AD7401YRW [ADI]

暂无描述;
AD7401YRW
型号: AD7401YRW
厂家: ADI    ADI
描述:

暂无描述

文件: 总20页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Isolated Sigma-Delta Modulator  
AD7401  
FEATURES  
GENERAꢀ DESCRIPTION  
The AD74011 is a second-order, Σ-Δ modulator that converts  
an analog input signal into a high speed 1-bit data stream with  
on-chip digital isolation based on Analog Devices’ iCoupler®  
technology. The AD7401 operates from a 5 V power supply and  
accepts a differential input signal of ±±00 mV ꢀ±(±0 mV full-  
scale). The analog input is continuously sampled by the analog  
modulator, eliminating the need for external sample-and-hold  
circuitry. The input information is contained in the output  
stream as a density of 1s with a data rate up to 16 MHz. The  
original information can be reconstructed with an appropriate  
digital filter. The serial I/O can use a 5 V or ( V supply ꢀVDD±).  
16 MHz maximum external clock rate  
Second-order modulator  
16 bits no missing codes  
2 ꢀSB INꢀ typical at 16 bits  
3.5 μV/°C maximum offset drift  
On-board digital isolator  
On-board reference  
ꢀow power operation: 18 mA maximum at 5.25 V  
−40°C to +105°C operating range  
16-lead SOIC_W package  
AD7400, internal clock version  
Safety and regulatory approvals  
Uꢀ recognition  
3750 Vrms for 1 min per Uꢀ 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
VIORM = 891 V peak  
The serial interface is digitally isolated. High speed CMOS,  
combined with monolithic air core transformer technology,  
means the on-chip isolation provides outstanding performance  
characteristics, superior to alternatives such as optocoupler  
devices. The part contains an on-chip reference. The AD7401  
is offered in a 16-lead SOIC_W and has an operating  
temperature range of −40°C to +105°C.  
APPꢀICATIONS  
AC motor control  
1 Protected by U.S. Patents 5,952,849 and 6,291,907.  
Data acquisition systems  
A/D + opto-isolator replacements  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
V
V
DD2  
DD1  
AD7401  
V
V
+
IN  
T/H  
Σ-Δ ADC  
IN  
UPDATE  
WATCHDOG  
ENCODE  
DECODE  
BUF  
MDAT  
REF  
CONTROL LOGIC  
WATCHDOG  
UPDATE  
DECODE  
MCLKIN  
ENCODE  
GND  
GND  
1
2
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD7401  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................9  
Terminology.................................................................................... 1±  
Theory of Operation ...................................................................... 1(  
Circuit Information.................................................................... 1(  
Analog Input ............................................................................... 1(  
Differential Inputs...................................................................... 14  
Digital Filter ................................................................................ 15  
Application Information................................................................ 17  
Grounding and Layout .............................................................. 17  
Evaluating the AD7401 Performance...................................... 17  
Insulation Lifetime..................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... ±  
Specifications..................................................................................... (  
Timing Specifications .................................................................. 4  
Insulation and Safety Related Specifications ............................ 5  
Regulatory Information............................................................... 5  
DIN EN 60747-5-± ꢀVDE 0884 Part ±) Insulation  
Characteristics .............................................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
REVISION HISTORY  
3/06Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD7401  
SPECIFICATIONS  
VDD1 = 4.5 V to 5.±5 V, VDD± = ( V to 5.5 V, VIN+ = −±00 mV to +±00 mV, and VIN− = 0 V ꢀsingle-ended); TA = TMIN to TMAX  
,
f
MCLK = 16 MHz maximum, tested with Sinc( filter, ±56 decimation rate, as defined by Verilog code, unless otherwise noted.  
Table 1.  
Parameter  
Y Version1, 2  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
Resolution  
16  
15  
25  
0.9  
0.6  
50  
3.5  
1
120  
1.6  
2
23  
110  
Bits min  
LSB max  
LSB max  
LSB max  
mV max  
μV typ  
μV/°C max  
μV/°C typ  
μV/V typ  
mV max  
mV max  
μV/°C typ  
μV/V typ  
Filter output truncated to 16 bits  
−40°C to +85°C; 2 LSB typ  
>85°C to 105°C  
Integral Nonlinearity3  
Differential Nonlinearity3  
Offset Error2  
Guaranteed no missed codes to 16 bits  
TA = 25°C  
−40°C to +105°C  
Offset Drift vs. Temperature3  
3
Offset Drift vs. VDD1  
Gain Error  
−40°C to +85°C  
>85°C to 105°  
−40°C to +105°C  
Gain Error Drift vs. Temperature3  
3
Gain Error Drift vs. VDD1  
ANALOG INPUT  
Input Voltage Range  
Dynamic Input Current  
DC Leakage Current  
200  
9
0.5  
10  
mV min/mV max  
μA max  
μA max  
For specified performance; full range 320 mV  
VIN+ = 400 mV, VIN− = 0 V  
Input Capacitance  
pF typ  
DYNAMIC SPECIFICATIONS  
Signal-to-Noise + Distortion Ratio (SINAD)3  
VIN+ = 5 kHz, 400 mV p-p sine  
−40°C to +85°C; fMCLK = 9 MHz to 16 MHz  
−40°C to +85°C; fMCLK = 5 MHz to <9 MHz  
>85°C to 105°C  
70  
dB min  
dB min  
dB min  
dB typ  
dB min  
dB typ  
dB typ  
Bits  
68  
65  
81  
80  
Signal-to-Noise Ratio (SNR)3  
−40°C to +105°C; 82 dB typ  
Total Harmonic Distortion (THD)3  
Peak Harmonic or Spurious Noise (SFDR)3  
Effective Number of Bits (ENOB)3  
Isolation Transient Immunity  
−92  
−92  
11.5  
25  
kV/μs min  
kV/μs typ  
30  
LOGIC INPUTS  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Current, IIN  
0.8 × VDD2  
0.2 × VDD2  
0.5  
V min  
V max  
μA max  
pF max  
4
Input Capacitance, CIN  
10  
LOGIC OUTPUTS  
Output High Voltage, VOH  
Output Low Voltage, VOL  
POWER REQUIREMENTS  
VDD1  
VDD2 − 0.1  
0.4  
V min  
V max  
IO = −200 μA  
IO = +200 μA  
4.5/5.25  
V min/V max  
V min/V max  
mA max  
mA max  
mA max  
VDD2  
3/5.5  
12  
8
5
IDD1  
IDD2  
VDD1 = 5.25 V  
VDD2 = 5.5 V  
VDD2 = 3.3 V  
6
4
1 Temperature range is -40°C to +85°C.  
2 All voltages are relative to their respective ground.  
3 See the Terminology section.  
4 Sample tested during initial release to ensure compliance.  
5 See Figure 15.  
6 See Figure 17.  
Rev. 0 | Page 3 of 20  
 
 
AD7401  
TIMING SPECIFICATIONS1  
VDD1 = 4.5 V to 5.±5 V, VDD± = ( V to 5.5 V, TA = TMAX to TMIN, unless otherwise noted.  
Table 2.  
Parameter  
ꢀimit at TMIN, TMAX  
Unit  
Description  
2
fMCLKIN  
16  
5
25  
15  
MHz max  
MHz min  
ns max  
ns min  
ns min  
ns min  
Master clock input frequency  
Master clock input frequency  
Data access time after MCLK rising edge  
Data hold time after MCLK rising edge  
Master clock low time  
3
t1  
t2  
3
t3  
t4  
0.4 × tMCLKIN  
0.4 × tMCLKIN  
Master clock high time  
1 Sample tested during initial release to ensure compliance.  
2 Mark space ratio for clock output is 40/60 to 60/40.  
3 Measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.8 V or 2.0 V.  
200µA  
I
OL  
TO OUTPUT  
PIN  
1.6V  
C
L
25pF  
200µA  
I
OH  
Figure 2. Load Circuit for Digital Output Timing Specifications  
t4  
MCLKIN  
MDAT  
t1  
t2  
t3  
Figure 3. Data Timing  
Rev. 0 | Page 4 of 20  
 
AD7401  
INSUꢀATION AND SAFETY REꢀATED SPECIFICATIONS  
Table 3.  
Parameter  
Symbol Value  
Unit Conditions  
Input-to-Output Withstand Momentary Withstand Voltage  
Minimum External Air Gap (Clearance)  
VISO  
L(I01)  
3750 min  
7.46 min  
V
mm  
1-minute duration  
Measured from input terminals to output  
terminals, shortest distance through air  
Minimum External Tracking (Creepage)  
L(I02)  
CTI  
8.1 min  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
>175  
IIIa  
V
Material Group (DIN VDE 0110, 1/89, Table I)  
REGUꢀATORY INFORMATION  
Table 4.  
Uꢀ1 (Pending)  
CSA  
Approved under CSA Component  
VDE2  
Recognized under 1577  
Certified according to DIN EN 60747-5-2  
(VDE 0884 Part 2): 2003-012  
Component Recognition Program1 Acceptance Notice #5A  
3750 Vrms Isolation Voltage  
Reinforced insulation per  
Basic insulation, 891 V peak  
CSA 60950-1-03 and IEC 60950-1,  
630 Vrms maximum working voltage  
Complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01,  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
Reinforced insulation, 891 V peak  
File 2471900-4880-0001  
File E214100  
File 205078  
1 In accordance with UL 1577, each AD7401 is proof tested by applying an insulation test voltage ≥ 4500 V rms for 1 second (current leakage detection limit = 7.5 μA).  
2 In accordance with DIN EN 60747-5-2, each AD7401 is proof tested by applying an insulation test voltage ≥ 1671 V peak for 1 second (partial discharge detection  
limit = 5 pC).  
Rev. 0 | Page 5 of 20  
 
 
AD7401  
DIN EN 60747-5-2 (VDE 0884 PART 2) INSUꢀATION CHARACTERISTICS  
This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means  
of protective circuits.  
Table 5.  
Description  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 300 Vrms  
I–IV  
For Rated Mains Voltage ≤ 450 Vrms  
I–II  
For Rated Mains Voltage ≤ 600 Vrms  
I–II  
Climatic Classification  
40/105/21  
2
891  
Pollution Degree (DIN VDE 0110, Table I)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
VIORM × 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Test Subgroup 1  
VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5pC  
After Input and/or Safety Test Subgroup 2/3  
VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5pC  
Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec)  
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure, Also See Figure 4)  
Case Temperature  
VIORM  
VPR  
V peak  
V peak  
1671  
VPR  
1426  
1069  
6000  
V peak  
V peak  
V peak  
VTR  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
Side 1 Current  
Side 2 Current  
Insulation Resistance at TS, VIO = 500 V  
mA  
mA  
Ω
350  
300  
250  
SIDE #2  
200  
150  
SIDE #1  
100  
50  
0
0
50  
100  
150  
200  
CASE TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Rev. 0 | Page 6 of 20  
 
 
AD7401  
ABSOLUTE MAXIMUM RATINGS  
TA = ±5°C, unless otherwise noted. All voltages are relative to  
their respective ground.  
Table 6.  
Parameter  
VDD1 to GND1  
VDD2 to GND2  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability  
Rating  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to  
VDD1 + 0.3 V  
−0.3 V to  
Analog Input Voltage to GND1  
Digital Input Voltage to GND2  
Output Voltage to GND2  
V
DD1 + 0.5 V  
−0.3 V to  
VDD2 + 0.3 V  
Input Current to Any Pin Except Supplies1  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
10 mA  
Table 7. Maximum Continuous Working Voltage1  
−40°C to +105°C  
−65°C to +150°C  
+150°C  
Parameter  
Max Unit Constraint  
AC Voltage,  
Bipolar Waveform  
AC Voltage,  
Unipolar Waveform  
565  
891  
891  
VPK  
VPK  
V
50-year minimum lifetime  
SOIC_W Package  
Maximum CSA/VDE  
approved working voltage  
Maximum CSA/VDE  
θJA Thermal Impedance  
89.2°C/W  
55.6°C/W  
1012 Ω  
θJC Thermal Impedance  
DC Voltage  
approved working voltage  
Resistance (Input to Output), RI-O  
2
Capacitance (Input to Output), CI-O  
1.7 pF typ  
1 Refers to continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more details.  
Pb-Free Temperature , Soldering  
Reflow  
ESD  
260 (+0)°C  
1.5 kV  
1 Transient currents of up to 100 mA do not cause SCR to latch up.  
2 f = 1 MHz.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 7 of 20  
 
 
 
 
AD7401  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16 GND  
15 NC  
DD1  
2
V
+
IN  
IN  
V
14  
V
DD2  
AD7401  
TOP VIEW  
(Not to Scale)  
NC  
NC  
NC  
13 MCLKIN  
12 NC  
11 MDAT  
10 NC  
V
DD1  
GND  
9
GND  
2
1
NC = NO CONNECT  
Figure 5. 16-Lead SOIC_W Pin Configuration  
Table 8. 16-Lead SOIC_W Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 7  
2
3
VDD1  
VIN+  
VIN−  
Supply Voltage, 4.5 V to 5.25 V. This is the supply voltage for the isolated side of the AD7401 and is relative to GND1.  
Positive Analog Input. Specified range of 200 mV.  
Negative Analog Input. Normally connected to GND1.  
No Connect.  
4 to 6, 10, NC  
12, 15  
8
9, 16  
11  
GND1  
GND2  
MDAT  
Ground1. This is the ground reference point for all circuitry on the isolated side.  
Ground2. This is the ground reference point for all circuitry on the nonisolated side.  
Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream.  
The bits are clocked out on the rising edge of the MCLKIN input and valid on the following MCLKIN rising edge.  
13  
14  
MCLKIN  
VDD2  
Master Clock Logic Input. 16 MHz maximum. The bit stream from the modulator is valid on the rising edge of MCLKIN.  
Supply Voltage. 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND2.  
Rev. 0 | Page 8 of 20  
 
AD7401  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = ±5°C, using ±5 kHz brick-wall filter, unless otherwise noted.  
100  
90  
–90  
–85  
–80  
–75  
–70  
–65  
–60  
–55  
–50  
V
= V = 5V  
DD2  
DD1  
MCLKIN = 10MHz  
80  
MCLKIN = 16MHz  
70  
60  
50  
MCLKIN = 16MHz  
MCLKIN = 5MHz  
MCLKIN = 10MHz  
40  
30  
20  
200mV p-p SINE WAVE ON V  
NO DECOUPLING  
DD1  
10  
0
V
= V  
= 5V  
DD1  
DD2  
1MHz CUTOFF FILTER  
0
100 200 300 400 500 600 700 800 900 1000  
SUPPLY RIPPLE FREQUENCY (kHz)  
0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33  
± INPUT AMPLITUDE (V)  
Figure 6. PSRR vs. Supply Ripple Frequency Without Supply Decoupling  
Figure 9. SINAD vs. VIN  
–90  
0.4  
V
= V = 5V  
DD2  
DD1  
0.3  
0.2  
–85  
–80  
–75  
–70  
–65  
–60  
–55  
–50  
MCLKIN = 16MHz  
0.1  
0
MCLKIN = 10MHz  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
MCLKIN = 5MHz  
V
V
+ = –200mV TO +200mV  
– = 0V  
IN  
IN  
0
1k  
2k  
3k  
4k  
5k  
6k  
7k  
8k  
9k  
10k  
0
10k  
20k  
30k  
40k  
50k  
60k  
INPUT FREQUENCY (Hz)  
CODE  
Figure 7. SINAD vs. Analog Input Frequency  
Figure 10. Typical DNL ( 200 mV Range)  
20  
0
0.8  
0.6  
0.4  
0.2  
0
4096 POINT FFT  
= 5kHz  
SINAD = 81.984dB  
THD = –96.311dB  
V
V
+ = –200mV TO +200mV  
– = 0V  
IN  
IN  
F
IN  
–20  
DECIMATION BY 256  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–0.2  
–0.4  
0
5
10  
15  
20  
25  
30  
0
10k  
20k  
30k  
40k  
50k  
60k  
FREQUENCY (kHz)  
CODE  
Figure 11. Typical INL ( 200 mV Range)  
Figure 8. Typical FFT ( 200 mV Range)  
Rev. 0 | Page 9 of 20  
 
 
AD7401  
250  
200  
150  
100  
50  
0.0105  
0.0100  
0.0095  
0.0090  
0.0085  
0.0080  
0.0075  
0.0070  
V
= V = 5V  
DD2  
DD1  
V
= V  
DD2  
= 4.5V  
V
= V = 4.5V  
DD2  
MCLKIN = 16MHz  
= +85°C  
DD1  
DD1  
MCLKIN = 16MHz  
MCLKIN = 10MHz  
T
A
MCLKIN = 16MHz  
= –40°C  
MCLKIN = 16MHz  
= +105°C  
V
= V = 4.5V  
V
DD1  
= V = 5V  
T
T
A
DD1  
DD2  
DD2  
MCLKIN = 5MHz  
A
MCLKIN = 5MHz  
V
= V  
= 5V  
DD1  
DD2  
MCLKIN = 16MHz  
MCLKIN = 10MHz  
= –40°C  
MCLKIN = 10MHz  
T
T
= +105°C  
A
A
0
–50  
–100  
–150  
–200  
–250  
MCLKIN = 10MHz  
= +85°C  
T
A
V
= V  
DD2  
= 5.25V  
V
= V = 5.25V  
DD2  
DD1  
DD1  
MCLKIN = 16MHz  
MCLKIN = 10MHz  
MCLKIN = 5MHz  
= –40°C  
V
= V = 5V  
V
DD1  
= V = 5.25V  
DD1  
DD2  
DD2  
MCLKIN = 5MHz  
T
A
MCLKIN = 5MHz  
= +85°C  
MCLKIN = 5MHz  
MCLKIN = 10MHz  
0.0065  
0.0060  
T
T = +105°C  
A
A
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105  
TEMPERATURE (°C)  
–0.33 –0.28 –0.23 –0.18 –0.13 –0.08 –0.03 0.03 0.08 0.13 0.18 0.23 0.28 0.33  
V
DC INPUT VOLTAGE (V)  
IN  
Figure 15. IDD1 vs. VIN at Various Temperatures  
Figure 12. Offset Drift vs. Temperature for Various Supply Voltages  
0.0070  
0.0065  
0.0060  
0.0055  
0.0050  
0.0045  
0.0040  
0.0035  
0.0030  
0.0025  
0.0020  
200.5  
V
T
= V = 5V  
DD2  
V
= V  
DD2  
= 4.5V  
V
= V = 4.5V  
DD2  
DD1  
= 25°C  
DD1  
DD1  
MCLKIN = 16MHz  
MCLKIN = 16MHz  
MCLKIN = 10MHz  
A
200.4  
200.3  
200.2  
200.1  
200.0  
199.9  
199.8  
199.7  
199.6  
199.5  
V
= V = 4.5V  
V
DD1  
= V = 5V  
DD1  
DD2  
DD2  
MCLKIN = 5MHz  
MCLKIN = 5MHz  
V
= V  
= 5V  
V
= V  
= 5.25V  
DD1  
DD2  
DD1  
DD2  
MCLKIN = 16MHz  
MCLKIN = 10MHz  
V
= V  
= 5.25V  
V
= V = 5.25V  
DD1  
DD2  
DD1  
DD2  
MCLKIN = 16MHz  
MCLKIN = 5MHz  
MCLKIN = 10MHz  
MCLKIN = 5MHz  
V
= V  
= 5V  
DD1  
DD2  
MCLKIN = 10MHz  
–0.225  
–0.125  
–0.025  
0.075  
0.175  
0.275  
–0.325  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105  
TEMPERATURE (°C)  
–0.275 –0.175  
–0.075  
0.025  
0.125  
0.225  
0.325  
V
DC INPUT VOLTAGE (V)  
IN  
Figure 13. Gain Error Drift vs. Temperature for Various Supply Voltages  
Figure 16. IDD2 vs. VIN  
0.0105  
0.0070  
0.0065  
0.0060  
0.0055  
0.0050  
0.0045  
0.0040  
0.0035  
0.0030  
0.0025  
0.0020  
V
= V = 5V  
DD2  
V
= V = 5V  
DD2  
DD1  
DD1  
= 25°C  
T
A
0.0100  
0.0095  
0.0090  
0.0085  
0.0080  
0.0075  
0.0070  
0.0065  
MCLKIN = 16MHz  
= +105°C  
T
A
MCLKIN = 16MHz  
MCLKIN = 16MHz  
= –40°C  
MCLKIN = 16MHz  
= +85°C  
T
T
A
A
MCLKIN = 10MHz  
= –40°C  
MCLKIN = 10MHz  
T
T
= +105°C  
A
A
MCLKIN = 10MHz  
MCLKIN = 10MHz  
= +85°C  
T
A
MCLKIN = 5MHz  
= –40°C  
T
A
MCLKIN = 5MHz  
MCLKIN = 5MHz  
MCLKIN = 5MHz  
= +85°C  
T
= +105°C  
T
A
A
–0.225  
–0.125  
–0.025  
–0.075  
0.075  
0.175  
0.225  
0.275  
–0.325  
–0.33 –0.28 –0.23 –0.18 –0.13 –0.08 –0.03 0.03 0.08 0.13 0.18 0.23 0.28 0.33  
–0.275 –0.175  
0.025  
0.125  
0.325  
V
DC INPUT VOLTAGE (V)  
V
IN  
DC INPUT VOLTAGE (V)  
IN  
Figure 17. IDD2 vs. VIN at Various Temperatures  
Figure 14. IDD1 vs. VIN  
Rev. 0 | Page 10 of 20  
AD7401  
8
6
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= V = 4.5V TO 5.25V  
DD2  
V
= V = 5V  
DD2  
DD1  
DD1  
50kHz BRICK WALL FILTER  
MCLKIN = 16MHz  
MCLKIN = 10MHz  
4
2
MCLKIN = 5MHz  
0
–2  
–4  
–6  
–8  
MCLKIN = 5MHz  
MCLKIN = 10MHz  
MCLKIN = 16MHz  
–0.35 –0.30 –0.25 –0.20 –0.15 –0.10 –0.05  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35  
–0.30 –0.25 –0.20 –0.15 –0.10 –0.05  
0
0.05 0.10 0.15 0.20 0.25 0.30  
V
– DC INPUT (V)  
DC INPUT (V)  
IN  
Figure 20. RMS Noise Voltage vs. VIN  
Figure 18. IIN vs. VIN  
0
–20  
V
= V  
DD2  
=5V  
DD1  
–40  
MCLKIN = 5MHz  
–60  
MCLKIN = 10MHz  
–80  
MCLKIN = 16MHz  
100 1000  
–100  
–120  
0.1  
1
10  
RIPPLE FREQUENCY (kHz)  
Figure 19. CMRR vs. Common-Mode Ripple Frequency  
Rev. 0 | Page 11 of 20  
AD7401  
TERMINOLOGY  
Differential Nonlinearity  
Total Harmonic Distortion (THD)  
Differential nonlinearity is the difference between the measured  
and the ideal 1 LSB change between any two adjacent codes  
in the ADC.  
Total harmonic distortion is the ratio of the rms sum of  
harmonics to the fundamental. For the AD7401, it is defined as  
2
2
2
2
2
V2 +V3 +V4 +V5 +V6  
THD(dB) = 20log  
Integral Nonlinearity  
V1  
Integral nonlinearity is the maximum deviation from a straight  
line passing through the endpoints of the ADC transfer function.  
The endpoints of the transfer function are specified negative  
full-scale, −±00 mV ꢀVIN+ − VIN−), Code 1±,±88 for the 16-bit  
level, and specified positive full-scale, +±00 mV ꢀVIN+ − VIN−),  
Code 5(,±48 for the 16-bit level.  
where:  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
through the sixth harmonics.  
Peak Harmonic or Spurious Noise  
Peak harmonic or spurious noise is defined as the ratio of the  
rms value of the next largest component in the ADC output  
spectrum ꢀup to fS/±, excluding dc) to the rms value of the  
fundamental. Normally, the value of this specification is  
determined by the largest harmonic in the spectrum, but for  
ADCs where the harmonics are buried in the noise floor, it is a  
noise peak.  
Offset Error  
Offset is the deviation of the midscale code ꢀCode (±,768 for  
the 16-bit level) from the ideal VIN+ − VIN− ꢀthat is, 0 V).  
Gain Error  
This includes both positive full-scale gain error and negative  
full-scale gain error. Positive full-scale gain error is the deviation of  
the specified positive full-scale code ꢀ5(,±48 for the 16-bit level)  
from the ideal VIN+ − VIN− ꢀ+±00 mV) after the offset error has  
been adjusted out. Negative full-scale gain error is the deviation  
of the specified negative full-scale code ꢀ1±,±88 for the 16-bit  
level) from the ideal VIN+ − VIN− ꢀ−±00 mV) after the offset  
error has been adjusted out. Gain error includes reference error.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is defined as the ratio of the power in the ADC output at  
±±00 mV frequency, f, to the power of a ±00 mV p-p sine wave  
applied to the common-mode voltage of VIN+ and VIN− of  
frequency fS as  
CMRR ꢀdB) = 10logꢀPf/PfS)  
where:  
Signal-to-(Noise + Distortion) Ratio  
This ratio is the measured ratio of signal to ꢀnoise + distortion)  
at the output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the sum of all nonfundamental signals up  
to half the sampling frequency ꢀfS/±), excluding dc. The ratio is  
dependent on the number of quantization levels in the digitization  
process; the more levels, the smaller the quantization noise. The  
theoretical signal to ꢀnoise + distortion) ratio for an ideal N-bit  
converter with a sine wave input is given by  
Pf is the power at frequency f in the ADC output.  
PfS is the power at frequency fS in the ADC output.  
Power Supply Rejection (PSRR)  
Variations in power supply affect the full-scale transition  
but not the converters linearity. Power supply rejection is  
the maximum change in the specified full-scale ꢀ±±00 mV)  
transition point due to a change in power supply voltage from  
the nominal value ꢀsee Figure 6).  
Signal to (Noise + Distortion) = ꢀ6.0± N + 1.76) dB  
Therefore, for a 1±-bit converter, this is 74 dB.  
Isolation Transient Immunity  
Effective Number of Bits (ENOB)  
The effective number of bits is defined by  
It specifies the rate of rise/fall of a transient pulse applied across  
the isolation boundary beyond which clock or data is corrupted.  
ꢀIt was tested using a transient pulse frequency of 100 kHz.)  
ENOB = ꢀSINAD − 1.76)/6.0±  
Rev. 0 | Page 12 of 20  
 
AD7401  
THEORY OF OPERATION  
A differential input of (±0 mV results in a stream of ideally all  
1s. This is the absolute full-scale range of the AD7401, while  
±00 mV is the specified full-scale range as shown in Table 9.  
CIRCUIT INFORMATION  
The AD7401 isolated Σ-Δ modulator converts an analog input  
signal into a high speed ꢀ16 MHz maximum), single-bit data  
stream; the time average of the modulators single-bit data is  
directly proportional to the input signal. Figure ±( shows a  
typical application circuit where the AD7401 is used to provide  
isolation between the analog input, a current sensing resistor,  
and the digital output, which is then processed by a digital filter  
to provide an N-bit word.  
Table 9. Analog Input Range  
Analog Input  
Voltage Input  
+640 mV  
+320 mV  
+200 mV  
0 mV  
Full-Scale Range  
Positive Full-Scale  
Positive Specified Input Range  
Zero  
Negative Specified Input Range  
Negative Full-Scale  
−200 mV  
−320 mV  
ANAꢀOG INPUT  
The differential analog input of the AD7401 is implemented  
with a switched capacitor circuit. This circuit implements a  
second-order modulator stage that digitizes the input signal  
into a 1-bit output stream. The sample clock ꢀMCLKIN)  
provides the clock signal for the conversion process as well as  
the output data-framing clock. This clock source is external  
on the AD7401. The analog input signal is continuously  
sampled by the modulator and compared to an internal  
voltage reference. A digital stream that accurately represents  
the analog input over time appears at the output of the  
converter ꢀsee Figure ±1).  
To reconstruct the original information, this output needs to be  
digitally filtered and decimated. A Sinc( filter is recommended  
because this is one order higher than that of the AD7401  
modulator. If a ±56 decimation rate is used, the resulting  
16-bit word rate is 6±.5 kHz, assuming a 16 MHz external clock  
frequency. Figure ±± shows the transfer function of the AD7401  
relative to the 16-bit output.  
65535  
MODULATOR OUTPUT  
+FS ANALOG INPUT  
53248  
SPECIFIED RANGE  
–FS ANALOG INPUT  
ANALOG INPUT  
12288  
Figure 21. Analog Input vs. Modulator Output  
A differential signal of 0 V results ꢀideally) in a stream of 1s and  
0s at the MDAT output pin. This output is high 50% of the time  
and low 50% of the time. A differential input of +±00 mV  
produces a stream of 1s and 0s that are high 81.±5% of the time.  
A differential input of −±00 mV produces a stream of 1s and 0s  
that are high 18.75% of the time.  
0
–320mV  
–200mV  
ANALOG INPUT  
+200mV +320mV  
Figure 22. Filtered and Decimated 16-Bit Transfer Characteristic  
ISOLATED  
5V  
NONISOLATED  
5V/3V  
AD7401  
V
V
V
DD  
DD1  
DD2  
3
SINC FILTER  
Σ-Δ  
MOD/  
CS  
V
V
+
MDAT  
MDAT  
IN  
ENCODER  
DECODER  
ENCODER  
+
SCLK  
INPUT  
CURRENT  
MCLKIN  
MCLK  
IN  
SDAT  
R
SHUNT  
DECODER  
GND  
GND  
GND  
1
2
Figure 23. Typical Application Circuit  
Rev. 0 | Page 13 of 20  
 
 
 
 
 
AD7401  
DIFFERENTIAꢀ INPUTS  
When a capacitive load is switched onto the output of an op  
amp, the amplitude momentarily drops. The op amp tries to  
correct the situation and, in the process, hits its slew rate limit.  
This nonlinear response, which can cause excessive ringing, can  
lead to distortion. To remedy the situation, a low-pass RC filter  
can be connected between the amplifier and the input to the  
AD7401. The external capacitor at each input aids in supplying  
the current spikes created during the sampling process, and the  
resistor isolates the op amp from the transient nature of the load.  
The analog input to the modulator is a switched capacitor  
design. The analog signal is converted into charge by highly  
linear sampling capacitors. A simplified equivalent circuit  
diagram of the analog input is shown in Figure ±4. A signal  
source driving the analog input must be able to provide the  
charge onto the sampling capacitors every half MCLKOUT cycle  
and settle to the required accuracy within the next half cycle.  
φA  
The recommended circuit configuration for driving  
1kΩ  
φB  
V
+
IN  
2pF  
2pF  
the differential inputs to achieve best performance is shown in  
Figure ±5. A capacitor between the two input pins sources or  
sinks charge to allow most of the charge that is needed by one  
input to be effectively supplied by the other input. The series  
resistor again isolates any op amp from the current spikes  
created during the sampling process. Recommended values for  
the resistors and capacitor are ±± Ω and 47 pF, respectively.  
φA  
φB  
1kΩ  
V
IN  
φA φB φA φB  
MCLKIN  
Figure 24. Analog Input Equivalent Circuit  
R
V
+
IN  
Because the AD7401 samples the differential voltage across its  
analog inputs, low noise performance is attained with an input  
circuit that provides low common-mode noise at each input.  
The amplifiers used to drive the analog inputs play a critical role  
in attaining the high performance available from the AD7401.  
C
AD7401  
R
V
IN  
Figure 25. Differential Input RC Network  
Rev. 0 | Page 14 of 20  
 
 
 
AD7401  
/*ACCUMULATOR (INTEGRATOR)  
Perform the accumulation (IIR) at the speed  
of the modulator.  
DIGITAꢀ FIꢀTER  
A Sinc( filter is recommended for use with the AD7401. This  
filter can be implemented on an FPGA or possibly a DSP. The  
following Verilog code provides an example of a Sinc( filter  
implementation on a Xylinx® Spartan-II ±.5 V FPGA. This code  
can possibly be compiled for another FPGA, such as an Altera®  
device. Note that the data is read on the negative clock edge in  
this case; although, it can be read on the positive edge, if  
preferred. Figure ±9 shows the effect of using different  
decimation rates with various filter types.  
MCLKIN  
ACC1+  
+
ACC2+  
+
ACC3+  
IP_DATA1  
Z
Z
Z
+
Figure 26. Accumulator  
Z = one sample delay  
MCLKOUT = modulators conversion bit rate  
*/  
/*`Data is read on negative clk edge*/  
module DEC256SINC24B(mdata1, mclk1, reset,  
DATA);  
always @ (posedge mclk1 or posedge reset)  
if (reset)  
begin  
/*initialize acc registers on reset*/  
acc1 <= 0;  
acc2 <= 0;  
acc3 <= 0;  
input mclk1;  
input reset;  
input mdata1;  
filtered*/  
/*used to clk filter*/  
/*used to reset filter*/  
/*ip data to be  
end  
else  
output [15:0] DATA;  
/*filtered op*/  
begin  
/*perform accumulation process*/  
acc1 <= acc1 + ip_data1;  
acc2 <= acc2 + acc1;  
acc3 <= acc3 + acc2;  
end  
integer location;  
integer info_file;  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [15:0]  
reg [7:0]  
ip_data1;  
acc1;  
/*DECIMATION STAGE (MCLKOUT/ WORD_CLK)  
*/  
acc2;  
acc3;  
always @ (negedge mclk1 or posedge reset)  
if (reset)  
word_count <= 0;  
else  
acc3_d1;  
acc3_d2;  
diff1;  
word_count <= word_count + 1;  
always @ (word_count)  
word_clk <= word_count[7];  
diff2;  
/*DIFFERENTIATOR ( including decimation  
stage)  
Perform the differentiation stage (FIR) at a  
lower speed.  
diff3;  
diff1_d;  
diff2_d;  
DATA;  
WORD_CLK  
DIFF1  
DIFF2  
DIFF3  
+
+
+
ACC3  
word_count;  
Z
Z
Z
reg word_clk;  
reg init;  
Figure 27. Differentiator  
Z = one sample delay  
WORD_CLK = output word rate  
*/  
/*Perform the Sinc ACTION*/  
always @ (mdata1)  
if(mdata1==0)  
ip_data1 <= 0;  
to a -1 for 2's comp */  
else  
/* change from a 0  
ip_data1 <= 1;  
Rev. 0 | Page 15 of 20  
 
AD7401  
DATA[8] <= diff3[16];  
DATA[7] <= diff3[15];  
DATA[6] <= diff3[14];  
DATA[5] <= diff3[13];  
DATA[4] <= diff3[12];  
DATA[3] <= diff3[11];  
DATA[2] <= diff3[10];  
DATA[1] <= diff3[9];  
DATA[0] <= diff3[8];  
always @ (posedge word_clk or posedge reset)  
if(reset)  
begin  
acc3_d2 <= 0;  
diff1_d <= 0;  
diff2_d <= 0;  
diff1 <= 0;  
diff2 <= 0;  
diff3 <= 0;  
end  
end  
endmodule  
else  
90  
begin  
3
2
SINC  
SINC  
diff1 <= acc3 - acc3_d2;  
diff2 <= diff1 - diff1_d;  
diff3 <= diff2 - diff2_d;  
acc3_d2 <= acc3;  
diff1_d <= diff1;  
diff2_d <= diff2;  
end  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
/* Clock the Sinc output into an output  
register  
SINC  
WORD_CLK  
DIFF3  
DATA  
1
10  
100  
DECIMATION RATE  
1k  
Figure 28. Clocking Sinc Output into an Output Register  
WORD_CLK = output word rate  
*/  
Figure 29. SNR vs. Decimation Rate for Different Filter Types  
Figure ±9 shows a plot of SNR performance vs. decimation rate  
with different filter types. Note that for a given bandwidth  
requirement a higher MCLKIN frequency can allow for higher  
decimation rates to be used resulting in higher SNR  
performance.  
always @ (posedge word_clk)  
begin  
DATA[15] <= diff3[23];  
DATA[14] <= diff3[22];  
DATA[13] <= diff3[21];  
DATA[12] <= diff3[20];  
DATA[11] <= diff3[19];  
DATA[10] <= diff3[18];  
DATA[9] <= diff3[17];  
Rev. 0 | Page 16 of 20  
 
AD7401  
APPLICATION INFORMATION  
GROUNDING AND ꢀAYOUT  
These tests subjected populations of devices to continuous  
cross-isolation voltages. To accelerate the occurrence of failures,  
the selected test voltages were values exceeding those of normal  
use. The time to failure values of these units were recorded and  
used to calculate acceleration factors. These factors were then  
used to calculate the time to failure under normal operating  
conditions. The values shown in Table 7 are the lesser of the  
following two values:  
Supply decoupling with a value of 100 nF is strongly recom-  
mended on both VDD1 and VDD±. Decoupling on one or both  
VDD1 pins does not affect performance significantly. In applications  
involving high common-mode transients, care should be taken  
to ensure that board coupling across the isolation barrier is  
minimized. Furthermore, the board layout should be designed  
so that any coupling that occurs equally affects all pins on a  
given component side. Failure to ensure this could cause voltage  
differentials between pins to exceed the device’s absolute  
maximum ratings, thereby leading to latch-up or permanent  
damage. Any decoupling used should be placed as close to the  
supply pins as possible.  
The value that ensures at least a 50-year lifetime of  
continuous use.  
The maximum CSA/VDE approved working voltage.  
It should also be noted that the lifetime of the AD7401 varies  
according to the waveform type imposed across the isolation  
barrier. The iCoupler insulation structure is stressed differently  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure (0, Figure (1, and Figure (± illustrate the different  
isolation voltage waveforms.  
Series resistance in the analog inputs should be minimized to  
avoid any distortion effects, especially at high temperatures. If  
possible, equalize the source impedance on each analog input to  
minimize offset. Beware of mismatch and thermocouple effects  
on the analog input PCB tracks to reduce offset drift.  
RATED PEAK VOLTAGE  
EVAꢀUATING THE AD7401 PERFORMANCE  
A simple standalone AD7401 evaluation board is available with  
split ground planes and a board split beneath the AD7401  
package to ensure isolation. This board allows access to each  
pin on the device for evaluation purposes. External supplies and  
all other circuitry ꢀsuch as a digital filter) must be provided by  
the user.  
0V  
Figure 30.  
RATED PEAK VOLTAGE  
0V  
INSUꢀATION ꢀIFETIME  
Figure 31.  
All insulation structures, subjected to sufficient time and/or  
voltage, are vulnerable to breakdown. In addition to the testing  
performed by the regulatory agencies, ADI has carried out an  
extensive set of evaluations to determine the lifetime of the  
insulation structure within the AD7401.  
RATED PEAK VOLTAGE  
0V  
Figure 32.  
Rev. 0 | Page 17 of 20  
 
 
 
 
AD7401  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.27 (0.0500)  
BSC  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
×
45°  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 33. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
Package Description  
Package Option  
RW-16  
RW-16  
AD7401YRWZ1  
AD7401YRWZ-REEL1  
AD7401YRWZ-REEL71  
EVAL-AD7401EB  
16-Lead Standard Small Outline Package (SOIC_W)  
16-Lead Standard Small Outline Package (SOIC_W)  
16-Lead Standard Small Outline Package (SOIC_W)  
Standalone Evaluation Board  
RW-16  
1 Z = Pb-free part.  
Rev. 0 | Page 18 of 20  
 
 
AD7401  
NOTES  
Rev. 0 | Page 19 of 20  
AD7401  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05851-0-3/06(0)  
Rev. 0 | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY