AD7393_15 [ADI]

3 V, Parallel Input Micropower 10-/12-Bit DACs;
AD7393_15
型号: AD7393_15
厂家: ADI    ADI
描述:

3 V, Parallel Input Micropower 10-/12-Bit DACs

文件: 总20页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 V, Parallel Input  
Micropower 10-/12-Bit DACs  
AD7392/AD7393  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Micropower: 100 μA  
AD7392  
V
V
DD  
0.1 μA typical power shutdown  
Single-supply 2.7 V to 5.5 V operation  
AD7392: 12-bit resolution  
AD7393: 10-bit resolution  
0.9 LSB differential nonlinearity error  
12-BIT  
DAC  
V
REF  
OUT  
SHDN  
AGND  
12  
DAC REGISTER  
12  
DGND CS  
D0 TO D11  
RS  
APPLICATIONS  
Figure 1.  
Automotive 0.5 V to 4.5 V output span voltage  
Portable communications  
Digitally controlled calibration  
PC peripherals  
GENERAL DESCRIPTION  
The AD7392/AD7393 comprise a set of pin-compatible  
10-/12-bit voltage output, digital-to-analog converters. The  
parts are designed to operate from a single 3 V supply. Built  
using a CBCMOS process, these monolithic DACs offer low  
cost and ease of use in single-supply 3 V systems. Operation is  
guaranteed over the supply voltage range of 2.7 V to 5.5 V,  
making this device ideal for battery-operated applications.  
Both parts are offered with similar pinouts, which allows users  
to select the amount of resolution appropriate for their applica-  
tions without changing the circuit card.  
The AD7392/AD7393 are specified for operation over the  
extended industrial temperature range of −40°C to +85°C.  
The AD7393AR is specified for the automotive temperature  
range of −40°C to +125°C. The AD7392/AD7393 are available  
in 20-lead PDIP and 20-lead SOIC packages.  
The full-scale voltage output is determined by the external ref-  
erence input voltage applied. The rail-to-rail REFIN to DACOUT  
allows a full-scale voltage equal to the positive supply VDD or  
any value in between. The voltage outputs are capable of sourc-  
ing 5 mA.  
For serial data input, 8-lead packaged versions, see the AD7390  
and AD7391.  
A data latch load of 12 bits with a 45 ns write time eliminates  
wait states when interfacing to the fastest processors. Addition-  
RS  
ally, an asynchronous  
input sets the output to a zero scale at  
power-on or upon user demand.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1996–2007 Analog Devices, Inc. All rights reserved.  
 
 
 
AD7392/AD7393  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Digital-to-Analog Converters................................................... 12  
Amplifier Section ....................................................................... 12  
Reference Input........................................................................... 12  
Power Supply............................................................................... 13  
Input Logic Levels ...................................................................... 13  
Digital Interface.......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Timing Diagram ........................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 12  
RS  
Reset Pin ( ) ............................................................................. 14  
SHDN  
Power Shutdown (  
)......................................................... 14  
Unipolar Output Operation...................................................... 14  
Bipolar Output Operation......................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 17  
REVISION HISTORY  
8/07—Rev. B to Rev. C  
Changes to Specifications Section.................................................. 3  
Changes to Table 3............................................................................ 6  
Changes to Theory of Operation Section.................................... 12  
Changes to Figure 29...................................................................... 13  
Changes to Figure 32...................................................................... 14  
Changes to Figure 33...................................................................... 15  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 17  
6/04—Changed from Rev. A to Rev. B  
Removed TSSOP.................................................................Universal  
Changes to Ordering Guide .......................................................... 17  
3/99—Changed from Rev. 0 to Rev. A  
11/96—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
 
AD7392/AD7393  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
At VREF = 2.5 V, 40°C < TA < +85°C, unless otherwise noted.  
Table 1. AD7392  
Parameter  
Symbol  
Conditions  
3 V ꢀ0%  
5 V ꢀ0%  
Unit  
STATIC PERFORMANCE  
Resolution1  
N
INL  
12  
1.8  
3
0.9  
1
4.0  
8.0  
8
20  
28  
12  
1.8  
3
0.9  
1
4.0  
8.0  
8
20  
28  
Bits  
Relative Accuracy2  
TA = +25°C  
TA = −40°C, +85°C  
LSB max  
LSB max  
LSB max  
LSB max  
mV max  
mV max  
mV max  
mV max  
ppm/°C typ  
Differential Nonlinearity2  
Zero-Scale Error  
DNL  
VZSE  
TA = +25°C, monotonic  
Monotonic  
Data = 0x000, TA = +25°C, +85°C  
Data = 0x000, TA = −40°C  
TA = +25°C, +85°C, data = 0xFFF  
TA = −40°C, data = 0xFFF  
Full-Scale Voltage Error  
VFSE  
Full-Scale Temperature Coefficient3  
REFERENCE INPUT  
VREF Range  
TCVFS  
VREF  
RREF  
CREF  
0/VDD  
2.5  
5
0/VDD  
2.5  
5
V min/max  
MΩ typ4  
pF typ  
Input Resistance  
Input Capacitance3  
ANALOG OUTPUT  
Current (Source)  
IOUT  
IOUT  
CL  
Data = 0x800, ∆ VOUT = 5 LSB  
Data = 0x800, ∆ VOUT = 5 LSB  
No oscillation  
1
3
100  
1
3
100  
mA typ  
mA typ  
pF typ  
Output Current (Sink)  
Capacitive Load3  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance3  
INTERFACE TIMING3, 5  
Chip Select Write Width  
Data Setup  
VIL  
VIH  
IIL  
0.5  
VDD − 0.6  
10  
0.8  
VDD − 0.6  
10  
V max  
V min  
μA max  
pF max  
CIL  
10  
10  
tCS  
tDS  
tDH  
tRS  
45  
30  
20  
40  
45  
15  
5
ns min  
ns min  
ns min  
ns min  
Data Hold  
Reset Pulse Width  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time6  
30  
SR  
tS  
Data = 0x000 to 0xFFF to 0x000  
To 0.1% of full scale  
0.05  
70  
0.05  
60  
V/μs typ  
μs typ  
Shutdown Recovery Time  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
tSDR  
80  
65  
15  
−63  
μs typ  
Code 0x7FF to Code 0x800 to Code 0x7FF  
65  
15  
−63  
nV/s typ  
nV/s typ  
dB typ  
VOUT/VREF  
VREF = 1.5 V dc + 1 V p-p, data = 0x000,  
f = 100 kHz  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Shutdown Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
IDD-SD  
PDISS  
DNL < 1 LSB  
VIL = 0 V, no load  
2.7/5.5  
55/100  
0.1/1.5  
300  
2.7/5.5  
55/100  
0.1/1.5  
500  
V min/max  
μA typ/max  
μA typ/max  
μW max  
SHDN  
= 0, VIL = 0 V, no load  
VIL = 0 V, no load  
Δ VDD 5%  
Power Supply Sensitivity  
PSS  
=
0.006  
0.006  
%/% max  
1 One LSB = VREF/4096 V for the 12-bit AD7392.  
2 The first two codes (0x000, 0x001) are excluded from the linearity error measurement.  
3 These parameters are guaranteed by design and not subject to production testing.  
4 Typicals represent average readings measured at +25°C.  
5 All input control signals are specified with tR = tF = 2 ns (10% to 90% of 13 V) and timed from a voltage level of 1.6 V.  
6 The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
Rev. C | Page 3 of 20  
 
AD7392/AD7393  
At VREF = 2.5 V, 40°C < TA < +85°C, unless otherwise noted.  
Table 2. AD7393  
Parameter  
Symbol Conditions  
3 V ꢀ0% 5 V ꢀ0% Unit  
STATIC PERFORMANCE  
Resolution1  
Relative Accuracy2  
N
INL  
10  
1.ꢀ5  
10  
1.ꢀ5  
Bits  
TA = +25°C  
LSB max  
LSB max  
LSB max  
mV max  
mV max  
mV max  
ppm/°C typ  
TA = −40°C, +85°C, +125°C  
Monotonic  
Data = 0x000  
TA = +25°C, +85°C, +125°C, data = 0x3FF  
TA = −40°C, data = 0x3FF  
2.0  
0.8  
9.0  
32  
42  
28  
2.0  
0.8  
9.0  
32  
42  
28  
Differential Nonlinearity2  
Zero-Scale Error  
DNL  
VZSE  
VFSE  
Full-Scale Voltage Error  
Full-Scale Temperature Coefficient3  
REFERENCE INPUT  
VREF IN Range  
TCVFS  
VREF  
RREF  
CREF  
0/VDD  
2.5  
5
0/VDD  
2.5  
5
V min/max  
MΩ typ4  
pF typ  
Input Resistance  
Input Capacitance3  
ANALOG OUTPUT  
Output Current (Source)  
Output Current (Sink)  
Capacitive Load3  
IOUT  
IOUT  
CL  
Data = 0x200, Δ VOUT = 5 LSB  
Data = 0x200, Δ VOUT = 5 LSB  
No oscillation  
1
3
1
3
mA typ  
mA typ  
pF typ  
100  
100  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance3  
INTERFACE TIMING3, 5  
Chip Select Write Width  
Data Setup  
VIL  
VIH  
IIL  
0.5  
VDD − 0.6  
10  
0.8  
VDD − 0.6  
10  
V max  
V min  
μA max  
pF max  
CIL  
10  
10  
tCS  
tDS  
tDH  
tRS  
45  
30  
20  
40  
45  
15  
5
ns  
ns  
ns  
ns  
Data Hold  
Reset Pulse Width  
AC CHARACTERISTICS  
Output Slew Rate  
30  
SR  
tS  
Data = 0x000 to 0x3FF to 0x000  
To 0.1% of full scale  
0.05  
ꢀ0  
0.05  
60  
V/μs typ  
μs typ  
Settling Time6  
Shutdown Recovery Time  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
tSDR  
80  
65  
15  
−63  
μs typ  
Code 0xꢀFF to Code 0x800 to Code 0xꢀFF  
65  
15  
−63  
nV/s typ  
nV/s typ  
dB typ  
VOUT/VREF VREF = 1.5 V dc 11 V p-p, data = 0x000, f = 100 kHz  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
VDD RANGE  
IDD  
DNL < 1 LSB  
VIL = 0 V, no load, TA = +25°C  
VIL = 0 V, no load  
2.ꢀ/5.5  
55  
100  
2.ꢀ/5.5  
55  
100  
V min/max  
μA typ  
μA max  
Shutdown Supply Current  
Power Dissipation  
Power Supply Sensitivity  
IDD-SD  
PDISS  
PSS  
SHDN  
0.1/1.5  
300  
0.006  
0.1/1.5  
500  
0.006  
μA typ/max  
μW max  
%/% max  
= 0, VIL = 0 V, no load  
VIL = 0 V, no load  
Δ VDD 5%  
=
1 One LSB = VREF/1024 V for the 10-bit ADꢀ393.  
2 The first two codes (0x000, 0x001) are excluded from the linearity error measurement.  
3 These parameters are guaranteed by design and not subject to production testing.  
4 Typicals represent average readings measured at +25°C.  
5 All input control signals are specified with tR = tF = 2 ns (10% to 90% of 13 V) and timed from a voltage level of 1.6 V.  
6 The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
Rev. C | Page 4 of 20  
AD7392/AD7393  
TIMING DIAGRAM  
1
tCS  
CS  
0
1
tDS  
tDH  
D11 TO D0  
DATA VALID  
0
1
tRS  
RS  
0
FS  
±0.1%FS  
ERROR BAND  
V
OUT  
ZS  
tS  
tS  
Figure 2. Timing Diagram  
Rev. C | Page 5 of 20  
 
AD7392/AD7393  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
VREF to GND  
Logic Inputs to GND  
VOUT to GND  
IOUT Short Circuit to GND  
DGND to AGND  
−0.3 V, +8 V  
−0.3 V, VDD  
−0.3 V, VDD + 0.3 V  
−0.3 V, VDD + 0.3 V  
50 mA  
−0.3 V, +2 V  
Package Power Dissipation  
Thermal Resistance (θJA)  
20-Lead PDIP (N 20)  
20-Lead SOIC (R-20)  
Maximum Junction Temperature (TJ max)  
Operating Temperature Range  
AD7393AR  
Storage Temperature Range  
Lead Temperature  
Reflow Soldering Peak Temperature  
SnPb  
(TJ max − TA)/θJA  
ESD CAUTION  
57°C/W  
60°C/W  
150°C  
−40°C to +85°C  
−40°C to +125°C  
−65°C to +150°C  
240°C  
260°C  
Pb-Free  
Rev. C | Page 6 of 20  
 
 
AD7392/AD7393  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
9
20  
19  
V
V
DD  
REF  
OUT  
SHDN  
CS  
V
1
2
3
4
5
6
7
8
9
20  
19  
V
V
DD  
REF  
OUT  
18 AGND  
17 DGND  
16 D9  
SHDN  
CS  
RS  
D0  
RS  
18 AGND  
17 DGND  
16 D11  
15 D10  
14 D9  
AD7393  
NC  
NC  
D0  
TOP VIEW  
AD7392  
15 D8  
(Not to Scale)  
TOP VIEW  
14 D7  
D1  
(Not to Scale)  
D1  
13 D6  
D2  
D2  
12 D5  
D3  
13 D8  
D3 10  
11 D4  
D4  
12 D7  
D5 10  
11 D6  
NC = NO CONNECT  
Figure 3. AD7392 Pin Configuration  
Figure 4. AD7393 Pin Configuration  
Table 4. AD7392 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
VDD  
SHDN  
Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V.  
Power Shutdown Active Low Input. DAC register contents are saved as long as power stays on the VDD pin. When  
SHDN = 0, CS strobes write new data into the DAC register.  
3
CS  
Chip Select Latch Enable, Active Low.  
Asynchronous Active Low Input. Resets the DAC register to 0.  
Parallel Input Data Bits. D11 is the MSB; D0 is the LSB.  
Digital Ground.  
Analog Ground.  
DAC Voltage Output.  
4
RS  
5 to 16  
17  
18  
D0 to D11  
DGND  
AGND  
VOUT  
19  
20  
VREF  
DAC Reference Input. Establishes the DAC full-scale voltage.  
Table 5. AD7393 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
VDD  
SHDN  
Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V.  
Power Shutdown Active Low Input. DAC register contents are saved as long as power stays on the VDD pin.  
When SHDN = 0, CS strobes write new data into the DAC register.  
3
CS  
Chip Select Latch Enable, Active Low.  
Asynchronous Active Low Input. Resets the DAC register to 0.  
No Connect.  
Parallel Input Data Bits. D9 is the MSB; D0 is the LSB.  
Digital Ground.  
4
RS  
5, 6  
7 to 16  
17  
18  
19  
NC  
D0 to D9  
DGND  
AGND  
VOUT  
Analog Ground.  
DAC Voltage Output.  
20  
VREF  
DAC Reference Input. Establishes the DAC full-scale voltage.  
Rev. C | Page 7 of 20  
 
AD7392/AD7393  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
T
= 2.7V  
= 2.5V  
= 25°C  
AD7392  
AD7393  
DD  
REF  
0.8  
0.6  
SS = 300 UNITS  
V
V
= 2.7V  
A
DD  
= 2.5V  
REF  
T
= 25°C  
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
–10 –3.3 3.3  
10  
16  
23  
30  
36  
43  
50  
CODE (Decimal)  
TOTAL UNADJUSTED ERROR (LSB)  
Figure 5. AD7392 Integral Nonlinearity Error vs. Code  
Figure 8. AD7393 Total Unadjusted Error Histogram  
1.0  
0.8  
30  
24  
18  
12  
6
V
V
= 2.7V  
AD7393  
DD  
AD7393  
= 2.5V  
REF  
SS = 100 UNITS  
T
= 25°C  
A
V
V
= 2.7V  
DD  
0.6  
= 2.5V  
REF  
T
= –40°C TO +85°C  
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0
128  
256  
384  
512  
640  
768  
896  
1024  
–66 –60 –52 –46 –40 –32 –26 –20 –12 –6  
FULL-SCALE TEMPERATURE COEFFICIENT (ppm/°C)  
0
CODE (Decimal)  
Figure 6. AD7393 Integral Nonlinearity Error vs. Code  
Figure 9. AD7393 Full-Scale Output Temperature Coefficient Histogram  
25  
20  
15  
10  
5
16  
AD7392  
AD7392  
SS = 100 UNITS  
V
V
= 5V  
DD  
14  
12  
10  
8
V
V
= 2.7V  
= 2.5V  
DD  
REF  
= 2.5V  
T = 25°C  
REF  
A
T
= 25°C  
A
6
4
2
0
0
5.0  
5.8  
6.6  
7.3  
8.1  
8.9  
9.7 10.5 11.2 12.0  
1
10  
100  
1k  
10k  
100k  
TOTAL UNADJUSTED ERROR (LSB)  
FREQUENCY (Hz)  
Figure 7. AD7392 Total Unadjusted Error Histogram  
Figure 10. Voltage Noise Density vs. Frequency  
Rev. C | Page 8 of 20  
 
AD7392/AD7393  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1000  
800  
600  
400  
200  
0
AD7392  
AD7392  
V
V
T
= 0V TO V TO 0V  
DD  
V
T
= 3V  
LOGIC  
DD  
= 2.5V  
= 25°C  
V
FROM  
REF  
A
LOGIC  
= 25°C  
0V TO 3V  
A
a
a. V = 5.5V, CODE = 0x155  
DD  
b. V = 5.5V, CODE = 0x3FF  
DD  
V
FROM  
b
LOGIC  
c. V = 2.7V, CODE = 0x155  
DD  
3V TO 0V  
d. V = 2.7V, CODE = 0x355  
DD  
c
d
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
1k  
10k  
100k  
CLOCK FREQUENCY (Hz)  
1M  
10M  
V
IN  
Figure 14. Supply Current vs. Clock Frequency  
Figure 11. Supply Current vs. Logic Input Voltage  
60  
50  
40  
30  
20  
10  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
AD7392  
A
V
= 5V ± 5%  
DD  
CODE = 0xFFF  
V
= 2V  
REF  
RS LOGIC VOLTAGE  
VARIED  
V
= 3V ± 5%  
DD  
V
FROM  
LOGIC  
HIGH TO LOW  
V
FROM  
LOGIC  
LOW TO HIGH  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
1
2
3
4
5
6
7
SUPPLY VOLTAGE (V)  
Figure 15. Power Supply Rejection Ratio vs. Frequency  
Figure 12. Logic Threshold vs. Supply Voltage  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
AD7392  
V
V
= 5V  
DD  
SAMPLE SIZE = 300 UNITS  
= 3V  
REF  
CODE = 0x000  
V
= 5V, V  
= 0V  
DD  
LOGIC  
V
= 3.6V, V  
= 2.4V  
DD  
LOGIC  
V
= 3V, V  
= 0V  
DD  
LOGIC  
0
1
2
3
4
5
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
V
(V)  
TEMPERATURE (°C)  
OUT  
Figure 13. Supply Current vs. Temperature  
Figure 16. IOUT at Zero Scale vs. VOUT  
Rev. C | Page 9 of 20  
 
 
AD7392/AD7393  
5
0
2µs  
AD7392  
V
OUT  
–5  
(5mV/DIV)  
V
V
= 5V  
DD  
= 100mV + 2V  
REF  
DC  
–10  
–15  
–20  
–25  
–30  
DATA = 0xFFF  
V
V
f
= 5V  
DD  
CS  
= 2.5V  
REF  
(5V/DIV)  
= 50kHz  
CODE: 0x7F TO 0x80  
CLK  
20mV  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TIME (2µs/DIV)  
Figure 17. Midscale Transition Performance  
Figure 20. Reference Multiplying Bandwidth  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
AD7392  
V
V
= 5V  
DD  
V
= 5V  
5µs  
DD  
= 2.5V  
CODE = 0x768  
T = 25°C  
A
REF  
CS = HIGH  
V
OUT  
(5mV/DIV)  
D0 TO D11  
(5V/DIV)  
5mV  
0
1
2
3
4
5
TIME (5µs/DIV)  
REFERENCE VOLTAGE (V)  
Figure 18. Digital Feedthrough  
Figure 21. Integral Nonlinearity Error vs. Reference Voltage  
1.2  
AD7392  
SAMPLE SIZE = 50  
100µs  
AD7392  
1.0  
0.8  
CODE = 0xFFF  
V
OUT  
(1V/DIV)  
0.6  
V
= 5V  
= 2.5V  
DD  
0.4  
CS  
(5V/DIV)  
V
CODE = 0x000  
REF  
0.2  
0
1V  
0
100  
200  
300  
400  
500  
600  
TIME (100µs/DIV)  
HOURS OF OPERATION AT 150°C  
Figure 19. Large Signal Settling Time  
Figure 22. Long-Term Drift Accelerated by Burn-In  
Rev. C | Page 10 of 20  
 
 
AD7392/AD7393  
1.0  
0.8  
V
V
T
= 2.7V  
= 2.5V  
= 25°C  
AD7392  
DD  
REF  
5V  
500mV  
AD7392 100µs  
A
0.6  
100  
100  
90  
V
V
= 5V  
DD  
0.4  
50  
0
I
(µA)  
DD  
= 2.5V  
REF  
CODE = 0xFFF  
0.2  
0
R
T
= 1MTO GND  
= 25°C  
L
2
0
1
0
V
(V)  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
A
OUT  
10  
SHDN  
0%  
2V  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
TIME (100µs/DIV)  
CODE (Decimal)  
Figure 23. Shutdown Recovery Time  
Figure 25. AD7392 Differential Nonlinearity Error vs. Code  
1.0  
0.8  
V
V
= 2.7V  
1000  
AD7393  
DD  
= 2.5V  
AD7392  
REF  
T
= 25°C  
A
0.6  
0.4  
0.2  
0
100  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
V
= 5.5V  
DD  
= 2.5V  
REF  
SHDN = 0V  
0
128  
256  
384  
512  
640  
768  
896  
1024  
10  
–55  
–35  
–15  
5
25  
45  
65  
85 105  
125  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 24. Shutdown Current vs. Temperature  
Figure 26. AD7393 Differential Nonlinearity Error vs. Code  
Rev. C | Page 11 of 20  
 
AD7392/AD7393  
THEORY OF OPERATION  
The AD7392/AD7393 comprise a set of pin-compatible, 12-/10-  
bit digital-to-analog converters (DACs). These single-supply  
operation devices consume less than 100 μA of current while  
operating from 2.7 V to 5.5 V power supplies, making them  
ideal for battery-operated applications. They contain a voltage-  
switched, 12-/10-bit, laser-trimmed DAC; rail-to-rail output op  
amps; and a parallel input DAC register. The external reference  
input has constant input resistance independent of the digital  
code setting of the DAC. In addition, the reference input can be  
tied to the same supply voltage as VDD, resulting in a maximum  
output voltage span of 0 V to VDD. The parallel data interface  
AMPLIFIER SECTION  
The internal DACs output is buffered by a low power consump-  
tion precision amplifier. The op amp has a 60 μs typical settling  
time to 0.1% of full scale. There are slight differences in settling  
time for negative slew signals vs. positive. Also, negative tran-  
sition settling time to within the last 6 LSBs of 0 V has an extended  
settling time. The rail-to-rail output stage of this amplifier has  
been designed to provide precision performance while operating  
near either power supply. Figure 27 shows an equivalent output  
schematic of the rail-to-rail amplifier with its N-channel pull-  
down FETs that pull an output load directly to GND. The  
output sourcing current is provided by a P-channel, pull-up  
device that can source current-to-GND terminated loads.  
CS  
consists of a  
utilizing the AD7392 or 10 data bits (D0 to D9) if utilizing  
RS  
write strobe and 12 data bits (D0 to D11) if  
the AD7393. An  
pin is available to reset the DAC register to  
V
DD  
zero scale. This function is useful for power-on reset or system  
failure recovery to a known state. Additional power savings are  
P-CH  
SHDN  
V
accomplished by activating the  
pin, resulting in a 1.5 μA  
OUT  
N-CH  
maximum consumption sleep mode. While the supply voltage is  
on, data is retained in the DAC register to reset the DAC output  
AGND  
SHDN  
when the part is taken out of shutdown (  
= 1).  
Figure 27. Equivalent Analog Output Circuit  
DIGITAL-TO-ANALOG CONVERTERS  
The rail-to-rail output stage provides 1 mA of output current.  
The N-channel output pull-down MOSFET, shown in Figure 27,  
has a 35 Ω on resistance that sets the sink current capability  
near ground. In addition to resistive load driving capability, the  
amplifier also has been carefully designed and characterized for  
up to 100 pF capacitive load driving capability.  
The voltage switched R-2R DAC generates an output voltage  
that depends on the external reference voltage connected to  
the VREF pin according to Equation 1.  
D
VOUT =VREF  
×
(1)  
(2)  
(3)  
2N  
where:  
REFERENCE INPUT  
D is the decimal data-word loaded into the DAC register.  
N is the number of bits of DAC resolution.  
The reference input terminal has a constant input resistance  
independent of digital code, which results in reduced glitches  
on the external reference voltage source. The high 2.5 MΩ input  
resistance minimizes power dissipation within the AD7392/  
AD7393 DACs. The VREF input accepts input voltages ranging  
from ground to the positive supply voltage VDD. One of the  
simplest applications for saving an external reference voltage  
source is connecting the REF terminal to the positive VDD  
supply. This connection results in a rail-to-rail voltage output  
span maximizing the programmed range. The reference input  
If the 10-bit AD7393 uses a 2.5 V reference, Equation 1  
becomes  
D
VOUT = 2.5×  
1024  
Using Equation 2, the nominal midscale voltage at VOUT is  
1.25 V, for D = 512; full-scale voltage is 2.497 V. The LSB  
step size is 2.5 × 1/1024 = 0.0024 V.  
If the 12-bit AD7392 uses a 5.0 V reference, Equation 1  
becomes  
accepts ac signals as long as they stay within the 0 V < VREF  
<
VDD supply voltage range. The reference bandwidth and integral  
nonlinearity error performance are plotted in Figure 20 and  
Figure 21. The ratiometric reference feature makes the AD7392/  
AD7393 an ideal companion to ratiometric analog-to-digital  
converters (ADCs) such as the AD7896.  
D
4096  
VOUT = VREF  
×
Using Equation 3, the AD7392 provides a nominal midscale volt-  
age of 2.50 V (for D = 2048) and a full-scale VOUT of 4.998 V.  
The LSB step size is 5.0 × 1/4096 = 0.0012 V.  
Rev. C | Page 12 of 20  
 
 
 
 
 
AD7392/AD7393  
To minimize power dissipation from input logic levels that  
are near the VIH and VIL logic input voltage specifications, a  
Schmitt-trigger design was used that minimizes the input  
buffer current consumption compared to traditional CMOS  
input stages. Figure 11 is a plot of supply current vs. incremental  
input voltage, showing that negligible current consumption  
takes place when logic levels are in their quiescent state. The  
normal crossover current still occurs during logic transitions.  
A secondary advantage of this Schmitt trigger is the prevention  
of false triggers that would occur with slow moving logic transi-  
tions when a standard CMOS logic interface or opto-isolators  
POWER SUPPLY  
The very low power consumption of the AD7392/AD7393 is  
a direct result of a circuit design that optimizes the CBCMOS  
process. By using the low power characteristics of CMOS for the  
logic and the low noise, tight-matching of the complementary  
bipolar transistors, excellent analog accuracy is achieved. One  
advantage of the rail-to-rail output amplifiers used in the AD7392/  
AD7393 is the wide range of usable supply voltage. The part is  
fully specified and tested for operation from 2.7 V to 5.5 V.  
FERRITE BEAD:  
2 TURNS, FAIR-RITE  
#2677006301  
CS RS  
SHDN  
are used. Logic inputs D11 to D0,  
the Schmitt-trigger circuits.  
,
, and  
all contain  
5V  
TTL/CMOS  
LOGIC  
CIRCUITS  
+
+
+
100µF  
ELECT.  
10µF TO 22µF 0.1µF  
TANT. CER.  
DIGITAL INTERFACE  
5V  
RETURN  
The AD7392/AD7393 have a parallel data input. A functional  
block diagram of the digital section is shown in Figure 31,  
while Table 6 contains the truth table for the logic control  
5V  
POWER SUPPLY  
CS  
inputs. The chip select pin ( ) controls loading of data from  
the data inputs on Pin D11 to Pin D0. This active low input  
places the input register into a transparent state allowing the  
data inputs to directly change the DAC ladder values. When  
Figure 28. Use Separate Traces to Reduce Power Supply Noise  
Whether or not a separate power supply trace is available, gen-  
erous supply bypassing reduces supply line induced errors. Local  
supply bypassing, consisting of a 10 μF tantalum electrolytic in  
parallel with a 0.1 μF ceramic capacitor, is recommended for all  
applications (see Figure 29).  
CS  
returns to logic high within the data setup-and-hold time  
specifications, the new value of data in the input register are  
latched. See Table 6 for a complete listing of conditions.  
1 OF 12 LATCHES  
OF THE  
DAC REGISTER  
2.7V TO 5.5V  
20  
1
*
C
0.1µF  
V
V
REF  
DD  
TO  
Dx  
+
INTERNAL  
AD7392  
OR  
10µF  
DAC SWITCHES  
D0 TO D11  
CS  
RS  
AD7393  
SHDN  
19  
V
2
OUT  
3
4
CS  
RS  
GND  
17, 18  
Figure 31. Digital Control Logic  
* OPTIONAL EXTERNAL  
REFERENCE BYPASS  
Table 6. Control Logic Truth Table  
CS  
RS  
DAC Register Function  
Figure 29. Recommended Supply Bypassing for the AD7392/AD7393  
H
L
H
H
H
L
Latched  
Transparent  
Latched with new data  
Loaded with all zeros  
Latched all zeros  
INPUT LOGIC LEVELS  
1
All digital inputs are protected with a Zener-type ESD protection  
structure that allows logic input voltages to exceed the VDD supply  
voltage (see Figure 30). This feature is useful if the user is driving  
one or more of the digital inputs with a 5 V CMOS logic input  
voltage level while operating the AD7392/AD7393 on a 3 V  
power supply. If this interface is used, make sure that the VOL  
of the 5 V CMOS meets the VIL input requirement of the AD7392/  
AD7393 operating at 3 V. See Figure 12 for a graph of digital  
logic input threshold vs. operating VDD supply voltage.  
X2  
1
H
1 = Positive logic transition.  
2 X = Don’t care.  
V
DD  
1k  
LOGIC  
IN  
GND  
Figure 30. Equivalent Digital Input ESD Protection  
Rev. C | Page 13 of 20  
 
 
 
 
 
 
AD7392/AD7393  
RESET PIN (RS)  
UNIPOLAR OUTPUT OPERATION  
This is the basic mode of operation for the AD7392. The  
AD7392 is designed to drive loads as low as 5 kΩ in parallel  
with 100 pF (see Figure 32). The code table for this operation is  
shown in Table 7.  
RS  
Forcing the asynchronous  
pin low sets the DAC register to  
all 0s, so the DAC output voltage is 0 V. The reset function is  
useful for setting the DAC outputs to 0 at power-up or after a  
power supply interruption. Test systems and motor controllers  
are two of many applications that benefit from powering up to a  
known state. The external reset pulse can be generated by three  
methods:  
The circuit can be configured with an external reference  
plus power supply or powered from a single dedicated regu-  
lator or reference depending on the application performance  
requirements.  
The microprocessors power-on RESET signal  
An output from the microprocessor  
An external resistor and capacitor  
2.7V TO 5.5V  
R
1
0.1µF  
10µF  
0.01µF  
V
DD  
RESET has a Schmitt-trigger input, which results in a clean  
reset function when using external resistor-/capacitor-generated  
pulses (see Table 6).  
AD7392  
20  
19  
EXT  
REF  
V
V
OUT  
REF  
R
5kΩ  
C
L
100pF  
L
GND  
17, 18  
POWER SHUTDOWN (SHDN)  
Maximum power savings can be achieved by using the power  
shutdown control function. This hardware-activated feature is  
NOTES  
1. DIGITAL INTERFACE CIRCUITRY OMITTED FOR CLARITY  
Figure 32. AD7392 Unipolar Output Operation  
SHDN  
controlled by the active low input  
pin. This pin has a  
Schmitt-trigger input that helps desensitize it to slowly changing  
inputs. Setting this pin to logic low reduces the internal con-  
sumption of the AD7392/AD7393 to nanoamp levels, guaranteed  
to 1.5 μA maximum over the operating temperature range. If  
power is present at all times on the VDD pin while in shutdown  
mode, the internal DAC register retains the last programmed  
data value. The digital interface is still active in shutdown so  
that code changes can be made that produce new DAC settings  
when the device is taken out of shutdown. This data is used  
when the part is returned to the normal active state by placing  
the DAC back to its programmed voltage setting. Figure 23  
shows a plot of shutdown recovery time with both IDD and VOUT  
displayed. In the shutdown state, the DAC output amplifier  
exhibits an open-circuit high resistance state. Any load that is  
connected stabilizes at its termination voltage. If the power  
Table 7. Unipolar Code Table  
DAC Register No.  
Hexadecimal  
0xFFF  
0x801  
0x800  
0x7FF  
Decimal  
4095  
2049  
2048  
2047  
0
Output Voltage (V), VREF = 2.5 V  
2.4994  
1.2506  
1.2500  
1.2494  
0
0x000  
SHDN  
shutdown feature is not needed, the user should tie the  
pin to the VDD voltage to disable this function.  
Rev. C | Page 14 of 20  
 
 
 
AD7392/AD7393  
If higher resolution is required, the AD7392 can be used with  
two additional bits of data inserted into the software coding,  
which results in a 2.5 mV LSB step size. Table 8 shows examples  
of nominal output voltages (VO) provided by the bipolar  
operation circuit application.  
BIPOLAR OUTPUT OPERATION  
Although the AD7393 is designed for single-supply operation,  
the output can be easily configured for bipolar operation. A  
typical circuit is shown in Figure 33. This circuit uses a clean,  
regulated 5 V supply for power, which also provides the circuit’s  
reference voltage. Since the AD7393 output span swings from  
ground to very near 5 V, it is necessary to choose an external  
amplifier with a common-mode input voltage range that extends  
to its positive supply rail. The micropower consumption OP196  
is designed just for this purpose and results in only 50 μA of  
maximum current consumption. Connecting the two 470 kΩ  
resistors results in a differential amplifier mode of operation  
with a voltage gain of 2, which produces a circuit output span  
of 10 V, that is, −5 V to +5 V. As the DAC is programmed from  
zero-code 0x000 to midscale 0x200 to full scale 0x3FF, the circuit  
output voltage, VO, is set at −5 V, 0 V, and +5 V (minus 1 LSB).  
The output voltage, VO, is coded in offset binary according to  
Equation 4.  
I
<162µA  
SY  
+5V  
470k  
470kΩ  
<2µA  
<100µA  
<50µA  
C
+5V  
–5V  
BIPOLAR  
OUTPUT  
SWING  
V
V
DD  
REF  
V
O
OP196  
V
OUT  
AD7393  
GND  
–5V  
NOTES  
1. DIGITAL INTERFACE CIRCUITRY OMITTED FOR CLARITY  
Figure 33. Bipolar Output Operation  
Table 8. Bipolar Code Table  
DAC Register No.  
Hexadecimal  
0x3FF  
0x201  
0x200  
0x1FF  
Decimal  
1023  
513  
512  
511  
Analog Output Voltage (V)  
D
512  
VO =  
1 ×5  
(4)  
+4.9902  
+0.0097  
0.0000  
−0.0097  
−5.0000  
where D is the decimal code loaded in the AD7393 DAC  
register.  
Note that the LSB step size is 10/1024 = 10 mV. This circuit  
0x000  
0
is optimized for micropower consumption including the 470 kΩ  
gain setting resistors, which should have low temperature  
coefficients to maintain accuracy and matching (preferably the  
same resistor material, such as metal film).  
If better stability is required, the power supply may be substi-  
tuted with a precision reference voltage such as the low dropout  
REF195, which can easily supply the circuits 162 μA of current,  
and still provide additional power for the load connected to VO.  
The micropower REF195 is guaranteed to source 10 mA output  
drive current, but consumes only 50 μA internally.  
Rev. C | Page 15 of 20  
 
 
AD7392/AD7393  
OUTLINE DIMENSIONS  
1.060 (26.92)  
1.030 (26.16)  
0.980 (24.89)  
20  
1
11  
10  
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 34. 20-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-20)  
Dimensions shown in inches and (millimeters)  
13.00 (0.5118)  
12.60 (0.4961)  
20  
1
11  
10  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.00  
98)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
1.27  
(0.0500)  
BSC  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 20-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-20)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 16 of 20  
 
AD7392/AD7393  
ORDERING GUIDE  
Model  
Resolution (Bits)  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
20-Lead PDIP  
20-Lead PDIP  
20-Lead SOIC_W  
20-Lead SOIC_W  
20-Lead SOIC_W  
20-Lead SOIC_W  
20-Lead PDIP  
Package Option  
N-20  
N-20  
RW-20  
RW-20  
RW-20  
RW-20  
N-20  
AD7392AN  
AD7392ANZ1  
AD7392AR  
AD7392AR-REEL  
AD7392ARZ1  
AD7392ARZ-REEL1  
AD7393AN  
AD7393AR  
AD7393ARZ1  
12  
12  
12  
12  
12  
12  
10  
10  
10  
20-Lead SOIC_W  
20-Lead SOIC_W  
RW-20  
RW-20  
1 Z = RoHS Compliant Part.  
Rev. C | Page 17 of 20  
 
AD7392/AD7393  
NOTES  
Rev. C | Page 18 of 20  
AD7392/AD7393  
NOTES  
Rev. C | Page 19 of 20  
AD7392/AD7393  
NOTES  
©1996–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C01121-0-8/07(C)  
Rev. C | Page 20 of 20  
 
 

相关型号:

AD7394

3 V, Dual, Serial Input 12-/10-Bit DACs
ADI

AD7394AN

3 V, Dual, Serial Input 12-/10-Bit DACs
ADI

AD7394AR

3 V, Dual, Serial Input 12-/10-Bit DACs
ADI

AD7394AR-REEL7

IC SERIAL INPUT LOADING, 70 us SETTLING TIME, 12-BIT DAC, PDSO14, 1.75 MM HEIGHT, SOIC-14, Digital to Analog Converter
ADI

AD7394ARZ

IC SERIAL INPUT LOADING, 70 us SETTLING TIME, 12-BIT DAC, PDSO14, 1.75 MM HEIGHT, LOW PROFILE, SOIC-14, Digital to Analog Converter
ADI

AD7394ARZ-REEL7

IC SERIAL INPUT LOADING, 70 us SETTLING TIME, 12-BIT DAC, PDSO14, 1.75 MM HEIGHT, SOIC-14, Digital to Analog Converter
ADI

AD7395

+3 V, Dual, Serial Input 12-/10-Bit DACs
ADI

AD7395AN

+3 V, Dual, Serial Input 12-/10-Bit DACs
ADI

AD7395AR

+3 V, Dual, Serial Input 12-/10-Bit DACs
ADI

AD7395AR-REEL7

IC SERIAL INPUT LOADING, 70 us SETTLING TIME, 10-BIT DAC, PDSO14, 1.75 MM HEIGHT, SOIC-14, Digital to Analog Converter
ADI

AD7395ARU

+3 V, Dual, Serial Input 12-/10-Bit DACs
ADI

AD7395ARU-REEL7

IC SERIAL INPUT LOADING, 70 us SETTLING TIME, 10-BIT DAC, PDSO14, 1.10 MM HEIGHT, TSSOP-14, Digital to Analog Converter
ADI