pin determines the operating voltage of the  
interface. Nominally at the same supply as the supply of the host interface.  
8, 25  
DGND  
Digital Ground. This is the ground reference point for all digital circuitry on the AD7656-1/AD7657-  
1/AD7658-1. Both DGND pins should connect to the DGND plane of a system. The DGND and AGND  
voltages should ideally be at the same potential and must not be more than 0.3 V apart, even on a  
transient basis.  
34, 35, 40,  
41, 46, 47,  
50, 60  
AVCC  
Analog Supply Voltage, 4.75 V to 5.25 V. This is the supply voltage for the ADC cores. The AVCC and  
DVCC voltages should ideally be at the same potential and must not be more than 0.3 V apart, even  
on a transient basis.  
23, 22, 21  
CONVST A,  
Conversion Start Input A, B, C. These logic inputs are used to initiate conversions on the ADC pairs.  
CONVST B, CONVST C CONVST A is used to initiate simultaneous conversions on V1 and V2. CONVST B is used to initiate  
simultaneous conversions on V3 and V4. CONVST C is used to initiate simultaneous conversions on  
V5 and V6. When CONVSTx switches from low to high, the track-and-hold switch on the selected  
ADC pair switches from track to hold and the conversion is initiated. These inputs can also be used  
to place the ADC pairs into partial power-down mode.  
Rev. PrC | Page 11 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
Pin No.  
Mnemonic  
Description  
19  
CS  
Chip Select. This active low logic input frames the data transfer. When both CS and RD are logic low  
in parallel mode, the output bus is enabled and the conversion result is output on the parallel data  
bus lines. When both CS and WR are logic low in parallel mode, DB[15:8] are used to write data to  
the on-chip control register. In serial mode, the CS is used to frame the serial read transfer and clock  
out the MSB of the serial output data.  
20  
63  
RD  
Read Data. When both CS and RD are logic low in parallel mode, the output bus is enabled. In serial  
mode, the RD line should be held low.  
Write Data/Reference Enable/Disable. When H/S SEL pin is high and both CS and WR are logic low,  
DB[15:8] are used to write data to the internal control register. When the H/S SEL pin is low, this pin  
is used to enable or disable the internal reference. When H/S SEL = 0 and REF EN/DIS = 0, the  
internal reference is disabled and an external reference should be applied to the REFIN/REFOUT pin.  
When H/S SEL = 0 and REF EN/DIS = 1, the internal reference is enabled and the REFIN/REFOUT pin  
should be decoupled. See the Reference Section.  
WR/REFEN/DIS  
18  
51  
61  
17  
BUSY  
BUSY Output. This pin transitions high when a conversion is started and remains high until the  
conversion is complete and the conversion data is latched into the output data registers. A new  
conversion should not be initiated on the AD7656-1/AD7657-1/AD7658-1 when the BUSY signal is  
high.  
REFIN/REFOUT  
SER/PAR/SEL  
DB0/SEL A  
Reference Input/Output. The on-chip reference is available on this pin for use external to the  
AD7656-1/AD7657-1/AD7658-1. Alternatively, the internal reference can be disabled and an  
external reference can be applied to this input. See the Reference Section. When the internal  
reference is enabled, this pin should be decoupled using at least a 10 µF decoupling cap.  
Serial/Parallel Selection Input. When this pin is low, the parallel interface is selected. When this  
pin is high, the serial interface mode is selected. In serial mode, DB[10:8] take on their DOUT[C:A]  
function, DB[0:2] take on their DOUT select function, DB7 takes on its DCEN function. In serial mode,  
DB15 and DB[13:11] should be tied to DGND.  
Data Bit 0/Select DOUT A. When SER/PAR = 0, this pin acts as a three-state parallel digital output pin.  
When SER/PAR = 1, this pin takes on its SEL A function; it is used to configure the serial interface. If  
this pin is 1, the serial interface operates with one/two/three DOUT output pins and enables DOUT A  
as a serial output. When operating in serial mode, this pin should always be = 1.  
16  
15  
DB1/SEL B  
DB2/SEL C  
Data Bit 1/Select DOUT B. When SER/PAR = 0, this pin acts as a three-state parallel digital output pin.  
When SER/PAR = 1, this pin takes on its SEL B function; it is used to configure the serial interface. If  
this pin is 1, the serial interface operates with two/three DOUT output pins and enables DOUT B as a  
serial output. If this pin is 0, the DOUT B is not enabled to operate as a serial data output pin and  
only one DOUT output pin, DOUT A, is used. Unused serial DOUT pins should be left unconnected.  
Data Bit 2/Select DOUT C. When SER/PAR = 0, this pin acts as a three-state parallel digital output pin.  
When SER/PAR = 1, this pin takes on its SEL C function; it is used to configure the serial interface. If  
this pin is 1, the serial interface operates with three DOUT output pins and enables DOUT C as a  
serial output. If this pin is 0, the DOUT C is not enabled to operate as a serial data output pin.  
Unused serial DOUT pins should be left unconnected.  
14  
13  
12  
DB3/DCIN C  
DB4/DCIN B  
DB5/DCIN A  
Data Bit 3/Daisy-Chain Input C. When SER/PAR = 0, this pin acts as a three-state parallel digital  
output pin. When SER/PAR = 1 and DCEN = 1, this pin acts as Daisy-Chain Input C. When operating  
in serial mode but not in daisy-chain mode, this pin should be tied to DGND.  
Data Bit 4/Daisy-Chain Input B. When SER/PAR = 0, this pin acts as a three-state parallel digital  
output pin. When SER/PAR = 1 and DCEN = 1, this pin acts as Daisy-Chain Input B. When operating  
in serial mode but not in daisy-chain mode, this pin should be tied to DGND.  
Data Bit 5/Daisy-Chain Input A. When SER/PAR is low, this pin acts as a three-state parallel digital  
output pin. When SER/PAR = 1 and DCEN = 1, this pin acts as Daisy-Chain Input A. When operating  
in serial mode but not in daisy-chain mode, this pin should be tied to DGND.  
11  
10  
DB6/SCLK  
Data Bit 6/Serial Clock. When SER/PAR = 0, this pin acts as a three-state parallel digital output pin. When  
SER/PAR = 1, this pin takes on its SCLK input function; it is the read serial clock for the serial transfer.  
DB7/HBEN/DCEN  
Data Bit 7/High Byte Enable/Daisy-Chain Enable. When operating in parallel word mode  
(SER/PAR = 0 and W/B = 0), this pin takes on its Data Bit 7 function. When operating in parallel  
byte mode (SER/PAR = 0 and W/B = 1), this pin takes on its HBEN function. When in this mode and  
the HBEN pin is logic high, the data is output MSB byte first on DB[15:8]. When the HBEN pin is  
logic low, the data is output LSB byte first on DB[15:8]. When operating in serial mode (SER/PAR = 1),  
this pin takes on its DCEN function. When the DCEN pin is logic high, the parts operate in daisy-  
chain mode with DB[5:3] taking on their DCIN[A:C] function. When operating in serial mode but  
not in daisy-chain mode, this pin should be tied to DGND.  
Rev. PrC| Page 12 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
Pin No.  
Mnemonic  
Description  
7
DB8/DOUT A  
Data Bit 8/Serial Data Output A. When SER/PAR = 0, this pin acts as a three-state parallel digital  
output pin. When SER/PAR = 1 and SEL A = 1, this pin takes on its DOUT A function and outputs  
serial conversion data.  
6
5
DB9/DOUT B  
Data Bit 9/Serial Data Output B. When SER/PAR = 0, this pin acts as a three-state parallel digital  
output pin. When SER/PAR = 1 and SEL B = 1, this pin takes on its DOUT B function and outputs  
serial conversion data. This configures the serial interface to have two DOUT output lines.  
DB10/DOUT C  
Data Bit 10/Serial Data Output C. When SER/PAR = 0, this pin acts as a three-state parallel digital  
output pin. When SER/PAR = 1 and SEL C = 1, this pin takes on its DOUT C function and outputs  
serial conversion data. This configures the serial interface to have three DOUT output lines.  
4
DB11  
Data Bit 11/Digital Ground. When SER/PAR = 0, this pin acts as a three-state parallel digital output  
pin. When SER/PAR = 1, this pin should be tied to DGND.  
3, 2, 64  
DB12, DB13, DB15  
Data Bit 12, 13, 15. When SER/PAR = 0, these pins act as three-state parallel digital input/output  
pins. When CS and RD are low, these pins are used to output the conversion result. When CS and WR  
are low, these pins are used to write to the control register. When SER/PAR = 1, these pins should be  
tied to DGND. For the AD7657, DB15 contains a leading zero. For the AD7658, DB15, DB13, and  
DB12 contain leading zeros.  
1
Data Bit 14/REFBUF Enable/Disable. When SER/PAR =0, this pin acts as a three-state digital input/  
output pin. For the AD7657/AD7658, DB14 contains a leading zero. When SER/PAR = 1, this pin can be  
used to enable or disable the internal reference buffers.  
DB14/REFBUFEN  
/DIS  
28  
RESET  
Reset Input. When set to logic high, this pin resets the AD7656-1/AD7657-1/AD7658-1. The current  
conversion, if any, is aborted. The internal register is set to all 0s. In hardware mode, the AD7656-  
1/AD7657-1/AD7658-1 are configured depending on the logic levels on the hardware select pins. In  
all modes, the parts should receive a RESET pulse after power-up. The reset high pulse should be  
typically 100 ns wide. After the RESET pulse, the AD7656-1/AD7657-1/AD7658-1 needs to see a valid  
CONVST pulse in order to initiate a conversion; this should consist of a high-to-low CONVST edge  
followed by a low-to-high CONVST edge. The CONVST signal should be high during the RESET pulse.  
27  
RANGE  
Analog Input Range Selection. Logic input. The logic level on this pin determines the input range of  
the analog input channels. When this pin is Logic 1 at the falling edge of BUSY, the range for the  
next conversion is 2 ꢀ VREF. When this pin is Logic 0 at the falling edge of BUSY, the range for the  
next conversion is 4 ꢀ VREF. In hardware select mode, the RANGE pin is checked on the falling edge  
of BUSY. In software mode (H/S SEL = 1), the RANGE pin can be tied to DGND and the input range is  
determined by the RNGA, RNGB, and RNGC bits in the control register.  
31  
30  
24  
VDD  
Positive Power Supply Voltage. This is the positive supply voltage for the analog input section.  
Negative Power Supply Voltage. This is the negative supply voltage for the analog input section.  
VSS  
STBY  
Standby Mode Input. This pin is used to put all six on-chip ADCs into standby mode. The STBY pin is  
high for normal operation and low for standby operation.  
62  
H/S SEL  
W/B  
Hardware/Software Select Input. Logic input. When H/S SEL = 0, the AD7656-1/AD7657-1/AD7658-1  
operate in hardware select mode, and the ADC pairs to be simultaneously sampled are selected  
by the CONVST pins. When H/S SEL = 1, the ADC pairs to be sampled simultaneously are selected by  
writing to the control register. In serial mode, CONVST A is used to initiate conversions on the  
selected ADC pairs.  
29  
Word/Byte Input. When this pin is logic low, data can be transferred to and from the AD7656-  
1/AD7657-1/ AD7658-1 using the parallel data lines DB[15:0]. When this pin is logic high, byte mode is  
enabled. In this mode, data is transferred using data lines DB[15:8] and DB[7] takes on its HBEN  
function. To obtain the 16-bit conversion result, 2-byte reads are required. In serial mode, this pin  
should be tied to DGND.  
Rev. PrC | Page 13 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
1.5  
0
V
/V = ±15V  
DD SS  
AV /DV /V  
INTERNAL REFERENCE  
±10V RANGE  
= +5V  
CC CC DRIVE  
–20  
–40  
T
= 25°C  
A
1.0  
f
f
= 250kSPS  
= 50kHz  
S
IN  
0.5  
–60  
SNR = +87.33dB  
SINAD = +87.251dB  
THD = –104.32dB  
SFDR = –104.13dB  
0
–80  
–0.5  
–1.0  
–1.5  
–2.0  
–100  
–120  
–140  
–160  
AV /DV /V  
CC CC DRIVE  
= +5V  
V
/V = ±12V  
DD SS  
f
= 250kSPS  
RANGE  
SAMPLE  
2 × V  
REF  
DNL WCP = 0.81LSB  
DNL WCN = –0.57LSB  
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k 65535  
0
0
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
Figure 7. AD7656-1 Typical DNL  
Figure 4. AD7656-1 FFT for 10 V Range  
0
–20  
2.0  
1.6  
V
/V = ±12V  
DD SS  
AV /DV /V  
CC CC DRIVE  
= +5V  
AV /DV /V  
= +5V  
V
/V = ±12V  
CC CC DRIVE  
DD SS  
INTERNAL REFERENCE  
±5V RANGE  
f
= 250kSPS  
RANGE  
SAMPLE  
2 × V  
1.2  
REF  
T
= 25°C  
A
–40  
f
f
= 250kSPS  
= 50kHz  
S
0.8  
IN  
–60  
SNR = +86.252dB  
SINAD = +86.196dB  
THD = –105.11dB  
SFDR = –98.189dB  
0.4  
–80  
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–100  
–120  
–140  
–160  
0
2000  
4000  
6000  
8000 10000 12000 14000 16383  
CODE  
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
Figure 8. AD7657-1 Typical INL  
Figure 5. AD7656-1 FFT for 5 V Range  
2.0  
1.6  
2.0  
1.5  
AV /DV /V  
CC CC DRIVE  
= +5V  
AV /DV /V  
= +5V  
CC  
CC DRIVE  
V
/V = ±12V  
V
f
/V = ±12V  
DD SS  
DD SS  
= 250kSPS  
RANGE  
SAMPLE  
2 × V  
1.2  
REF  
INL WCP = 0.64LSB  
INL WCN = –0.76LSB  
1.0  
0.8  
0.5  
0.4  
0
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
2000  
4000  
6000  
8000 10000 12000 14000 16383  
CODE  
10k  
20k  
30k  
CODE  
40k  
50k  
60k 65535  
Figure 9. AD7657-1 Typical DNL  
Figure 6. AD7656-1 Typical INL  
Rev. PrC| Page 14 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
1.0  
–60  
–70  
f
= 250kSPS  
SAMPLE  
INTERNAL REFERENCE  
= 25°C  
AV /DV /V  
= +5V  
0.8  
0.6  
CC  
CC DRIVE  
T
V
f
/V = ±12V  
A
DD SS  
AV /DV /V  
CC CC DRIVE  
= +5V  
= 250kSPS  
RANGE  
SAMPLE  
V
/V = ±5.25V  
DD SS  
2 × V  
REF  
±5V RANGE  
0.4  
AV /DV  
CC  
/
CC  
= +4.75V  
–80  
V
DRIVE  
/V = ±10V  
0.2  
V
DD SS  
±10V RANGE  
AV /DV  
CC  
/
CC  
= +5V  
0
–90  
V
DRIVE  
/V = ±12V  
V
DD SS  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
±5V RANGE  
–100  
–110  
–120  
AV /DV  
/
CC  
CC  
= +5.25V  
V
V
DRIVE  
/V = ±16.5V  
±10V RANGE  
DD SS  
0
500  
1000  
1500 2000  
CODE  
2500  
3000 3500  
4095  
10  
100  
1000  
ANALOG INPUT FREQUENCY (kHz)  
Figure 13. AD7656 THD vs. Input Frequency  
Figure 10. AD7658 Typical INL  
1.0  
0.8  
–60  
–70  
V
/V = ±16.5V  
DD SS  
AV /DV /V  
= +5.25V  
AV /DV /V  
= +5V  
CC  
CC DRIVE  
CC  
CC DRIVE  
T
= 25°C  
V
f
/V = ±12V  
A
DD SS  
= 250kSPS  
RANGE  
INTERNAL REFERENCE  
±4 × V RANGE  
SAMPLE  
0.6  
2 × V  
REF  
REF  
0.4  
–80  
0.2  
R
= 1000  
SOURCE  
0
–90  
R
= 100Ω  
SOURCE  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R
= 220Ω  
SOURCE  
–100  
–110  
–120  
R
= 10Ω  
SOURCE  
R
= 50Ω  
SOURCE  
0
500  
1000  
1500 2000  
CODE  
2500  
3000 3500  
4095  
10  
100  
ANALOG INPUT FREQUENCY (kHz)  
Figure 11. AD7658 Typical DNL  
Figure 14. AD7656 THD vs. Input Frequency for Various Source Impedances,  
4 ꢀ VREF Range  
90  
85  
80  
75  
70  
65  
60  
–40  
AV /DV /V  
CC CC DRIVE  
= +5.25V  
V
/V = ±12V  
DD SS  
V
/V = ±16.5V  
DD SS  
AV /DV /V  
= +5V  
CC  
CC DRIVE  
±10V RANGE  
–50  
–60  
T
= 25°C  
A
INTERNAL REFERENCE  
±2 × V RANGE  
AV /DV  
/
CC  
CC  
= +5V  
V
V
REF  
DRIVE  
AV /DV  
CC CC  
/
/V = ±12V  
DD SS  
V
= +4.75 V  
DRIVE  
/V = ±10V  
±5V RANGE  
–70  
V
DD SS  
±10V RANGE  
–80  
R
= 1000Ω  
SOURCE  
AV /DV  
CC  
/
CC  
= +5V  
–90  
V
V
DRIVE  
/V = ±5.25V  
R
= 220Ω  
SOURCE  
DD SS  
±5V RANGE  
R
= 100Ω  
SOURCE  
–100  
–110  
–120  
f
= 250kSPS  
INTERNAL REFERENCE  
SAMPLE  
R
= 50Ω  
R
SOURCE  
= 10Ω  
SOURCE  
T
= 25°C  
A
10  
100  
ANALOG INPUT FREQUENCY (kHz)  
1000  
10  
100  
ANALOG INPUT FREQUENCY (kHz)  
Figure 12. AD7656-1 SINAD vs. Input Frequency  
Figure 15. AD7656-1 THD vs. Input Frequency for Various Source  
Impedances,  
2 ꢀ VREF Range  
Rev. PrC | Page 15 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
2.510  
100  
90  
80  
70  
60  
50  
40  
f
= 250kSPS  
RANGE  
AV /DV /V  
CC CC DRIVE  
= +5V  
SAMPLE  
±2 × V  
V
/V = ±12V  
REF  
DD SS  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
INTERNAL REFERENCE  
T
f
= 25°C  
= 10kHz  
A
IN  
100nF ON V AND V  
DD  
SS  
V
SS  
V
DD  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
30  
80  
130 180 230 280 330 380 430 480 530  
SUPPLY RIPPLE FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 16. Reference Voltage vs. Temperature  
Figure 19. PSRR vs. Supply Ripple Frequency  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
87.0  
86.5  
86.0  
85.5  
85.0  
84.5  
84.0  
83.5  
83.0  
AV /DV /V  
CC CC DRIVE  
= +5V  
V
/V = ±12V  
DD SS  
±5V RANGE,  
AV /DV /V  
= +5V  
CC CC DRIVE  
/V = ±12V  
DD SS  
±10V RANGE,  
V
AV /DV /V  
= +5.25V  
CC CC DRIVE  
V
/V = ±16.5V  
DD SS  
f
f
= 250kSPS  
SAMPLE  
= 50kHz  
IN  
INTERNAL REFERENCE  
–40 –20 20  
TEMPERATURE (°C)  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
Figure 17. Conversion Time vs. Temperature  
Figure 20.AD7656 SNR vs. Temperature  
–100  
–101  
–102  
–103  
–104  
–105  
–106  
–107  
3500  
3000  
2500  
2000  
1500  
1000  
500  
f
f
= 250kSPS  
SAMPLE  
= 50kHz  
3212  
IN  
V
/V = ±15V  
DD SS  
INTERNAL REFERENCE  
AV /DV /V  
INTERNAL REFERENCE  
8192 SAMPLES  
= +5V  
CC CC DRIVE  
2806  
±10V RANGE,  
AV /DV /V  
= +5.25V  
CC CC DRIVE  
V
/V = ±16.5V  
DD SS  
1532  
±5V RANGE,  
AV /DV /V  
= +5V  
CC CC DRIVE  
V
/V = ±12V  
DD SS  
392  
–3  
168  
25  
57  
–4  
0
0
3
0
–5  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–2  
–1  
0
1
2
TEMPERATURE (°C)  
CODE  
Figure 21. AD7656-1 THD vs. Temperature  
Figure 18. AD7656 Histogram of Codes  
Rev. PrC| Page 16 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
30  
25  
20  
15  
10  
5
120  
110  
100  
90  
±10V RANGE  
±5V RANGE  
80  
AV /DV /V  
CC CC DRIVE  
= 5V  
V
/V = ±12V  
DD SS  
= 25°C  
AV /DV /V  
= +5V  
T
CC  
CC DRIVE  
= 250kSPS  
A
70  
60  
f
INTERNAL REFERENCE  
SAMPLE  
FOR ±5V RANGE V /V = ±12V  
±2 × V RANGE  
DD SS  
REF  
30kHz ON SELECTED CHANNEL  
FOR ±10V RANGE V /V = ±16.5V  
DD SS  
0
–40  
–20  
0
20  
40  
60  
80  
100  
0
20 40 60 80  
100  
120  
140  
TEMPERATURE (°C)  
FREQUENCY OF INPUT NOISE (kHz)  
Figure 22. Channel-to-Channel Isolation  
Figure 23. Dynamic Current vs. Temperature  
Rev. PrC | Page 17 of 32  
AD7656-1/AD7657-1/AD7658-1  
TERMINOLOGY  
Preliminary Technical Data  
The ratio depends on the number of quantization levels in the  
digitization process: the more levels, the smaller the quantization  
noise. The theoretical signal-to-(noise + distortion) ratio for an  
ideal N-bit converter with a sine wave input is given by  
Integral Nonlinearity  
The maximum deviation from a straight line passing through  
the endpoints of the ADC transfer function. The endpoints of  
the transfer function are zero scale, a ½ LSB below the first code  
transition and full scale at ½ LSB above the last code transition.  
Signal-to-(Noise + Distortion) = (6.02 N + 1.76) dB  
Thus, this is 98 dB for a 16-bit converter, 86.04 dB for a 14-bit  
converter, and 74 dB for a 12-bit converter.  
Differential Nonlinearity  
The difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the harmonics to the fundamental.  
For the AD7656-1/AD7657-1/AD7658-1, it is defined as  
Bipolar Zero Code Error  
The deviation of the midscale transition (all 1s to all 0s) from  
the ideal VIN voltage, that is, AGND − 1 LSB.  
2
2
2
2
2
V2 +V3 +V4 +V5 +V6  
THD(dB) = 20log  
V1  
Bipolar Zero Code Error Match  
The difference in bipolar zero code error between any two input  
channels.  
where:  
V1 is the rms amplitude of the fundamental.  
Positive Full-Scale Error  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
The deviation of the last code transition (011…110) to (011…111)  
from the ideal (+4 × VREF − 1 LSB, +2 × VREF − 1 LSB) after  
adjusting for the bipolar zero code error.  
through sixth harmonics.  
Peak Harmonic or Spurious Noise  
The ratio of the rms value of the next largest component in the  
ADC output spectrum (up to fS/2, excluding dc) to the rms value  
of the fundamental. Normally, the value of this specification is  
determined by the largest harmonic in the spectrum, but for  
ADCs where the harmonics are buried in the noise floor, it is  
determined by a noise peak.  
Positive Full-Scale Error Match  
The difference in positive full-scale error between any two input  
channels.  
Negative Full-Scale Error  
The deviation of the first code transition (10…000) to (10…001)  
from the ideal (−4 × VREF + 1 LSB, −2 × VREF + 1 LSB) after  
adjusting for the bipolar zero code error.  
Intermodulation Distortion  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities create distortion  
products at sum and difference frequencies of mfa nfb, where  
m, n = 0, 1, 2, 3. Intermodulation distortion terms are those for  
which neither m nor n are equal to 0. For example, the second-  
order terms include (fa + fb) and (fa − fb), and the third-order  
terms include (2fa + fb), (2fa − fb), (fa + 2fb), and (fa − 2fb).  
Negative Full-Scale Error Match  
The difference in negative full-scale error between any two  
input channels.  
Track-and-Hold Acquisition Time  
The track-and-hold amplifier returns to track mode at the end  
of the conversion. The track-and-hold acquisition time is the  
time required for the output of the track-and-hold amplifier to  
reach its final value, within 1 LSB, after the end of the conversion.  
See the Track-and-Hold Section for more details.  
The AD7656-1/AD7657-1/AD7658-1 are tested using the CCIF  
standard in which two input frequencies near the top end of the  
input bandwidth are used. In this case, the second-order terms  
are usually distanced in frequency from the original sine waves,  
and the third-order terms are usually at a frequency close to the  
input frequencies. As a result, the second- and third-order terms  
are specified separately. The calculation of the intermodulation  
distortion is per the THD specification, where it is the ratio of  
the rms sum of the individual distortion products to the rms  
amplitude of the sum of the fundamentals expressed in decibels.  
Signal-to-(Noise + Distortion) Ratio  
The measured ratio of signal-to-(noise + distortion) at the  
output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the sum of all nonfundamental signals up  
to half the sampling frequency (fS/2, excluding dc).  
Rev. PrC| Page 18 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
where:  
Power Supply Rejection (PSR)  
Variations in power supply affect the full-scale transition but  
not the converters linearity. Power supply rejection is the  
maximum change in full-scale transition point due to a change  
in power supply voltage from the nominal value. See the Typical  
Performance Characteristics section.  
Pf is equal to the power at frequency f in the ADC output.  
PfS is equal to the power at frequency fS coupled onto the VDD  
and VSS supplies.  
Channel-to-Channel Isolation  
Channel-to-channel isolation is a measure of the level of crosstalk  
between any two channels. It is measured by applying a full-scale,  
100 kHz sine wave signal to all unselected input channels and  
determining the degree to which the signal attenuates in the  
selected channel with a 30 kHz signal.  
Figure 19 shows the power supply rejection ratio vs. supply  
ripple frequency for the AD7656-1/AD7657-1/AD7658-1. The  
power supply rejection ratio is defined as the ratio of the power  
in the ADC output at full-scale frequency, f, to the power of a  
200 mV p-p sine wave applied to the ADCs VDD and VSS  
supplies of frequency fS  
PSRR (dB) = 10 log (Pf/PfS)  
Rev. PrC | Page 19 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
THEORY OF OPERATION  
CONVERTER DETAILS  
Analog Input Section  
The AD7656-1/AD7657-1/AD7658-1 can handle true bipolar  
input voltages. The logic level on the RANGE pin or the value  
written to the RNGx bits in the control register determines the  
analog input range on the AD7656-1/AD7657-1/AD7658-1 for  
the next conversion. When the RANGE pin/RNGx bit is 1, the  
analog input range for the next conversion is 2 × VREF. When  
the RANGE pin/RNGx bit is 0, the analog input range for the  
The AD7656-1/AD7657-1/AD7658-1 are high speed, low  
power converters that allow the simultaneous sampling of six  
on-chip ADCs. The analog inputs on the AD7656-1/AD7657-  
1/AD7658-1 can accept true bipolar input signals. The RANGE  
pin/RNG bits are used to select either 4 × VREF or 2 × VREF as  
the input range for the next conversion.  
Each AD7656-1/AD7657-1/AD7658-1 contains six SAR ADCs,  
six track-and-hold amplifiers, an on-chip 2.5 V reference,  
reference buffers, and high speed parallel and serial interfaces.  
The parts allow the simultaneous sampling of all six ADCs  
when all three CONVST signals are tied together. Alternatively,  
the six ADCs can be grouped into three pairs. Each pair has an  
associated CONVST signal used to initiate simultaneous  
sampling on each ADC pair, on four ADCs, or on all six ADCs.  
CONVST A is used to initiate simultaneous sampling on V1 and  
V2, CONVST B is used to initiate simultaneous sampling on V3  
and V4, and CONVST C is used to initiate simultaneous  
sampling on V5 and V6.  
next conversion is 4 × VREF  
.
V
DD  
D1  
D2  
C2  
R1  
V1  
C1  
V
SS  
Figure 24. Equivalent Analog Input Structure  
Figure 24 shows an equivalent circuit of the analog input structure  
of the AD7656-1/AD7657-1/AD7658-1. The two diodes, D1  
and D2, provide ESD protection for the analog inputs. Care  
must be taken to ensure that the analog input signal never  
exceeds the VDD and VSS supply rails by more than 300 mV.  
Signals exceeding this value cause these diodes to become  
forward-biased and to start conducting current into the  
substrate. The maximum current these diodes can conduct  
without causing irreversible damage to the parts is 10 mA.  
Capacitor C1 in Figure 24 is typically about 4 pF and can be  
attributed primarily to pin capacitance. Resistor R1 is a lumped  
component made up of the on resistance of a switch (track-and-  
hold switch). This resistor is typically about 25 Ω. Capacitor C2  
is the ADC sampling capacitor and has a capacitance of 10 pF  
typically.  
A conversion is initiated on the AD7656-1/AD7657-1/AD7658-  
1 by pulsing the CONVSTx input. On the rising edge of  
CONVSTx, the track-and-hold of the selected ADC pair is  
placed into hold mode and the conversions are started. After  
the rising edge of CONVSTx, the BUSY signal goes high to  
indicate that the conversion is taking place. The conversion  
clock for the AD7656-1/AD7657-1/AD7658-1 is internally  
generated, and the conversion time for the parts is 3 µs. The  
BUSY signal returns low to indicate the end of conversion. On  
the falling edge of BUSY, the track-and-hold returns to track  
mode. Data can be read from the output register via the parallel  
or serial interface.  
The AD7656-1/AD7657-1/AD7658-1 require VDD and VSS dual  
supplies for the high voltage analog input structures. These  
supplies must be equal to or greater than the analog input range  
(see Table 8 for the requirements on these supplies for each  
analog input range). The AD7656-1/AD7657-1/AD7658-1  
require a low voltage AVCC supply of 4.75 V to 5.25 V to power  
the ADC core, a DVCC supply of 4.75 V to 5.25 V for the digital  
power, and a VDRIVE supply of 2.7 V to 5.25 V for the interface  
power.  
Track-and-Hold Section  
The track-and-hold amplifiers on the AD7656-1/AD7657-  
1/AD7658-1 allow the ADCs to accurately convert an input sine  
wave of full-scale amplitude to 16-/14-/12-bit resolution  
respectively. The input bandwidth of the track-and-hold  
amplifiers is greater than the Nyquist rate of the ADC, even  
when the AD7656-1/ AD7657-1/AD7658-1 are operating at its  
maximum throughput rate. The parts can handle input  
frequencies of up to 12 MHz.  
To meet the specified performance when using the minimum  
supply voltage for the selected analog input range, it can be  
necessary to reduce the throughput rate from the maximum  
throughput rate.  
The track-and-hold amplifiers sample their respective inputs  
simultaneously on the rising edge of CONVSTx. The aperture time  
for the track-and-hold (that is, the delay time between the external  
CONVSTx signal actually going into hold) is 10 ns. This is well  
matched across all six track-and-holds on one device and from  
device to device. This allows more than six ADCs to be sampled  
simultaneously. The end of the conversion is signaled by the falling  
edge of BUSY, and it is at this point that the track-and-holds return  
to track mode and the acquisition time begins.  
Table 8. Minimum VDD/VSS Supply Voltage Requirements  
Analog Input  
Range (V)  
Reference  
Voltage (V)  
Full Scale  
Input (V)  
Minimum  
VDD/VSS (V)  
4 ꢀ VREF  
4 ꢀ VREF  
+2.5  
+3.0  
10  
12  
10  
12  
Rev. PrC | Page 20 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
2 ꢀ VREF  
2 ꢀ VREF  
+2.5  
+3.0  
5
6
5
6
the REFIN/REFOUT pin should be decoupled using a 1 µF  
capacitor.  
ADC TRANSFER FUNCTION  
The AD7656-1/AD7657-1/AD7658-1 contain three on-chip  
reference buffers. Each of the three ADC pairs has an associated  
reference buffer. These reference buffers require external  
decoupling capacitors on REFCAPA, REFCAPB, and REFCAPC  
pins, and 1 µF decoupling capacitors should be placed on these  
REFCAP pins. The internal reference buffers can be disabled in  
software mode by writing to Bit DB8 in the internal control  
register. If operating the devices in serial mode,  
The output coding of the AD7656-1/AD7657-1/AD7658-1 is  
twos complement. The designed code transitions occur midway  
between successive integer LSB values, that is, 1/2 LSB, 3/2 LSB.  
The LSB size is FSR/65,536 for the AD7656-1, FSR/16384 for  
the AD7657-1, and FSR/4096 for the AD7658-1. The ideal  
transfer characteristic is shown in Figure 25.  
011...111  
011...110  
the internal reference buffers can be disabled in hardware mode  
by setting the DB14/REFBUF/ DIS pin high. If the internal  
EN  
reference and its buffers are disabled, an external buffered  
reference should be applied to the REFCAP pins.  
000...001  
000...000  
111...111  
TYPICAL CONNECTION DIAGRAM  
100...010  
Figure 26 shows the typical connection diagram for the  
AD7656-1/AD7657-1/AD7658-1. There are eight AVCC supply  
pins on the parts. The AVCC supply is the supply that is used for  
the AD7656-1/AD7657-1/AD7658-1 conversion process,  
therefore, it should be well decoupled. The AVCC supply pins  
should be decoupled using a 1 µF capacitor. The AD7656-  
1/AD7657-1/ AD7658-1 can operate with the internal reference  
or an externally applied reference. In this configuration, the  
parts are configured to operate with the external reference. The  
REFIN/REFOUT pin is decoupled with a 1 µF cap . The three  
internal reference buffers are enabled. Each of the REFCAP pins  
are decoupled with a 1 µF capacitor.  
100...001  
100...000  
AGND – 1LSB  
–FSR/2 + 1/2LSB  
+FSR/2 – 3/2LSB  
ANALOG INPUT  
Figure 25. AD7656-1/AD7657-1/AD7658-1 Transfer Characteristic  
The LSB size is dependent on the analog input range selected  
(see Table 9).  
REFERENCE SECTION  
The RFIN/REFOUT pin either allows access to the AD7656-1/  
AD7657-1/AD7658-1s 2.5 V reference or it allows an external  
reference to be connected, providing the reference source for  
each parts conversions. The AD7656-1/AD7657-1/AD7658-1  
can accommodate a 2.5 V to 3 V external reference range.  
When using an external reference, the internal reference needs  
to be disabled. After a reset, the AD7656-1/AD7657-1/AD7658-  
1 default to operating in external reference mode with the  
internal reference buffers enabled. The internal reference can be  
enabled in either hardware or software mode. To enable the  
If the same supply is being used for the AVCC supply and DVCC  
supply, a ferrite or small RC filter should be placed between the  
supply pins.  
AGND pins are connected to the AGND plane of the system.  
The DGND pins are connected to the digital ground plane in  
the system. The AGND and DGND planes should be connected  
together at one place in the system. This connection should be  
made as close as possible to the AD7656-1/AD7657-1/AD7658-  
1 in the system.  
H
internal reference in hardware mode, the /S SEL pin = 0 and the  
DIS  
REF EN/  
H
pin = 1. To enable the internal reference in software  
mode, /S SEL = 1 and a write to the control register is necessary  
to make DB9 of the register = 1. For the internal reference mode,  
Table 9. LSB Size for Each Analog Input Range  
Range  
AD76±6-1  
AD76±7-1  
AD76±8-1  
Input Range  
LSB Size  
FS Range  
10 V  
0.305 mV  
20 V/65,536  
5 V  
0.152 mV  
10 V/65,536  
10 V  
1.22 mV  
20 V/16384  
5 V  
0.610 mV  
10 V/16384  
10 V  
4.88 mV  
20 V/4096  
5 V  
2.44mV  
10 V/4096  
Rev. PrC | Page 21 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
DV  
CC  
+
DIGITAL SUPPLY  
VOLTAGE +3V OR +5V  
ANALOG SUPPLY  
1
VOLTAGE 5V  
+
+
1µF  
1µF  
1µF  
AGND AV  
DD  
DV  
DGND  
V DGND  
DRIVE  
CC  
CC  
+9.5V TO +16.5V  
SUPPLY  
V
+
+
+
1µF  
1µF  
PARALLEL  
D0 TO D15  
INTERFACE  
µP/µC/DSP  
AGND  
CONVST A, B, C  
REFCAPA, B, C  
AGND  
CS  
RD  
BUSY  
RESET  
2.5V  
REF  
REFIN/OUT  
AGND  
AD7656-1/  
AD7657-1/  
AD7658-1  
1µF  
SER/PAR  
H/S  
W/B  
RANGE  
SIX ANALOG  
INPUTS  
–9.5V TO –16.5V  
SUPPLY  
V
SS  
V
STBY  
DRIVE  
1µF  
+
AGND  
Figure 26. Typical Connection Diagram  
Parallel Interface (SER/  
PAR  
= 0)  
The VDRIVE supply is connected to the same supply as the  
processor. The voltage on VDRIVE controls the voltage value of  
the output logic signals.  
The AD7656-1/AD7657-1/AD7658-1 consist of six 16-/14-/12-  
bit ADCs respectively. A simultaneous sample of all six ADCs  
can be performed by connecting all three CONVST pins  
together, CONVST A, CONVST B, and CONVST C. The  
AD7656-1/AD7657-1/ AD7658-1 need to see a CONVST pulse  
in order to initiate a conversion; this should consist of a falling  
CONVST edge followed by a rising CONVST edge. The rising  
edge of CONVSTx initiates simultaneous conversions on the  
selected ADCs. The AD7656-1/AD7657-1/AD7658-1 contain  
an on-chip oscillator that is used to perform the conversions.  
The conversion time, tCONV, is 3 µs. The BUSY signal goes low to  
indicate the end of conversion. The falling edge of the BUSY  
signal is used to place the track-and-hold into track mode. The  
AD7656-1/AD7657-1/AD7658-1 also allow the six ADCs to be  
converted simultaneously in pairs by pulsing the three  
The VDD and VSS signals should be decoupled with a minimum  
1 µF decoupling capacitor. These supplies are used for the high  
voltage analog input structures on the AD7656-1/AD7657-  
1/AD7658-1 analog inputs.  
DRIVING THE ANALOG INPUTS  
Together, the driver amplifier and the analog input circuit used  
for the AD7656-1 must settle for a full-scale step input to a 16-  
bit level (0.0015%), which is within the specified 550 ns  
acquisition time of the AD7656-1. The noise generated by the  
driver amplifier needs to be kept as low as possible in order to  
preserve the SNR and transition noise performance of the  
AD7656-1.  
CONVST pins independently. CONVST A is used to initiate  
simultaneous conversions on V1 and V2, CONVST B is used to  
initiate simultaneous conversions on V3 and V4, and  
The driver also needs to have a THD performance suitable to  
that of the AD7656-1. The AD8021 meets all these  
requirements. The AD8021 needs an external compensation  
capacitor of 10 pF. If a dual version of the AD8021 is required,  
the AD8022 can be used. The AD8610 and the AD797 can also  
be used to drive the AD7656-1/AD7657-1/AD7658-1.  
CONVST C is used to initiate simultaneous conversions on V5  
and V6. The conversion results from the simultaneously  
sampled ADCs are stored in the output data registers.  
Data can be read from the AD7656-1/AD7657-1/AD7658-1 via  
INTERFACE SECTION  
CS  
RD  
W
the parallel data bus with standard  
0). To read the data over the parallel bus, SER/  
CS RD  
and  
signals ( /B =  
PAR  
should be  
input signals are internally gated to  
enable the conversion result onto the data bus. The data lines  
CS  
The AD7656-1/AD7657-1/AD7658-1 provide two interface  
options, a parallel interface and a high speed serial interface. The  
required interface mode is selected via the SER/  
parallel interface can operate in word ( /B = 0) or byte ( /B =  
1) mode. The interface modes are discussed in the following  
sections.  
tied low. The  
and  
PAR  
pin. The  
DB0 to DB15 leave their high impedance state when both  
RD  
W
W
and  
are logic low.  
Rev. PrC| Page 22 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
CS  
The signal can be permanently tied low, and the  
RD  
can affect the performance of the conversion. For the specified  
performance, it is recommended to perform the read after the  
conversion. For unused input channel pairs, the associated  
signal  
can be used to access the conversion results. A read operation  
can take place after the BUSY signal goes low. The number of  
required read operations depends on the number of ADCs that  
are simultaneously sampled (see Figure 27). If CONVST A  
and CONVST B are simultaneously brought low, four read  
operations are required to obtain the conversion results from  
V1, V2, V3, and V4. If CONVST A and CONVST C are  
simultaneously brought low, four read operations are required  
to obtain the conversion results from V1, V2, V5, and V6.  
The conversion results are output in ascending order. For  
the AD7657, DB15 and DB14 contain two leading zeros and  
DB[13:0] output the 14-bit conversion result. For the AD7658,  
DB[15:12] contain four leading zeros and DB[11:0] output the  
12-bit conversion result.  
CONVSTx pin should be tied to VDRIVE  
.
If there is only an 8-bit bus available, the AD7656-1/AD7657-1/  
AD7658-1 interface can be configured to operate in byte mode  
W
(
/B = 1). In this configuration, the DB7/HBEN/DCEN pin  
takes on its HBEN function. Each channel conversion result  
from the AD7656-1/AD7657-1/AD7658-1 can be accessed in  
two read operations, with 8-bits of data provided on DB15 to  
DB8 for each of the read operations (see Figure 28). The HBEN  
pin determines whether the read operation first accesses the  
high byte or the low byte of the 16-bit conversion result. To  
always access the low byte first on DB15 to DB8, the HBEN pin  
should be tied low. To always access the high byte first on DB15  
to DB8, the HBEN pin should be tied high. In byte mode when  
all three CONVST pins are pulsed together to initiate  
When using the three CONVST signals to independently  
initiate conversions on the three ADC pairs, care should be  
taken to ensure that a conversion is not initiated on a channel  
pair when the BUSY signal is high. It is also recommended not  
to initiate a conversion during a read sequence because doing so  
simultaneous conversions on all six ADCs, 12 read operations  
are necessary to read back the six 16-/14-/12-bit conversion  
results. DB[6:0] should be left unconnected in byte mode.  
t10  
CONVST A,  
CONVST B,  
CONVST C  
tCONV  
tACQ  
BUSY  
t4  
CS  
t3  
t2  
t5  
t9  
RD  
t7  
t6  
t8  
tQUIET  
DATA  
V1  
V2  
V3  
V4  
V5  
V6  
W
Figure 27. Parallel Interface Timing Diagram ( /B = 0)  
CS  
t4  
t3  
t9  
t5  
RD  
t8  
t7  
t6  
LOW BYTE  
HIGH BYTE  
DB15 TO DB8  
W
Figure 28. Parallel Interface—Read Cycle for Byte Mode of Operation. ( /B = 1, HBEN = 0)  
Rev. PrC | Page 23 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
Table 11.  
Bit  
Software Selection of ADCs  
Mnemonic  
Comment  
H
The /S SEL pin determines the source of the combination of  
DB15 VC  
This bit is used to select Analog Inputs V5  
and V6 for the next conversion.  
When this bit = 1, V5 and V6 are  
simultaneously converted on the  
next CONVST A rising edge.  
H
ADCs that are to be simultaneously sampled. When the /S SEL  
pin is logic low, the combination of channels to be simultaneously  
sampled is determined by the CONVST A, CONVST B, and  
H
CONVST C pins. When the /S SEL pin is logic high, the  
DB14 VB  
DB13 VA  
DB12 RNGC  
This bit is used to select Analog Inputs  
V3 and V4 for the next conversion.  
When this bit = 1, V3 and V4 are  
simultaneously converted on the  
next CONVST A rising edge.  
combination of channels selected for simultaneous sampling is  
determined by the contents of the Control Register DB15 to  
Control Register DB13. In this mode, a write to the control  
register is necessary.  
This bit is used to select Analog Inputs  
V1 and V2 for the next conversion.  
When this bit = 1, V1 and V2 are  
simultaneously converted on the  
next CONVST A rising edge.  
The control register is an 8-bit write only register. Data is written  
CS  
WR  
to this register using the  
and  
pins and the DB[15:8] data  
pins (see Figure 29). The control register is shown in Table 10.  
To select an ADC pair to be simultaneously sampled, set the  
corresponding data line high during the write operation.  
This bit is used to select the analog input  
range for Analog Inputs V5 and V6.  
When this bit = 1, the 2 ꢀ VREF mode is  
selected for the next conversion.  
When this bit = 0, the 4 ꢀ VREF mode is  
selected for the next conversion.  
The AD7656-1/AD7657-1/AD7658-1 control register allows  
individual ranges to be programmed on each ADC pair. DB12  
to DB10 in the control register are used to program the range  
on each ADC pair.  
DB11 RNGB  
DB10 RNGA  
This bit is used to select the analog input  
range for Analog Inputs V3 and V4.  
When this bit = 1, the 2 ꢀ VREF mode is  
selected for the next conversion.  
When this bit = 0, the 4 ꢀ VREF mode is  
selected for the next conversion.  
After a reset occurs on the AD7656-1/AD7657-1/AD7658-1,  
the control register contains all zeros.  
The CONVST A signal is used to initiate a simultaneous  
conversion on the combination of channels selected via the  
control register. The CONVST B and CONVST C signals can be  
This bit is used to select the analog input  
range for Analog Inputs V1 and V2.  
When this bit = 1, the 2 ꢀ VREF mode is  
selected for the next conversion.  
When this bit = 0, the 4 ꢀ VREF mode is  
selected for the next conversion.  
H
tied low when operating in software mode ( /S SEL = 1). The  
number of read pulses required depends on the number of  
ADCs selected in the control register and on whether the  
devices are operating in word or byte mode. The conversion  
results are output in ascending order.  
DB9  
DB8  
REFEN  
This bit is used to select the internal  
reference or an external reference.  
When this bit = 0, the external reference  
mode is selected. When this bit = 1, the  
internal reference is selected.  
During the write operation, Data Bus Bit DB15 to Bit DB8 are  
bidirectional and become inputs to the control register when  
RD  
CS  
WR  
is logic high and  
on DB15 through DB8 is latched into the control register when  
WR  
and  
are logic low. The logic state  
REFBUF  
This bit is used to select between using the  
internal reference buffers and choosing  
to bypass these reference buffers.  
When this bit = 0, the internal reference  
buffers are enabled and decoupling is  
required on the REFCAP pins. When this  
bit = 1, the internal reference buffers are  
disabled and a buffered reference should  
be applied to the REFCAP pins.  
goes logic high.  
Table 10. Control Register Bit Function Descriptions  
(Default All 0s)  
DB1± DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
VC  
VB  
VA  
RNGC RNGB RNGA REFEN REFBUF  
CS  
WR  
t13  
t12  
t11  
t15  
t14  
DATA  
DB15 TO DB8  
W
Figure 29. Parallel Interface—Write Cycle for Word Mode ( /B= 0)  
Rev. PrC | Page 24 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
If it is required to clock conversion data out on two data out  
lines, DOUT A and DOUT B should be used. To enable DOUT A  
and DOUT B, DB0/SEL A and DB1/SEL B should be tied to  
VDRIVE and DB2/SEL C should be tied low. When six simultaneous  
conversions are performed and only two DOUT lines are used,  
a 48 SCLK transfer can be used to access the data from the  
AD7656-1/AD7657-1/AD7658-1. The read sequence is shown  
in Figure 31 for a simultaneous conversion on all six ADCs  
using two DOUT lines. If a simultaneous conversion occurred  
on all six ADCs, and only two DOUT lines are used to read the  
results from the AD7656-1/AD7657-1/AD7658-1. DOUT A  
clocks out the result from V1, V2, and V5, while DOUT B  
clocks out the results from V3, V4, and V6.  
Changing the Analog Input Range ( /S SEL = 0)  
H
The AD7656-1/AD7657-1/AD7658-1 RANGE pin allows the  
user to select either 2 × VREF or 4 × VREF as the analog input  
H
range for the six analog inputs. When the /S SEL pin is low,  
the logic state of the RANGE pin is sampled on the falling edge  
of the BUSY signal to determine the range for the next  
simultaneous conversion. When the RANGE pin is logic high at  
the falling edge of the BUSY signal, the range for the next  
conversion is  
2 × VREF. When the RANGE pin is logic low at the falling  
edge of the BUSY signal, the range for the next conversion is  
4 × VREF. After a RESET pulse, the range is updated on the first  
falling BUSY edge after the RESET pulse.  
Data can also be clocked out using just one DOUT line, in  
which case DOUT A should be used to access the conversion  
data. To configure the AD7656-1/AD7657-1/AD7658-1 to  
operate in this mode, DB0/SEL A should be tied to VDRIVE and  
DB1/SEL B and DB2/SEL C should be tied low. The  
Changing the Analog Input Range ( /S SEL = 1)  
H
H
When the /S SEL pin is high, the range can be changed by  
writing to the control register. DB[12:10] in the control register  
are used to select the analog input ranges for the next conversion.  
Each analog input pair has an associated range bit, allowing  
independent ranges to be programmed on each ADC pair.  
When the RNGx bit = 1, the range for the next conversion  
is 2 × VREF. When the RNGx bit = 0, the range for the next  
disadvantage of using just one DOUT line is that the  
throughput rate is reduced. Data can be accessed from the  
AD7656-1/AD7657-1/AD7658-1 using one 96 SCLK transfer,  
three 32 SCLK individually framed transfers, or six 16 SCLK  
RD  
individually framed transfers. In serial mode, the  
signal  
conversion is 4 × VREF  
.
should be tied low. The unused DOUT line(s) should be left  
unconnected in serial mode.  
Serial Interface (SER/  
= 1)  
PAR  
By pulsing one, two, or all three CONVSTx signals, the  
AD7656-1/AD7657-1/AD7658-1 use their on-chip trimmed  
oscillator to simultaneously convert the selected channel pairs  
on the rising edge of CONVSTx. After the rising edge of  
CONVSTx, the BUSY signal goes high to indicate that the  
conversion has started. It returns low when the conversion is  
complete 3 µs later. The output register is loaded with the new  
conversion results, and data can be read from the AD7656-  
1/AD7657-1/AD7658-1. To read the data back from the parts  
PAR  
Serial Read Operation  
Figure 32 shows the timing diagram for reading data from the  
AD7656-1/AD7657-1/AD7658-1 in serial mode. The SCLK input  
CS  
signal provides the clock source for the serial interface. The  
signal goes low to access data from the AD7656-1/AD7657-  
CS  
1/AD7658-1. The falling edge of  
takes the bus out of three-  
state and clocks out the MSB of the 16-bit conversion result.  
The ADCs output 16 bits for each conversion result; the data  
stream of the AD7656-1 consists of 16 bits of conversion data  
provided MSB first. The data stream for the AD7657-1 consists  
of two leading zeros followed by 14 bits of conversion data MSB  
first. The data stream for the AD7658-1 consists of four leading  
zeros and 12 bits of conversion data provided MSB first.  
over the serial interface, SER/  
should be tied high. The  
CS  
and SCLK signals are used to transfer data from the AD7656-  
1/AD7657-1/AD7658-1. The parts have three DOUT pins,  
DOUT A, DOUT B, and DOUT C. Data can be read back from  
the each part using one, two, or all three DOUT lines.  
The first bit of the conversion result is valid on the first SCLK  
Figure 30 shows six simultaneous conversions and the read  
sequence using three DOUT lines. Also in Figure 30, 32 SCLK  
transfers are used to access data from the AD7656-1/AD7657-1/  
AD7658-1; however, two 16 SCLK individually framed transfers  
CS  
falling edge after the  
falling edge. The subsequent 15 data  
bits are clocked out on the rising edge of the SCLK signal. Data  
is valid on the SCLK falling edge. To access each conversion  
result, 16 clock pulses must be provided to the AD7656-  
1/AD7657-1/ AD7658-1. Figure 32 shows how a 16 SCLK read  
is used to access the conversion results.  
CS  
with the  
signal can also be used to access the data on the  
three DOUT lines. When operating the AD7656-1/AD7657-  
1/AD7658-1 in serial mode with conversion data clocking out on  
all three DOUT lines, DB0/SEL A, DB1/SEL B, and DB2/SEL C  
should be tied to VDRIVE. These pins are used to enable the  
DOUT A to DOUT C lines, respectively.  
Rev. PrC | Page 25 of 32  
Preliminary Technical Data  
AD7656-1/AD7657-1/AD7658-1  
CONVST A,  
CONVST B,  
CONVST C  
tCONV  
tACQ  
BUSY  
CS  
16  
32  
SCLK  
tQUIET  
DOUT A  
V1  
V3  
V5  
V2  
V4  
V6  
DOUT B  
DOUT C  
Figure 30. Serial Interface with Three DOUT Lines  
CS  
48  
SCLK  
DOUT A  
DOUT B  
V5  
V6  
V1  
V3  
V2  
V4  
Figure 31. Serial Interface with Two DOUT Lines  
t1  
CONVST A,  
t10  
CONVST B,  
tACQ  
tCONV  
CONVST C  
t2  
BUSY  
ACQUISITION  
CONVERSION  
ACQUISITION  
CS  
tQUIET  
t19  
t18  
SCLK  
t16  
t17  
t20  
DB1  
t21  
DB15  
DB14  
DB13  
DB0  
DOUT A, B, C  
Figure 32. Serial Read Operation  
Rev. PrC | Page 26 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
Figure 35 shows the timing if two AD7656-1/AD7657-  
1/AD7658-1 devices are configured in daisy-chain mode and  
are operating with three DOUT lines. Assuming a simultaneous  
Daisy-Chain Mode (DCEN = 1, SER/  
PAR  
= 1)  
When reading conversion data back from the AD7656-  
1/AD7657-1/ AD7658-1 using their three/two/one DOUT pins,  
it is possible to configure the parts to operate in daisy-chain  
mode, using the DCEN pin. This daisy-chain feature allows  
multiple AD7656-1/ AD7657-1/AD7658-1 devices to be cascaded  
together and is useful for reducing component count and wiring  
connections. An example connection of two devices is shown in  
Figure 33. This configuration shows two DOUT lines being  
used. Simultaneous sampling of the 12 analog inputs is possible  
by using a common CONVSTx signal. The DB5, DB4, and DB3  
data pins are used as data input pins DCIN [A:C] for the daisy-  
chain mode.  
CS  
sampling of all 12 inputs occurs, the  
frames a 64 SCLK  
transfer during the read operation. During the first 32 SCLKs of  
this transfer, the conversion results from Device 1 are clocked  
into the digital host and the conversion results from Device 2  
are clocked into Device 1. During the last 32 SCLKs of the  
transfer, the conversion results from Device 2 are clocked out of  
Device 1 and into the digital host. Device 2 clocks out zeros.  
Standby/Partial Power-Down Modes of Operation  
Each ADC pair can be individually placed into partial power-  
down mode by bringing the CONVSTx signal low before the  
falling edge of BUSY. To power the ADC pair back up, the  
CONVSTx signal should be brought high to tell the ADC pair  
to power up and place the track-and-hold into track mode.  
After the power-up time from partial power-down has elapsed,  
the CONVSTx signal should receive a rising edge to initiate a  
valid conversion. In partial power-down mode, the reference  
buffers remain powered up. While an ADC pair is in partial power-  
down mode, conversions can still occur on the other ADCs.  
The rising edge of CONVST is used to initiate a conversion on  
the AD7656-1/AD7657-1/AD7658-1. After the BUSY signal has  
gone low to indicate that the conversion is complete, the user  
can begin to read the data from the two devices. Figure 34 shows  
the serial timing diagram when operating two AD7656-  
1/AD7657-1/ AD7658-1 devices in daisy-chain mode.  
CS  
The  
falling edge is used to frame the serial transfer from the  
AD7656-1/AD7657-1/AD7658-1 devices, to take the bus out of  
three-state, and to clock out the MSB of the first conversion  
result. In the example shown in Figure 34, all 12 ADC channels  
are simultaneously sampled. Two DOUT lines are used to read  
The AD7656-1/AD7657-1/AD7658-1 have a standby mode  
whereby the devices can be placed into a low power  
consumption mode (100 µW max). The AD7656-1/AD7657-  
1/AD7658-1 are placed into standby mode by bringing the logic  
CS  
the conversion results in this example. frames a 96 SCLK  
STBY  
operation by bringing  
input  
low and can be powered up again for normal  
STBY  
transfer. During the first 48 SCLKs, the conversion data is  
transferred from Device 2 to Device 1. DOUT A on Device 2  
transfers conversion data from V1, V2, and V5 into DCIN A in  
Device 1. DOUT B on Device 2 transfers conversion results from  
V3, V4, and V6 to DCIN B in Device 1. During the first 48  
SCLKs, Device 1 transfers data into the digital host. DOUT A on  
Device 1 transfers conversion data from V1, V2, and V5.  
DOUT B on Device 1 transfers conversion data from V3, V4,  
and V6. During the last 48 SCLKs, Device 2 clocks out zeros  
and Device 1 shifts the data clocked in from Device 2 during  
the first 48 SCLKs into the digital host. This example can  
also be implemented using six 16 SCLK individually framed  
transfers if DCEN remains high during the transfers.  
logic high. The output data buffers  
are still operational when the AD7656-1/AD7657-1/AD7658-1  
are in standby mode, meaning the user can continue to access  
the conversion results of the parts. This standby feature can be  
used to reduce the average power consumed by the AD7656-  
1/AD7657-1/AD7658-1 when operating at lower throughput  
rates. The parts can be placed into standby at the end of each  
conversion when BUSY goes low and taken out of standby again  
prior to the next conversion. The time for the AD7656-  
1/AD7657-1/AD7658-1 to come out of standby is called the  
wake-up time. The wake-up time limits the maximum  
throughput rate at which the AD7656-1/AD7657-1/AD7658-1  
can operate when powering down between conversions. See the  
Specifications section.  
Rev. PrC | Page 27 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
CONVERT  
DIGITAL HOST  
CONVST  
CONVST  
DCIN A  
DCIN B  
DOUT A  
DOUT B  
DATA IN1  
DATA IN2  
DOUT A  
AD7656-1/  
AD7657-1/  
AD7658-1  
AD7656-1/  
DOUT B  
AD7657-1/  
AD7658-1  
SCLK  
CS  
SCLK  
CS  
CS  
SCLK  
DCEN = 0  
DCEN = 1  
DEVICE 1  
DEVICE 2  
Figure 33. Daisy-Chain Configuration  
CONVST A,  
CONVST B,  
CONVST C  
BUSY  
CS  
1
2
3
15  
16  
17  
31  
32  
33  
47  
48  
49  
63  
64  
65  
94  
95  
96  
SCLK  
DEVICE 1, DOUT A  
DEVICE 1, DOUT B  
DEVICE 2, DOUT A  
DEVICE 2, DOUT B  
MSB V1  
MSB V3  
MSB V1  
MSB V3  
LSB V1 MSB V2  
LSB V3 MSB V4  
LSB V1 MSB V2  
LSB V3 MSB V4  
LSB V2 MSB V5  
LSB V4 MSB V6  
LSB V2 MSB V5  
LSB V4 MSB V6  
LSB V5 MSB V1  
LSB V6 MSB V3  
LSB V5  
LSB V1 MSB V2  
LSB V3 MSB V4  
LSB V5  
LSB V6  
LSB V6  
Figure 34. Daisy-Chain Serial Interface Timing with Two DOUT Lines  
CONVST A,  
CONVST B,  
CONVST C  
BUSY  
CS  
1
2
3
15  
16  
17  
31  
32  
33  
47  
48  
49  
63  
64  
SCLK  
DEVICE 1, DOUT A  
DEVICE 1, DOUT B  
DEVICE 1, DOUT C  
DEVICE 2, DOUT A  
DEVICE 2, DOUT B  
DEVICE 2, DOUT C  
MSB V1  
MSB V3  
MSB V5  
MSB V1  
MSB V3  
MSB V5  
LSB V1 MSB V2  
LSB V3 MSB V4  
LSB V5 MSB V6  
LSB V1 MSB V2  
LSB V3 MSB V4  
LSB V5 MSB V6  
LSB V2 MSB V1  
LSB V4 MSB V3  
LSB V6 MSB V5  
LSB V2  
LSB V1 MSB V2  
LSB V3 MSB V4  
LSB V5 MSB V6  
LSB V2  
LSB V4  
LSB V6  
LSB V4  
LSB V6  
Figure 35. Daisy-Chain Serial Interface Timing with Three DOUT Lines  
Rev. PrC| Page 28 of 32  
AD7656-1/AD7657-1/AD7658-1  
Preliminary Technical Data  
APPLICATION HINTS  
near analog signal paths. Crossover of digital and analog signals  
should be avoided. Traces on different but close layers of the  
board should run at right angles to each other to reduce the  
effect of feedthrough through the board.  
LAYOUT  
The printed circuit board that houses the AD7656-1/AD7657-  
1/ AD7658-1 should be designed so that the analog and digital  
sections are separated and confined to certain areas of the board.  
The power supply lines to the AVCC, DVCC, VDRIVE, VDD, and VSS  
pins on the AD7656-1/AD7657-1/AD7658-1 should use as large  
a trace as possible to provide low impedance paths and reduce  
the effect of glitches on the power supply lines. Good  
connections should be made between the AD7656-1/AD7657-  
1/AD7658-1 supply pins and the power tracks on the board;  
this should involve the use of a single via or multiple vias for  
each supply pin.  
At least one ground plane should be used. It could be common  
or split between the digital and analog sections. In the case of  
the split plane, the digital and analog ground planes should be  
joined in only one place, preferably underneath the AD7656-1/  
AD7657-1/AD7658-1, or at least as close as possible to each  
part.  
If the AD7656-1/AD7657-1/AD7658-1 are in a system where  
multiple devices require analog-to-digital ground connections,  
the connection should still be made at only one point, a star  
ground point, which should be established as close as possible to  
the AD7656-1/AD7657-1/AD7658-1. Good connections should  
be made to the ground plane. Avoid sharing one connection for  
multiple ground pins. Individual vias or multiple vias to the  
ground plane should be used for each ground pin.  
Good decoupling is also important to lower the supply  
impedance presented to the AD7656-1/AD7657-1/AD7658-1  
and to reduce the magnitude of the supply spikes. The  
decoupling capacitors should be placed close to, ideally right up  
against, these pins and their corresponding ground pins.  
Additionally, low ESR 1 μF capacitors should be placed on each  
of the supply pins, REFINOUT and each REFCAP pin. Avoid  
sharing these capacitors between pins. Use big vias to connect  
the capacitors to the power and ground planes. Use wide, short  
traces between the via and the capacitor pad, or place the via  
adjacent to the capacitor pad to minimize parasitic inductances.  
Recommended decoupling is outlined in Figure 26.  
Avoid running digital lines under the devices because doing so  
couples noise onto the die. The analog ground plane should be  
allowed to run under the AD7656-1/AD7657-1/AD7658-1 to  
avoid noise coupling. Fast-switching signals like CONVST or  
clocks should be shielded with digital ground to avoid radiating  
noise to other sections of the board, and they should never run  
Rev. PrC | Page 29 of 32  
AD7656-1/AD7657-1/AD7658-1  
OUTLINE DIMENSIONS  
Preliminary Technical Data  
0.75  
0.60  
0.45  
12.00  
BSC SQ  
1.60  
MAX  
64  
49  
48  
1
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08 MAX  
COPLANARITY  
16  
33  
32  
0.15  
0.05  
SEATING  
PLANE  
17  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 36. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD7656-1BST  
AD7656-1BST-500RL7  
AD7656-1BSTZ1  
AD7656-1BSTZ-REEL1  
AD7656-1BSTZ-500RL71  
AD7656-1YSTZ1  
AD7656-1YSTZ-REEL1  
AD7656-1YSTZ-500RL71  
AD7657-1BSTZ1  
AD7657-1BSTZ-REEL1  
AD7657-1BSTZ-500RL71  
AD7657-1YSTZ1  
AD7657-1YSTZ-REEL1  
AD7657-1YSTZ-500RL71  
AD7658-1BSTZ1  
AD7658-1BSTZ-REEL1  
AD7658-1BSTZ-500RL71  
AD7658-1YSTZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
AD7658-1YSTZ-REEL1  
AD7658-1YSTZ-500RL71  
1 Z = Pb-free part.  
Rev. PrC| Page 30 of 32  
Preliminary Technical Data  
NOTES  
AD7656-1/AD7657-1/AD7658-1  
Rev. PrC | Page 31 of 32  
AD7656-1/AD7657-1/AD7658-1  
NOTES  
Preliminary Technical Data  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR07017-0-8/06(PrC)  
Rev. PrC| Page 32 of 32  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY