AD7456BRM [ADI]

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, MICRO, SOIC-8, Analog to Digital Converter;
AD7456BRM
型号: AD7456BRM
厂家: ADI    ADI
描述:

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, MICRO, SOIC-8, Analog to Digital Converter

光电二极管 转换器
文件: 总8页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
Differential Input, 100kSPS,  
a
PreliminaryTechnicalData  
12-BitADCin8-leadSOT-23  
AD7456  
FEATU RES  
F U NC T IO NAL B LO C K D IAG RAM  
Specified for VDD of 3 V and 5 V  
Ve ry Lo w Po w e r:  
TBD m W t yp a t 100kS PS w it h 3 V S u p p lie s  
TBD m W t yp a t 100kS PS w it h 5 V S u p p lie s  
Fu lly Diffe re n t ia l An a lo g In p u t  
Wid e In p u t Ba n d w id t h :  
V
DD  
V
V
12-BIT SUCCESSIVE  
IN+  
70d B S INAD a t 20kHz In p u t Fre q u e n cy  
No Pip e lin e De la ys  
APPROXIMATION  
T/H  
ADC  
IN-  
S e ria l In t e rfa ce - S PITM/ QS PITM/ MICROWIRETM  
DS P Co m p a t ib le  
/
V
REF  
Au t o m a t ic Po w e r-Do w n Mo d e  
8 Pin S OT-23 a n d µS OIC Pa cka g e  
SCLK  
AP P LICATIO N S  
Tra n s d u c e r In t e rfa c e  
Battery Pow ered System s  
Data Acquisition System s  
Portable Instrum entation  
Motor Control  
SDATA  
CONTROL  
LOGIC  
AD7456  
CS  
Co m m u n ic a t io n s  
GND  
G E NE R AL D E S C R IP T IO N  
powered up on the falling edge of CS and a conversion is  
initiated on the rising edge of CS, where the analog input  
is sampled. Once a conversion is complete, the device  
automatically enters a power down mode to reduce power  
dissipation between conversions.  
T he AD7456 is a 12-bit, low power, successive-approxi-  
mation (SAR) analog-to-digital converter that features a  
fully differential analog input. T his part operates from a  
single 3 V or 5 V power supply and features throughput  
rates up to 100kSPS.  
T he SAR architecture of this part ensures that there are  
no pipeline delays.  
T he part contains a low-noise, wide bandwidth, differen-  
tial track and hold amplifier (T /H) which can handle  
input frequencies in excess of 1MHz with the -3dB point  
being 20MH z typically. T he reference voltage is applied  
externally to the VREF pin and can be varied from 100 mV  
to 3.5 V depending on the power supply and what suits the  
application. T he value of the reference voltage determines  
the common mode voltage range of the part. With this  
truly differential input structure and variable reference  
input, the user can select a variety of input ranges and bias  
points.  
P R O D U C T H IG H LIG H T S  
1.Operation with either 3 V or 5 V power supplies.  
2.Low Power Consumption.  
With a 3V supply, the AD7456 offer T BDmW  
typ power consumption for 100kSPS throughput.  
3.Fully D ifferential Analog Input.  
4.Variable Voltage Reference Input.  
5.N o Pipeline D elay.  
6.Accurate control of the sampling instant via a CS input  
and once off conversion control.  
7.8-lead SOT -23 package.  
T he conversion process and data acquisition are controlled  
using CS and the serial clock allowing the device to inter-  
face with Microprocessors or DSPs. T he device is  
8. ENOB > 8 bits typically with 100mV reference.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
SPI and QSPI are trademarks of Motorola, Inc.  
REV. PrA 24/05/02  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
w w w .analog.com  
© Analog Devices, Inc., 2002  
PRELIMINARY TECHNICAL DATA  
( V = 2.7V to 3.6V, fSCLK = 12MHz, fS = 100kHz, V = 2.0 V; F = 20kHz;  
DD  
REF  
IN  
1
V = 4.75V to 5.25V, fSCLK = 12MHz, fS = 100kHz, V = 2.5 V; F = 20kHz;  
V
CM  
DD  
REF  
IN  
AD7456-SPECIFICATIONS  
3 = V ; T = TMIN to T , unless otherwise noted.)  
REF A MAX  
P ar am eter  
Test Conditions/Com m ents  
B Version1  
U n it  
D YN AM IC PERF O RM AN C E  
Signal to (Noise + Distortion)  
(SIN AD )2  
VDD = 5V  
VDD = 3V  
70  
68  
-75  
-73  
-75  
-73  
dB min  
dB min  
dB max  
dB max  
dB max  
dB max  
T otal H armonic D istortion (T H D )2 VDD = 5V, -80dB typ  
VDD = 3V, -78dB typ  
Peak H armonic or Spurious Noise2  
VDD = 5V, -82dB typ  
VDD = 3V, -80dB typ  
Intermodulation D istortion (IM D )2  
Second Order T erms  
T hird Order T erms  
-85  
-85  
10  
50  
20  
dB typ  
dB typ  
ns typ  
ps typ  
M H z typ  
M H z typ  
Aperture D elay2  
Aperture Jitter2  
Full Power Bandwidth2  
@ -3 dB  
@ -0.1 dB  
2.5  
D C AC C U RAC Y  
Resolution  
12  
± 1  
Bits  
LSB max  
Integral N onlinearity (IN L)2  
D ifferential N onlinearity (D N L)2  
Guaranteed No Missed Codes  
to 12 Bits.  
VDD = 5V  
VDD = 3V  
VDD = 5V  
VDD = 3V  
VDD = 5V  
VDD = 3V  
± 1  
± 3  
± 6  
± 3  
± 6  
± 3  
± 6  
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
LSB max  
Zero Code Error2  
Positive Gain Error2  
N egative Gain Error2  
AN ALO G IN PU T  
Full Scale Input Span  
Absolute Input Voltage  
VIN +  
4
2 x VREF  
VIN+ - VIN -  
V
3
VCM = VREF  
VCM = VREF  
VCM ± VREF/2  
V
V
3
VIN -  
VCM ± VREF/2  
D C Leakage Current  
Input Capacitance  
± 1  
20  
6
µA max  
pF typ  
pF typ  
When in T rack  
When in Hold  
REF EREN C E IN PU T  
VREF Input Voltage  
VDD = 5 V (±1% tolerance  
for specified performance)  
VDD = 3 V (±1% tolerance  
for specified performance)  
2.55  
V
2.06  
± 1  
V
D C Leakage Current  
µA max  
pF typ  
VREF Input Capacitance  
15  
LO G IC IN PU T S  
Input H igh Voltage, VIN H  
Input Low Voltage, VIN L  
Input Current, IIN  
2.4  
0.8  
± 1  
10  
V min  
V max  
µA max  
pF max  
T ypically 10nA, VIN = 0VorVD D  
7
Input Capacitance, CIN  
LO G IC O U T P U T S  
Output H igh Voltage, VOH  
VDD = 5V; ISOURCE = 200µA  
VDD = 3V; ISOURCE = 200µA  
ISIN K = 200µA  
2.8  
2.4  
0.4  
± 1  
10  
T wo’s  
V min  
V min  
V max  
µA max  
pF max  
Output Low Voltage, VOL  
Floating-State Leakage C urrent  
Floating-State Output Capacitance7  
Output Coding  
C omplement  
–2 –  
REV. PrA  
PRELIMINARY TECHNICAL DATA  
AD7456 - SPECIFICATIONS  
AD7456  
P a r a m eter  
Test Conditions/Com m ents  
B Ver sion1  
Units  
C O N VERSIO N RAT E  
Conversion T ime  
1.33µs with a 12MHz SCLK  
Sine Wave Input  
Step Input  
16  
SC LK cycles  
ns max  
ns max  
T rack/H old Acquisition T ime2  
T BD  
T BD  
100  
T hroughput Rate9  
kSPS max  
P O WER REQ U IREM EN T S  
VD D  
Range: 3 V+20%/-10%;  
5 V ± 5%  
3/5  
Vm in /m ax  
1 0  
I D D  
Static  
O perational  
VDD =3 V/5 V. SCLK On or Off  
VDD = 5 V.  
VDD = 3 V.  
0.5  
T BD  
T BD  
mA typ  
mA max  
mA max  
Power D issipation  
Operational  
VDD =5 V.  
VDD =3 V.  
T BD  
T BD  
mW max  
mW max  
N O T E S  
1T emperature ranges as follows: A,  
2See ‘T erm inology’ section.  
B Versions: –40°C to + 85°C .  
3C ommon M ode Voltage. T he input signal can be centered on any choice of dc C ommon M ode Voltage as long as this value is in the range  
specified in F igures T BD .  
4Because the input spans of VIN+ and VIN- are both VREF  
, and they are 180° out of phase, the differential voltage is 2 x VREF.  
5T he AD 7456 is functional with  
6T he AD 7456 is functional with  
a
a
reference input from100mV and for VDD  
reference input from100mV and for VDD  
=
=
5V, the reference can range up to 3.5V (see ‘Reference Section’).  
3V, the reference range up to 2.2V (see ‘Reference Section’).  
7Sample tested  
@
+ 25°C to ensure compliance.  
9See ‘Serial Interface Section’.  
10M easured with  
midscale D C input.  
a
Specifications subject to change without notice.  
–3 –  
REV. PrA  
PRELIMINARY TECHNICAL DATA  
AD7456  
( V = 2.7V to 3.6V, fSCLK = 12MHz, fS = 100kHz, V = 2.0 V;  
DD  
REF  
TIMINGSPECIFICATIONS1,2  
V = 4.75V to 5.25V, fSCLK = 12MHz, fS = 100kHz, V = 2.5 V;  
DD  
REF  
V
CM  
3 = V ; T = TMIN to T , unless otherwise noted.)  
REF A MAX  
Lim it at T MIN, TMAX  
P ar am eter  
+3V  
+5V  
Units  
D escription  
4
fSC LK  
10  
10  
kH z min  
12  
12  
M H z max  
tC O N VE RT  
tP O WE RU P  
16 x tSCLK  
1.33  
1.4  
16 x tSCLK  
1.33  
1.4  
1.4  
10  
20  
40  
0.4 tSCLK  
0.4 tSCLK  
10  
tSCLK = 1/fSCLK  
12M H z fSC LK  
Power-U p T ime  
Acquisition T ime  
µs max  
µs min  
µs min  
ns min  
ns max  
ns max  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
tAC Q U ISIT IO N 1.4  
t2  
10  
20  
40  
0.4 tSCLK  
CS Rising Edge to SCLK Falling Edge Setup T ime  
5
t35  
Delay from CS Rising Edge Until SDAT A 3-State Disabled  
Data Access T ime After SCLK Falling Edge  
SCLK H igh Pulse Width  
t4  
t5  
t6  
0.4 tSCLK  
SCLK Low Pulse Width  
t76  
10  
10  
35  
20  
SCLK Edge to Data Valid Hold T ime  
SCLK Falling Edge to SDAT A 3-State Enabled  
SCLK Falling Edge to SDAT A 3-State Enabled  
T ime spent in Power Down  
t8  
10  
35  
20  
tSLEEP  
NOTES  
1Sample tested at +25°C to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 Volts.  
2See Figure 1, Figure  
2 and the Serial Interface’ section.  
3C om m on M od e Voltage.  
4M ark/Space ratio for the SC LK input is 40/60 to 60/40.  
5Measured with the load circuit of Figure  
3
and defined as the time required for the output to cross 0.8 V or 2.4 V with VDD  
V.  
6t8 is derived from the measured time taken by the data outputs to change 0.5  
= 5 V and time for  
an output to cross 0.4 V or 2.0 V for VDD  
= 3  
V
when loaded with the circuit of Figure 2. T he measured num-  
ber is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. T his means that the time, t8, quoted in the  
timing characteristics is the true bus relinquish time of the part and is independent of the bus loading.  
Specifications subject to change without notice.  
POWER  
UP  
CONVERT  
START  
TRACK  
HOLD  
TRACK  
T
POWERUP  
T
T
POWERUP  
T
ACQ UIS ITION  
ACQ UISITION  
C S  
AUTO MATIC  
POWER DOWN  
t
2
t
5
SCLK  
t
t
4
0
t
7
t
6
t
8
3
0
T
SLEEP  
DB11  
SDATA  
0
0
DB10  
DB2 DB1 DB0  
THREE-STATE  
THREE-STATE  
4 LEADING ZERO’S  
Figure 1. AD7456 Serial Interface Tim ing Diagram  
–4 –  
REV. PrA  
PRELIMINARY TECHNICAL DATA  
AD7456  
AB SO LU T E M AXIM U M RAT ING S1  
(T A = +25°C unless otherwise noted)  
I
OL  
200µA  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to +7 V  
VIN+ to GND . . . . . . . . . . . . . . . . . 0.3 V to VDD + 0.3 V  
VIN- to GND . . . . . . . . . . . . . . .  
–0.3 V to VDD + 0.3 V  
Digital Input Voltage to GND . . . . . . . . -0.3 V to +7 V  
Digital Output Voltage to GND . -0.3 V to VDD + 0.3 V  
VREF to GND . . . . . . . . . . . . . . . . . -0.3 V to VDD +0.3 V  
Input Current to Any Pin Except Supplies2 . . . . ± 10m A  
Operating T emperature Range  
TO  
OUTP UT  
PIN  
+1.6V  
C
L
50 pF  
Commercial (A, B Version) . . . . . . . . . -40oC to +85oC  
Storage T emperature Range . . . . . . . . . -65oC to +150oC  
Junction T emperature . . . . . . . . . . . . . . . . . . . . . . . + 150oC  
200µA  
I
OH  
T hermal Impedance . . . . . . . . . . 205.9°C /W (µSOIC )  
211.5°C/W (SOT -23)  
JA  
T hermal Impedance . . . . . . . .  
43.74°C/W (µSOIC)  
91.99°C/W (SOT -23)  
JC  
Figure 3. Load Circuit for Digital Output Tim ing  
Specifications  
Lead T emperature, Soldering  
Vapor Phase (60 secs) . . . . . . . . . . . . . . . . . . . + 215oC  
Infared (15 secs) . . . . . . . . . . . . . . . . . . . . . . . + 220oC  
E S D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5kV  
N O T E S  
