AD7398BRUZ-REEL7 [ADI]

Quad, Serial-Input 12-Bit/10-Bit DACs; 四,串行输入,12位/ 10位DAC
AD7398BRUZ-REEL7
型号: AD7398BRUZ-REEL7
厂家: ADI    ADI
描述:

Quad, Serial-Input 12-Bit/10-Bit DACs
四,串行输入,12位/ 10位DAC

转换器 光电二极管
文件: 总24页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, Serial-Input  
12-Bit/10-Bit DACs  
AD7398/AD7399  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AD7398—12-bit resolution  
V
V
B
V
A
DD  
REF  
REF  
AD7399—10-bit resolution  
AD7398/AD7399  
Programmable power shutdown  
Single (3 V to 5 V) or dual ( 5 V) supply operation  
3-wire, serial SPI®-compatible interface  
Internal power-on reset  
Double buffered registers for simultaneous  
multichannel DAC update  
Four separate rail-to-rail reference inputs  
Thin profile, TSSOP-16 package available  
Low tempco: 1.5 ppm/°C  
DAC A  
REGISTER  
INPUT  
REG A  
DAC A  
DAC B  
V
A
B
OUT  
OUT  
SERIAL  
REGISTER  
CS  
SDI  
DAC B  
REGISTER  
INPUT  
REG B  
V
DAC C  
REGISTER  
INPUT  
REG C  
V
V
C
D
DAC C  
DAC D  
OUT  
CLK  
Qualified for automotive applications  
12/10  
DAC D  
REGISTER  
APPLICATIONS  
INPUT  
REG D  
OUT  
Automotive output voltage span  
Portable communications  
Digitally controlled calibration  
PC peripherals  
POWER  
ON RESET  
V
RS  
LDAC  
V
C
V
D
GND  
SS  
REF  
REF  
Figure 1.  
GENERAL DESCRIPTION  
The AD7398/AD7399 family of quad, 12-bit/10-bit, voltage  
output digital-to-analog converters (DACs) is designed to  
operate from a single 3 V to 5 V supply or a dual 5 V supply.  
Built with the Analog Devices, Inc. robust CBCMOS process,  
these monolithic DACs offer the user low cost with ease-of-use  
in single or dual-supply systems.  
Both parts are offered in the same pinout, enabling users to  
select the appropriate resolution for their application without  
redesigning the layout. For 8-bit resolution applications, see the  
pin-compatible AD7304 product.  
The AD7398/AD7399 are specified over the extended industrial  
(−40°C to +125°C) temperature range. Parts are available in  
16-lead, wide body SOIC and ultracompact, thin, 1.1 mm  
TSSOP packages.  
The applied external reference, VREF, determines the full-scale  
output voltage. Valid VREF values include VSS < VREF < VDD that  
result in a wide selection of full-scale outputs. For multiplying  
applications, ac inputs can be as large as 5 VP.  
0.5  
V
V
V
= +5V  
= –5V  
DD  
SS  
0.4  
0.3  
= +2.5V  
REF  
T
= 25°C  
A
A doubled-buffered serial-data interface offers high speed, 3-wire,  
SPI- and microcontroller-compatible inputs using serial data-in  
0.2  
CS  
(SDI), clock (CLK), and a chip-select ( ). A common level-  
0.1  
LDAC  
sensitive, load-DAC strobe ( ) input allows simultaneous  
0
update of all DAC outputs from previously loaded input registers.  
Additionally, an internal power-on reset forces the output voltage to  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
RS  
zero at system turn on. An external asynchronous reset ( ) also  
forces all registers to the zero code state. A programmable power-  
shutdown feature reduces power dissipation on unused DACs.  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
CODE (Decimal)  
Figure 2. AD7398 DNL vs. Code (TA = 25°C)  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2000–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD7398/AD7399  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD7398 12-Bit Voltage Output DAC ........................................ 3  
AD7399 10-Bit Voltage Output DAC ........................................ 4  
Timing Diagrams.......................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration And Function Descriptions............................ 7  
Input Registers .................................................................................. 8  
AD7398 Serial Input Register Data Format.............................. 8  
AD7399 Serial Input Register Data Format.............................. 8  
Terminology ...................................................................................... 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 14  
DAC Operation .......................................................................... 14  
Operation with VREF Equal to the Supply................................ 15  
Power Supply Sequencing ......................................................... 15  
Programmable Power Shutdown.............................................. 15  
Worst Case Accuracy................................................................. 15  
Serial Data Interface................................................................... 15  
Power-On Reset.......................................................................... 16  
Microprocessor Interfacing....................................................... 16  
Applications Information.............................................................. 18  
Staircase Windows Comparator............................................... 18  
Programmable DAC Reference Voltage .................................. 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
REVISION HISTORY  
1/11—Rev. B to Rev. C  
Added Automotive Model and Information.............. Throughout  
12/09—Rev. A to Rev. B  
Changes to Ordering Guide .......................................................... 21  
6/06—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Ordering Guide .......................................................... 21  
11/00—Revision 0: Initial Version  
Rev. C | Page 2 of 24  
 
AD7398/AD7399  
SPECIFICATIONS  
AD7398 12-BIT VOLTAGE OUTPUT DAC  
VDD = 5 V, V SS = 0 V; or VDD = + 5 V, V SS = −5 V, V REF = +2.5 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Condition  
3 V to 5 V 10%  
5 V 10%  
Unit  
STATIC PERFORMANCE  
Resolution1  
Relative Accuracy2  
Differential Nonlinearity2  
Zero-Scale Error  
Full-Scale Voltage Error  
Full-Scale Tempco3  
REFERENCE INPUT  
VREFIN Range4  
N
12  
1.5  
1
7
2.5  
1.5  
12  
1.5  
1
2.5  
2.5  
1.5  
Bits  
INL  
DNL  
VZSE  
VFSE  
TCVFS  
LSB max  
LSB max  
mV max  
mV max  
ppm/°C typ  
Monotonic  
Data = 000H  
Data = FFFH  
VREF  
RREF  
CREF  
0/VDD  
35  
5
VSS/VDD  
35  
5
V min/max  
kΩ typ6  
pF typ  
Input Resistance5  
Input Capacitance3  
ANALOG OUTPUT  
Output Voltage Range  
Output Current  
Data = 555H, worst case  
VOUT  
IOUT  
CL  
0 to VREF  
5
200  
0 to VREF  
5
400  
V
Data = 800H, ΔVOUT = 4 LSBs  
No oscillation  
mA typ  
pF max  
Capacitive Load3  
LOGIC INPUTS  
Logic Input Low Voltage  
VIL  
VDD = 3 V  
VDD = 5 V  
CLK only  
0.5  
0.8  
80% VDD  
2.1 to 2.4  
1
10  
V max  
V max  
V min  
V min  
μA max  
pF max  
0.8  
4.0  
2.4  
1
Logic Input High Voltage  
VIH  
Input Leakage Current  
Input Capacitance3  
INTERFACE TIMING3, 7  
Clock Frequency  
Clock Width High  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
Load DAC Pulse Width  
Data Setup  
IIL  
CIL  
10  
fCLK  
tCH  
tCL  
tCSS  
tCSH  
tLDAC  
tDS  
tDH  
tLDS  
tLDH  
11  
45  
45  
10  
20  
45  
15  
10  
0
16.6  
30  
30  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
15  
30  
10  
5
Data Hold  
Load Setup to CS  
Load Hold to CS  
0
20  
15  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time8  
SR  
tS  
Data = 000H to FFFH to 000H  
To 0.1% of full scale  
2
6
2
6
V/μs typ  
μs typ  
Shutdown Recovery  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
tSDR  
Q
QDF  
VOUT/VREF  
6
6
μs typ  
Code 7FFH to 800H to 7FFH  
150  
15  
−63  
150  
15  
−63  
nVs typ  
nVs typ  
dB typ  
VREF = 1.5 VDC 1 V p-p, data = 000H,  
f = 100 kHz  
Rev. C | Page 3 of 24  
 
 
 
 
AD7398/AD7399  
Parameter  
Symbol  
Condition  
3 V to 5 V 10%  
5 V 10%  
Unit  
SUPPLY CHARACTERISTICS  
Shutdown Supply Current  
Positive Supply Current  
IDD_SD  
IDD  
IDD  
ISS  
PDISS  
PSS  
No load  
30/60  
1.5/2.8  
1.5/2.6  
1.5/2.5  
5
30/60  
1.6/3  
1.6/2.8  
1.6/2.7  
16  
μA typ/max  
mA typ/max  
mA typ/max  
mA typ/max  
mW typ  
VIL = 0 V, no load, −40°C < T < +125°C  
VIL = 0 V, no load, −40°C < TA < +85°C  
VIL = 0 V, no load  
VIL = 0 V, no load  
ΔVDD = 5%  
A
Negative Supply Current  
Power Dissipation  
Power Supply Sensitivity  
0.006  
0.006  
%/% max  
1 One LSB = VREF/4096 V for the 12-bit AD7398.  
2 The first eight codes (000H to 007H) are excluded from the linearity error measurement in single-supply operation.  
3 These parameters are guaranteed by design and not subject to production testing.  
4 When VREF is connected to either the VDD or the VSS power supply, the corresponding VOUT voltage programs between ground and the supply voltage minus the offset  
voltage of the output buffer, which is the same as the VZSE error specification. See additional information in the Theory of Operation section.  
5 Input resistance is code dependent.  
6 Typicals represent average readings measured at 25°C.  
7 All input control signals are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
8 The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
AD7399 10-BIT VOLTAGE OUTPUT DAC  
VDD = 5 V, V SS = 0 V; or VDD = + 5 V, V SS = –5 V; VREF = +2.5 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Condition  
3 V to 5 V 10%  
5 V 10%  
10  
1
1
4
15  
1.5  
Unit  
STATIC PERFORMANCE  
Resolution1  
Relative Accuracy2  
Differential Nonlinearity2  
Zero-Scale Error  
Full-Scale Voltage Error  
Full-Scale Tempco3  
REFERENCE INPUT  
VREFIN Range4  
N
10  
1
1
7
15  
1.5  
Bits  
INL  
DNL  
VZSE  
VFSE  
TCVFS  
LSB max  
LSB max  
mV max  
mV max  
ppm/°C typ  
Monotonic  
Data = 000H  
Data = 3FFH  
VREF  
RREF  
CREF  
0/VDD  
40  
5
VSS/VDD  
40  
5
V min/max  
kΩ typ6  
pF typ  
Input Resistance5  
Input Capacitance3  
ANALOG OUTPUT  
Output Voltage Range  
Output Current  
Data = 155H, worst case  
VOUT  
IOUT  
CL  
0 to VREF  
5
200  
0 to VREF  
5
400  
V
Data = 200H, ΔVOUT = 1 LSB  
No oscillation  
mA typ  
pF max  
Capacitive Load3  
LOGIC INPUTS  
Logic Input Low Voltage  
VIL  
VDD = 3 V  
VDD = 5 V  
CLK only  
0.5  
0.8  
80% VDD  
2.1 to 2.4  
1
10  
V max  
V max  
V min  
V min  
μA max  
pF max  
0.8  
4.0  
2.4  
1
Logic Input High Voltage  
VIH  
Input Leakage Current  
Input Capacitance3  
INTERFACE TIMING3, 7  
Clock Frequency  
Clock Width High  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
Load DAC Pulse Width  
Data Setup  
IIL  
CIL  
10  
fCLK  
tCH  
tCL  
tCSS  
tCSH  
tLDAC  
tDS  
tDH  
tLDS  
tLDH  
11  
45  
45  
10  
20  
45  
15  
10  
0
16.6  
30  
30  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
15  
30  
10  
5
Data Hold  
Load Setup to CS  
Load Hold to CS  
0
20  
15  
Rev. C | Page 4 of 24  
 
 
 
AD7398/AD7399  
Parameter  
Symbol  
Condition  
3 V to 5 V 10%  
5 V 10%  
Unit  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time8  
SR  
tS  
Data = 000H to 3FFH to 000H  
To 0.1% of full scale  
2
6
2
6
V/μs typ  
μs typ  
Shutdown Recovery  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
tSDR  
Q
QDF  
VOUT/VREF  
6
6
μs typ  
Code 1FFH to 200H to 1FFH  
150  
15  
−63  
150  
15  
−63  
nVs typ  
nVs typ  
dB typ  
VREF = 1.5 VDC + 1 V p-p,  
data = 000H, f = 100 kHz  
SUPPLY CHARACTERISTICS  
Shutdown Supply Current  
Positive Supply Current  
IDD_SD  
IDD  
No load  
30/60  
1.5/2.8  
30/60  
1.6/3  
μA typ/max  
mA typ/max  
VIL = 0 V, no load,  
−40°C < TA < +125°C  
VIL = 0 V, no load,  
−40°C < TA < +85°C  
VIL = 0 V, no load  
VIL = 0 V, no load  
ΔVDD = 5%  
IDD  
1.5/2.6  
1.6/2.8  
mA typ/max  
Negative Supply Current  
Power Dissipation  
Power Supply Sensitivity  
ISS  
PDISS  
PSS  
1.5/2.5  
5
0.006  
1.6/2.7  
16  
0.006  
mA typ/max  
mW typ  
%/% max  
1 One LSB = VREF/1024 V for the 10-bit AD7399.  
2 The first two codes (000H and 001H) are excluded from the linearity error measurement in single-supply operation.  
3 These parameters are guaranteed by design and not subject to production testing.  
4 When VREF is connected to either the VDD or the VSS power supply, the corresponding VOUT voltage programs between ground and the supply voltage minus the offset  
voltage of the output buffer, which is the same as the VZSE error specification. See additional discussion in the Theory of Operation section.  
5 Input resistance is code dependent.  
6 Typicals represent average readings measured at 25°C.  
7 All input control signals are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
8 The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
TIMING DIAGRAMS  
SDI  
SA  
SD  
A1  
A0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IN  
REG  
LD  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSH  
CS  
tCSS  
tLDH  
LDAC  
tLDS  
tLDAC  
Figure 3. AD7398 Timing Diagram (AD7399 with SDI = 14 Bits Only)  
CLK  
tCH  
tCL  
1/fCLK  
tLDH  
tLDS  
tLDS  
LDAC  
CS  
tLDAC  
tCSS  
tCSH  
tCSS  
Figure 4. Continuous Clock Timing Diagram  
Rev. C | Page 5 of 24  
 
 
 
 
AD7398/AD7399  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VREF to GND  
−0.3 V, +7 V  
+0.3 V, −7 V  
VSS, VDD  
Logic Inputs to GND  
VOUT to GND  
IOUT Short Circuit to GND  
Thermal Resistance (θJA)  
−0.3 V, +8 V  
VSS − 0.3 V, VDD + 0.3 V  
50 mA  
ESD CAUTION  
16-Lead SOIC_W Package  
(RW-16)  
16-Lead TSSOP Package  
(RU-16)  
158°C/W  
180°C/W  
150°C  
Maximum Junction  
Temperature (TJ Max)  
Package Power Dissipation  
Operating Temperature Range  
Storage Temperature Range  
(TJ Max – TA)/θJA  
−40°C to +125°C  
−65°C to +150°C  
Reflow Soldering Peak  
Temperature  
SnPb  
Pb-Free  
240°C  
260°C  
Rev. C | Page 6 of 24  
 
 
AD7398/AD7399  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
B
A
V
V
V
V
V
C
D
OUT  
OUT  
OUT  
DD  
OUT  
AD7398/  
AD7399  
TOP VIEW  
(Not to Scale)  
V
SS  
V
V
A
B
C
D
REF  
REF  
REF  
REF  
GND  
SDI  
CLK  
CS  
LDAC  
RS  
Figure 5. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
VOUT  
VOUT  
VSS  
B
DAC B Voltage Output.  
DAC A Voltage Output.  
A
Negative Power Supply Input. Specified range of operation 0 V to −5.5 V.  
VREF  
VREF  
A
DAC A Reference Voltage Input Terminal. Establishes DAC A full-scale output voltage. Pin can be tied to VDD pin or VSS pin.  
DAC B Reference Voltage Input Terminal. Establishes DAC B full-scale output voltage. Pin can be tied to VDD pin or VSS pin.  
Ground Pin.  
B
GND  
LDAC  
Load DAC Register Strobe. Level sensitive active low. Transfers all input register data to DAC registers.  
Asynchronous active low input. See Table 5 for operation.  
8
9
RS  
CS  
Resets Input and DAC Registers to All Zero Codes. Shift register contents unchanged.  
Chip Select. Active low input. Disables shift register loading when high. Transfers serial register data to the input  
register when CS returns high. Does not effect LDAC operation.  
10  
11  
12  
13  
14  
15  
16  
CLK  
SDI  
Schmitt Triggered Clock Input. Positive edge clocks data into shift register.  
Serial Data Input. Input data loads directly into the shift register.  
DAC D Reference Voltage Input Terminal. Establishes DAC D full-scale output voltage. Pin can be tied to VDD pin or VSS pin.  
DAC C Reference Voltage Input Terminal. Establishes DAC C full-scale output voltage. Pin can be tied to VDD pin or VSS pin.  
Positive Power Supply Input. Specified range of operation 3 V to 5 V 10%.  
DAC D Voltage Output.  
VREF  
VREF  
VDD  
D
C
VOUT  
VOUT  
D
C
DAC C Voltage Output.  
Table 5. Control Logic Truth Table  
CS  
CLK  
LDAC  
Serial Shift Register Function  
Input Register Function  
DAC Register  
H
L
L
X
L
H
H
H
H
H
L
No effect  
No effect  
Shift register data advanced one bit  
No effect  
No effect  
No effect  
No effect  
No effect  
No effect  
Latched  
Latched  
No effect  
No effect  
No effect  
No effect  
No effect  
Transparent  
Latched  
+  
H
L/H  
L
Updated with shift register contents  
+  
H
H
X
X
Latched  
Latched  
+  
NOTES  
1. + = Positive logic transition; – = Negative logic transition; X = Don’t Care.  
2. At power-on, both the input register and the DAC register are loaded with all zeros.  
3. During power shutdown, reprogramming of any internal registers can take place, but the output amplifiers do not produce the new values until the part is taken out  
of shutdown mode.  
LDAC  
4. The  
input is a level-sensitive input that controls the four DAC registers.  
Rev. C | Page 7 of 24  
 
 
AD7398/AD7399  
INPUT REGISTERS  
AD7398 SERIAL INPUT REGISTER DATA FORMAT  
Data is loaded in the MSB first format.  
MSB  
LSB  
B0  
B15  
SA  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
SD  
A1  
A0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE  
Bit Position B14 and Bit Position B15 are the SD and SA power shutdown control bits. If SA is set to Logic 1, all DACs are placed in the power shutdown mode. If SD is set  
to Logic 1, the address decoded by Bit B12 and Bit B13 (A0 and A1) determine the DAC channel that is placed in the power shutdown state.  
AD7399 SERIAL INPUT REGISTER DATA FORMAT  
Data is loaded in the MSB first format.  
MSB  
B13  
SA  
LSB  
B0  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
SD  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE  
Bit Position B12 and Bit Position B13 are the SD and SA power shutdown control bits. If SA is set to Logic 1, all DACs are placed in the power shutdown mode. If SD is set  
to Logic 1, the address decoded by Bit B10 and Bit B11 (A0 and A1) determine the DAC channel that is placed in the power shutdown state.  
Table 6. AD7398/AD7399 Address Decode Control  
SA  
SD  
X
1
A1  
X
0
A0  
X
0
DAC Channel Affected  
All DACs shutdown  
DAC A shutdown  
1
0
0
1
0
1
DAC B shutdown  
0
1
1
0
DAC C shutdown  
0
1
1
1
DAC D shutdown  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
DAC A input register decoded  
DAC B input register decoded  
DAC C input register decoded  
DAC D input register decoded  
Rev. C | Page 8 of 24  
 
 
 
 
AD7398/AD7399  
TERMINOLOGY  
Relative Accuracy (INL)  
DAC Glitch Impulse (Q)  
For the DAC, relative accuracy or integral nonlinearity (INL) is  
a measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer function.  
Figure 6 illustrates a typical INL vs. code plot.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV s and  
is measured when the digital input code is changed by 1 LSB at the  
major carry transition (midscale transition). A plot of the glitch  
impulse is shown in Figure 15.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. Figure 8 illustrates a typical DNL vs.  
code plot.  
Digital Feedthrough (QDF)  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
CS  
DAC, but is measured when the DAC output is not updated.  
is held high while the CLK and SDI signals are toggled. It is  
Zero-Scale Error (VZSE  
)
specified in nV − s, and is measured with a full-scale code change  
on the data bus, such as from all 0s to all 1s and vice versa. A  
typical plot of digital feedthrough is shown in Figure 16.  
Zero-scale error is a measure of the output voltage error from  
zero voltage when zero code is loaded to the DAC register.  
Full-Scale Error (VFSE  
)
Power Supply Sensitivity (PSS)  
Full-scale error is a measure of the output voltage error from  
full-scale voltage when full-scale code is loaded to the DAC  
register.  
This specification indicates how the output of the DAC is  
affected by changes in the power supply voltage. Power supply  
sensitivity is quoted in terms of % change in output per % change  
in VDD for full-scale output of the DAC. VDD is varied by 10%.  
Full-Scale Temperature Coefficient (TCVFS  
)
This is a measure of the change in full-scale error with a change  
in temperature. It is expressed in ppm/°C or mV/°C.  
Reference Feedthrough (VOUT/VREF  
)
This is a measure of the feedthrough from the VREF input to the  
DAC output when the DAC is loaded with all 0s. A 100 kHz,  
1 V p-p is applied to VREF. Reference feedthrough is expressed in  
dB or mV p-p.  
Rev. C | Page 9 of 24  
 
AD7398/AD7399  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.50  
0.5  
0.4  
AD7398  
AD7398  
V
V
V
= +5V  
= –5V  
V
V
V
= +5V  
= –5V  
DD  
DD  
1.25  
1.00  
0.75  
0.50  
0.25  
0
SS  
SS  
= +2.5V  
= +2.5V  
REF  
REF  
0.3  
T
= 25°C  
T = 25°C  
A
A
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.25  
–0.50  
–0.75  
–1.00  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. AD7398 INL vs. Code (TA = 25°C)  
Figure 8. AD7398 DNL vs. Code (TA = 25 °C)  
0.50  
0.25  
0
0.50  
0.25  
0
T
V
= 25°C, V = +5V,  
DD  
DAC D  
DAC D  
A
= –5V, V = +2.5V  
SS  
REF  
–0.25  
–0.50  
–0.25  
–0.50  
T
V
= 25°C, V = +5V,  
DD  
A
= –5V, V  
= +2.5V  
SS  
REF  
0
128  
256  
384  
512  
640  
768  
768  
768  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
768  
768  
768  
896  
1024  
CODE (Decimal)  
CODE (Decimal)  
0.50  
0.25  
0
0.50  
0.25  
0
DAC C  
DAC C  
–0.25  
–0.50  
–0.25  
–0.50  
T
= 25°C, V = +5V,  
DD  
T
V
= 25°C, V = +5V,  
A
A DD  
V
= –5V, V  
= +2.5V  
= –5V, V  
128  
= +2.5V  
SS  
REF  
SS  
REF  
0
0
0
128  
256  
384  
512  
640  
896  
1024  
0
0
0
256  
384  
512  
640  
896  
1024  
CODE (Decimal)  
CODE (Decimal)  
0.50  
0.25  
0
0.50  
0.25  
0
DAC B  
DAC B  
–0.25  
–0.50  
–0.25  
–0.50  
T
= 25°C, V = +5V,  
DD  
T
V
= 25°C, V = +5V,  
A
A DD  
V
= –5V, V  
= +2.5V  
= –5V, V  
128  
= +2.5V  
SS  
REF  
SS  
REF  
128  
256  
384  
512  
640  
896  
1024  
256  
384  
512  
640  
896  
1024  
CODE (Decimal)  
CODE (Decimal)  
0.50  
0.25  
0
0.50  
0.25  
0
DAC A  
DAC A  
–0.25  
–0.50  
–0.25  
–0.50  
T
= 25°C, V = +5V,  
DD  
T
V
= 25°C, V = +5V,  
A
A DD  
V
= –5V, V  
= +2.5V  
= –5V, V  
128  
= +2.5V  
SS  
REF  
SS  
REF  
128  
256  
384  
512  
640  
896  
1024  
256  
384  
512  
640  
896  
1024  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. AD7399 INL vs. Code (TA = 25°C)  
Figure 9. AD7399 DNL vs. Code (TA = 25 °C)  
Rev. C | Page 10 of 24  
 
 
 
AD7398/AD7399  
1.00  
0.75  
0.50  
0.25  
0
10  
8
AD7398/AD7399  
AD7398  
= 25°C  
T
= 25°C  
T
A
A
SINKING CURRENT INTO V  
OUT  
V
V
= +5V  
= –5V  
DD  
SS  
V
= +3V, V = 0V  
SS  
DD  
6
DNL  
V
= +5V, V = –5V  
SS  
DD  
4
2
INL  
0
V
= +5V, V = 0V  
SS  
DD  
FSE  
–2  
–4  
–6  
–8  
–10  
–0.25  
–0.50  
–0.75  
–1.00  
SOURCING CURRENT FROM V  
OUT  
V
V
V
= +5V, V = –5V  
DD  
DD  
DD  
SS  
= +5V, V = 0V  
SS  
= +3V, V  
=
0V  
SS  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–20  
–15  
–15  
–5  
0
5
10  
15  
(mA)  
20  
REFERENCE VOLTAGE (V)  
SOURCE OR SINK CURRENT FROM V  
OUT  
Figure 10. AD7398 INL, DNL, FSE vs. Reference Voltage  
Figure 13. ΔVOUT vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
AD7398  
AD7398  
SAMPLE SIZE = 125  
–40°C TO +125°C  
V
V
V
= +5V  
= –5V  
DD  
SS  
= +2.5V  
REF  
T
= 25°C  
A
0
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
CODE (Decimal)  
FULL-SCALE ERROR TEMPCO (ppm/°C)  
Figure 11. AD7398 Reference Input Current vs. Code  
Figure 14. AD7398 Full-Scale Error Tempco  
1000  
100  
10  
AD7398  
V
V
= +5V  
= –5V  
DD  
SS  
T
= 25°C  
A
100  
90  
CS (5V/DIV)  
V
(0.2V/DIV)  
10  
OUT  
0%  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
CODE (Decimal)  
TIME (2µs/DIV)  
Figure 12. AD7398 Reference Input Resistance vs. Code  
Figure 15. AD7398 Midscale Glitch  
Rev. C | Page 11 of 24  
 
AD7398/AD7399  
0
0xFFF  
0x800  
0x400  
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
0x200  
0x100  
0x080  
0x040  
0x020  
0x010  
0x008  
0x004  
0x002  
0x001  
100  
90  
V
(50mV/DIV)  
OUT  
CLOCK (5V/DIV)  
10  
0x000  
V
V
V
= +5V  
= –5V  
DD  
0%  
SS  
= +100mV rms  
REF  
T
= 25°C  
A
100  
1k  
10k  
FREQUENCY (Hz)  
100k 1M  
TIME (100ns/DIV)  
Figure 19. AD7398 Multiplying Gain vs. Frequency  
Figure 16. AD7398 Digital Feedthrough  
5
V
= +5V, V = –5V, V = +5V  
SS REF  
DD  
T
= 25°C  
A
1. V = +5V, V = –5V, CODE = 0x000, 0xFFF  
3. V = +5V, V = –5V, CODE = 0x555  
DD SS  
DD SS  
2
4
DLY 54µs  
3. V = +5V, V = 0V, CODE = 0x000, 0xFFF  
4
3
2
1
0
DD SS  
4. V = +5V, V = 0V, CODE = 0x555  
DD SS  
100  
90  
V
(2V/DIV)  
5. V = +3V, V = 0V, CODE = 0x000, 0xFFF  
6. V = +3V, V = 0V, CODE = 0x555  
DD SS  
OUT  
DD SS  
1
3
6
5
10  
0%  
CS (5V/DIV)  
5V  
2v  
5µs  
1k  
10k  
100k  
1M  
10M  
100M  
CLOCK FREQUENCY (Hz)  
TIME (5µs/DIV)  
Figure 17. AD7398 Large Signal Settling Time  
Figure 20. AD7398 Supply Current vs. Clock Frequency  
V
= +5V, V = –5V, V  
SS REF  
= +5V  
2.00  
DD  
AD7398  
±5V  
T
= 25°C  
A
A2 0.8V  
DLY 67µs  
V
= +2.5V  
REF  
DUAL SUPPLY  
1.75  
1.50  
1.25  
1.00  
100  
90  
V
(2V/DIV)  
OUT  
±3V  
SINGLE SUPPLY  
10  
0%  
5V  
2V  
2µs  
2
3
4
5
6
POWER SUPPLY VOLTAGE (V)  
TIME (2µs/DIV)  
Figure 18. AD7398 Shutdown Recovery  
Figure 21. AD7398 Supply Current vs. Supply Voltage  
Rev. C | Page 12 of 24  
 
AD7398/AD7399  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.00  
0.75  
0.50  
0.25  
0
AD7398/AD7399  
AD7398  
SAMPLE SIZE = 135  
V
V
= +5V  
= –5V  
DD  
SS  
V
= 2.5V  
REF  
CODE = 0xFFF  
CODE = 0x000  
–50  
0
50  
100  
150  
0
100  
200  
300  
400  
500  
600  
TEMPERATURE (°C)  
HOURS OF OPERATION AT 150°C  
Figure 22. Supply Current vs. Temperature  
Figure 24. AD7398 Long-Term Drift  
36  
35  
34  
33  
32  
31  
AD7398/AD7399  
V
V
= +5V  
= –5V  
DD  
SS  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 23. Shutdown Current vs. Temperature  
Rev. C | Page 13 of 24  
AD7398/AD7399  
THEORY OF OPERATION  
V
V
A
V
B
V
C
V
D
REF  
DD  
REF  
REF  
REF  
AD7398/AD7399  
INPUT  
REGISTER  
DAC  
REGISTER  
DAC A  
V
A
CS  
OUT  
CLK  
ADDRESS  
DECODE  
4
SDI  
INPUT  
DAC  
DAC B  
DAC C  
DAC D  
V
V
V
B
C
D
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
SERIAL  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
12/10  
INPUT  
REGISTER  
DAC  
REGISTER  
POWER  
ON RESET  
RS  
GND  
LDAC  
V
SS  
Figure 25. Simplified Block Diagram  
The AD7398/AD7399 contain four 12-bit and 10-bit,  
The nominal DAC output voltage is determined by the  
externally applied VREF and the digital data (D) as  
respectively, voltage output, digital-to-analog converters. Each  
DAC has its own independent multiplying reference input. Both  
the AD7398 and AD7399 use a 3-wire, SPI-compatible serial  
VOUT = VREF × D/4096 (For AD7398)  
VOUT = VREF × D/1024 (For AD7399)  
where:  
(1)  
(2)  
RS  
data interface, with an asynchronous  
pin for zero-scale reset.  
strobe enables four-channel simultaneous  
updates for hardware-synchronized output voltage changes.  
LDAC  
In addition, an  
V
DD  
D is the 12-bit or 10-bit decimal equivalent of the data word.  
V
REF is the externally applied reference voltage.  
AD7398/AD7399  
In order to maintain good analog performance, the user should  
bypass power supplies with 0.01 μF ceramic capacitors (mount  
them close to the supply pins) and 1 μF to 10 μF tantalum  
capacitors in parallel. In addition, clean power supplies with low  
ripple voltage capability should be used. Switching power supplies  
can be used for this application, but beware of its higher ripple  
voltage and PSS frequency-dependent characteristics. It is also  
best to supply power to the AD7398/AD7399 from the system’s  
analog supply voltages. Do not use the digital 5 V supply.  
V
REF  
V
A
OUT  
R
R
GND  
V
SS  
Figure 26. Simplified DAC Channel  
The reference input resistance is code dependent, exhibiting  
worst case 35 kΩ for AD7398 when the DAC is loaded with  
alternating codes 010101010101. Similarly, the reference input  
resistance is 40 kΩ for AD7399 when the DAC is loaded with  
0101010101.  
DAC OPERATION  
The internal R-2R ladder of the AD7398/AD7399 operates in  
the voltage switching mode, maintaining an output voltage that  
is the same polarity as the input reference voltage. A proprietary  
scaling technique is used to attenuate the input reference voltage in  
the DAC. The output buffer amplifies the internal DAC output to  
achieve a VREF to VOUT gain of unity.  
Rev. C | Page 14 of 24  
 
 
AD7398/AD7399  
SERIAL DATA INTERFACE  
OPERATION WITH VREF EQUAL TO THE SUPPLY  
CS  
The AD7398/AD7399 uses a 3-wire ( , SDI, CLK) SPI-  
The AD7398/AD7399 are designed to approach the full output  
voltage swing from ground to VDD or VSS. The maximum output  
swing is achieved when the corresponding VREF input pin is tied  
to the same power supply. This power supply should be low noise  
and low ripple, preferably operated by a suitable reference voltage  
source such as ADR292 or REF02. The output swing is limited  
by the internal buffer offset voltage and the output drive current  
capability of the output stage. Users should at least budget the VZSE  
offset voltage as the closest the output voltage can get to either  
supply voltage under a no load condition. Under a loaded output,  
degrade the headroom by a factor of 2 mV per 1 mA of load  
current. Also note that the internal op amp has an offset voltage  
so that the first eight codes of AD7398 may not respond at the  
supply voltage or at ground until the internal DAC voltage  
exceeds the offset voltage of the output buffers. Similarly, the first  
two codes of AD7399 should not be used.  
compatible serial data interface. Serial data of the AD7398 and  
AD7399 is clocked into the serial input register in a 16-bit and 14-  
bit data-word format, respectively. MSBs are loaded first. The Input  
Registers section defines the 16 data-word bits for AD7398 and the  
14 data-word bits for the AD7399. Data is placed on the SDI pin,  
and clocked into the register on the positive clock edge of CLK,  
subject to the data setup and data hold time requirements specified  
in the Specifications section. Data can only be clocked in while the  
chip select pin is active low. For the AD7398, only the last 16  
bits clocked into the serial register are interrogated when the  
returns to the logic high state, and extra data bits are ignored. For  
the AD7399, only the last 14 bits clocked into the serial register are  
interrogated when the pin returns to the logic high state.  
CS  
CS  
pin  
CS  
Because most microcontrollers output serial data is in eight-bit  
bytes, two right-justified data bytes can be written to the AD7398  
CS  
and AD7399. Keeping the line low between the first and second  
POWER SUPPLY SEQUENCING  
byte transfers results in a successful serial register update.  
VDD/VSS of AD7398/AD7399 should be powered from the system  
analog supplies. The external reference input can be supplied from  
the same supply to avoid a possible latch-up when the reference is  
powered on prior to VDD/VSS, or powered off subsequent to  
VDD/VSS. If VDD/VSS and VREF have separate power sources, ensure  
the power-up sequence is GND, VDD, VSS, VREF/digital input/digital  
output. The reverse sequence applies to the power-down sequence.  
The order of VREF and digital input/digital output is not important.  
In addition, VREF pins of the unused DACs should be connected to  
GND or some other power sources to ensure a similar power-  
up/power-down sequence.  
Once the data is properly aligned in the shift register, the positive  
CS  
edge of the initiates the transfer of new data to the target DAC  
register, determined by the decoding of Address Bit A1 and  
Address Bit A0. For the AD7398, Table 5, Table 6, the Input  
Registers section, Figure 3, and Figure 4 define the characteristics  
of the serial interface. For the AD7399, Table 5, Table 6, the Input  
Registers section, and Figure 4 (with a 14-bit exception) define the  
characteristics of the serial interface. Figure 27 and Figure 28 show  
the equivalent logic interface for the key digital control pins for  
AD7398 and AD7399.  
RS  
provides hardware control reset to zero-  
PROGRAMMABLE POWER SHUTDOWN  
An asynchronous  
code state over the preset function and DAC register loading. If  
The two MSBs of the serial input register, SA and SD, are used  
to program various shutdown modes. If SA is set to Logic 1, all  
DACs are placed in shutdown mode. If SA = 0 and SD = 1, a  
corresponding DAC is shutdown addressed by Bit A0 and  
Bit A1 (see the Input Registers section).  
RS  
this function is not needed, the  
pin can be tied to logic high.  
TO INPUT REGISTER  
A
B
C
D
CS  
ADDRESS  
DECODER  
WORST CASE ACCURACY  
EN  
SHIFT  
Assuming a perfect reference, the worst-case output voltage can  
be calculated from the following equation:  
REGISTER  
CLK  
SDI  
D
V
V
V  
V  
ZSE  
INL  
(3)  
OUT  
REF FSE  
Figure 27. Equivalent Logic Interface  
N
2
where:  
D = decimal code loaded to DAC ranges 0 ≤ D ≤ 2N–1.  
N = number of bits.  
V
V
V
REF = applied reference voltage.  
FSE = full-scale error in volts.  
ZSE = zero-scale error in volts.  
INL = integral nonlinearity in volts. INL is 0 at full scale or zero  
scale.  
Rev. C | Page 15 of 24  
 
 
 
 
 
 
AD7398/AD7399  
68HC11/68L11 to AD7398/AD7399 Interface  
POWER-ON RESET  
Figure 30 shows a serial interface between the AD7398/AD7399  
and the 68HC11/68L11 microcontroller. SCK of the 68HC11/  
68L11 drives the CLK of the DAC, and the MOSI output drives the  
When the VDD power supply is turned on, an internal reset  
strobe forces all the input and DAC registers to the zero-code  
state. The VDD power supply should have a smooth positive  
ramp without drooping in order to have consistent results,  
especially in the region of VDD = 1.5 V to 2.2 V. The VSS supply  
has no effect on the power-on reset performance. The DAC  
register data stays at zero until a valid serial register data load  
takes place.  
CS  
serial data lines SDI. signal is driven from one of the port lines.  
The 68HC11/68L11 are configured for master mode; MSTR = 1,  
CPOL = 0, and CPHA = 0. Data appearing on the MOSI output is  
valid on the rising edge of SCK.  
68HC11/  
68L111  
AD7398/  
AD7399  
ESD Protection Circuits  
PC6  
LDAC  
CS  
All logic input pins contain back-biased ESD protection Zeners  
connected to ground (GND) and VDD as shown in Figure 28.  
PC7  
MOS1  
SDI  
SCK  
CLK  
V
DD  
1
DIGITAL INPUTS  
ADDITIONAL PINS OMITTED FOR CLARITY.  
5k  
Figure 30. 68HC11/68L11 to AD7398/AD7399 Interface  
MICROWIRE™ to AD7398/AD7399 Interface  
GND  
Figure 31 shows an interface between the AD7398/AD7399 and  
any MICROWIRE-compatible device. Serial data is shifted out  
on the falling edge of the serial clock and into the AD7398/  
AD7399 on the rising edge of the serial clock. No glue logic is  
required as the DAC clocks data into the input shift register on  
the rising edge.  
Figure 28. Equivalent ESD Protection Circuits  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD7398/AD7399 is via a  
serial bus that uses standard protocol compatible with DSP  
processors and microcontrollers. The communications channel  
requires a 3-wire interface consisting of a clock signal, a data  
signal, and a synchronization signal. The AD7398/AD7399  
require a 16-bit/14-bit data word with data valid on the rising edge  
of CLK. The DAC update can be done automatically when all the  
MICROWIRE1  
AD7398/  
AD7399  
CS  
SO  
CS  
SDI  
LDAC  
data is clocked in, or it can be done under control of  
.
SCK  
CLK  
ADSP-2101 to AD7398/AD7399 Interface  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 29 shows a serial interface between the AD7398/AD7399  
and the ADSP-2101. The ADSP-2101 is set to operate in the serial  
port (SPORT) transmit alternate framing mode. The ADSP-2101 is  
programmed through the SPORT control register and should be  
configured as follows: Internal clock operation, active low framing,  
16-bit-word length. For the AD7398, transmission is initiated by  
writing a word to the Tx register after the SPORT has been  
enabled. For the AD7399, the first two bits are don’t care as the  
AD7399 keeps the last 14 bits. Similarly, transmission is initiated  
by writing a word to the Tx register after the SPORT has been  
enabled. Because of the edge-triggered difference, an inverter is  
required at the SCLKs between the DSP and the DAC.  
Figure 31. MICROWIRE to AD7398/AD7399 Interface  
80C51/80L51 to AD7398/AD7399 Interface  
A serial interface between the AD7398/AD7399 and the 80C51/  
80L51 microcontroller is shown in Figure 32. TxD of the micro-  
controller drives the CLK of the AD7398/AD7399, and RxD drives  
the serial data line of the DAC. P3.3 is a bit-programmable pin on  
CS  
the serial port that is used to drive  
.
80C51/  
80L511  
AD7398/  
AD7399  
P3.4  
P3.3  
RxD  
LDAC  
CS  
SDI  
ADSP-21011  
AD7398/  
AD7399  
TxD  
CLK  
FO  
TFS  
DT  
LDAC  
CS  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 32. 80C51/80L51 to AD7398/AD7399 Interface  
SDI  
SCLK  
CLK  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 29. ADSP-2101 to AD7398/AD7399 Interface  
Rev. C | Page 16 of 24  
 
 
 
 
 
 
 
AD7398/AD7399  
Note that the 80C51/80L51 provide the LSB first, although the  
AD7398/AD7399 expect the MSB of the 16-bit/14-bit word  
first. Care should be taken to ensure the transmit routine takes  
this into account. This can usually be done with software by  
shifting out and accumulating the bits in the correct order  
before inputting to the DAC. In addition, 80C51 outputs two  
byte words/16 bits of data. Thus for AD7399, the first two bits,  
after rearrangement, should be don’t care as they are dropped  
from the 14-bit word of the AD7399.  
When data is to be transmitted to the DAC, P3.3 is taken low.  
Data on RxD is valid on the falling edge of TxD, so the clock  
must be inverted as the DAC clocks data into the input shift  
register on the rising edge of the serial clock. The 80C51/80L51  
transmit their data in 8-bit bytes with only eight falling clock  
edges occurring in the transmit cycle. As the AD7399 requires a  
14-bit word, P3.3 (or any one of the other programmable bits) is the  
CS  
input signal to the DAC; therefore P3.3 should be brought low  
at the beginning of the 16-bit write cycle 2 × 8 bit-words, and held  
low until the 16-bit 2 × 8 cycle is completed. After that, P3.3 is  
brought high again and the new data loads to the DAC. Again, the  
LDAC  
first two bits, after rearranging, should be don’t care.  
on the  
AD7398/AD7399 can also be controlled by the 80C51/80L51 serial  
port output by using another bit-programmable pin, P3.4.  
Rev. C | Page 17 of 24  
AD7398/AD7399  
APPLICATIONS INFORMATION  
STAIRCASE WINDOWS COMPARATOR  
V
TEST  
V+  
AD8564  
V
REF  
Many applications need to determine whether voltage levels are  
within predetermined limits. Some requirements are for  
nonoverlapping windows and others for overlapping windows.  
Both circuit configurations are shown in Figure 33 and  
Figure 34, respectively.  
10k  
+
WINDOW 1  
WINDOW 2  
V
DD  
+
V
V
A
B
V
V
A
B
REF  
OUT  
V+  
10kΩ  
+
REF  
OUT  
AD7398/  
AD7399  
V
TEST  
+
V+  
AD8564  
V
V
V
C
V
C
REF  
REF  
OUT  
10k  
+
WINDOW 1  
WINDOW 2  
1/2  
AD8564  
V+  
V
DD  
+
10kΩ  
D
V
D
+
REF  
OUT  
V+  
WINDOW 3  
GND  
10kΩ  
V
A
V
A
+
REF  
OUT  
+
+
AD7398/  
AD7399  
Figure 35. Overlapping Windows Comparator  
V+  
AD8564  
V
REF  
10kΩ  
V
V
B
V
B
C
+
REF  
OUT  
WINDOW 3  
WINDOW 4  
WINDOW 1  
V
V
B
A
OUT  
OUT  
+
WINDOW 2  
V+  
V
V
D
C
OUT  
10kΩ  
C
V
+
WINDOW 3  
REF  
OUT  
OUT  
GND  
+
Figure 36. Overlapping Windows Range  
The nonoverlapping circuit employs one AD7398/AD7399 and  
ten comparators to achieve five voltage windows. These windows  
range between VREF and analog ground as shown in Figure 34.  
Similarly, the overlapping circuit employs six comparators to  
achieve three overlapping windows (see Figure 36).  
1/2  
V+  
AD8564  
10k  
V
D
V
D
+
REF  
OUT  
WINDOW 5  
GND  
+
Figure 33. Nonoverlapping Windows Comparator  
V
REF  
WINDOW 1  
WINDOW 2  
WINDOW 3  
V
V
A
B
OUT  
OUT  
V
C
OUT  
WINDOW 4  
WINDOW 5  
V
D
OUT  
GND  
Figure 34. Nonoverlapping Windows Range  
Rev. C | Page 18 of 24  
 
 
 
 
 
AD7398/AD7399  
Table 7. VREFX vs. R1 and R2  
PROGRAMMABLE DAC REFERENCE VOLTAGE  
R1, R2  
Digital Code  
VREFX  
2 VREF  
1.3 VREF  
VREF  
4 VREF  
1.6 VREF  
VREF  
With the flexibility of the AD7398/AD7399, one of the internal  
DACs can be used to control a common programmable VREFX  
for the remainder of the DACs.  
R1 = R2  
R1 = R2  
R1 = R2  
R1 = 3R2  
R1 = 3R2  
R1 = 3R2  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
The circuit configuration is shown in Figure 37. The relationship of  
VREFX to VREF is dependent upon the digital code and the ratio of  
R1 and R2, and is given by  
R2  
R1  
D
R2  
The accuracy of VREFX is affected by the quality of R1 and R2.  
Therefore, tight tolerance, low tempco, thin film resistors  
should be used.  
VREFX =VREF × 1 +  
V  
×
×
(4)  
REFX  
2N R1  
R2  
R1  
R2  
R1  
VREF × 1 +  
VREFX  
=
(5)  
D
1 +  
×
N
2
where:  
D = decimal equivalent of input code.  
N = number of bits.  
V
V
REF = applied external reference.  
REFX = reference voltage for DAC A to DAC D.  
AD7398/AD7399  
R2 ±0.1%  
R1 ±0.1%  
V
A
V
V
V
V
A
B
C
D
REF  
OUT  
OUT  
OUT  
OUT  
V
REF  
DAC A  
VIN  
ADR293  
V
B
REF  
DAC B  
V
C
REF  
TO OTHER  
COMPONENTS  
DAC C  
V
D
REF  
DAC D  
Figure 37. Programmable DAC Reference  
Rev. C | Page 19 of 24  
 
 
AD7398/AD7399  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 38. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 39. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. C | Page 20 of 24  
 
AD7398/AD7399  
ORDERING GUIDE  
Model1, 2  
AD7398BR  
AD7398BR-REEL  
AD7398BRZ  
AD7398BRZ-REEL  
AD7398BRU  
AD7398BRU-REEL7  
AD7398BRUZ  
AD7398BRUZ-REEL7  
AD7398WBRUZ-RL7  
AD7399BR  
AD7399BR-REEL  
AD7399BRZ  
AD7399BRZ-REEL  
AD7399BRU  
Resolution (Bits)  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
Package Option  
Ordering Quantity  
12  
12  
12  
12  
12  
12  
12  
12  
12  
10  
10  
10  
10  
10  
10  
10  
10  
RW-16  
RW-16  
RW-16  
RW-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RW-16  
RW-16  
RW-16  
RW-16  
RU-16  
RU-16  
RU-16  
RU-16  
47  
1,000  
47  
1,000  
96  
1,000  
96  
1,000  
1,000  
47  
1,000  
47  
1,000  
96  
1,000  
96  
AD7399BRU-REEL7  
AD7399BRUZ  
AD7399BRUZ-REEL7  
1,000  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
The AD7398 contains 3254 transistors. The die size measures 108 mils × 144 mils.  
AUTOMOTIVE PRODUCTS  
The AD7398WBRUZ-RL7 model is available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for this model.  
Rev. C | Page 21 of 24  
 
 
AD7398/AD7399  
NOTES  
Rev. C | Page 22 of 24  
AD7398/AD7399  
NOTES  
Rev. C | Page 23 of 24  
AD7398/AD7399  
NOTES  
©2000–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02179-0-1/11(C)  
Rev. C | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY