AD7397ARUZ [ADI]

3 V, Parallel Input Dual 12-Bit /10-Bit DACs; 3 V ,并行输入双通道12位/ 10位DAC
AD7397ARUZ
型号: AD7397ARUZ
厂家: ADI    ADI
描述:

3 V, Parallel Input Dual 12-Bit /10-Bit DACs
3 V ,并行输入双通道12位/ 10位DAC

转换器 数模转换器 光电二极管 PC
文件: 总12页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 V, Parallel Input  
Dual 12-Bit/10-Bit DACs  
a
AD7396/AD7397  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Micropower: 100 A/DAC  
0.1 A Typical Power Shutdown  
Single Supply +2.7 V to +5.5 V Operation  
Compact 1.1 mm Height TSSOP 24-Lead Package  
AD7396: 12-Bit Resolution  
AD7397: 10-Bit Resolution  
0.9 LSB Differential Nonlinearity Error  
V
V
DD  
AD7396  
12  
DACA  
REGISTER  
12-BIT  
DACA  
LDA  
OUTA  
CS  
INPUTA  
REGISTER  
A/B  
12  
1
V
DATA  
REF  
APPLICATIONS  
INPUTB  
REGISTER  
Automotive Output Span Voltage  
Portable Communications  
Digitally Controlled Calibration  
PC Peripherals  
12  
DACB  
REGISTER  
12-BIT  
DACB  
LDB  
V
OUTB  
AGND  
DGND  
RS  
SHDN  
GENERAL DESCRIPTION  
Both parts are offered in the same pinout, allowing users to  
The AD7396/AD7397 series of dual, 12-bit and 10-bit voltage-  
output digital-to-analog converters are designed to operate from  
a single +3 V supply. Built using a CBCMOS process, these  
monolithic DACs offer the user low cost and ease of use in  
single supply +3 V systems. Operation is guaranteed over the  
supply voltage range of +2.7 V to +5.5 V, making this device  
ideal for battery operated applications.  
select the amount of resolution appropriate for their applications  
without circuit card changes.  
The AD7396/AD7397 are specified for operation over the ex-  
tended industrial (–40°C to +85°C) temperature range. The  
AD7397AR is specified for the –40°C to +125°C automotive  
temperature range. AD7396/AD7397s are available in plastic  
DIP, and 24-lead SOIC packages. The AD7397ARU is avail-  
able for ultracompact applications in a thin 1.1 mm height  
TSSOP 24-lead package.  
A 12-bit wide data latch loads with a 45 ns write time allowing  
interface to fast processors without wait states. The double  
buffered input structure allows the user to load the input  
registers one at a time, then a single load strobe tied to both  
LDA+LDB inputs will simultaneously update both DAC out-  
puts. LDA and LDB can also be independently activated to  
immediately update their respective DAC registers. An address  
input (A/B) decodes DACA or DACB when the chip select CS  
input is strobed. Additionally, an asynchronous RS input sets  
the output to zero-scale at power on or upon user demand.  
Power shutdown to submicroamp levels is directly controlled by  
the active low SHDN pin. While in the power shutdown state  
register data can still be changed even though the output buffer  
is in an open circuit state. Upon return to the normal operating  
state the latest data loaded in the DAC register will establish the  
output voltage.  
1.0  
V
V
= +3V  
DD  
0.8  
0.6  
0.4  
= +2.5V  
REF  
0.2  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
T
= +25؇C, +85؇C, –55؇C  
SUPERIMPOSED  
A
0
512  
1024 1536  
2048  
2560 3072  
3584 4096  
CODE – Decimal  
Figure 1. DNL vs. Digital Code at Temperature  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD7396/AD7397–SPECIFICATIONS  
AD7396 12-BIT  
(@ VREF IN = +2.5 V, –40؇C < TA < +85؇C, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
+3 V ؎ 10% +5 V ؎ 10% Units  
STATIC PERFORMANCE  
Resolution1  
N
12  
12  
Bits  
Relative Accuracy2  
INL  
INL  
DNL  
DNL  
VZSE  
VZSE  
VFSE  
VFSE  
TCVFS  
TA = +25°C  
±1.75  
±2.0  
±0.9  
±1  
4.0  
8.0  
±1.75  
±2.0  
±0.9  
±1  
4.0  
8.0  
±8  
±20  
–45  
LSB max  
LSB max  
LSB max  
LSB max  
mV max  
mV max  
mV max  
mV max  
ppm/°C typ  
Relative Accuracy2  
TA = –40°C, +85°C  
TA = +25°C, Monotonic  
Monotonic  
Data = 000H, TA = +25°C, +85°C  
Data = 000H, TA = –40°C  
Differential Nonlinearity2  
Differential Nonlinearity2  
Zero-Scale Error  
Zero-Scale Error  
Full-Scale Voltage Error  
Full-Scale Voltage Error  
Full-Scale Tempco3  
TA = +25°C, +85°C, Data = FFFH ±8  
TA = –40°C, Data = FFFH  
±20  
–45  
REFERENCE INPUT  
V
REF Range  
VREF  
RREF  
CREF  
0/VDD  
2.5  
5
0/VDD  
2.5  
5
V min/max  
Mtyp4  
pF typ  
Input Resistance  
Input Capacitance3  
ANALOG OUTPUT  
Output Current (Source)  
Output Current (Sink)  
Capacitive Load3  
IOUT  
IOUT  
CL  
Data = 800H, VOUT = 5 LSB  
Data = 800H, VOUT = 5 LSB  
No Oscillation  
1
3
100  
1
3
100  
mA typ  
mA typ  
pF typ  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance3  
VIL  
VIH  
IIL  
0.5  
VDD – 0.6  
10  
10  
0.8  
4.0  
10  
V max  
V min  
µA max  
CIL  
10  
pF max  
INTERFACE TIMING3, 5  
Chip Select Write Width  
DAC Select Setup  
DAC Select Hold  
Data Setup  
Data Hold  
Load Setup  
Load Hold  
Load Pulsewidth  
tCS  
tAS  
tAH  
tDS  
tDH  
45  
30  
0
30  
20  
20  
10  
30  
40  
35  
15  
0
15  
10  
20  
10  
30  
30  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
tLS  
tLH  
tLDW  
tRSW  
Reset Pulsewidth  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time6  
SR  
tS  
Data = 000H to FFFH to 000H  
To ±0.1% of Full Scale  
0.05  
70  
0.05  
60  
V/µs typ  
µs typ  
Shutdown Recovery Time  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
tSDR  
Q
Q
90  
65  
15  
80  
65  
15  
µs typ  
nV/s typ  
nV/s typ  
Code 7FFH to 800H to 7FFH  
VOUT/VREF  
VREF = 1.5 VDC +1 V p-p,  
Data = 000H, f = 100 kHz  
–63  
–63  
dB typ  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Shutdown Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
IDD_SD  
PDISS  
DNL < ±1 LSB  
2.7/5.5  
125/200  
0.1/1.5  
600  
2.7/5.5  
125/200  
0.1/1.5  
1000  
V min/max  
µA typ/max  
µA typ/max  
µW max  
VIL = 0 V, No Load  
SHDN = 0, VIL = 0 V, No Load  
VIL = 0 V, No Load  
VDD = ±5%  
Power Supply Sensitivity  
PSS  
0.006  
0.006  
%/% max  
NOTES  
1One LSB = VREF/4096 V for the 12-bit AD7396.  
2The first two codes (000H, 001H) are excluded from the linearity error measurement.  
3These parameters are guaranteed by design and not subject to production testing.  
4Typicals represent average readings measured at +25°C.  
5All input control signals are specified with tR = tF = 2 ns (10% to 90% of +3 V) and timed from a voltage level of +1.6 V.  
6The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD7396/AD7397  
AD7397 10-BIT  
(@ VREF IN = +2.5 V, –40؇C < TA < +85؇C, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
+3 V ؎ 10% +5 V ؎ 10% Units  
STATIC PERFORMANCE  
Resolution1  
N
10  
10  
Bits  
Relative Accuracy2  
INL  
INL  
DNL  
VZSE  
VFSE  
VFSE  
TCVFS  
TA = +25°C  
TA = –40°C, +85°C, +125°C  
Monotonic  
Data = 000H  
±1.75  
±2.0  
±1  
±1.75  
±2.0  
±1  
LSB max  
LSB max  
LSB max  
mV max  
mV max  
mV max  
ppm/°C typ  
Relative Accuracy2  
Differential Nonlinearity2  
Zero-Scale Error  
9.0  
9.0  
Full-Scale Voltage Error  
Full-Scale Voltage Error  
Full-Scale Tempco3  
TA = +25°C, +85°C, +125°C, Data = 3FFH ±42  
±42  
±48  
–45  
TA = –40°C, Data = 3FFH  
±48  
–45  
REFERENCE INPUT  
V
REF Range  
VREF  
RREF  
CREF  
0/VDD  
2.5  
5
0/VDD  
2.5  
5
V min/max  
Mtyp4  
pF typ  
Input Resistance  
Input Capacitance3  
ANALOG OUTPUT  
Output Current (Source)  
Output Current (Sink)  
Capacitive Load3  
IOUT  
IOUT  
CL  
Data = 200H, VOUT = 5 LSB  
Data = 200H, VOUT = 5 LSB  
No Oscillation  
1
3
100  
1
3
100  
mA typ  
mA typ  
pF typ  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance3  
VIL  
VIH  
IIL  
0.5  
VDD – 0.6  
10  
10  
0.8  
4.0  
10  
V max  
V min  
µA max  
CIL  
10  
pF max  
INTERFACE TIMING3, 5  
Chip Select Write Width  
DAC Select Setup  
DAC Select Hold  
Data Setup  
Data Hold  
Load Setup  
Load Hold  
Load Pulsewidth  
tCS  
tAS  
tAH  
tDS  
tDH  
45  
30  
0
30  
20  
20  
10  
30  
40  
35  
15  
0
15  
10  
20  
10  
30  
30  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
tLS  
tLH  
tLDW  
tRSW  
Reset Pulsewidth  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time6  
SR  
tS  
Data = 000H to 3FFH to 000H  
To ±0.1% of Full Scale  
0.05  
70  
0.05  
60  
V/µs typ  
µs typ  
Shutdown Recovery Time  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
tSDR  
Q
Q
90  
65  
15  
80  
65  
15  
µs typ  
nV/s typ  
nV/s typ  
Code 7FFH to 800H to 7FFH  
VOUT/VREF VREF = 1.5 VDC +1 V p-p,  
Data = 000H, f = 100 kHz  
–63  
–63  
dB typ  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Shutdown Supply Current  
Power Dissipation  
VDD RANGE DNL < ±1 LSB  
2.7/5.5  
125/200  
0.1/1.5  
600  
2.7/5.5  
125/200  
0.1/1.5  
1000  
V min/max  
µA typ/max  
µA typ/max  
µW max  
IDD  
VIL = 0 V, No Load  
SHDN = 0, VIL = 0 V, No Load  
VIL = 0 V, No Load  
VDD = ±5%  
IDD_SD  
PDISS  
PSS  
Power Supply Sensitivity  
0.006  
0.006  
%/% max  
NOTES  
1One LSB = VREF/4096 V for the 10-bit AD7397.  
2The first two codes (000H, 001H) are excluded from the linearity error measurement.  
3These parameters are guaranteed by design and not subject to production testing.  
4Typicals represent average readings measured at +25°C.  
5All input control signals are specified with tR = tF = 2 ns (10% to 90% of +3 V) and timed from a voltage level of +1.6 V.  
6The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD7396/AD7397  
tCSW  
CS  
tAS  
tAH  
1 OF 12  
LATCHES  
B REGISTER  
A/B  
OF THE 2 INPUT  
REGISTERS  
tDS  
tDH  
D0–D11  
DBx  
CS  
TO DAC  
REGISTERS  
tLS  
tLDW  
tLH  
LDA, LDB  
tRSW  
A/B  
RS  
RS  
tS  
tS  
1 LSB  
ERROR BAND  
V
OUT  
Figure 2. Timing Diagram  
Figure 3. Digital Control Logic  
Table I. Control Logic Truth  
CS  
A/B  
LDA  
LDB  
RS  
SHDN  
Input Register  
DAC Register  
L
L
L
L
H
H
X
H
L
H
L
H
X
X
X
X
H
H
H
L
L
^
H
H
L
H
L
^
H
H
H
H
H
H
L
X
X
X
X
X
X
X
X
Write to B  
Write to A  
Write to B  
Write to A  
Latched  
Latched  
Reset to Zero Scale  
Latched to Zero  
Latched with Previous Data  
Latched with Previous Data  
B Transparent  
A Transparent  
A and B Transparent  
Latched with New Data from Input REG  
Reset to Zero Scale  
Latched to Zero  
X
X
X
X
^
^Denotes positive edge. The SHDN pin has no effect on the digital interface data loading; however, while in the SHDN state (SHDN = 0) the output amplifiers VOUTA  
and VOUTB exhibit an open circuit condition. Note, the LDx inputs are level-sensitive, the respective DAC registers are in a transparent state when LDx = “0.”  
–4–  
REV. 0  
AD7396/AD7397  
ABSOLUTE MAXIMUM RATINGS*  
Maximum Junction Temperature (TJ max) . . . . . . . . .+150°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
AD7397AN, AD7397AR Only . . . . . . . . –40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +8 V  
VREF to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD  
Logic Inputs to GND . . . . . . . . . . . . . . . . . . . . . –0.3 V, +8 V  
V
OUT to GND . . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +2 V  
IOUT Short Circuit to GND . . . . . . . . . . . . . . . . . . . . +50 mA  
Package Power Dissipation . . . . . . . . . . . . . (TJ max – TA)/θJA  
Thermal Resistance θJA  
24-Lead Plastic DIP Package (N-24) . . . . . . . . . . +63°C/W  
24-Lead SOIC Package (R-24) . . . . . . . . . . . . . . . +70°C/W  
24-Lead Thin Shrink Surface Mount (RU-24) . . +143°C/W  
N-24 (Soldering, 10 sec) . . . . . . . . . . . . . . . . . . . . . .+300°C  
R-24 (Vapor Phase, 60 sec) . . . . . . . . . . . . . . . . . . . .+215°C  
RU-24 (Infrared, 15 sec) . . . . . . . . . . . . . . . . . . . . . .+224°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
ORDERING GUIDE  
Res  
(LSB)  
Temperature  
Ranges  
Package  
Descriptions  
Package  
Options  
Model  
AD7396AN  
AD7396AR  
12  
12  
–40°C to +85°C  
–40°C to +85°C  
24-Lead P-DIP  
24-Lead SOIC  
N-24  
R-24  
AD7397AN  
AD7397AR  
AD7397ARU  
10  
10  
10  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +85°C  
24-Lead P-DIP  
24-Lead SOIC  
24-Lead Thin Shrink Small Outline Package (TSSOP)  
N-24  
R-24  
RU-24  
The AD7396/AD7397 contains 1365 transistors. The die size measures 89 mil × 106 mil = 9434 sq mil.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7396/AD7397 features proprietary ESD protection circuitry, permanent dam-  
age may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
AD7396/AD7397  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Name  
1
2
3
4
VOUTA  
AGND  
DGND  
LDA  
DAC A Voltage Output.  
Analog Ground.  
Digital Ground.  
Load DAC A Register Strobe. Transfers input register data to the DAC A register. Active  
low inputs, Level sensitive latch. May be connected together with LDB to double-buffer load  
both DAC registers simultaneously.  
5
SHDN  
Power Shutdown Active Low Input. DAC register contents are saved as long as power stays  
on the VDD pin.  
6
RS  
Resets Input and DAC Register to Zero Condition. Asynchronous active low input.  
Twelve Parallel Input Data Bits. D11 = MSB Pin 18, D0 = LSB Pin 7, AD7396.  
No Connect Pins 7 and 8 On the AD7397 Only.  
Ten Parallel Input Data Bits. D9 = MSB Pin 18, D0 = LSB Pin 9, AD7397 Only.  
Chip Select Latch Enable, Active Low.  
7–18  
7, 8  
9–18  
19  
D0–D11  
NC  
D0–D9  
CS  
20  
A/B  
DAC Input Register Address Select DACA = 1 or DACB = 0.  
21  
LDB  
Load DAC B Register Strobe. Transfers input register data to the DAC B register. Active low  
inputs, Level sensitive latch. May be connected together with LDA to double-buffer load  
both DAC registers simultaneously.  
22  
23  
24  
VDD  
VREF  
VOUTB  
Positive Power Supply Input. Specified range of operation +2.7 V to +5.5 V.  
DAC Reference Input Pin. Establishes DAC full-scale voltage.  
DAC B Voltage Output.  
PIN CONFIGURATIONS  
V
1
2
24  
23  
22  
21  
20  
19  
18  
17  
V
V
V
V
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
V
V
OUTA  
OUTB  
REF  
DD  
OUTA  
OUTB  
REF  
DD  
AGND  
DGND  
AGND  
DGND  
3
3
4
4
LDA  
SHDN  
RS  
LDB  
A/B  
CS  
LDA  
SHDN  
RS  
LDB  
A/B  
CS  
5
5
AD7397  
TOP VIEW  
(Not to Scale)  
AD7396  
TOP VIEW  
(Not to Scale)  
6
6
7
7
NC  
D9  
D0  
D11  
D10  
D9  
8
8
NC  
D8  
D1  
D0  
9
16 D7  
9
D2  
10  
11  
15  
14  
10  
11  
12  
D1  
D6  
D5  
D3  
D8  
D2  
D4  
D7  
D3 12  
13 D4  
D5  
D6  
NC = NO CONNECT  
–6–  
REV. 0  
Typical Performance Characteristics–AD7396/AD7397  
30  
1.0  
1.5  
1.0  
V
V
= +3V  
SS = 200 UNITS  
DD  
AD7396  
V
V
= +2.7V  
AD7397  
DD  
AD7397  
0.8  
T
= +25؇C  
= +2.5V  
A
REF  
= +2.5V  
REF  
T
= –55؇C  
V
V
= +2.7V  
A
DD  
0.6  
0.4  
0.2  
= +2.5V  
REF  
20  
0.5  
0.0  
T
= –55؇C  
A
0.0  
–0.2  
–0.4  
–0.6  
–0.5  
–1.0  
10  
0
T
= +25؇C, +85؇C  
A
T
A
= +25؇C, +85؇C  
–0.8  
–1.0  
–1.5  
0
0
–5  
5
10  
128 256 384 512 640 768 896 1024  
CODE – Decimal  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE – Decimal  
TOTAL UNADJUSTED ERROR  
HISTOGRAM – LSB  
Figure 4. AD7396 INL vs. Code and  
Temperature  
Figure 5. AD7397 INL vs. Code and  
Temperature  
Figure 6. AD7397 TUE Histogram  
100  
1.0  
60  
SS = 200 UNITS  
AD7396  
AD7397  
SS = 200 UNITS  
V
V
= +2.7V  
DD  
AD7397  
V
V
= +2.7V  
0.8  
DD  
V
V
T
= +2.7V  
DD  
= +2.5V  
REF  
= +2.5V  
REF  
= +2.5V  
REF  
80  
60  
40  
20  
0
0.6  
0.4  
T
= –40؇C TO +85؇C  
A
= –40؇C TO +85؇C  
A
40  
20  
0
0.2  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
T
= +25؇C, +85؇C, –55؇C  
SUPERIMPOSED  
A
–1.0  
0
–70  
–60  
–50  
–40  
–30  
128 256 384 512 640 768 896 1024  
CODE – Decimal  
–55  
–50  
–45  
–40  
–35  
–30  
FULL-SCALE TEMPCO – ppm/؇C  
FULL-SCALE OUTPUT TEMPCO  
HISTOGRAM – ppm/؇C  
Figure 7. AD7397 DNL vs. Code and  
Temperature  
Figure 8. AD7396 Full-Scale Tempco  
Histogram  
Figure 9. AD7397 Full-Scale Tempco  
Histogram  
1.5  
1.0  
0.5  
0
40  
20  
40  
20  
0
10  
V
V
= +5V  
DD  
AD7396  
= +2.5V  
REF  
T
= +25؇C  
A
8
6
4
2
0
0
V
= +5V  
DD  
= +25؇C  
T
A
–0.5  
–1.0  
–1.5  
CODE = HALF SCALE  
–20  
–40  
–20  
–40  
V
= +5V  
= +25؇C  
DD  
T
A
FSE (LSB) = FSE (V) 
؋
 4096/V  
(V)  
REF  
0
1
2
3
4
5
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
1
10  
100  
1k  
10k  
100k  
V – V  
REF  
V
– Volts  
FREQUENCY – Hz  
REF  
Figure 10. INL Error vs. Reference  
Voltage  
Figure 11. Full-Scale Error vs. Refer-  
ence Voltage  
Figure 12. Output Noise Voltage  
Density vs. Frequency  
REV. 0  
–7–  
AD7396/AD7397  
0
1.262  
1.257  
145  
140  
V
V
T
= +5V  
V
T
= +3V  
= +25؇C  
DD  
DD  
–5  
= +2.5V  
REF  
A
= +25 C  
V
= 0V TO +3V  
–10  
A
IN  
135  
130  
CODE = 800 TO 7FF  
H
5mV/DIV  
V
= +3V  
H
DD  
CODE = FULL SCALE  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
V
= +3V TO 0V  
IN  
1.252  
1.247  
1.242  
1.237  
125  
120  
115  
110  
105  
100  
100  
1k  
10k  
100k  
1M  
0
0.5  
1
1.5  
2
2.5  
3
TIME – 2s/DIV  
LOGIC INPUT – V (Volts)  
FREQUENCY – Hz  
IN  
Figure 13. Reference Multiplying  
Gain vs. Frequency  
Figure 14. Midscale Transition  
Performance  
Figure 15. IDD vs. Logic Input Voltage  
35  
45  
5.0  
4.5  
T
= +25؇C  
V
= +2.5V  
REF  
= +25؇C  
V
T
= +2.5V  
= +25؇C  
A
REF  
40  
35  
30  
25  
20  
T
A
A
30  
25  
20  
15  
10  
V
= +5V  
DD  
4.0  
3.5  
V
= +5V  
DD  
V
= +3V  
DD  
V
FROM  
LOGIC  
LOW TO HIGH  
3.0  
2.5  
V
= +3V  
DD  
15  
10  
5
2.0  
1.5  
1.0  
V
FROM  
LOGIC  
5
0
HIGH TO LOW  
0
0
2
3
4
5
6
7
–120 –100 –80  
–60  
–40  
–20  
0
2
4
6
8
10  
12  
V
– V  
V  
– mV  
V  
– mV  
DD  
OUT  
OUT  
Figure 16. Logic Threshold Voltage  
vs. VDD  
Figure 17. IOUT Source Current vs.  
VOUT  
Figure 18. IOUT Sink Current vs.  
VOUT  
1000  
170  
200  
V
V
= +2.5V  
= +5V  
V
= +2.5V  
T
= +25؇C  
REF  
REF  
A
180  
160  
140  
120  
100  
80  
160  
150  
140  
130  
120  
DD  
V
= +3.6V, V  
= +2.4V  
SHDN = 0V  
DD  
LOGIC  
V
= +5V  
100  
10  
1
DD  
V
= +5V, V  
= +5V  
DD  
LOGIC  
V
= +3V  
DD  
110  
100  
90  
60  
V
= +3V, V  
= +3V  
DD  
LOGIC  
40  
20  
80  
0
0
–40 –20  
20 40 60 80 100 120 140  
–40 –20  
0
20 40 60 80 100 120 140  
0
1
2
3
4
5
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
V
– Volts  
REF  
Figure 21. Shutdown Current vs.  
Temperature  
Figure 19. IDD vs. Temperature  
Figure 20. IDD vs. Reference Voltage  
–8–  
REV. 0  
AD7396/AD7397  
1400  
1200  
1000  
800  
600  
400  
200  
0
80  
70  
60  
50  
1.0  
0.9  
AD7396  
AD7396  
V
= +5V, ؎5%  
DD  
SAMPLE SIZE = 77  
= +2.5V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
A: V = +2.7V, CODE = 555  
DD  
V
H
REF  
B: V = +2.7V, CODE = 3FF  
DD  
H
H
C: V = +5.5V, CODE = 155  
DD  
D: V = +5.5V, CODE = 3FF  
DD  
H
40  
30  
20  
10  
0
V
= +3V, ؎5%  
CODE = FFF  
DD  
H
D
C
CODE = 000  
H
A
B
0
100  
200  
300  
400  
500  
600  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
HOURS OF OPERATION AT +150؇C  
DIGITAL INPUT FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 22. IDD vs. Digital Input  
Frequency  
Figure 23. PSRR vs. Frequency  
Figure 24. Long-Term Drift Acceler-  
ated by Burn-In  
V
OUT = VREF × D/2N  
(1)  
OPERATION  
The AD7396 and AD7397 are a set of pin compatible, 12-bit  
and 10-bit digital-to-analog converters. These single-supply  
operation devices consume less than 200 µA of current while  
operating from power supplies in the +2.7 V to +5.5 V range,  
making them ideal for battery operated applications. They  
contain a voltage-switched, 12-bit/10-bit, digital-to-analog  
converter, rail-to-rail output op amps, and a parallel-input  
DAC register. The external reference input has constant  
2.5 Minput resistance independent of the digital code  
setting of the DAC. In addition, the reference input can be tied  
to the same supply voltage as VDD resulting in a maximum  
output voltage span of 0 to VDD. The parallel data interface  
consists of 12 data bits, DB0–DB11, for the AD7396, 10 data  
bits, DB0–DB9, for the AD7397, and a CS write strobe. An RS  
pin is available to reset the DAC register to zero scale. This  
function is useful for power-on reset or system failure recovery  
to a known state. Additional power savings are accomplished by  
activating the SHDN pin resulting in a 1.5 µA maximum con-  
sumption sleep mode. As long as the supply voltage, remains  
data will be retained in the DAC and input register to supply  
the DAC output when the part is taken out of shutdown.  
where D is the decimal data word loaded into the DAC register,  
and N is the number of bits of DAC resolution. In the case of  
the 10-bit AD7397 using a 2.5 V reference, Equation 1 simpli-  
fies to:  
V
OUT = 2.5 × D/1024  
(2)  
Using Equation 2, the nominal midscale voltage at VOUT is  
1.25 V for D = 512; full-scale voltage is 2.497 V. The LSB step  
size is = 2.5 × 1/1024 = 0.0024 V.  
For the 12-bit AD7396 operating from a 5.0 V reference equa-  
tion [1] becomes:  
V
OUT = 5.0 × D/4096  
(3)  
Using Equation 3, the AD7396 provides a nominal midscale  
voltage of 2.50 V for D = 2048, and a full-scale output of  
4.998 V. The LSB step size is = 5.0 × 1/4096 = 0.0012 V.  
AMPLIFIER SECTION  
The internal DAC’s output is buffered by a low power con-  
sumption precision amplifier. The op amp has a 60 µs typical  
settling time to 0.1% of full scale. There are slight differences in  
settling time for negative slewing signals versus positive. Also,  
negative transition settling time to within the last 6 LSBs of zero  
volts has an extended settling time. The rail-to-rail output stage  
of this amplifier has been designed to provide precision perfor-  
mance while operating near either power supply. Figure 26  
shows an equivalent output schematic of the rail-to-rail-ampli-  
fier with its N-channel pull-down FETs that will pull an output  
load directly to GND. The output sourcing current is provided  
by a P-channel pull-up device that can source current to GND  
terminated loads.  
V
V
DD  
AD7396  
12  
DACA  
REGISTER  
12-BIT  
DACA  
LDA  
OUTA  
CS  
INPUTA  
REGISTER  
A/B  
12  
1
V
DATA  
REF  
INPUTB  
REGISTER  
V
12  
DD  
DACB  
REGISTER  
12-BIT  
DACB  
LDB  
V
OUTB  
AGND  
P-ch  
DGND  
RS  
SHDN  
V
OUT  
Figure 25. Functional Block Diagram  
N-ch  
D/A CONVERTER SECTION  
The voltage switched R-2R DAC generates an output voltage  
dependent on the external reference voltage connected to the  
REF pin according to the following equation:  
AGND  
Figure 26. Equivalent Analog Output Circuit  
REV. 0  
–9–  
AD7396/AD7397  
+2.7V TO +5.5V  
The rail-to-rail output stage provides ±1 mA of output current.  
The N-channel output pull-down MOSFET shown in Figure 26  
has a 35 ON resistance, which sets the sink current capability  
near ground. In addition to resistive load driving capability, the  
amplifier has also been carefully designed and characterized for  
up to 100 pF capacitive load driving capability.  
+
C
*
0.1F  
10F  
REF  
V
DD  
CS  
AD7396  
OR  
AD7397  
A/B  
V
V
OUTA  
LDA  
LDB  
OUTB  
DATA  
REFERENCE INPUT  
DGND AGND  
The reference input terminal has a constant input resistance  
independent of digital code, which results in reduced glitches on  
the external reference voltage source. The high 2.5 Minput  
resistance minimizes power dissipation within the AD7396/  
AD7397 D/A converters. The VREF input accepts input voltages  
ranging from ground to the positive-supply voltage VDD. One of  
the simplest applications, which saves an external reference voltage  
source, is connection of the VREF terminal to the positive VDD  
supply. This connection results in a rail-to-rail voltage output  
span maximizing the programmed range. The reference input  
will accept AC signals as long as they are kept within the supply  
voltage range, 0 < VREF IN < VDD. The reference bandwidth  
and integral nonlinearity error performance are plotted in the  
Typical Performance Characteristics section, see Figures 10 and  
13. The ratiometric reference feature makes the AD7396/AD7397  
an ideal companion to ratiometric analog-to-digital converters  
such as the AD7896.  
*
OPTIONAL EXTERNAL  
REFERENCE BYPASS  
Figure 27. Recommended Supply Bypassing  
INPUT LOGIC LEVELS  
All digital inputs are protected with a Zener-type ESD protec-  
tion structure (Figure 28) that allows logic input voltages to  
exceed the VDD supply voltage. This feature can be useful if the  
user is driving one or more of the digital inputs with a 5 V CMOS  
logic input-voltage level while operating the AD7396/AD7397  
on a +3 V power supply. If this mode of interface is used, make  
sure that the VOL of the 5 V CMOS meets the VIL input require-  
ment of the AD7396/AD7397 operating at 3 V. See Figure 16  
for a graph for digital logic input threshold versus operating VDD  
supply voltage.  
V
DD  
LOGIC  
IN  
POWER SUPPLY  
The very low power consumption of the AD7396/AD7397 is a  
direct result of a circuit design optimizing the use of a CBCMOS  
process. By using the low power characteristics of CMOS for  
the logic, and the low noise, tight matching of the complemen-  
tary bipolar transistors, excellent analog accuracy is achieved.  
One advantage of the rail-to-rail output amplifiers used in the  
AD7396/AD7397 is the wide range of usable supply voltage.  
The part is fully specified and tested for operation from +2.7 V  
to +5.5 V.  
GND  
Figure 28. Equivalent Digital Input ESD Protection  
In order to minimize power dissipation from input-logic levels  
that are near the VIH and VIL logic input voltage specifications, a  
Schmitt trigger design was used that minimizes the input-buffer  
current consumption compared to traditional CMOS input  
stages. Figure 15 shows a plot of incremental input voltage  
versus supply current showing that negligible current consump-  
tion takes place when logic levels are in their quiescent state.  
The normal crossover current still occurs during logic transi-  
tions. A secondary advantage of this Schmitt trigger is the pre-  
vention of false triggers that would occur with slow moving logic  
transitions when a standard CMOS logic interface or opto-  
isolators are used. The logic inputs DB11–DB0, A/B CS, RS,  
SHDN all contain Schmitt trigger circuits.  
POWER SUPPLY BYPASSING AND GROUNDING  
Precision analog products such as the AD7396/AD7397 require  
a well filtered power source. Since the AD7396/AD7397 oper-  
ates from a single +3 V to +5 V supply, it seems convenient to  
simply tap into the digital logic power supply. Unfortunately,  
the logic supply is often a switch-mode design, which generates  
noise in the 20 kHz to 1 MHz range. In addition, fast logic gates  
can generate glitches, hundred of millivolts in amplitude, due to  
wiring resistance and inductance. The power supply noise gen-  
erated thereby means that special care must be taken to assure  
that the inherent precision of the DAC is maintained. Good  
engineering judgment should be exercised when addressing the  
power supply grounding and bypassing of the 12-bit AD7396.  
DIGITAL INTERFACE  
The AD7396/AD7397 has a double-buffered, parallel-data  
input. A functional block diagram of the digital section is shown  
in Figure 25, while Table I contains the truth table for the logic  
control inputs. The chip select (CS) and A/B pins control load-  
ing of data from the data inputs on pins DB11–DB0 into the  
internal Input Register. The CS active low input places data  
into the decoded A/B input register. When CS returns to logic  
high within the data setup-and-hold time specifications the new  
value of data in the input register will be latched. See Truth  
Table for complete set of conditions. New data can only be  
transferred to the corresponding DAC register when its LDx pin  
is strobed active low. The LDx inputs are level-sensitive (DAC  
Registers are transparent latches) and can be tied active low  
The AD7396 should be powered directly from the system power  
supply. Whether or not a separate power supply trace is avail-  
able generous supply bypassing will reduce supply line-induced  
errors. Local supply bypassing consisting of a 10 µF tantalum  
electrolytic in parallel with a 0.1 µF ceramic capacitor is recom-  
mended in all applications (Figure 27).  
–10–  
REV. 0  
AD7396/AD7397  
allowing any new Input Register data updates to directly control  
the DAC output voltages for single-buffered applications. For  
doubled-buffered applications where both DAC outputs, VOUTA  
and VOUTB, need to be changed simultaneously to a new value,  
the two inputs, LDA and LDB, can be tied together and pulsed  
active low in a synchronous manner.  
Table II. Unipolar Code Table  
Hexadecimal  
Number  
Decimal  
Output  
Voltage (V)  
(VREF = 2.5 V)  
Number  
In DAC Register  
In DAC Register  
FFF  
801  
800  
7FF  
000  
4095  
2049  
2048  
2047  
0
2.4994  
1.2506  
1.2500  
1.2494  
0
RESET (RS) PIN  
Forcing the asynchronous RS pin low will set the Input and  
DAC registers to all zeros and the DAC output voltage will be  
zero volts. The reset function is useful for setting the DAC  
outputs to zero at power-up or after a power supply interrup-  
tion. Test systems and motor controllers are two of many appli-  
cations that benefit from powering up to a known state. The  
external reset pulse can be generated by the microprocessor’s  
power-on RESET signal, from the microprocessor, or by an  
external resistor and capacitor. RESET has a Schmitt trigger  
input which results in a clean reset function when using external  
resistor/capacitor generated pulses. See Table I, Control-Logic  
Truth.  
The circuit can be configured with an external reference plus  
power supply, or powered from a single dedicated regulator or  
reference, depending on the application performance requirements.  
BIPOLAR OUTPUT OPERATION  
Although the AD7397 has been designed for single supply op-  
eration, the output can easily be configured for bipolar opera-  
tion. A typical circuit is shown in Figure 30. This circuit uses a  
clean regulated +5 V supply for power, which also provides  
the circuit’s reference voltage. Since the AD7397 output span  
swings from ground to very near +5 V, it is necessary to choose  
an external amplifier with a common-mode input voltage range  
that extends to its positive supply rail. The micropower con-  
sumption OP196 has been designed just for this purpose and  
results in only 50 µA of maximum current consumption. Con-  
nection of the equal-value 470 kresistors results in a differen-  
tial amplifier mode of operation with a voltage gain of two,  
which produces a circuit output span of ten volts, that is,  
–5 V to +5 V. As the AD7397 DAC is programmed from zero-  
code 000H to midscale 200H to full-scale 3FFH, the circuit out-  
put voltage VO is set at –5 V, 0 V and +5 V (–1 LSB). The  
output voltage VO is coded in offset binary according to  
Equation 3.  
POWER SHUTDOWN (SHDN)  
Maximum power savings can be achieved by using the power  
shutdown control function. This hardware-activated feature is  
controlled by the active low input SHDN pin. This pin has a  
Schmitt trigger input which helps to desensitize it to slowly  
changing inputs. By placing a logic low on this pin the internal  
consumption of the AD7397 or AD7397 is reduced to nanoamp  
levels, guaranteed to 1.5 µA maximum over the operating tem-  
perature range. If power is present at all times on the VDD pin  
while in the shutdown mode, the internal DAC register will  
retain the last programmed data value. This data will be used  
when the part is returned to the normal active state by placing  
the DAC back to its programmed voltage setting. Shutdown  
recovery time measures 80 µs. In the shutdown state the DAC  
output amplifier exhibits an open-circuit high-resistance state.  
Any load connected will stabilize at its termination voltage. If  
the power shutdown feature is not needed then the user should  
tie the SHDN pin to the VDD voltage thereby disabling this  
function.  
V
OUT = [(D/512)–1] × 5  
(4)  
where D is the decimal code loaded in the AD7397 DAC regis-  
ter. Note that the LSB step size is 10/1024 = 10 mV. This  
circuit has been optimized for micropower consumption includ-  
ing the 470 kgain setting resistors, which should have low  
temperature coefficients to maintain accuracy and matching  
(preferably the same resistor material, such as metal film). If  
better stability is required, the power supply could be substi-  
tuted with a precision reference voltage such as the low dropout  
REF195, which can easily supply the circuit’s 262 µA of current  
and still provide additional power for the load connected to VO.  
The micropower REF195 is guaranteed to source 10 mA output  
drive current, but consumes only 50 µA internally. If higher  
resolution is required, the AD7396 can be used with the addi-  
tion of two more bits of data inserted into the software coding,  
which would result in a 2.5 mV LSB step size. Table III shows  
examples of nominal output voltages, VO, provided by the bipo-  
lar operation circuit application.  
UNIPOLAR OUTPUT OPERATION  
This is the basic mode of operation for the AD7396. As shown  
in Figure 29, the AD7396 has been designed to drive loads as  
low as 5 kin parallel with 100 pF. The code table for this  
operation is shown in Table II.  
+2.7V TO +5.5V  
R
0.01F  
0.1F  
10F  
V
DD  
AD7396  
V
REF  
V
DAC A  
OUTA  
EXT  
REF  
75k⍀  
75k⍀  
100pF  
100pF  
V
DAC B  
AGND  
OUTB  
16/14  
DIGITAL  
DGND  
C  
DIGITAL INTERFACE  
CIRCUITRY OMITTED  
FOR CLARITY.  
Figure 29. Unipolar Output Operation  
REV. 0  
–11–  
AD7396/AD7397  
I
< 262A  
SY  
Table III. Bipolar Code Table  
+5V  
470k⍀  
200A  
470k⍀  
Hexadecimal Number Decimal Number Analog Output  
In DAC Register  
In DAC Register  
Voltage (V)  
< 50A  
+5V  
V
REF  
V
DD  
BIPOLAR  
OUTPUT  
SWING  
3FF  
201  
200  
1FF  
000  
1023  
513  
512  
511  
0
4.9902  
0.0097  
0.0000  
–0.0097  
–5.0000  
O
OP196  
V
OUTA  
AD7397  
C
–5V  
GND  
–5V  
ONLY ONE CHANNEL SHOWN.  
DIGITAL INTERFACE CIRCUITRY  
OMITTED FOR CLARITY.  
Figure 30. Bipolar Output Operation  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
24-Lead SOIC Package  
(R-24)  
24-Lead Narrow Body Plastic DIP Package  
(N-24)  
1.275 (32.30)  
1.125 (28.60)  
0.6141 (15.60)  
0.5985 (15.20)  
24  
1
13  
12  
0.280 (7.11)  
0.240 (6.10)  
24  
1
13  
12  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.05)  
0.125 (3.18)  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.015 (0.381)  
0.008 (0.204)  
0.0291 (0.74)  
0.0098 (0.25)  
؋
 45؇  
0.022 (0.558) 0.100 (2.54)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
SEATING  
PLANE  
BSC  
0.0500 (1.27)  
0.0157 (0.40)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
24-Lead Thin Surface Mount TSSOP Package  
(RU-24)  
0.311 (7.90)  
0.303 (7.70)  
24  
13  
12  
1
0.006 (0.15)  
PIN 1  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
BSC  
0.0075 (0.19)  
–12–  
REV. 0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY