AD7392 [ADI]

3 V, Parallel Input Micropower 10- and 12-Bit DACs; 3 V ,并行输入微功耗10位和12位DAC
AD7392
型号: AD7392
厂家: ADI    ADI
描述:

3 V, Parallel Input Micropower 10- and 12-Bit DACs
3 V ,并行输入微功耗10位和12位DAC

文件: 总11页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+3 V, Parallel Input  
a
Micropower 10- and 12-Bit DACs  
AD7392/AD7393  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Micropower: 100 A  
0.1 A Typical Power Shutdown  
Single-Supply +2.7 V to +5.5 V Operation  
Compact 1.1 mm Height TSSOP-20 Package  
AD7392/12-Bit Resolution  
AD7393/10-Bit Resolution  
0.9 LSB Differential Nonlinearity Error  
AD7392  
V
DD  
12-BIT  
DAC  
V
REF  
V
OUT  
SHDN  
12  
DAC REGISTER  
AGND  
12  
APPLICATIONS  
DGND  
CS  
DB0–DB11 RS  
Automotive 0.5 V to 4.5 V Output Span Voltage  
Portable Communications  
Digitally Controlled Calibration  
PC Peripherals  
GENERAL DESCRIPTION  
Additionally, an asynchronous RS input sets the output to zero  
The AD7392/AD7393 family of 10- and 12-bit voltage-output  
digital-to-analog converters is designed to operate from a single  
+3 V supply. Built using a CBCMOS process, these monolithic  
DACs offer the user low cost and ease of use in single-supply  
+3 V systems. Operation is guaranteed over the supply voltage  
range of +2.7 V to +5.5 V, making this device ideal for battery  
operated applications.  
scale at power on or upon user demand.  
Both parts are offered in the same pinout to allow users to select  
the amount of resolution appropriate for their applications  
without circuit card changes.  
The AD7392/AD7393 are specified for operation over the ex-  
tended industrial (–40°C to +85°C) temperature range. The  
AD7393AR is specified for the –40°C to +125°C automotive  
temperature range. AD7392/AD7393s are available in plastic  
DIP, and 20-lead SOIC packages. The AD7393ARU is avail-  
able for ultracompact applications in a thin 1.1 mm height  
TSSOP-20 package.  
The full-scale voltage output is determined by the external  
reference input voltage applied. The rail-to-rail REFIN to  
DACOUT allows for a full-scale voltage set equal to the positive  
supply VDD or any value in between. The voltage outputs are  
capable of sourcing 5 mA.  
For serial data input, 8-lead packaged versions, see the AD7390  
and AD7391 products.  
A 12-bit wide data latch loads with a 45 ns write time allowing  
interface to the fastest processors without wait states.  
1
1
AD7393  
AD7392  
V
V
T
= +2.7V  
= +2.5V  
V
V
T
= +2.7V  
= +2.5V  
0.8  
0.6  
DD  
DD  
0.8  
0.6  
REF  
REF  
= 25؇C  
= 25؇C  
A
A
0.4  
0.4  
0.2  
0.2  
0
0
؊0.2  
؊0.4  
؊0.6  
؊0.8  
؊1  
؊0.2  
؊0.4  
؊0.6  
؊0.8  
؊1  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
512  
1024 1536  
2048 2560  
3072 3584  
4096  
CODE – Decimal  
CODE – Decimal  
Figure 1. AD7392 Differential Nonlinearity Error vs. Code  
Figure 2. AD7393 Differential Nonlinearity Error vs. Code  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD7392/AD7393–SPECIFICATIONS  
AD7392 ELECTRICAL CHARACTERISTICS (@ VREF IN = 2.5 V, ؊40  
؇
C < TA < ؉85  
؇C, unless otherwise noted)  
Parameter  
Symbol  
Conditions  
3 V ؎ 10% 5 V ؎ 10%  
Units  
STATIC PERFORMANCE  
Resolution1  
N
INL  
12  
Ϯ1.8  
Ϯ3  
Ϯ0.9  
Ϯ1  
12  
Ϯ1.8  
Ϯ3  
Ϯ0.9  
Ϯ1  
4.0  
8.0  
Ϯ8  
Ϯ20  
28  
Bits  
Relative Accuracy2  
TA = ϩ25°C  
LSB max  
LSB max  
LSB max  
LSB max  
mV max  
mV max  
mV max  
mV max  
ppm/°C typ  
TA = Ϫ40°C, ϩ85°C  
TA = ϩ25°C, Monotonic  
Monotonic  
Differential Nonlinearity2  
Zero-Scale Error  
DNL  
VZSE  
Data = 000H, TA = ϩ25°C, ϩ85°C 4.0  
Data = 000H, TA = –40°C 8.0  
TA = ϩ25°C, ϩ85°C, Data = FFFH Ϯ8  
Full-Scale Voltage Error  
VFSE  
TA = Ϫ40°C, Data = FFFH  
Ϯ20  
28  
Full-Scale Tempco3  
TCVFS  
REFERENCE INPUT  
V
REF IN Range  
VREF  
RREF  
CREF  
0/VDD  
2.5  
5
0/VDD  
2.5  
5
V min/max  
Mtyp4  
pF typ  
Input Resistance  
Input Capacitance3  
ANALOG OUTPUT  
Current (Source)  
IOUT  
IOUT  
CL  
Data = 800H, VOUT = 5 LSB  
Data = 800H, VOUT = 5 LSB  
No Oscillation  
1
3
100  
1
3
100  
mA typ  
mA typ  
pF typ  
Output Current (Sink)  
Capacitive Load3  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance3  
VIL  
VIH  
IIL  
0.5  
0.8  
V max  
V min  
µA max  
pF max  
V
DDϪ0.6  
V
DDϪ0.6  
10  
10  
10  
10  
CIL  
INTERFACE TIMING3, 5  
Chip Select Write Width  
Data Setup  
Data Hold  
Reset Pulsewidth  
tCS  
tDS  
tDH  
tRS  
45  
30  
20  
40  
45  
15  
5
ns min  
ns min  
ns min  
ns min  
30  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time6  
Shutdown Recovery Time  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
SR  
tS  
tSDR  
Q
Data = 000H to FFFH to 000H  
To ±0.1% of Full Scale  
0.05  
70  
0.05  
60  
80  
65  
15  
V/µs typ  
µs typ  
µs typ  
nV/s typ  
nV/s typ  
Code 7FFH to 800H to 7FFH  
65  
15  
Q
VOUT/VREF VREF = 1.5 V dc +1 V p-p,  
Data = 000H, f = 100 kHz  
–63  
–63  
dB typ  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Shutdown Supply Current  
Power Dissipation  
VDD RANGE DNL < Ϯ1 LSB  
2.7/5.5  
55/100  
0.1/1.5  
300  
2.7/5.5  
55/100  
0.1/1.5  
500  
V min/max  
µA typ/max  
µA typ/max  
µW max  
IDD  
VIL = 0 V, No Load  
SHDN = 0, VIL = 0 V, No Load  
VIL = 0 V, No Load  
VDD = Ϯ5%  
IDD SD  
PDISS  
PSS  
Power Supply Sensitivity  
0.006  
0.006  
%/% max  
NOTES  
1One LSB = VREF/4096 V for the 12-bit AD7392.  
2The first two codes (000H, 001H) are excluded from the linearity error measurement.  
3These parameters are guaranteed by design and not subject to production testing.  
4Typicals represent average readings measured at +25°C.  
5All input control signals are specified with tR = tF = 2 ns (10% to 90% of 13 V) and timed from a voltage level of 1.6 V.  
6The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
Specifications subject to change without notice.  
REV. A  
–2–  
AD7392/AD7393  
(@ VREF IN = 2.5 V, ؊40  
؇
C < T < ؉85  
؇
C, unless otherwise noted)  
AD7393 ELECTRICAL CHARACTERISTICS  
A
Parameter  
Symbol  
Conditions  
3 V ؎ 10% 5 V ؎ 10%  
Units  
STATIC PERFORMANCE  
Resolution1  
N
INL  
10  
10  
Bits  
Relative Accuracy2  
TA = ϩ25°C  
TA = Ϫ40°C, ϩ85°C, ϩ125°C  
Monotonic  
Data = 000H  
TA = ϩ25°C, ϩ85°C, ϩ125°C,  
Data = 3FFH  
Ϯ1.75  
Ϯ2.0  
Ϯ0.8  
9.0  
Ϯ1.75  
Ϯ2.0  
Ϯ0.8  
9.0  
LSB max  
LSB max  
LSB max  
mV max  
mV max  
Differential Nonlinearity2  
Zero-Scale Error  
Full-Scale Voltage Error  
DNL  
VZSE  
VFSE  
Ϯ32  
Ϯ32  
TA = Ϫ40°C, Data = 3FFH  
Ϯ42  
28  
Ϯ42  
28  
mV max  
ppm/°C typ  
Full-Scale Tempco3  
TCVFS  
REFERENCE INPUT  
V
REF IN Range  
VREF  
RREF  
CREF  
0/VDD  
2.5  
5
0/VDD  
2.5  
5
V min/max  
Mtyp4  
pF typ  
Input Resistance  
Input Capacitance3  
ANALOG OUTPUT  
Output Current (Source)  
Output Current (Sink)  
Capacitive Load3  
IOUT  
IOUT  
CL  
Data = 200H, VOUT = 5 LSB  
Data = 200H, VOUT = 5 LSB  
No Oscillation  
1
3
100  
1
3
100  
mA typ  
mA typ  
pF typ  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance3  
VIL  
VIH  
IIL  
0.5  
0.8  
V max  
V min  
µA max  
pF max  
V
DDϪ0.6  
V
DDϪ0.6  
10  
10  
10  
10  
CIL  
INTERFACE TIMING3, 5  
Chip Select Write Width  
Data Setup  
Data Hold  
Reset Pulsewidth  
tCS  
tDS  
tDH  
tRS  
45  
30  
20  
40  
45  
15  
5
ns  
ns  
ns  
ns  
30  
AC CHARACTERISTICS  
Output Slew Rate  
Settling Time6  
Shutdown Recovery Time  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
SR  
tS  
tSDR  
Q
Data = 000H to 3FFH to 000H  
To Ϯ0.1% of Full Scale  
0.05  
70  
0.05  
60  
80  
65  
15  
V/µs typ  
µs typ  
µs typ  
nV/s typ  
nV/s typ  
Code 7FFH to 800H to 7FFH  
65  
15  
Q
VOUT/VREF VREF = 1.5 V dc ϩ1 V p-p,  
Data = 000H, f = 100 kHz  
–63  
–63  
dB typ  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
VDD RANGE DNL < Ϯ1 LSB  
2.7/5.5  
55  
100  
2.7/5.5  
55  
100  
V min/max  
µA typ  
µA max  
IDD  
VIL = 0 V, No Load, TA = ϩ25°C  
VIL = 0 V, No Load  
Shutdown Supply Current  
Power Dissipation  
Power Supply Sensitivity  
IDD SD  
PDISS  
PSS  
SHDN = 0, VIL = 0 V, No Load  
VIL = 0 V, No Load  
VDD = Ϯ5%  
0.1/1.5  
300  
0.006  
0.1/1.5  
500  
0.006  
µA typ/max  
µW max  
%/% max  
NOTES  
1One LSB = VREF/1024 V for the 10-bit AD7393.  
2The first two codes (000H, 001H) are excluded from the linearity error measurement.  
3These parameters are guaranteed by design and not subject to production testing.  
4Typicals represent average readings measured at +25°C.  
5All input control signals are specified with tR = tF = 2 ns (10% to 90% of ϩ3 V) and timed from a voltage level of 1.6 V.  
6The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.  
Specifications subject to change without notice.  
REV. A  
–3–  
AD7392/AD7393  
ABSOLUTE MAXIMUM RATINGS*  
PIN CONFIGURATIONS  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.3 V, +8 V  
VREF to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD  
Logic Inputs to GND . . . . . . . . . . . . . . . . . . . . . –0.3 V, +8 V  
VOUT to GND . . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
IOUT Short Circuit to GND . . . . . . . . . . . . . . . . . . . . . 50 mA  
DGND to AGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +2 V  
Package Power Dissipation . . . . . . . . . . . . . (TJ max – TA)/θJA  
Thermal Resistance θJA  
20-Lead Plastic DIP Package (N-20) . . . . . . . . . . . 57°C/W  
20-Lead SOIC Package (R-20) . . . . . . . . . . . . . . . . 60°C/W  
20-Lead Thin-Shrink Surface Mount (RU-20) . . . 155°C/W  
Maximum Junction Temperature (TJ max) . . . . . . . . . . 150°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
AD7393AR . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature  
1
2
20  
19  
1
2
20  
19  
V
V
V
V
V
V
DD  
REF  
DD  
REF  
SHDN  
CS  
SHDN  
CS  
OUT  
OUT  
3
4
3
4
18  
17  
18  
17  
AGND  
DGND  
D11  
AGND  
DGND  
D9  
RS  
RS  
5
6
5
6
D0  
D1  
D2  
D3  
16  
NC  
NC  
D0  
D1  
16  
AD7392  
TOP VIEW  
(Not to Scale)  
AD7393  
TOP VIEW  
(Not to Scale)  
15 D10  
15 D8  
7
8
14  
7
8
14  
D7  
D9  
13 D8  
13 D6  
9
9
D4  
D5  
12 D7  
11 D6  
D2  
D3  
12 D5  
11 D4  
10  
10  
NC = NO CONNECT  
PIN DESCRIPTION  
Function  
#
Name  
N-20 (Soldering, 10 sec) . . . . . . . . . . . . . . . . . . . . .+300°C  
R-20 (Vapor Phase, 60 sec) . . . . . . . . . . . . . . . . . . .+215°C  
RU-20 (Infrared, 15 sec) . . . . . . . . . . . . . . . . . . . . .+220°C  
1
VDD  
Positive Power Supply Input. Specified range  
of operation +2.7 V to +5.5 V.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2
SHDN  
Power Shutdown active low input. DAC regis-  
ter contents are saved as long as power stays on  
the VDD pin. When SHDN = 0, CS strobes will  
write new data into the DAC register.  
3
4
CS  
RS  
Chip Select latch enable, active low.  
Resets DAC register to zero condition. Asyn-  
chronous active low input.  
1
tCS  
CS  
0
tDS  
tDH  
5, 6 NC  
No connect Pins 5 and 6 on the AD7393.  
1
17 DGND Digital Ground.  
18 AGND Analog Ground.  
DB11–DB0  
DATA VALID  
0
1
19 VOUT  
DAC Voltage Output.  
tRS  
20 VREFIN  
DAC Reference Input Pin. Establishes DAC  
full-scale voltage.  
RS  
0
D0–D11 12 parallel input data bits. D11 = MSB Pin 16,  
D0 = LSB Pin 5, AD7392.  
D0–D9 10 parallel input data bits. D9 = MSB. Pin 16,  
D0 = LSB Pin 7, AD7393.  
FS  
ZS  
؎0.1% FS  
ERROR BAND  
V
OUT  
tS  
tS  
Figure 3. Timing Diagram  
ORDERING GUIDE  
1 OF 12 LATCHES  
Res  
(LSB) Temp  
Package  
Description  
Package  
Option  
OF THE  
DAC REGISTER  
Model  
AD7392AN 12  
AD7392AR 12  
AD7393AN 10  
AD7393AR 10  
XIND  
XIND  
XIND  
20-Lead P-DIP N-20  
20-Lead SOIC R-20  
20-Lead P-DIP N-20  
TO  
DB  
X
INTERNAL  
DAC  
SWITCHES  
CS  
AUTO 20-Lead SOIC R-20  
XIND TSSOP-20 RU-20  
AD7393ARU 10  
RS  
NOTES  
XIND = –40°C to +85°C; AUTO = –40°C to +125°C.  
The AD7392 contains 709 transistors. The die size measures 78 mil × 85 mil =  
Figure 4. Digital Control Logic  
6630 sq. mil.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7392/AD7393 feature proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–4–  
Typical Performance Characteristics–AD7392/AD7393  
1
0.8  
1
25  
20  
15  
10  
AD7392  
AD7393  
AD7392  
SS = 100 UNITS  
V
V
T
= 2.7V  
DD  
0.8  
= 2.5V  
REF  
T
= 25؇C  
A
0.6  
= 25؇C  
0.6  
A
V
V
= 2.7V  
DD  
0.4  
0.4  
= 2.5V  
REF  
0.2  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
V
V
T
= 2.7V  
DD  
= 2.5V  
REF  
= 25؇C  
5
0
A
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE – Decimal  
0
128 256 384 512 640 768 896 1024  
CODE – Decimal  
5.0 5.8 6.6 7.3 8.1 8.9 9.7 10.5 11.2 12.0  
TOTAL UNADJUSTED ERROR – LSB  
Figure 5. AD7392 Integral Nonlinear-  
ity Error vs. Code  
Figure 6. AD7393 Integral Nonlinear-  
ity Error vs. Code  
Figure 7. AD7392 Total Unadjusted  
Error Histogram  
16  
100  
30  
AD7392  
AD7393  
AD7393  
SS = 100 UNITS  
V
V
T
= 5V  
90  
DD  
SS = 300 UNITS  
14  
12  
10  
8
= 2.5V  
T
= 25؇C  
REF  
T
= ؊40؇ to 85؇C  
A
A
80  
70  
60  
50  
40  
30  
20  
10  
0
24  
18  
12  
6
= 25؇C  
V
V
= 2.7V  
A
DD  
V
V
= 2.7V  
DD  
= 2.5V  
REF  
= 2.5V  
REF  
6
4
2
0
0
1
10  
100  
1k  
10k  
100k  
–10 –3.3 3.3 10 16 23 30 36 43 50  
TOTAL UNADJUSTED ERROR – LSB  
–66 –60 –52 –46 –40 –32 –26 –20 –12 –6  
0
FREQUENCY – Hz  
FULL SCALE TEMPCO – ppm/؇C  
Figure 10. Voltage Noise Density vs.  
Frequency  
Figure 8. AD7393 Total Unadjusted  
Error Histogram  
Figure 9. AD7393 Full-Scale Output  
Tempco Histogram  
100  
100  
5.0  
AD7392  
AD7392  
A
AD7392  
CODE = FFF  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
T
= 25؇C  
SAMPLE SIZE = 300 UNITS  
4.5  
90  
H
V
FROM  
V
= 3.0V  
LOGIC  
DD  
V
= 2V  
REF  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 5.0V, V  
= 0V  
0V TO 3.0V  
DD  
LOGIC  
RS LOGIC VOLTAGE  
VARIED  
80  
70  
60  
50  
40  
30  
20  
V
= 3.6V, V  
= 2.4V  
DD  
LOGIC  
V
FROM  
LOGIC  
V
FROM  
HIGH TO LOW  
LOGIC  
3.0V TO 0V  
V
FROM  
LOGIC  
V
= 3.0V, V  
= 0V  
DD  
LOGIC  
LOW TO HIGH  
؊55 ؊35 ؊15  
5
25 45 65 85 105 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1
2
3
4
5
6
7
TEMPERATURE – ؇C  
V
– Volts  
SUPPLY VOLTAGE – V  
IN  
Figure 12. Logic Threshold vs.  
Supply Voltage  
Figure 13. Supply Current vs.  
Temperature  
Figure 11. Supply Current vs. Logic  
Input Voltage  
REV. A  
–5–  
AD7392/AD7393  
1000  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
AD7393  
LOGIC  
V
V
= 5V ؎ 5%  
T = 25؇C  
A
DD  
V
V
= 0V TO V TO 0V  
DD  
= 2.5V  
REF  
800  
600  
400  
200  
0
T
= 25؇C  
A
V
V
= +5V  
DD  
= +3V  
REF  
a
b
CODE = ØØØ  
= 3V ؎ 5%  
H
a. V = 5.5V, CODE = 155  
DD  
DD  
H
b. V = 5.5V, CODE = 3FF  
DD  
H
c. V = 2.7V, CODE = 155  
DD  
H
c
d. V  
DD  
= 2.7V, CODE = 355  
H
d
1k  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
10  
100  
1k  
10k  
CLOCK FREQUENCY – Hz  
V
– V  
OUT  
FREQUENCY – Hz  
Figure 16. IOUT at Zero Scale vs. VOUT  
Figure 14. Supply Current vs. Clock  
Frequency  
Figure 15. Power Supply Rejection  
vs. Frequency  
TIME – 100s/DIV  
TIME – 2s/DIV  
TIME – 5s/DIV  
Figure 19. Large Signal Settling Time  
Figure 17. Midscale Transition  
Performance  
Figure 18. Digital Feedthrough  
1.2  
5
0
2.0  
AD7392  
AD7392  
1.8  
SAMPLE SIZE = 50  
1.0  
V
= +5V  
DD  
CODE = 768  
H
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
T
= 25؇C  
A
؊5  
0.8  
V
V
= +5V  
DD  
CODE = FFF  
H
؊10  
؊15  
= +100mV + 2V  
REF  
DC  
DATA = FFF  
0.6  
0.4  
0.2  
0.0  
H
؊20  
؊25  
؊30  
CODE = 000  
H
10  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
0
100  
200  
300  
400  
500  
600  
0
1
2
3
4
5
HOURS OF OPERATION AT 150؇C  
REFERENCE VOLTAGE – V  
Figure 22. Long-Term Drift  
Accelerated by Burn-in  
Figure 20. Reference Multiplying  
Bandwidth  
Figure 21. INL Error vs. Reference  
Voltage  
REV. A  
–6–  
AD7392/AD7393  
1000  
100  
10  
AD7392  
100  
50  
0
100  
90  
IDD (A)  
2
V
(V)  
OUT  
0
1
0
V
V
= 5.5V  
= 2.5V  
DD  
10  
REF  
0%  
SHDN = 0V  
SHDN  
–55 –35 –15  
65 85 105 125  
5
25 45  
TIME – 100s/DIV  
TEMPERATURE – ؇C  
Figure 23. Shutdown Recovery Time  
Figure 24. Shutdown Current vs. Temperature  
Table I. Control Logic Truth Table  
CS  
RS  
DAC Register Function  
H
L
X
H
H
H
H
L
Latched  
Transparent  
Latched with New Data  
Loaded with All Zeros  
Latched all Zeros  
NOTE  
Positive logic transition; X Don’t Care.  
OPERATION  
D/A CONVERTER SECTION  
The AD7392 and AD7393 comprise a set of pin compatible,  
12-bit/10-bit digital-to-analog converters. These single-supply  
operation devices consume less than 100 microamps of current  
while operating from power supplies in the +2.7 V to +5.5 V  
range making them ideal for battery operated applications. They  
contain a voltage-switched, 12-bit/10-bit, laser-trimmed digital-  
to-analog converter, rail-to-rail output op amps, and a parallel-  
input DAC register. The external reference input has constant  
input resistance independent of the digital code setting of the  
DAC. In addition, the reference input can be tied to the same  
supply voltage as VDD, resulting in a maximum output voltage  
span of 0 to VDD. The parallel data interface consists of 12 data  
bits, DB0–DB11, for the AD7392; 10 data bits, DB0–DB9, for  
the AD7393; and a CS write strobe. A RS pin is available to  
reset the DAC register to zero scale. This function is useful for  
power-on reset or system failure recovery to a known state.  
Additional power savings are accomplished by activating the  
SHDN pin, resulting in a 1.5 µA maximum consumption sleep  
mode. As long as the supply voltage remains, data will be re-  
tained in the DAC register to reset the DAC output when the  
part is taken out of shutdown (SHDN = 1).  
The voltage switched R-2R DAC generates an output voltage  
dependent on the external reference voltage connected to the  
REF pin according to the following equation:  
D
2N  
VOUT =VREF  
×
Equation 1  
where D is the decimal data word loaded into the DAC register,  
and N is the number of bits of DAC resolution. In the case of  
the 10-bit AD7393 using a 2.5 V reference, Equation 1 simpli-  
fies to:  
D
1024  
VOUT = 2.5 ×  
Equation 2  
Using Equation 2, the nominal midscale voltage at VOUT is 1.25 V  
for D = 512; full-scale voltage is 2.497 volts. The LSB step size is  
= 2.5 × 1/1024 = 0.0024 volts.  
For the 12-bit AD7392 operating from a 5.0 V reference Equa-  
tion 1 becomes:  
D
2N  
VOUT =VREF  
×
Equation 3  
Using Equation 3, the AD7392 provides a nominal midscale  
voltage of 2.50 V for D = 2048, and a full-scale output of 4.998  
volts. The LSB step size is = 5.0 × 1/4096 = 0.0012 volts.  
REV. A  
–7–  
AD7392/AD7393  
AMPLIFIER SECTION  
POWER SUPPLY BYPASSING AND GROUNDING  
The internal DAC’s output is buffered by a low power con-  
sumption precision amplifier. The op amp has a 60 µs typical  
settling time to 0.1% of full scale. There are slight differences in  
settling time for negative slewing signals versus positive. Also,  
negative transition settling-time to within the last 6 LSBs of  
zero volts has an extended settling time. The rail-to-rail output  
stage of this amplifier has been designed to provide precision  
performance while operating near either power supply. Figure  
25 shows an equivalent output schematic of the rail-to-rail-  
amplifier with its N-channel pull-down FETs that will pull an  
output load directly to GND. The output sourcing current is  
provided by a P-channel pull-up device that can source current  
to GND terminated loads.  
Precision analog products, such as the AD7392/AD7393, require a  
well filtered power source. Since the AD7392/AD7393 oper-  
ate from a single +3 V to +5 V supply, it seems convenient to  
simply tap into the digital logic power supply. Unfortunately,  
the logic supply is often a switch-mode design, which generates  
noise in the 20 kHz to 1 MHz range. In addition, fast logic gates  
can generate glitches of hundreds of millivolts in amplitude due  
to wiring resistance and inductance. The power supply noise  
generated as a result means that special care must be taken to  
assure that the inherent precision of the DAC is maintained.  
Good engineering judgment should be exercised when address-  
ing the power supply grounding and bypassing of the AD7392.  
The AD7392 should be powered directly from the system power  
supply. This arrangement, shown in Figure 26, employs an LC  
filter and separate power and ground connections to isolate the  
analog section from the logic switching transients.  
V
DD  
P-CH  
N-CH  
V
OUT  
FERRITE BEAD:  
2 TURNS, FAIR-RITE  
#2677006301  
+5V  
TTL/CMOS  
LOGIC  
CIRCUITS  
AGND  
100F  
ELECT.  
10-22F  
TANT.  
0.1F  
CER.  
Figure 25. Equivalent Analog Output Circuit  
+5V  
RETURN  
The rail-to-rail output stage provides ±1 mA of output current.  
The N-channel output pull-down MOSFET, shown in Figure  
25, has a 35 ON resistance that sets the sink current capability  
near ground. In addition to resistive load driving capability, the  
amplifier also has been carefully designed and characterized for  
up to 100 pF capacitive load driving capability.  
+5V  
POWER SUPPLY  
Figure 26. Use Separate Traces to Reduce Power Supply  
Noise  
REFERENCE INPUT  
Whether or not a separate power supply trace is available, gener-  
ous supply bypassing will reduce supply line induced errors.  
Local supply bypassing, consisting of a 10 µF tantalum electro-  
lytic in parallel with a 0.1 µF ceramic capacitor, is recom-  
mended in all applications (Figure 27).  
The reference input terminal has a constant input resistance  
independent of digital code, which results in reduced glitches  
on the external reference voltage source. The high 2.5 MΩ  
input-resistance minimizes power dissipation within the  
AD7392/AD7393 D/A converters. The VREF input accepts  
input voltages ranging from ground to the positive-supply volt-  
age VDD. One of the simplest applications that saves an external  
reference voltage source is connection of the REF terminal to  
the positive VDD supply. This connection results in a rail-to-rail  
voltage output span maximizing the programmed range. The  
reference input will accept ac signals as long as they are kept  
within the supply voltage range, 0 < VREF IN < VDD. The refer-  
ence bandwidth and integral nonlinearity error performance are  
plotted in the typical performance section (see Figures 20 and  
21). The ratiometric reference feature makes the AD7392/  
AD7393 an ideal companion to ratiometric analog-to-digital  
converters such as the AD7896.  
+2.7V TO +5.5V  
20  
REF  
1
C
*
V
0.1F  
DD  
10F  
DB0–DB11  
AD7392  
OR  
19  
V
2
3
4
OUT  
AD7393  
SHDN  
CS  
RS  
GND  
17, 18  
* OPTIONAL EXTERNAL  
REFERENCE BYPASS  
POWER SUPPLY  
Figure 27. Recommended Supply Bypassing for the  
AD7392/AD7393  
The very low power consumption of the AD7392/AD7393 is a  
direct result of a circuit design optimizing the use of a CBCMOS  
process. By using the low power characteristics of CMOS for  
the logic and the low noise, tight-matching of the complemen-  
tary bipolar transistors, excellent analog accuracy is achieved.  
One advantage of the rail-to-rail output amplifiers used in the  
AD7392/AD7393 is the wide range of usable supply voltage.  
The part is fully specified and tested for operation from +2.7 V  
to +5.5 V.  
REV. A  
–8–  
AD7392/AD7393  
INPUT LOGIC LEVELS  
RESET (RS) PIN  
All digital inputs are protected with a Zener-type ESD protec-  
tion structure (Figure 28) that allows logic input voltages to  
exceed the VDD supply voltage. This feature can be useful if the  
user is driving one or more of the digital inputs with a 5 V  
CMOS logic input-voltage level while operating the AD7392/  
AD7393 on a +3 V power supply. If this mode of interface is  
used, make sure that the VOL of the 5 V CMOS meets the VIL  
input requirement of the AD7392/AD7393 operating at 3 V.  
See Figure 12 for a graph for digital logic input threshold versus  
operating VDD supply voltage.  
Forcing the asynchronous RS pin low will set the DAC register  
to all zeros and the DAC output voltage will be zero volts. The  
reset function is useful for setting the DAC outputs to zero at  
power-up or after a power supply interruption. Test systems and  
motor controllers are two of many applications that benefit from  
powering up to a known state. The external reset pulse can be  
generated by the microprocessor’s power-on RESET signal, by  
an output from the microprocessor or by an external resistor  
and capacitor. RESET has a Schmitt trigger input which results  
in a clean reset function when using external resistor/capacitor  
generated pulses. See the Control-Logic Truth Table I.  
V
DD  
1k⍀  
LOGIC  
IN  
POWER SHUTDOWN (SHDN)  
Maximum power savings can be achieved by using the power  
shutdown control function. This hardware activated feature is  
controlled by the active low input SHDN pin. This pin has a  
Schmitt trigger input that helps desensitize it to slowly changing  
inputs. By placing a logic low on this pin, the internal consump-  
tion of the AD7392 or AD7393 is reduced to nanoamp levels,  
guaranteed to 1.5 µA maximum over the operating temperature  
range. If power is present at all times on the VDD pin while in  
the shutdown mode, the internal DAC register will retain the  
last programmed data value. The digital interface is still active  
in shutdown, so that code changes can be made that will pro-  
duce new DAC settings when the device is taken out of shut-  
down. This data will be used when the part is returned to the  
normal active state by placing the DAC back to its programmed  
voltage setting. Figure 23 shows a plot of shutdown recovery  
time with both IDD and VOUT displayed. In the shutdown state  
the DAC output amplifier exhibits an open-circuit high resis-  
tance state. Any load connected will stabilize at its termination  
voltage. If the power shutdown feature is not needed, the user  
should tie the SHDN pin to the VDD voltage thereby disabling  
this function.  
GND  
Figure 28. Equivalent Digital Input ESD Protection  
In order to minimize power dissipation from input-logic levels  
that are near the VIH and VIL logic input voltage specifications, a  
Schmitt trigger design was used that minimizes the input-buffer  
current consumption compared to traditional CMOS input  
stages. Figure 11 shows a plot of incremental input voltage  
versus supply current, showing that negligible current consump-  
tion takes place when logic levels are in their quiescent state.  
The normal cross over current still occurs during logic transi-  
tions. A secondary advantage of this Schmitt trigger is the pre-  
vention of false triggers that would occur with slow moving logic  
transitions when a standard CMOS logic interface or opto-  
isolators are used. The logic inputs DB11–DB0, CS, RS, SHDN  
all contain the Schmitt trigger circuits.  
DIGITAL INTERFACE  
The AD7392/AD7393 have a parallel data input. A functional  
block diagram of the digital section is shown in Figure 4, while  
Table I contains the truth table for the logic control inputs.  
The chip select (CS) pin controls loading of data from the data  
inputs on pins DB11–DB0. This active low input places the  
input register into a transparent state allowing the data inputs to  
directly change the DAC ladder values. When CS returns to  
logic high within the data setup and hold time specifications, the  
new value of data in the input-register will be latched. See Truth  
Table for complete set of conditions.  
REV. A  
–9–  
AD7392/AD7393  
midscale 200H to full scale 3FFH, the circuit output voltage VO  
is set at –5 V, 0 V and +5 V (minus 1 LSB). The output voltage  
VO is coded in offset binary according to Equation 4.  
UNIPOLAR OUTPUT OPERATION  
This is the basic mode of operation for the AD7392. As shown  
in Figure 29, the AD7392 has been designed to drive loads as  
low as 5 kin parallel with 100 pF. The code table for this  
operation is shown in Table II.  
D
VO  
=
–1 ×5  
Equation 4  
512  
+2.7V TO +5.5V  
R
where D is the decimal code loaded in the AD7393 DAC regis-  
ter. Note that the LSB step size is 10/1024 = 10 mV. This cir-  
cuit has been optimized for micropower consumption including  
the 470 kgain setting resistors, which should have low tem-  
perature coefficients to maintain accuracy and matching (prefer-  
ably the same resistor material, such as metal film). If better  
stability is required, the power supply could be substituted with  
a precision reference voltage such as the low drop out REF195,  
which can easily supply the circuit’s 162 µA of current, and still  
provide additional power for the load connected to VO. The  
micropower REF195 is guaranteed to source 10 mA output  
drive current, but only consumes 50 µA internally. If higher  
resolution is required, the AD7392 can be used with the addi-  
tion of two more bits of data inserted into the software coding,  
which would result in a 2.5 mV LSB step size. Table III shows  
examples of nominal output voltages VO provided by the Bipolar  
Operation circuit application.  
1
0.01F  
0.1F  
10F  
V
DD  
AD7392  
20  
19  
EXT  
REF  
REF  
V
OUT  
C
R
L
L
AGND/DGND  
17, 18  
Ն100pF  
Ն5k⍀  
DIGITAL INTERFACE  
CIRCUITRY OMITTED  
FOR CLARITY  
Figure 29. AD7392 Unipolar Output Operation  
Table II. Unipolar Code Table  
Hexadecimal  
Number  
in DAC Register  
Decimal  
Number  
in DAC Register  
Output  
Voltage (V)  
VREF = 2.5 V  
FFF  
801  
800  
7FF  
000  
4095  
2049  
2048  
2047  
0
2.4994  
1.2506  
1.2500  
1.2494  
0
I
< 162A  
SY  
+5V  
470k⍀  
470k⍀  
<2A  
<100A  
<50A  
C
+5V  
–5V  
The circuit can be configured with an external reference plus  
power supply or powered from a single dedicated regulator  
or reference depending on the application performance re-  
quirements.  
BIPOLAR  
OUTPUT  
SWING  
V
REF  
DD  
OP196  
V
O
V
OUT  
AD7393  
GND  
–5V  
BIPOLAR OUTPUT OPERATION  
DIGITAL INTERFACE CIRCUITRY OMITTED FOR CLARITY  
Although the AD7393 has been designed for single-supply op-  
eration, the output can be easily configured for bipolar opera-  
tion. A typical circuit is shown in Figure 30. This circuit uses a  
clean regulated +5 V supply for power, which also provides the  
circuit’s reference voltage. Since the AD7393 output span swings  
from ground to very near +5 V, it is necessary to choose an exter-  
nal amplifier with a common-mode input voltage range that  
extends to its positive supply rail. The micropower consump-  
tion OP196 has been designed just for this purpose and results  
in only 50 microamps of maximum current consumption. Con-  
nection of the equal valued 470 kresistors results in a differen-  
tial amplifier mode of operation with a voltage gain of two,  
which produces a circuit output span of ten volts (that is, –5 V  
to +5 V). As the DAC is programmed from zero-code 000H to  
Figure 30. Bipolar Output Operation  
Table III. Bipolar Code Table  
Hexadecimal  
Number  
In DAC Register  
Decimal  
Number  
in DAC Register  
Analog  
Output  
Voltage (V)  
3FF  
201  
200  
1FF  
000  
1023  
513  
512  
511  
0
4.9902  
0.0097  
0.0000  
–0.0097  
–5.0000  
REV. A  
–10–  
AD7392/AD7393  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
20-Lead Plastic DIP Package  
(N-20)  
1.060 (26.90)  
0.925 (23.50)  
20  
1
11  
0.280 (7.11)  
0.240 (6.10)  
10  
0.325 (8.25)  
0.195 (4.95)  
0.115 (2.93)  
0.300 (7.62)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
20-Lead SOIC Package  
(R-20)  
0.5118 (13.00)  
0.4961 (12.60)  
20  
11  
1
10  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
x 45°  
0.0098 (0.25)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
20-Lead Thin Surface Mount TSSOP Package  
(RU-20)  
0.260 (6.60)  
0.252 (6.40)  
20  
11  
10  
1
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
REV. A  
–11–  

相关型号:

AD7392AN

3 V, Parallel Input Micropower 10- and 12-Bit DACs
ADI

AD7392AN

PARALLEL, WORD INPUT LOADING, 70us SETTLING TIME, 12-BIT DAC, PDIP20, PLASTIC, MS-001, DIP-20
ROCHESTER

AD7392ANZ

3 V, Parallel Input Micropower 10-/12-Bit DACs
ADI

AD7392ANZ

PARALLEL, WORD INPUT LOADING, 70 us SETTLING TIME, 12-BIT DAC, PDIP20, ROHS COMPLIANT, PLASTIC, MS-001, DIP-20
ROCHESTER

AD7392AR

3 V, Parallel Input Micropower 10- and 12-Bit DACs
ADI

AD7392AR

PARALLEL, WORD INPUT LOADING, 70 us SETTLING TIME, 12-BIT DAC, PDSO20, MS-013AC, SOIC-20
ROCHESTER

AD7392AR-REEL

3 V, Parallel Input Micropower 10-/12-Bit DACs
ADI

AD7392ARZ

3 V, Parallel Input Micropower 10-/12-Bit DACs
ADI

AD7392ARZ-REEL

3 V, Parallel Input Micropower 10-/12-Bit DACs
ADI

AD7392_15

3 V, Parallel Input Micropower 10-/12-Bit DACs
ADI

AD7393

+3 V, Parallel Input Micropower 10- and 12-Bit DACs
ADI

AD7393AN

+3 V, Parallel Input Micropower 10- and 12-Bit DACs
ADI