1Stressesabove those listed under “Absolute Maximum Ratings” maycause permanent  
damage to the device. Thisisa stressratingonlyand functionaloperation ofthe device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods mayaffect device reliability.  
2T ransient currents of up to 100 mA will not cause SC R latch up.  
O R D E R ING G U ID E  
Linearity  
P ackage  
Model  
Ran ge  
Error (LSB)1 O p tion 4  
Br anding Infor m ation  
AD 7456BRT  
-40°C to +85°C  
-40°C to +85°C  
Evaluation Board  
C ontroller Board  
± 1 LSB  
± 1 LSB  
RT -8  
RM -8  
T BD  
T BD  
AD 7456BRM  
T BD  
EVAL-C O N T RO L BRD 23  
NOTES  
1Linearity error here refers to Integral N on-linearity Error.  
2T his can be used as a stand-alone evaluation board or in conjunction with the EVALUAT ION BOARD CONT ROLLER for evaluation/demonstration purposes.  
3EVALU AT ION BOARD C ON T ROLLER. T his board is  
evaluation boards ending in the C B designators. T o order  
a
complete unit allowing  
complete Evaluation Kit, you will need to order the AD C evaluation board i.e.  
a PC to control and communicate with all Analog D evices  
a
T BD , the EVAL-C ON T ROL BRD 2 and  
a 12V AC transformer. See the T BD technote for more information.  
4S0 = SOIC; RM = µSOIC  
C A U T I O N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V  
readily accumulate on the human body and test equipment and can discharge without  
d et ect ion . Alt h ou gh t h e AD 7456 feat u res p rop riet ary E SD p rot ect ion circu it ry,  
p erm an en t d am age m ay occu r on d evices su b ject ed t o h igh -en ergy elect rost at ic  
discharges. T herefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–5 –  
REV. PrA  
PRELIMINARY TECHNICAL DATA  
AD7456  
P IN F U NC T IO N D E SC R IP T IO N  
P in Mnem onic  
Function  
VREF  
Reference Input for the AD7456. An external reference must be applied to this input. For a 5 V power  
supply, the reference is 2.5 V (±1%) and for a 3 V power supply, the reference is 2V (±1%)  
for specified performance. T his pin should be decoupled to GND with a capacitor of at least 0.1µF.  
See the ‘Reference Section’ for more details.  
VIN +  
VIN -  
Positive T erminal for Differential Analog Input.  
Negative T erminal for Differential Analog Input.  
G N D  
Analog Ground. Ground reference point for all circuitry on the AD7456. All analog input  
signals and any external reference signal should be referred to this GND voltage.  
C S  
Chip Select. T his input provides the dual function of powering up the device and initiating a  
conversion on the AD7456.  
SD AT A  
Serial Data. Logic Output. T he conversion result from the AD7456 is provided on this output  
as a serial data stream. T he bits are clocked out on the falling edge of the SCLK input. T he data  
stream of the AD7456 consists of four leading zeros followed by the 12 bits of conversion data which  
is provided MSB first. T he output coding is two’s complement.  
SC L K  
V D D  
Serial Clock. Logic input. SCLK provides the serial clock for accessing data from the part. T his clock  
input is also used as the clock source for the conversion process.  
Power Supply Input. VDD is 3 V (+20%/-10%) or 5 V (±5%). T his supply should be decoupled to  
GND with a 0.1µF Capacitor and a 10µF T antalum Capacitor.  
P IN C O NFIGURATIO N 8-LE AD SO T-23  
V
V
1
2
3
4
V
8
7
6
5
REF  
DD  
AD7456  
SOT-23  
TOP VIEW  
(Not to Scale)  
SCLK  
SDATA  
CS  
IN+  
V
IN -  
GND  
P IN C O NF IG URAT IO N µSO IC  
V
V
REF  
1
2
3
4
8
7
6
5
DD  
AD7456  
µSOIC  
TOP VIEW  
(Not to Scale)  
V
IN +  
SCLK  
SDATA  
CS  
V
IN-  
GND  
–6 –  
REV. PrA  
PRELIMINARY TECHNICAL DATA  
AD7456  
T E R M I N O L O G Y  
Ap er tu r e Jitter  
T his is the sample to sample variation in the effective  
point in time at which the actual sample is taken.  
Signal to (Noise + D istor tion) Ratio  
T his is the measured ratio of signal to (noise + distortion)  
at the output of the ADC. T he signal is the rms amplitude  
of the fundamental. Noise is the sum of all  
nonfundamental signals up to half the sampling frequency  
(fS/2), excluding dc. T he ratio is dependent on the number  
of quantization levels in the digitization process; the more  
levels, the smaller the quantization noise. T he theoretical  
signal to (noise + distortion) ratio for an ideal N-bit con-  
verter with a sine wave input is given by:  
F u ll P ower Ban dwidth  
T he full power bandwidth of an ADC is that input fre-  
quency at which the amplitude of the reconstructed  
fundamental is reduced by 0.1dB or 3dB for a full scale  
input.  
C om m on Mode Rejection Ratio (C MRR)  
T he Common Mode Rejection Ratio is defined as the  
ratio of the power in the ADC output at full-scale fre-  
quency, f, to the power of a 200mV p-p sine wave applied  
to the Common Mode Voltage of VIN+ and VIN- of fre-  
quency fs:  
Signal to (Noise + Distortion) = (6.02 N + 1.76) dB  
T hus for a 12-bit converter, this is 74 dB,  
T ota l H a r m on ic D istor tion  
CMRR ( dB) = 10log( Pf/Pfs)  
T otal harmonic distortion (T HD) is the ratio of the rms  
sum of harmonics to the fundamental. For the AD7450, it  
is defined as:  
Pf is the power at the frequncy f in the ADC output; Pfs is  
the power at frequency fs in the ADC output.  
In tegr a l Non lin ea r ity (INL)  
T his is the maximum deviation from a straight line pass-  
ing through the endpoints of the ADC transfer function.  
2
2
2
2
2
V2  
V
V
V
V
+
6
+
+
+
3
4
5
THD (d B ) 20 lo g  
=
V1  
D iffer en tia l Non lin ea r ity (D NL)  
T his is the difference between the measured and the ideal 1  
LSB change between any two adjacent codes in the ADC.  
where V1 is the rms amplitude of the fundamental and V2,  
V3, V4, V5 and V6 are the rms amplitudes of the second to  
the sixth harmonics.  
Zer o C ode E r r or  
T his is the deviation of the midscale code transition (111...111  
P eak H ar m onic or Spur ious Noise  
to 000...000) from the ideal VIN+-VIN (i.e., 0LSB).  
-
Peak harmonic or spurious noise is defined as the ratio of  
the rms value of the next largest component in the ADC  
output spectrum (up to fS/2 and excluding dc) to the rms  
value of the fundamental. Normally, the value of this  
specification is determined by the largest harmonic in the  
spectrum, but for ADCs where the harmonics are buried  
in the noise floor, it will be a noise peak.  
P ositive Gain E r r or  
T his is the deviation of the last code transition (011...110 to  
011...111) from the ideal VIN+-VIN- (i.e., +VREF - 1LSB), after  
the Zero Code Error has been adjusted out.  
Nega tive G a in E r r or  
T his is the deviation of the first code transition (100...000 to  
100...001) from the ideal VIN+-VIN - (i.e., -VREF + 1LSB), after  
the Zero Code Error has been adjusted out.  
In t er m od u la t ion D ist or t ion  
With inputs consisting of sine waves at two frequencies, fa  
and fb, any active device with nonlinearities will create  
distortion products at sum and difference frequencies of  
mfa ± nfb where m, n = 0, 1, 2, 3, etc. Intermodulation  
distortion terms are those for which neither m nor n are  
equal to zero. For example, the second order terms in-  
clude (fa + fb) and (fa – fb), while the third order terms  
include (2fa + fb), (2fa – fb), (fa + 2fb) and (fa – 2fb).  
T r a ck/H old Acqu isition T im e  
T he track/hold amplifier returns into track mode on the  
13th SCLK rising edge (see the “Serial Interface Sec-  
tion”). T he track/hold acquisition time is the minimum  
time required for the track and hold amplifier to remain in  
track mode for its output to reach and settle to within 0.5  
LSB of the applied input signal.  
T he AD7456 is tested using the CCIF standard where two  
input frequencies near the top end of the input bandwidth  
are used. In this case, the second order terms are usually  
distanced in frequency from the original sine waves while  
the third order terms are usually at a frequency close to  
the input frequencies. As a result, the second and third  
order terms are specified separately. T he calculation of the  
intermodulation distortion is as per the T H D specification  
where it is the ratio of the rms sum of the individual dis-  
tortion products to the rms amplitude of the sum of the  
fundamentals expressed in dBs.  
P ower Supply Rejection Ratio (P SRR)  
T he power supply rejection ratio is defined as the ratio of  
the power in the ADC output at full-scale frequency, f, to  
the power of a 200mV p-p sine wave applied to the ADC  
VDD supply of frequency fs. T he frequency of this input  
varies from 1kHz to 1MHz.  
PSRR (dB) = 10 log (Pf/Pfs)  
Pf is the power at frequency f in the ADC output; Pfs is  
the power at frequency fs in the ADC output.  
Ap er tu r e D ela y  
T his is the amount of time from the leading edge of the  
sampling clock until the ADC actually takes the sample.  
–7 –  
REV. PrA  
PRELIMINARY TECHNICAL DATA  
AD7456  
SE R IAL INT E R F AC E  
Figure 1 shows a detailed timing diagram for the serial  
interface of the AD7456. T he serial clock provides the  
conversion clock and also controls the transfer of data  
from the AD7456 during conversion.  
T he falling edge of CS powers the part up and also puts  
the track and hold into track. T he power up time is  
1.4µsec minimum and in this time, the device also ac-  
quires the analog input signal. CS must remain low for  
the duration of power up. T he rising edge of CS initiates  
the conversion process, puts the track and hold into hold  
mode and takes the serial data bus out of three-state. T he  
conversion will require 16 SCLK cycles to complete.  
On the 16th SCLK falling edge, after the time t8, the  
serial data bus will go back into three-state, and the device  
will automatically enter full power down. It will remain  
powered down until the next falling edge of CS.  
If the falling edge of CS occurs before the 16 bits of con-  
version data have been clocked out of the device, the  
conversion will be aborted, SDAT A will go back into  
three-state and the track and hold will go back into track;  
thus the part will sample the analog input. On the next  
rising edge of CS, a normal conversion will be initiated  
and the device will automatically powerdown at the end of  
the conversion as before.  
T he conversion result from the AD7456 is provided on  
the SDAT A output as a serial data stream. T he bits are  
clocked out on the falling edge of the SCLK input. T he  
data stream of the AD7456 consists of four leading zeros  
followed by the 12 bits of conversion data which is pro-  
vided MSB first. T he output coding is two’s complement.  
16 serial clock cycles are therefore required to perform a  
conversion and to access data from the AD7456. A rising  
edge on CS provides the first leading zero to be read in by  
the micro-controller or DSP. T he remaining data is then  
clocked out on the subsequent SCLK falling edges begin-  
ning with the second leading zero. T hus the first falling  
clock edge on the serial clock after CS has gone high  
provides the second leading zero. T he final bit in the data  
transfer is valid on the 16th falling edge, having been  
clocked out on the previous (15th) falling edge.  
–8 –  
REV. PrA  

相关型号:

AD7456BRT

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, SOT-23, 8 PIN, Analog to Digital Converter
ADI

AD7457

Low Power, Pseudo Differential, 100 kSPS 12-Bit ADC in an 8-Lead SOT-23
ADI

AD7457BRM

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, MICRO, SOIC-8, Analog to Digital Converter
ADI

AD7457BRT

Low Power, Pseudo Differential, 100 kSPS 12-Bit ADC in an 8-Lead SOT-23
ADI

AD7457BRT-R2

Low Power, Pseudo Differential, 100 kSPS 12-Bit ADC in an 8-Lead SOT-23
ADI

AD7457BRT-REEL

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, SOT-23, 8 PIN, Analog to Digital Converter
ADI

AD7457BRT-REEL7

Low Power, Pseudo Differential, 100 kSPS 12-Bit ADC in an 8-Lead SOT-23
ADI

AD7457BRTZ-REEL7

Low Power, Pseudo Differential, 100 kSPS 12-Bit ADC in an 8-Lead SOT-23
ADI

AD7457_05

Low Power, Pseudo Differential, 100 kSPS
ADI

AD745AN

Ultralow Noise, High Speed, BiFET Op Amp
ADI

AD745AN

OP-AMP, 1500 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD745AQ

Operational Amplifier, 1 Func, 1500uV Offset-Max, BIPolar, CDIP8, CERDIP-8
ROCHESTER