AD7399BR-REEL7 [ADI]

Quad, Serial-Input 12-Bit/10-Bit DACs; 四,串行输入,12位/ 10位DAC
AD7399BR-REEL7
型号: AD7399BR-REEL7
厂家: ADI    ADI
描述:

Quad, Serial-Input 12-Bit/10-Bit DACs
四,串行输入,12位/ 10位DAC

转换器 数模转换器 光电二极管
文件: 总16页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, Serial-Input  
12-Bit/10-Bit DACs  
a
AD7398/AD7399  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AD7398—12-Bit Resolution  
AD7399—10-Bit Resolution  
V
V
B
V
A
DD  
REF  
REF  
Programmable Power Shutdown  
Single (3 V to 5 V) or Dual (؎5 V) Supply Operation  
3-Wire Serial SPI-Compatible Interface  
Internal Power ON Reset  
Double Buffered Registers for Simultaneous  
Multichannel DAC Update  
Four Separate Rail-to-Rail Reference Inputs  
Thin Profile TSSOP-16 Package Available  
Low Tempco 1.5 ppm/؇C  
DAC A  
INPUT  
REG A  
V
A
B
DAC A  
DAC B  
OUT  
OUT  
REGISTER  
SERIAL  
REGISTER  
DAC B  
REGISTER  
CS  
INPUT  
REG B  
V
SDI  
APPLICATIONS  
DAC C  
INPUT  
REG C  
V
V
C
DAC C  
DAC D  
Automotive Output Voltage Span  
Portable Communications  
Digitally Controlled Calibration  
PC Peripherals  
REGISTER  
OUT  
CLK  
DAC D  
REGISTER  
12/10  
INPUT  
REG D  
D
OUT  
GENERAL DESCRIPTION  
POWER  
ON RESET  
The AD7398/AD7399 family of quad, 12-bit/10-bit, voltage-  
output digital-to-analog converters is designed to operate from a  
single 3 V to 5 V or a dual 5 V supply. Built with Analog’s robust  
CBCMOS process, this monolithic DAC offers the user low  
cost, and ease-of-use in single or dual-supply systems.  
V
V
C
V
D
GND  
RS  
LDAC  
SS  
REF  
REF  
The applied external reference VREF determines the full-scale  
output voltage. Valid VREF values include VSS < VREF < VDD that  
result in a wide selection of full-scale outputs. For multiplying  
applications ac inputs can be as large as 5 VP.  
0.50  
0.40  
0.30  
0.20  
0.10  
A doubled-buffered serial-data interface offers high-speed,  
3-wire, SPI and microcontroller-compatible inputs using serial-  
data-in (SDI), clock (CLK), and a chip-select (CS). A common  
level-sensitive load-DAC strobe (LDAC) input allows simulta-  
neous update of all DAC outputs from previously loaded Input  
Registers. Additionally, an internal power ON reset forces the  
output voltage to zero at system turn ON. An external asynchro-  
nous reset (RS) also forces all registers to the zero code state. A  
programmable power-shutdown feature reduces power dissipa-  
tion on unused DACs.  
V
DD  
= +5V  
= –5V  
= +2.5V  
V
SS  
REF  
V
T
= 25؇C  
A
0
–0.10  
–0.20  
–0.30  
–0.40  
–0.50  
Both parts are offered in the same pinout to enable users to  
select the appropriate resolution for their application without  
redesigning the layout. For 8-bit resolution applications see the  
pin compatible AD7304 product.  
512  
4096  
1024  
1536  
CODE – Decimal  
2560  
3072 3584  
2048  
0
The AD7398/AD7399 is specified over the extended industrial  
(–40°C to +125°C) temperature range. Parts are available in  
wide body SOIC-16 and ultracompact thin 1.1 mm TSSOP-  
16 packages.  
Figure 1. AD7398 DNL vs. Code (TA = 25°C)  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD7398/AD7399–SPECIFICATIONS  
(@ VDD = 5 V, VSS = 0 V; or VDD = +5 V, VSS = –5 V, VREF = +2.5 V, –40؇C < TA  
< +125؇C, unless otherwise noted.)  
AD7398 12-BIT VOLTAGE OUTPUT DAC  
P
arameter  
Symbol  
Condition  
3 V–5 V ؎ 10%  
؎5 V ؎ 10%  
Unit  
STATIC PERFORMANCE  
Resolution1  
N
12  
1.5  
1
7
2.5  
1.5  
12  
1.5  
1
2.5  
2.5  
1.5  
Bits  
Relative Accuracy2  
INL  
DNL  
VZSE  
VFSE  
TCVFS  
LSB max  
LSB max  
mV max  
mV max  
ppm/°C typ  
Differential Nonlinearity2  
Zero-Scale Error  
Monotonic  
Data = 000H  
Data = FFFH  
Full-Scale Voltage Error  
Full-Scale Tempco3  
REFERENCE INPUT  
V
REFIN Range4  
VREF  
RREF  
CREF  
0/VDD  
35  
5
VSS/VDD  
35  
5
V min/max  
ktyp6  
pF typ  
Input Resistance5  
Data = 555H, Worst-Case  
Input Capacitance3  
ANALOG OUTPUT  
Output Current  
IOUT  
CL  
Data = 800H, VOUT = 4 LSB  
No Oscillation  
5
200  
5
400  
mA typ  
pF max  
Capacitive Load3  
LOGIC INPUTS  
Logic Input Low Voltage  
VIL  
VIH  
VDD = 3 V  
VDD = 5 V  
CLK Only  
0.5  
0.8  
80% VDD  
2.1–2.4  
1
V max  
V max  
V min  
V min  
µA max  
pF max  
0.8  
4.0  
2.4  
1
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance3  
IIL  
CIL  
10  
10  
INTERFACE TIMING3, 7  
Clock Frequency  
Clock Width High  
Clock Width Low  
CS to Clock Set Up  
Clock to CS Hold  
Load DAC Pulsewidth  
Data Setup  
fCLK  
tCH  
tCL  
tCSS  
tCSH  
tLDAC  
tDS  
tDH  
tLDS  
tLDH  
11  
45  
45  
10  
20  
45  
15  
10  
0
16.6  
30  
30  
5
15  
30  
10  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Data Hold  
Load Setup to CS  
Load Hold to CS  
0
15  
20  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time8  
Shutdown Recovery  
DAC Glitch  
SR  
tS  
tSDR  
Q
Data = 000H to FFFH to 000H  
To 0.1% of Full Scale  
2
6
6
150  
15  
–63  
2
6
6
150  
15  
–63  
V/µs typ  
µs typ  
µs typ  
Code 7FFH to 800H to 7FFH  
nVs typ  
nVs typ  
dB typ  
Digital Feedthrough  
Feedthrough  
QDF  
V
OUT/VREF  
VREF = 1.5 VDC + 1 V p-p,  
Data = 000H, f = 100 kHz  
SUPPLY CHARACTERISTICS  
Shutdown Supply Current  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
IDD_SD  
IDD  
ISS  
PDISS  
PSS  
No Load  
30/60  
1.5/2.5  
1.5/2.5  
5
30/60  
1.6/2.7  
1.6/2.7  
16  
µA typ/max  
mA typ/max  
mA typ/max  
mW typ  
VIL = 0 V, No Load  
VIL = 0 V, No Load  
VIL = 0 V, No Load  
Power Supply Sensitivity  
VDD  
=
5%  
0.006  
0.006  
%/% max  
NOTES  
1One LSB = VREF/4096 V for the 12-bit AD7398.  
2The first eight codes (000H, 007H) are excluded from the linearity error measurement in single supply operation.  
3These parameters are guaranteed by design and not subject to production testing.  
4When VREF is connected to either the VDD or the VSS power supply the corresponding VOUT voltage will program between ground and the supply voltage minus the  
offset voltage of the output buffer, which is the same as the VZSE error specification. See additional discussion in the Operation section of the data sheet.  
5Input resistance is code-dependent.  
6Typicals represent average readings measured at 25°C.  
7All input control signals are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
8The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD7398/AD7399  
(@ VDD = 5 V, VSS = 0 V; or VDD = +5 V, VSS = –5 V, VREF = +2.5 V, –40؇C < TA  
< +125؇C, unless otherwise noted.)  
AD7399 10-BIT VOLTAGE OUTPUT DAC  
P
arameter  
Symbol  
Condition  
3 V–5 V ؎ 10%  
؎5 V ؎ 10%  
Unit  
STATIC PERFORMANCE  
Resolution1  
N
10  
1
1
7
15  
1.5  
10  
1
1
4
15  
1.5  
Bits  
Relative Accuracy2  
INL  
DNL  
VZSE  
VFSE  
TCVFS  
LSB max  
LSB max  
mV max  
mV max  
ppm/°C typ  
Differential Nonlinearity2  
Zero-Scale Error  
Monotonic  
Data = 000H  
Data = 3FFH  
Full-Scale Voltage Error  
Full-Scale Tempco3  
REFERENCE INPUT  
VREFIN Range4  
VREF  
RREF  
CREF  
0/VDD  
40  
5
VSS/VDD  
40  
5
V min/max  
ktyp6  
pF typ  
Input Resistance5  
Input Capacitance3  
Data = 155H, Worst-Case  
ANALOG OUTPUT  
Output Current  
IOUT  
CL  
Data = 200H, VOUT = 1 LSB  
No Oscillation  
5
400  
mA typ  
pF max  
Capacitive Load3  
200  
LOGIC INPUTS  
Logic Input Low Voltage  
VIL  
VIH  
VDD = 3 V  
0.5  
0.8  
80% VDD  
2.1–2.4  
1
V max  
V max  
V min  
V min  
µA max  
pF max  
V
DD = 5 V  
0.8  
4.0  
2.4  
1
Logic Input High Voltage  
CLK Only  
Input Leakage Current  
Input Capacitance3  
IIL  
CIL  
10  
10  
INTERFACE TIMING3, 7  
Clock Frequency  
Clock Width High  
Clock Width Low  
CS to Clock Set Up  
Clock to CS Hold  
Load DAC Pulsewidth  
Data Setup  
fCLK  
tCH  
tCL  
tCSS  
tCSH  
tLDAC  
tDS  
tDH  
tLDS  
tLDH  
11  
45  
45  
10  
20  
45  
15  
10  
0
16.6  
30  
30  
5
15  
30  
10  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Data Hold  
Load Setup to CS  
Load Hold to CS  
0
15  
20  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time8  
Shutdown Recovery  
DAC Glitch  
SR  
tS  
tSDR  
Q
QDF  
VOUT/VREF  
Data = 000H to 3FFH to 000H  
To 0.1% of Full Scale  
2
6
6
150  
15  
–63  
2
6
6
150  
15  
–63  
V/µs typ  
µs typ  
µs typ  
Code 1FFH to 200H to 1FFH  
nVs typ  
nVs typ  
dB typ  
Digital Feedthrough  
Feedthrough  
VREF = 1.5 VDC + 1 V p-p,  
Data = 000H, f = 100 kHz  
SUPPLY CHARACTERISTICS  
Shutdown Supply Current  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
IDD_SD  
IDD  
ISS  
PDISS  
PSS  
No Load  
30/60  
1.5/2.5  
1.5/2.5  
5
30/60  
1.6/2.7  
1.6/2.7  
16  
µA typ/max  
mA typ/max  
mA typ/max  
mW typ  
VIL = 0 V, No Load  
VIL = 0 V, No Load  
VIL = 0 V, No Load  
Power Supply Sensitivity  
VDD  
=
5%  
0.006  
0.006  
%/% max  
NOTES  
1One LSB = VREF/1024 V for the 10-bit AD7399.  
2The first two codes (000H, 001H) are excluded from the linearity error measurement in single supply operation.  
3These parameters are guaranteed by design and not subject to production testing.  
4When VREF is connected to either the VDD or the VSS power supply the corresponding VOUT voltage will program between ground and the supply voltage minus the  
offset voltage of the output buffer, which is the same as the VZSE error specification. See additional discussion in the Operation section of the data sheet.  
5Input resistance is code-dependent.  
6Typicals represent average readings measured at 25°C.  
7All input control signals are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
8The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
Specifications subject to change without notice.  
–3–  
REV. 0  
AD7398/AD7399  
ABSOLUTE MAXIMUM RATINGS*  
Operating Temperature Range . . . . . . . . . . –40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature  
R-16 (Vapor Phase, 60 secs) . . . . . . . . . . . . . . . . . . 215°C  
RU-16 (Infrared, 15 secs) . . . . . . . . . . . . . . . . . . . . 224°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +7 V  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V, –7 V  
VREF to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
Logic Inputs to GND . . . . . . . . . . . . . . . . . . . . –0.3 V, +8 V  
VOUT to GND . . . . . . . . . . . . . . . . . VSS – 0.3 V, VDD + 0.3 V  
IOUT Short Circuit to GND . . . . . . . . . . . . . . . . . . . . . 50 mA  
Thermal Resistance θJA  
16-Lead SOIC Package (R-16) . . . . . . . . . . . . . . 158°C/W  
16-Lead Thin Shrink Surface Mount (RU-16) . . . 180°C/W  
Maximum Junction Temperature (TJ Max) . . . . . . . . 150°C  
Package Power Dissipation . . . . . . . . . . . . . (TJ Max–TA)/θJA  
ORDERING GUIDE  
Resolution  
(Bits)  
Temperature  
Range  
Package  
Description  
Package  
Option  
Container  
Quantity  
Model  
AD7398BR  
12  
12  
12  
10  
10  
10  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
SOL-16  
SOL-16  
TSSOP-16  
SOL-16  
SOL-16  
R-16  
R-16  
RU-16  
R-16  
R-16  
48  
AD7398BR-REEL7  
AD7398BRU-REEL7  
AD7399BR  
AD7399BR-REEL7  
AD7399BRU-REEL7  
1,000  
1,000  
48  
1,000  
1,000  
TSSOP-16  
RU-16  
The AD7398 contains 3254 transistors. The die size measures 108 mil × 144 millimeters.  
SDI  
SA  
D1  
D0  
SD  
A1  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
A0  
D11  
D10  
IN  
REG  
LD  
CLK  
t
DH  
t
CH  
t
t
CL  
DS  
t
t
CSH  
CSS  
CS  
t
LDH  
LDAC  
t
LDS  
t
LDAC  
Figure 2. AD7398 Timing Diagram (AD7399 with SDI = 14 Bits Only)  
CLK  
1/f  
t
t
CLK  
CL  
CH  
t
LDAC  
LDH  
t
t
LDS  
LDS  
t
LDAC  
t
t
CSH  
CSS  
CS  
t
CSS  
Figure 3. Continuous Clock Timing Diagram  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD7398/AD7399 features proprietary ESD protection circuitry, permanent damage may occur  
on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD7398/AD7399  
PIN CONFIGURATION  
V
B
A
16 V  
C
D
1
2
3
4
5
6
7
8
OUT  
OUT  
V
V
15  
14  
13  
12  
11  
10  
9
OUT  
DD  
OUT  
AD7398/  
AD7399  
V
V
SS  
V
A
V
V
C
D
REF  
REF  
TOP VIEW  
(Not to Scale)  
V
B
REF  
REF  
GND  
SDI  
CLK  
CS  
LDAC  
RS  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Mnemonic  
VOUT  
OUTA  
VSS  
Function  
1
2
3
4
B
DAC B Voltage Output.  
DAC A Voltage Output.  
Negative Power Supply Input. Specified range of operation 0 V to –5.5 V.  
DAC A Reference Voltage Input Terminal. Establishes DAC A full-scale output voltage. Pin can  
be tied to VDD or VSS pin.  
V
V
REFA  
5
V
REFB  
DAC B Reference Voltage Input Terminal. Establishes DAC B full-scale output voltage. Pin can  
be tied to VDD or VSS pin.  
6
7
GND  
LDAC  
Ground Pin.  
Load DAC Register Strobe, Level Sensitive Active Low. Transfers all Input Register data to  
DAC registers. Asynchronous active low input. See Control Logic Truth Table for operation.  
8
9
RS  
CS  
Resets Input and DAC Registers to All Zero Codes. Shift Register contents unchanged.  
Chip Select, Active Low Input. Disables shift register loading when high. Transfers Serial Regis-  
ter Data to the Input Register when CS returns High. Does not effect LDAC operation.  
10  
11  
12  
CLK  
SDI  
Schmitt Triggered Clock Input, Positive Edge Clocks Data into Shift Register.  
Serial Data Input. Input data loads directly into the shift register.  
DAC D Reference Voltage Input Terminal. Establishes DAC D full-scale output voltage. Pin can  
be tied to VDD or VSS pin.  
V
REFD  
13  
V
REFC  
DAC C Reference Voltage Input Terminal. Establishes DAC C full-scale output voltage. Pin can  
be tied to VDD or VSS pin.  
14  
15  
16  
VDD  
Positive Power Supply Input. Specified range of operation 3 V to 5 V 10%.  
DAC D Voltage Output.  
DAC C Voltage Output.  
V
OUTD  
VOUT  
C
REV. 0  
–5–  
AD7398/AD7399  
Table I. Control Logic Truth Table  
Serial Shift Register Function  
CS  
CLK  
LDAC  
Input Register Function  
DAC Register  
H
L
L
L
X
L
H
H
H
H
H
L
No Effect  
No Effect  
Shift-Register-Data Advanced One Bit  
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
Latched  
Latched  
Updated with SR Contents  
Latched  
Latched  
No Effect  
No Effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
+
H
+
L/H  
X
X
H
H
+
NOTES  
1. + Positive logic transition; – Negative logic transition; X Don’t Care; SR shift register.  
2. At power ON, both the Input Register and the DAC Register are loaded with all zeros.  
3. During Power Shutdown, reprogramming of any internal registers can take place, but the output amplifiers will not produce the new values until the part is taken  
out of Shutdown mode.  
4. LDAC input is a level-sensitive input that controls the four DAC registers.  
Table II. AD7398 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format  
MSB  
Bit Position B15  
LSB  
B0  
D0  
B14  
SD  
B13  
A1  
B12  
A0  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
AD7398  
SA  
NOTE  
Bit positions B14 and B15 are power shutdown control Bits SD and SA. If SA is set to Logic 1, all DACs are placed in the power shutdown mode. If SD is set to  
Logic 1, the address decoded by Bits B12 and B13 (A0 and A1) determine the DAC channel that will be placed in the power shutdown state.  
Table III. AD7399 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format  
MSB  
Bit Position B13  
LSB  
B0  
D0  
B12  
SD  
B11  
A1  
B10  
A0  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
AD7399  
SA  
NOTE  
Bit positions B12 and B13 are power shutdown control Bits SD and SA. If SA is set to Logic 1, all DACs are placed in the power shutdown mode. If SD is set to  
Logic 1, the address decoded by Bits B10 and B11 (A0 and A1) determine the DAC channel that will be placed in the power shutdown state.  
Table IV. AD7398/AD7399 Address Decode Control  
SA  
SD  
A1  
A0  
DAC Channel Affected  
1
0
0
0
0
0
0
0
0
X
1
1
1
1
0
0
0
0
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
All DACs Shutdown  
DAC A Shutdown  
DAC B Shutdown  
DAC C Shutdown  
DAC D Shutdown  
DAC A Input Register Decoded  
DAC B Input Register Decoded  
DAC C Input Register Decoded  
DAC D Input Register Decoded  
–6–  
REV. 0  
AD7398/AD7399  
TERMINOLOGY  
Relative Accuracy, INL  
For the DAC, relative accuracy or integral nonlinearity (INL) is  
a measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer function.  
A typical INL versus code plot can be seen in TPC 1.  
state. It is normally specified as the area of the glitch in nV-s  
and is measured when the digital input code is changed by 1 LSB  
at the major carry transition (midscale transition). A plot of the  
glitch impulse is shown in TPC 10.  
Digital Feedthrough, QDF  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC, but  
is measured when the DAC output is not updated. CS is held  
high, while the CLK and SDI signals are toggled. It is speci-  
fied in nV-s and is measured with a full-scale code change on  
the data bus, i.e., from all 0s to all 1s and vice versa. A typi-  
cal plot of digital feedthrough is shown in TPC 11.  
Differential Nonlinearity, DNL  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maxi-  
mum ensures monotonicity. TPC 3 illustrates a typical DNL  
versus code plot.  
Zero-Scale Error, VZSE  
Zero-scale error is a measure of the output voltage error from  
zero voltage when zero code is loaded to the DAC register.  
Power Supply Sensitivity, PSS  
This specification indicates how the output of the DAC is  
affected by changes in the power supply voltage. Power supply  
sensitivity is quoted in terms of % change in output per %  
change in VDD for full-scale output of the DAC. VDD is varied  
by 10%.  
Full-Scale Error, VFSE  
Full-scale error is a measure of the output voltage error from full-  
scale voltage when full-scale code is loaded to the DAC register.  
Reference Feedthrough, VOUT/VREF  
Full-Scale Temperature Coefficient, TCVFS  
This is a measure of the feedthrough from the VREF input to  
the DAC output when the DAC is loaded with all 0s. A 100 kHz,  
1 V p-p is applied to VREF. Reference feedthrough is expressed  
in dB or mV p-p.  
This is a measure of the change in full-scale error with a change  
in temperature. It is expressed in ppm/°C or mV/°C.  
DAC Glitch Impulse, Q  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
REV. 0  
–7–  
Typical Performance Characteristics  
AD7398/AD7399  
0.50  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
AD7398  
AD7398  
0.40  
V
V
V
T
= +5V  
= 5V  
V
V
V
T
= +5V  
= 5V  
DD  
SS  
DD  
SS  
0.30  
0.20  
= +2.5V  
= +2.5V  
= 25؇C  
A
REF  
REF  
= 25؇C  
A
0.10  
0
0.10  
0.20  
0.30  
0.40  
0.50  
0
0.25  
0.50  
0.75  
1.00  
2560  
CODE Decimal  
0
1536  
2048  
2560  
3072  
3584  
4096  
1536  
2048  
3072  
3584  
4096  
512  
1024  
512  
1024  
0
CODE Decimal  
TPC 1. AD7398 INL vs. Code (TA = 25°C)  
TPC 3. AD7398 DNL vs. Code (TA = 25°C)  
0.50  
0.25  
0
0.50  
0.25  
0
T
V
= 25؇C, V = +5V  
DD  
A
DACD  
DACD  
= 5V, V  
= +2.5V  
SS  
REF  
T
= 25؇C  
A
V
V
V
= +5V  
DD  
SS  
= 5V  
0.25  
0.50  
0.25  
0.50  
= +2.5V  
REF  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE Decimal  
CODE Decimal  
0.50  
0.25  
0
0.50  
0.25  
T
V
= 25؇C, V = +5V  
DD  
A
DACC  
DACC  
= 5V, V  
= +2.5V  
SS  
REF  
T
= 25؇C  
0
0.25  
0.50  
A
V
V
V
= +5V  
DD  
SS  
0.25  
0.50  
= 5V  
= +2.5V  
REF  
0
128  
256  
384  
512  
640  
768  
896  
0
128  
256  
384  
512  
640  
768  
896  
1024  
1024  
CODE Decimal  
CODE Decimal  
0.50  
0.25  
0
0.50  
0.25  
0
T
V
= 25؇C, V = +5V  
DD  
T
V
= 25؇C, V = +5V  
DD  
A
A
DACB  
DACB  
= 5V, V  
= +2.5V  
= 5V, V = +2.5V  
SS  
SS  
REF  
REF  
0.25  
0.50  
0.25  
0.50  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE Decimal  
CODE Decimal  
0.50  
0.25  
0
0.50  
0.25  
T
V
= 25؇C, V = +5V  
DD  
A
DACA  
DACA  
= 5V, V  
= +2.5V  
SS  
REF  
0
0.25  
0.50  
T
V
= 25؇C, V = +5V  
DD  
0.25  
0.50  
A
= 5V, V  
= +2.5V  
SS  
REF  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE Decimal  
CODE Decimal  
TPC 2. AD7399 INL vs. Code (TA = 25°C)  
TPC 4. AD7399 DNL vs. Code (TA = 25°C)  
–8–  
REV. 0  
AD7398/AD7399  
10.0  
8.0  
6.0  
4.0  
1.00  
0.75  
AD7398/AD7399  
AD7398  
= 25؇C  
T
= 25؇C  
SINKING CURRENT INTO V  
T
A
OUT  
A
V
V
= +5V  
= 5V  
DD  
SS  
V
= +3V, V = 0V  
SS  
DD  
DNL  
0.50  
0.25  
0
V
= +5V, V = 5V  
DD  
SS  
2.0  
0
INL  
V
= +5V, V = 0V  
SS  
DD  
FSE  
2.0  
4.0  
6.0  
8.0  
10.0  
0.25  
SOURCING CURRENT FROM V  
OUT  
0.50  
0.75  
1.00  
V
V
V
= +5V, V = 5V  
SS  
DD  
DD  
DD  
= +5V, V = 0V  
SS  
= +3V, V = 0V  
SS  
20  
15  
10  
5  
0
5
10  
15  
mA  
20  
4  
3  
2  
1  
0
1
4
5
5  
2
3
SOURCE OR SINK CURRENT FROM V  
REFERENCE VOLTAGE Volts  
OUT  
TPC 5. AD7398 INL, DNL, FSE vs. Reference Voltage  
TPC 8. VOUT vs. Load Current  
25  
20  
15  
10  
5
100.00  
AD7398  
AD7398  
90.00  
SAMPLE SIZE = 125  
T
= 25؇C  
A
40؇C TO +125؇C  
V
V
V
= +5V  
= 5V  
DD  
SS  
80.00  
70.00  
60.00  
50.00  
40.00  
30.00  
20.00  
= +2.5V  
REF  
10.00  
0
0
512  
3072  
4096  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
1024  
1536  
2048  
2560  
3584  
0
CODE Decimal  
FULL SCALE ERROR TEMPCO ppm/؇C  
TPC 6. AD7398 Reference Input Current vs. Code  
TPC 9. AD7398 Full-Scale Error Tempco  
1000  
AD7398  
V
V
T
= +5V  
= 5V  
= 25؇C  
DD  
SS  
A
100  
90  
100  
CS (5V/DIV)  
10  
V
(0.2V/DIV)  
OUT  
0%  
TIME 2s/DIV  
10  
512  
1024  
1536  
2048  
2560  
3072  
3584 4096  
0
CODE Decimal  
TPC 7. AD7398 Reference Input Resistance vs. Code  
TPC 10. AD7398 Midscale Glitch  
REV. 0  
–9–  
AD7398/AD7399  
FFFH  
800H  
400H  
200H  
100H  
080H  
040H  
020H  
010H  
008H  
004H  
002H  
001H  
0
12  
24  
36  
48  
60  
72  
100  
90  
V
(50mV/DIV)  
OUT  
84  
10  
CLOCK (5V/DIV)  
0%  
V
V
V
T
= +5V  
= 5V  
DD  
96  
000H  
SS  
= 100mV rms  
REF  
108  
= 25؇C  
A
TIME 100ns/DIV  
1k  
10k  
100k  
1M  
100  
FREQUENCY Hz  
TPC 11. AD7398 Digital Feedthrough  
TPC 14. AD7398 Multiplying Gain vs. Frequency  
5
V
= 5V, V = 5V, V  
= 5V  
REF  
DD  
SS  
T
= 25؇C  
A
2
4
1. V = +5V, V = 5V, CODE = 000 , FFF  
2. V = +5V, V = 5V, CODE = 555  
3. V = +5V, V = 0V, CODE = 000 , FFF  
4. V = +5V, V = 0V, CODE = 555  
5. V = +3V, V = 0V, CODE = 000 , FFF  
6. V = +3V, V = 0V, CODE = 555  
DD  
SS  
H
H
H
DD  
SS  
4
3
2
1
DD  
SS  
H
H
H
100  
V
(2V/DIV)  
OUT  
90  
DD  
SS  
H
DD  
SS  
H
H
DD  
SS  
1
3
6
5
10  
0%  
CS (5V/DIV)  
TIME 5s/DIV  
0
1.E+03  
1.E+04  
1.E+08  
1.E+06  
1.E+07  
1.E+05  
CLOCK FREQUENCY Hz  
TPC 12. AD7398 Large Signal Settling Time  
TPC 15. AD7398 Supply Current vs. Clock Frequency  
2.0  
V
= 5V, V = 5V, V  
= 5V  
REF  
DD  
SS  
AD7398  
؎5V  
T
V
= 25؇C  
A
DUAL SUPPLIES  
= 2.5V  
REF  
100  
V
(2V/DIV)  
1.75  
1.5  
OUT  
90  
؎3V  
SINGLE SUPPLY  
10  
CS (5V/DIV)  
0%  
1.25  
1.0  
TIME 2s/DIV  
4
2
3
5
6
POWER SUPPLY VOLTAGE V  
TPC 13. AD7398 Shutdown Recovery  
TPC 16. AD7398 Supply Current vs. Supply Voltage  
–10–  
REV. 0  
AD7398/AD7399  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
AD7398  
SAMPLE SIZE = 135  
AD7398/AD7399  
V
V
= +5V  
= 5V  
DD  
SS  
V
= 2.5V  
REF  
0.75  
CODE = FFF  
H
0.5  
0.25  
0
CODE = 000  
H
100  
150  
0
50  
50  
100  
200  
400  
500  
600  
0
300  
TEMPERATURE ؇C  
HOURS OF OPERATION AT 150؇C  
TPC 17. Supply Current vs. Temperature  
TPC 19. AD7398 Long-Term Drift  
36  
AD7398/AD7399  
V
V
= +5V  
= 5V  
DD  
SS  
35  
34  
33  
32  
31  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE ؇C  
TPC 18. Shutdown Current vs. Temperature  
REV. 0  
–11–  
AD7398/AD7399  
V
V
REF  
C
D
A B  
DD  
AD7398/AD7399  
DAC  
INPUT  
V
V
A
B
DAC A  
DAC B  
CS  
OUT  
REGISTER  
REGISTER  
CLK  
ADDRESS  
DECODE  
4
SDI  
DAC  
REGISTER  
INPUT  
REGISTER  
OUT  
SERIAL  
REGISTER  
INPUT  
DAC  
DAC C  
DAC D  
V
C
D
OUT  
REGISTER  
REGISTER  
12/10  
DAC  
REGISTER  
INPUT  
REGISTER  
V
OUT  
POWER  
ON RESET  
GND  
V
RS  
LDAC  
SS  
Figure 4. Simplified Block Diagram  
CIRCUIT OPERATION  
The nominal DAC output voltage is determined by the exter-  
nally applied VREF and the digital data (D) as:  
The AD7398 and AD7399 contain four, 12-bit and 10-bit,  
voltage-output, digital-to-analog converters respectively. Each  
DAC has its own independent multiplying reference input. Both  
AD7398/AD7399 use 3-wire SPI-compatible serial data interface,  
with an asynchronous RS pin for zero-scale reset. In addition, a  
LDAC strobe enables four channel simultaneous updates for  
hardware synchronized output voltage changes.  
D
VOUT =VREF  
×
×
(For AD7398)  
(1)  
4096  
D
1024  
VOUT =VREF  
(For AD7399)  
(2)  
Where D is the 12-bit or 10-bit decimal equivalent of the data  
word. VREF is the externally applied reference voltage.  
D/A Converter Section  
V
DD  
In order to maintain good analog performance, bypass power  
supplies with 0.01 µF ceramic capacitors (mount them close to  
the supply pins) and 1 µF10 µF Tantalum capacitors in paral-  
lel. In additions, clean power supplies with low ripple voltage  
capability should be used. Switching power supplies may be  
used for this application but beware of its higher ripple voltage  
and PSS frequency-dependent characteristics. It is also best to  
supply the AD7398/AD7399s power from the systems analog  
supply voltages. (Dont use the digital 5 V supply).  
AD7398/AD7399  
V
REF  
V
A
OUT  
R
R
The reference input resistance is code dependent exhibiting  
worst case 35 kfor AD7398 when the DAC is loaded with  
alternating codes 010101010101. Similarly, the reference input  
resistance is 40 kfor AD7399 when the DAC is loaded with  
0101010101.  
GND  
V
SS  
Figure 5. Simplified DAC Channel  
DAC OPERATION  
The internal R-2R ladder of the AD7398 and AD7399 operate  
in the voltage switching mode maintaining an output voltage  
that is the same polarity as the input reference voltage. A propri-  
etary scaling technique is used to attenuate the input reference  
voltage in the DAC. The output buffer amplifies the internal  
DAC output to achieve a VREF to VOUT gain of unity.  
OPERATION WITH VREF EQUAL TO THE SUPPLY  
The AD7398/AD7399 is designed to approach the full output  
voltage swing from ground to VDD or VSS. The maximum output  
swing is achieved when the corresponding VREF input pin is tied  
to the same power supply. This power supply should be low  
noise and low ripple, preferably operated by a suitable reference  
voltage source such as ADR292 and REF02. The output swing  
–12–  
REV. 0  
AD7398/AD7399  
is limited by the internal buffer offset voltage and the output  
drive current capability of the output stage. One should at least  
budget the VZSE offset voltage as the closest the output voltage  
can get to either supply voltage under a no load condition. Under  
a loaded output, degrade the headroom by a factor of 2 mV per  
1 mA of load current. Also note that the internal op amp has an  
offset voltage so that the first eight codes of AD7398 may not  
respond at either the supply voltage or at ground until the internal  
DAC voltage exceeds the output buffers offset voltage. Simi-  
larly, the first two codes of AD7399 should not be used.  
serial data is in 8-bit bytes, two right-justified data bytes can be  
written to the AD7398 and AD7399. Keeping the CS line low  
between the first and second bytes transfer will result in a suc-  
cessful serial register update.  
Once the data is properly aligned in the shift register, the posi-  
tive edge of the CS initiates the transfer of new data to the target  
DAC register, determined by the decoding of address Bits A1  
and A0. For the AD7398, Tables I, II, IV, and Figures 2 and  
3 define the characteristics of the software serial interface. For  
the AD7399, Tables I, III, IV, and Figure 3 (with 14-bits excep-  
tion) define the characteristics of the software serial interface.  
Figures 6 and 7 show the equivalent logic interface for the key  
digital control pins for AD7398 and AD7399.  
POWER SUPPLY SEQUENCING  
VDD/VSS of AD7398/AD7399 should be powered from the system  
analog supplies. In addition, VIN of the external reference should  
also be coming from the same supply. Such practice will avoid  
a possible latch-up when the reference is powered on prior to  
VDD/VSS, or powered off subsequent to VDD/VSS. If VDD/VSS  
and VREF are separate power sources, then ensure VDD/VSS is  
powered on before VREF and powered off after VREF. In addition,  
An asynchronous RS provides hardware control reset to zero-  
code state over the preset function and DAC Register loading. If  
this function is not needed, the RS pin can be tied to logic high.  
TO INPUT REGISTER  
V
REF pins of the unused DACs should also be connected to GND  
A
ADDRESS  
B
or some power sources to ensure similar power-up/-down sequence.  
DECODER  
C
D
CS  
PROGRAMMABLE POWER SHUTDOWN  
EN  
The two MSBs of the serial input register, SA and SD, are used  
to program various shutdown modes. If SA is set to Logic 1, all  
DACs will be in shutdown mode. If SA = 0 and SD = 1, a cor-  
responding DAC will be shut down addressed by Bits A0 and  
A1, See Tables IIIV.  
SHIFT REGISTER  
CLK  
SDI  
Figure 6. Equivalent Logic Interface  
POWER-ON RESET  
WORST CASE ACCURACY  
Assuming a perfect reference, the worst-case output voltage may  
be calculated from the following equation.  
When the VDD power supply is turned ON, an internal reset  
strobe forces all the Input and DAC registers to the zero-code  
state. The VDD power supply should have a smooth positive  
ramp without drooping in order to have consistent results,  
especially in the region of VDD = 1.5 V to 2.2 V. The VSS sup-  
ply has no effect on the power-on reset performance. The  
DAC register data will stay at zero until a valid serial register  
data load takes place.  
D
2N  
VOUT  
where  
=
×(VREF +VFSE )+VZSE + INL  
(3)  
D = Decimal Code Loaded to DAC Ranges 0 D 2N1  
N = Number of Bits  
ESD Protection Circuits  
All logic input pins contain back-biased ESD protection Zeners  
connected to ground (GND) and VDD as shown in Figure 7.  
VREF = Applied Reference Voltage  
VFSE = Full-Scale Error in Volts  
VZSE = Zero-Scale Error in Volts  
INL = Integral Nonlinearity in Volts INL is 0 at Full Scale  
V
DD  
or Zero Scale  
DIGITAL INPUTS  
SERIAL DATA INTERFACE  
5k  
The AD7398/AD7399 uses a 3-wire (CS, SDI, CLK) SPI-  
GND  
compatible serial data interface. Serial data of the AD7398 and  
AD7399 is clocked into the serial input register in a 16-bit and  
14-bit data-word format respectively. MSB bits are loaded first.  
Table II defines the 16 data-word bits for AD7398. Table III  
defines the 14 data-word bits for the AD7399. Data is placed on  
the SDI pin, and clocked into the register on the positive clock  
edge of CLK subject to the data setup and data hold time  
requirements specified in the Interface Timing specifications.  
Data can only be clocked in while the CS chip select pin is  
active low. For the AD7398, only the last 16 bits which are  
clocked into the serial register, will be interrogated when the CS  
pin returns to the logic high state, extra data bits are ignored.  
For the AD7399, only the last 14 bits, which are clocked into  
the serial register, will be interrogated when the CS pin returns  
to the logic high state. Since most microcontrollersoutput  
Figure 7. Equivalent ESD Protection Circuits  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD7398/AD7399 is via a  
serial bus that uses standard protocol compatible with DSP  
processors and microcontrollers. The communications channel  
requires a 3-wire interface consisting of a clock signal, a data signal  
and a synchronization signal. The AD7398/AD7399 requires a  
16-bit/14-bit data word with data valid on the rising edge of CLK.  
The DAC update may be done automatically when all the data  
is clocked in, or it may be done under control of LDAC.  
REV. 0  
–13–  
AD7398/AD7399  
80C51/80L51 to AD7398/AD7399 Interface  
ADSP-2101/ADSP-2103 to AD7398/AD7399 Interface  
A serial interface between the AD7398/AD7399 and the 80C51/  
80L51 microcontroller is shown in Figure 11. TxD of the micro-  
controller drives the CLK of the AD7398/AD7399, while RxD  
drives the serial data line of the DAC. P3.3 is a bit program-  
mable pin on the serial port which is used to drive CS.  
Figure 8 shows a serial interface between the AD7398/AD7399  
and the ADSP-2101/ADSP-2103. The ADSP-2101/ADSP-2103  
is set to operate in the SPORT (Serial Port) transmit alternate  
framing mode. The ADSP-2101/ADSP-2103 is programmed  
through the SPORT control register and should be configured  
as follows: Internal Clock Operation, Active Low Framing,  
16-Bit-Word Length. For the AD7398, transmission is initiated  
by writing a word to the Tx register after the SPORT has been  
enabled. For the AD7399, the first two bits are dont care as the  
AD7399 will keep the last 14 bits. Similarly, transmission is  
initiated by writing a word to the Tx register after the SPORT  
has been enabled. Because of the edge-triggered difference, an  
inverter is required at the SCLKs between the DSP and the DAC.  
P3.4  
P3.3  
LDAC  
CS  
AD7398/  
AD7399  
80C51/  
80L51*  
RX  
D
D
SDI  
CLK  
TX  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 11. 80C51/80L51 to AD7398/AD7399 Interface  
Note that the 80C51/80L51 provides the LSB first, while the  
AD7398/AD7399 expect the MSB of the 16-bit/14-bit word  
first. Care should be taken to ensure the transmit routine takes  
this into account. It can usually be done through software by  
shifting out and accumulating the bits in the correct order  
before inputting to the DAC. In addition, 80C51 outputs two  
byte words/16 bits data, thus for AD7399, the first two bits,  
after rearrangement, should be Dont Care as they will be  
dropped from the AD7399s 14-bit word.  
FO  
TFS  
DT  
LDAC  
CS  
AD7398/  
AD7399  
ADSP-2101/  
ADSP-2103*  
SDI  
CLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 8. ADSP-2101/ADSP-2103 to AD7398/AD7399  
Interface  
68HC11 to AD7398/AD7399 Interface  
When data is to be transmitted to the DAC, P3.3 is taken low.  
Data on RxD is valid on the falling edge of TxD, so the clock  
must be inverted as the DAC clocks data into the input shift  
register on the rising edge of the serial clock. The 80C51/80L51  
transmits its data in 8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle. As AD7399 requires a 14-bit  
word, P3.3 (or any one of the other programmable bits) is the CS  
input signal to the DAC, so P3.3 should be brought low at the  
beginning of the 16-bit write cycle 2 × 8 bit words, and held low  
until the 16-bit 2 × 8 cycle is completed. After that, P3.3 is  
brought high again and the new data loads to the DAC. Again,  
the first two bits, after rearranging, should be dont care. LDAC  
on the AD7398/AD7399 may also be controlled by the 80C51/  
80L51 serial port output by using another bit-programmable  
pin, P3.4.  
Figure 9 shows a serial interface between the AD7398/AD7399  
and the 68HC11 microcontroller. SCK of the 68HC11 drives  
the CLK of the DAC, while the MOSI output drives the serial  
data lines SDI. CS signal is driven from one of the port lines.  
The 68HC11 is configured for master mode; MSTR = 1, CPOL = 0,  
and CPHA = 0. Data appearing on the MOSI output is valid on  
the rising edge of SCK.  
PC6  
PC7  
LDAC  
CS  
68HC11/  
68L11*  
AD7398/  
AD7399  
MOS1  
SDI  
CLK  
SCK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 9. 68HC11/68L11 to AD7398/AD7399 Interface  
MICROWIRE to AD7398/AD7399 Interface  
Figure 10 shows an interface between the AD7398/AD7399 and  
any MICROWIRE-compatible device. Serial data is shifted out  
on the falling edge of the serial clock and into the AD7398/  
AD7399 on the rising edge of the serial clock. No glue logic is  
required as the DAC clocks data into the input shift register on  
the rising edge.  
CS  
SO  
CS  
SDI  
CLK  
AD7398/  
AD7399  
MICROWIRE*  
SCK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 10. MICROWIRE to AD7398/AD7399 Interface  
–14–  
REV. 0  
AD7398/AD7399  
APPLICATIONS  
V
REF  
STAIRCASE WINDOWS COMPARATOR  
WINDOW 1  
WINDOW 2  
V
V
B
OUT  
OUT  
Many applications need to determine whether voltage levels are  
within predetermined limits. Some requirements are for non-  
overlapping windows and others for overlapping windows. Both  
circuit configurations are shown in Figures 12 and 13 respectively.  
A
D
C
V
OUT  
WINDOW 3  
V
OUT  
GND  
V
TEST  
Figure 15. Overlapping Windows Range  
V+  
AD8564  
10k  
The nonoverlapping circuit employs one AD7398/AD7399 and  
ten comparators to achieve five voltage windows. These windows  
range between VREF and analog ground as shown in Figure 13.  
Similarly, the overlapping circuit employs six comparators to  
achieve three overlapping windows, Figure 15.  
V
REF  
WINDOW 1  
V
DD  
V+  
10k⍀  
V
A
V
A
REF  
OUT  
WINDOW 2  
AD7398/  
AD7399  
PROGRAMMABLE DAC REFERENCE VOLTAGE  
With AD7398/AD7399s flexibility, one of the internal DACs  
can be used to control a common programmable VREFX for the  
rest of the DACs.  
V+  
10k⍀  
WINDOW 3  
AD8564  
V
B
C
V
V
B
OUT  
REF  
The circuit configuration is shown in Figure 16. The relation-  
ship of VREFX to VREF is dependent upon the digital code and  
the ratio of R1 and R2, and is given by:  
V+  
10k⍀  
C
V
REF  
OUT  
WINDOW 4  
R2  
R1  
D
R2  
VREFX =VREF × 1+  
VREFX  
×
×
(5)  
2N R1  
V+  
10k⍀  
1/2 AD8564  
V
D
V D  
OUT  
REF  
WINDOW 5  
GND  
D
R2  
R1  
VREF × 1+  
VREFX  
=
(6)  
R2  
1+  
×
2N R1  
Figure 12. Nonoverlapping Windows Comparator  
V
Where D = Decimal Equivalent of Input Code  
N = Number of Bits  
REF  
WINDOW 1  
V
V
A
B
OUT  
OUT  
WINDOW 2  
WINDOW 3  
V
REF = Applied External Reference  
REFX = Reference Voltage for DAC A to D  
V
V
C
OUT  
WINDOW 4  
WINDOW 5  
Table V. VREFX vs. R1 and R2  
V
D
OUT  
GND  
R1, R2  
Digital Code  
VREFX  
R1 = R2  
R1 = R2  
R1 = R2  
R1 = 3R2  
R1 = 3R2  
R1 = 3R2  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
2 VREF  
1.3 VREF  
VREF  
4 VREF  
1.6 VREF  
VREF  
Figure 13. Nonoverlapping Windows Range  
V
TEST  
V+  
AD8564  
10k⍀  
V
REF  
WINDOW 1  
V
V
DD  
A
B
V
V
A
B
V+  
OUT  
REF  
10k⍀  
V
The accuracy of VREFX will be affected by the quality of R1 and  
R2 and therefore, tight tolerance low tempco thin film resistors  
should be used.  
OUT  
REF  
WINDOW 2  
AD7398/  
AD7399  
V
C
V
V
C
OUT  
REF  
V+  
10k⍀  
1/2 AD8564  
D
V
D
REF  
OUT  
WINDOW 3  
Figure 14. Overlapping Windows Comparator  
REV. 0  
–15–  
AD7398/AD7399  
R2؎0.1%  
V
A
REF  
V
V
A
R1؎0.1%  
OUT  
V
REF  
DAC A  
VIN  
ADR293  
V
B
REF  
B
OUT  
DAC B  
V
C
REF  
V
C
OUT  
TO OTHER  
COMPONENTS  
DAC C  
V
D
REF  
V
D
OUT  
DAC D  
AD7398/AD7399  
Figure 16. Programmable DAC Reference  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Wide SOIC  
16-Lead TSSOP  
(RU-16)  
(R-16)  
0.4133 (10.50)  
0.3977 (10.00)  
0.201 (5.10)  
0.193 (4.90)  
16  
1
9
8
16  
9
0.2992 (7.60)  
0.2914 (7.40)  
0.177 (4.50)  
0.169 (4.30)  
0.4193 (10.65)  
0.3937 (10.00)  
0.256 (6.50)  
0.246 (6.25)  
1
8
PIN 1  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
0.050 (1.27)  
BSC  
0.006 (0.15)  
0.002 (0.05)  
؋
 45؇  
0.0433 (1.10)  
MAX  
8؇  
0؇  
8؇  
0؇  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0157 (0.40)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
BSC  
–16–  
REV. 0  

相关型号:

AD7399BRU

Quad, Serial-Input 12-Bit/10-Bit DACs
ADI

AD7399BRU-REEL7

Quad, Serial-Input 12-Bit/10-Bit DACs
ADI

AD7399BRUZ

Quad, Serial-Input 12-Bit/10-Bit DACs
ADI

AD7399BRUZ-REEL7

Quad, Serial-Input 12-Bit/10-Bit DACs
ADI

AD7399BRZ

Quad, Serial-Input 12-Bit/10-Bit DACs
ADI

AD7399BRZ-REEL

Quad, Serial-Input 12-Bit/10-Bit DACs
ADI

AD7399_15

Quad, Serial-Input 12-Bit/10-Bit DACs
ADI

AD7400

Isolated Sigma-Delta Modulator
ADI

AD7400A

Isolated Sigma-Delta Modulator
ADI

AD7400AYNSZ

Isolated Sigma-Delta Modulator
ADI

AD7400AYNSZREEL

Isolated Sigma-Delta Modulator
ADI

AD7400AYNSZREEL7

Isolated Sigma-Delta Modulator
ADI