AD7305YR [ADI]

+3 V/+5 V, Rail-to-Rail Quad, 8-Bit DAC; 3 V / + 5 V ,轨到轨四路, 8位DAC
AD7305YR
型号: AD7305YR
厂家: ADI    ADI
描述:

+3 V/+5 V, Rail-to-Rail Quad, 8-Bit DAC
3 V / + 5 V ,轨到轨四路, 8位DAC

文件: 总14页 (文件大小:931K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+3 V/+5 V, Rail-to-Rail  
Quad, 8-Bit DAC  
a
AD7304/AD7305*  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Four 8-Bit DACs in One Package  
+3 V, +5 V and 5 V Operation  
Rail-to-Rail REF-Input to Voltage Output Swing  
2.6 MHz Reference Multiplying Bandwidth  
Compact 1.1 mm Height TSSOP 16-/20-Lead Package  
Internal Power ON Reset  
SPI Serial Interface Compatible—AD7304  
Fast Parallel Interface—AD7305  
40 A Power Shutdown  
V
B V A  
V
REF REF  
DD  
8
8
8
8
8
8
8
8
PWR ON  
RESET  
INPUT  
REG A  
DAC A  
REG  
DAC A  
DAC B  
DAC C  
DAC D  
V
V
A
B
OUT  
OUT  
8
INPUT  
REG B  
DAC B  
REG  
CS  
SDI/SHDN  
CLK  
INPUT  
REG C  
DAC C  
REG  
V
V
C
D
OUT  
OUT  
SERIAL  
REG  
INPUT  
REG D  
DAC D  
REG  
APPLICATIONS  
Automotive Output Span Voltage  
Instrumentation, Digitally Controlled Calibration  
Pin-Compatible AD7226 Replacement when VDD < 5.5 V  
AD7304  
V
C V D  
REF  
V
GND  
CLR LDAC  
SS  
REF  
V
V
REF  
DD  
8
8
8
8
8
GENERAL DESCRIPTION  
PWR ON  
RESET  
INPUT  
REG A  
DAC A  
DAC A  
DAC B  
DAC C  
DAC D  
V
V
A
B
REG  
OUT  
OUT  
The AD7304/AD7305 are quad, 8-bit DACs that operate from a  
single +3 V to +5 V supply or 5 V supplies. The AD7304 has a  
serial interface, while the AD7305 has a parallel interface. Inter-  
nal precision buffers swing rail-to-rail. The reference input range  
includes both supply rails allowing for positive or negative full-  
scale output voltages. Operation is guaranteed over the supply  
voltage range of +2.7 V to +5.5 V, consuming less than 9 mW  
from a +3 V supply.  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
8
INPUT  
REG B  
DAC B  
REG  
8
8
DAC C  
REG  
INPUT  
REG C  
V
C
D
OUT  
8
INPUT  
REG D  
DAC D  
REG  
V
OUT  
WR  
A0/SHDN  
A1  
DECODE  
AD7305  
The full-scale voltage output is determined by the external refer-  
ence input voltage applied. The rail-to-rail VREF input to DAC  
V
LDAC  
GND  
SS  
V
V
OUT allows for a full-scale voltage set equal the positive supply  
DD, the negative supply VSS or any value in between.  
An internal power ON reset places both parts in the zero-scale  
state at turn ON. A 40 µA power shutdown (SHDN) feature is  
activated on both parts by tristating the SDI/SHDN pin on the  
AD7304, and tristating the A0/SHDN address pin on the  
AD7305.  
The AD7304’s doubled-buffered serial-data interface offers high  
speed, three-wire, SPI and microcontroller compatible inputs  
using data in (SDI), clock (CLK) and chip select (CS) pins.  
Additionally, an internal power-on reset sets the output to zero  
scale.  
The AD7304/AD7305 are specified over the extended industrial  
(–40°C to +85°C), and the automotive (–40°C to +125°C)  
temperature ranges. AD7304s are available in 16-lead plastic  
DIP (N-16), and wide-body SOL-16 (R-16) packages. The  
parallel input AD7305 is available in the 20-lead plastic DIP  
(N-20), and the SOL-20 (R-20) surface mount package. For  
ultracompact applications the thin 1.1 mm TSSOP-16 (RU-16)  
package will be available for the AD7304, while the TSSOP-20  
(RU-20) will house the AD7305.  
The parallel input AD7305 uses a standard address decode  
along with the WR control line to load data into the input regis-  
ters. The double buffered architecture allows all four input  
registers to be preloaded with new values, followed by a LDAC  
control strobe which copies all the new data into the DAC regis-  
ters thereby updating the analog output values. When operating  
from less than +5.5 V, the AD7305 is pin-compatible with the  
popular industry standard AD7226.  
*Protected under Patent Number 5684481.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
(@ VDD = +3 V or +5 V, VSS = 0 V; or VDD = +5 V and VSS = –5 V, VSS  
V VDD, –40C < TA < +85C/+125C, unless otherwise noted.)  
AD7304/AD7305–SPECIFICATIONS  
REF  
Parameter  
Symbol  
Condition  
3 V 10% 5 V 10% 5 V 10%  
Units  
STATIC PERFORMANCE  
Resolution1  
N
8
8
8
5
Bits  
Integral Nonlinearity2  
Differential Nonlinearity  
Zero-Scale Error  
INL  
DNL  
VZSE  
VFSE  
TCVFS  
1
1
1
1
1
1
15  
4
LSB max  
LSB max  
mV max  
LSB max  
ppm/°C typ4  
Monotonic, All Codes 0 to FFH  
Data = 00H  
Data = FFH  
15  
4
5
15  
4
5
Full-Scale Voltage Error  
Full-Scale Tempco3  
REFERENCE INPUT  
V
REFIN Range  
VREFIN  
RREFIN  
RREFIN  
CREFIN  
VSS/VDD  
VSS/VDD  
VSS/VDD  
V min/max  
ktyp  
ktyp  
pF typ  
Input Resistance (AD7304)  
Input Resistance (AD7305)  
Input Capacitance3  
Code = 55H  
All DACs at Code = 55H  
28  
7.5  
5
28  
7.5  
5
28  
7.5  
5
ANALOG OUTPUTS  
Output Voltage Range  
Output Current Drive  
Shutdown Resistance  
Capacitive Load3  
VOUT  
IOUT  
ROUT  
CL  
VSS/VDD  
3
VSS/VDD  
3
120  
VSS/VDD  
3
120  
V min/max  
mA typ  
ktyp  
Code = 80H, VOUT < 1 LSB  
DAC Outputs Placed in Shutdown State 120  
No Oscillation  
200  
200  
200  
pF typ  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current5  
Input Capacitance3  
VIL  
VIH  
IIL  
0.6  
2.1  
10  
8
0.8  
2.4  
10  
8
0.8  
2.4  
10  
8
V min  
V max  
µA max  
pF max  
CIL  
AC CHARACTERISTICS3  
Output Slew Rate  
Reference Multiplying  
Total Harmonic Distortion  
Settling Time6  
Shutdown Recovery Time  
Time to Shutdown  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
SR  
BW  
THD  
tS  
tSDR  
tSDN  
Q
Code = 00H to FFH to 00H  
Small Signal, VSS = –5 V  
VREF = 4 V p-p, VSS = –5 V, f = 1 kHz  
To 0.1% of Full Scale  
1/2.7  
1/3.6  
1/3.6  
2.6  
0.025  
1.0/2  
2
15  
15  
2
–65  
V/µs min/typ  
MHz typ  
%
µs typ/max  
µs max  
µs typ  
nVs typ  
nVs typ  
dB  
1.1/2  
2
15  
15  
2
1.0/2  
2
15  
15  
2
To 0.1% of Full Scale  
Q
VOUT/VREF Code = 00H, VREF =1 V p-p, f = 100 kHz  
SUPPLY CHARACTERISTICS  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
Power Down  
Power Supply Sensitivity  
IDD  
ISS  
PDISS  
IDD_SD  
PSS  
VLOGIC = 0 V or VDD, No Load  
VSS = –5 V  
VLOGIC = 0 V or VDD, No Load  
SDI/SHDN = Floating  
6
6
6
6
mA max  
mA max  
mW max  
µA typ  
15  
40  
0.004  
30  
40  
0.004  
60  
40  
0.004  
VDD  
=
10%  
%/%  
NOTES  
1One LSB = VREF/256.  
2The first three codes (00H, 01H, 10H) are excluded from the integral nonlinearity error measurement in single supply operation +3 V or +5 V.  
3These parameters are guaranteed by design and not subject to production testing.  
4Typicals represent average readings measured at +25°C.  
5SDI/SHDN and A0/SHDN pins have 30 µA maximum IIL input leakage current.  
6The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground in single supply operation.  
Specifications subject to change without notice.  
5V  
V
= 10V p-p  
REF  
f = 20kHz  
5V  
0V  
0V  
–5V  
V
= 10V p-p  
OUT  
–5V  
(OUT)  
(IN)  
Figure 1. AD7304/AD7305 Rail-to-Rail Reference Input to Output at 20 kHz  
–2–  
REV. A  
AD7304/AD7305  
(@ VDD = +3 V or +5 V, VSS = 0 V; or VDD = +5 V and VSS = –5 V, VSS VREF VDD, –40C < TA <  
+85C/125C, unless otherwise noted.)  
TIMING SPECIFICATIONS  
Parameter  
Symbol  
3 V 10%  
5 V 10%  
5 V 10%  
Units  
INTERFACE TIMING SPECIFICATIONS1, 2  
AD7304 Only  
Clock Width High  
Clock Width Low  
Data Setup  
Data Hold  
Load Pulsewidth  
Load Setup  
Load Hold  
Clear Pulsewidth  
Select  
tCH  
tCL  
tDS  
tDH  
tLDW  
tLD1  
tLD2  
tCLWR  
tCSS  
tCSH  
70  
70  
50  
30  
70  
40  
40  
60  
30  
60  
55  
55  
40  
20  
60  
30  
30  
60  
20  
40  
55  
55  
40  
20  
60  
30  
30  
60  
20  
40  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Deselect  
AD7305 Only  
Data Setup  
Data Hold  
Address Setup  
Address Hold  
Write Width  
Load Pulsewidth  
Load Setup  
tDS  
tDH  
tAS  
tAH  
tWR  
tLDW  
tLS  
60  
30  
60  
30  
60  
60  
60  
30  
40  
20  
40  
20  
50  
50  
40  
20  
40  
20  
40  
20  
50  
50  
40  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Load Hold  
tLH  
NOTES  
1These parameters are guaranteed by design and not subject to production testing.  
2All input control signals are specified with tR = tF = 2 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 V.  
ABSOLUTE MAXIMUM RATINGS*  
ORDERING GUIDE  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +8 V  
Temperature  
Range  
Package  
Description  
Package  
Options  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V, –8 V  
Model  
VREFX to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
Logic Inputs to GND . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
AD7304BN  
AD7304BR  
AD7304YR  
AD7304BRU  
–40°C/+85°C  
–40°C/+85°C  
–40°C/+125°C  
–40°C/+85°C  
16-Lead P-DIP N-16  
16-Lead SOIC R-16  
16-Lead SOIC R-16  
VOUTX to GND . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
IOUT Short Circuit to GND . . . . . . . . . . . . . . . . . . . . . 50 mA  
Package Power Dissipation . . . . . . . . . . . . . . (TJ MAX–TA)/θJA  
Thermal Resistance θJA  
TSSOP-16  
RU-16  
AD7305BN  
AD7305BR  
AD7305YR  
AD7305BRU  
–40°C/+85°C  
–40°C/+85°C  
–40°C/+125°C  
–40°C/+85°C  
20-Lead P-DIP N-20  
20-Lead SOIC R-20  
20-Lead SOIC R-20  
16-Lead Plastic DIP Package (N-16) . . . . . . . . . . 103°C/W  
16-Lead SOIC Package (R-16) . . . . . . . . . . . . . . . 73°C/W  
TSSOP-16 Package (RU-16) . . . . . . . . . . . . . . . . 180°C/W  
20-Lead Plastic DIP Package (N-20) . . . . . . . . . . 120°C/W  
20-Lead SOIC Package (R-20) . . . . . . . . . . . . . . . 74°C/W  
TSSOP-20 Package (RU-20) . . . . . . . . . . . . . . . . 155°C/W  
TSSOP-20  
RU-20  
The AD7304/AD7305 contains 2759 transistors. Die size: 103 mil × 102 mil,  
10,506 sq mil.  
Maximum Junction Temperature (TJ MAX) . . . . . . . . .+150°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature  
N-16 and N-20 (Soldering, 10 secs) . . . . . . . . . . . .+300°C  
R-16, R-20, RU-16, RU-20 (Vapor Phase, 60 secs) . .+215°C  
R-16, R-20, RU-16, RU-20 (Infrared, 15 secs) . . . .+220°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7304/AD7305 features proprietary ESD protection circuitry, permanent dam-  
age may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
3–  
REV. A  
AD7304/AD7305  
SDI  
CLK  
CS  
SA  
SI  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tCSS  
tCSH  
tLD2  
LDAC  
tLD1  
SDI  
tDS  
tDH  
tCH  
tCL  
CLK  
tLDW  
LDAC  
tCLRW  
CLR  
tS  
FS  
1 LSB  
ERROR BAND  
V
OUT  
ZS  
tS  
Figure 2. AD7304 Timing Diagram  
tSDN  
SDI/SHDN  
tSDR  
I
DD  
Figure 3. AD7304 Timing Diagram  
Table I. AD7304 Control Logic Truth Table  
Serial Shift Register Function Input REG Function  
CS  
CLK LDAC CLR  
DAC Register Function  
H
L
+  
H
H
H
X
+  
L
X
X
X
H
H
H
L
H
H
H
H
H
H
–  
+  
No Effect  
Data Advanced 1 Bit  
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
Updated with SR Contents2  
Latched with SR Contents2  
Loaded with 00H  
Latched with 00H  
All Input Register Contents Transferred3  
Loaded with 00H  
Latched with 00H  
No Effect  
NOTES  
1+ positive logic transition; – negative logic transition; X Don’t Care.  
2One Input Register receives the data bits D7–D0 decoded from the SR address bits (A1, A0); where REG A = (0, 0); B = (0, 1); C = (1, 0); D = (1, 1).  
3LDAC is a level-sensitive input.  
Table II. AD7304 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format  
MSB  
B11  
LSB  
B0  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
AD7304 SAC  
SDC  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
If B11 (SAC), Shutdown All Channels, is set to logic LOW, all DACs are placed in a power shutdown mode, all output voltages become high resistance. If B10 (SDC),  
Shutdown Decoded Channel, is set to logic LOW, only the DAC decoded by address bits A1 and A0 is placed in the shutdown mode.  
4–  
REV. A  
AD7304/AD7305  
Table III. AD7305 Control Logic Truth Table  
LDAC Input Register Function DAC Register Function  
WR A1  
A0  
L
+  
L
+  
L
+  
L
+  
H
L
H
H
L
L
L
L
H
H
H
H
X
X
X
X
L
L
H
H
L
H
H
H
H
H
H
H
H
L
REG A Loaded with DB0–DB7  
REG A Latched with DB0–DB7  
REG B Loaded with DB0–DB7  
REG B Latched with DB0–DB7  
REG C Loaded with DB0–DB7  
REG C Latched with DB0–DB7  
REG D Loaded with DB0–DB7  
REG D Latched with DB0–DB7  
No Effect  
Latched with Previous Contents, No Change  
Latched with Previous Contents, No Change  
Latched with Previous Contents, No Change  
Latched with Previous Contents, No Change  
Latched with Previous Contents, No Change  
Latched with Previous Contents, No Change  
Latched with Previous Contents, No Change  
Latched with Previous Contents, No Change  
All Input Register Contents Loaded, Register Transparent  
Register Transparent  
L
H
H
X
X
X
X
L
+  
H
Input REG x Transparent to DB0–DB7  
No Effect  
No Effect, Device Not Selected  
All Input Register Contents Latched  
No Effect, Device Not Selected  
NOTES  
1+ positive logic transition; – negative logic transition; X Don’t Care.  
2LDAC is a level sensitive input.  
PIN CONFIGURATIONS  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
C
D
V
V
B
A
OUT  
tWR  
OUT  
V
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
V
V
V
C
D
V
V
B
A
OUT  
DD  
OUT  
V
OUT  
OUT  
DD  
OUT  
WR  
3
SS  
OUT  
V
tAS  
tAH  
4
A0/SHDN  
A1  
V
REF  
SS  
A
A0, A1  
5
AD7304  
TOP VIEW  
(Not to Scale)  
GND  
V
V
C
D
AD7305  
TOP VIEW  
(Not to Scale)  
REF  
REF  
6
B
WR  
LDAC  
DB7  
DB6  
DB5  
DB4  
tDS  
REF  
tDH  
REF  
7
DB0  
DB1  
DB2  
SDI/SHDN  
CLK  
GND  
D0D7  
8
LDAC  
CLR  
tLS  
tLDW  
9
tLH  
CS  
10  
DB3  
LDAC  
tS  
1 LSB  
ERROR BAND  
V
OUT  
Figure 4. AD7305 Timing Diagram  
tSDN  
A0/SHDN  
tSDR  
I
DD  
Figure 5. AD7305 Timing Diagram  
5–  
REV. A  
AD7304/AD7305  
AD7304 PIN FUNCTION DESCRIPTIONS  
Pin # Name  
Function  
1
VOUT  
VOUT  
VSS  
B
Channel B rail-to-rail buffered DAC voltage output. Full scale set by reference voltage applied to VREFB pin. Output  
is open circuit when SHDN is enabled.  
2
A
Channel A rail-to-rail buffered DAC voltage output. Full scale set by reference voltage applied to VREFA pin. Output  
is open circuit when SHDN is enabled.  
3
4
5
6
7
Negative Power Supply Input. Specified range of operation 0 V to –5.5 V.  
VREFA  
Channel A Reference Input. Establishes VOUTA full-scale voltage. Specified range of operation VSS < VREFA < VDD  
.
VREFB  
Channel B Reference Input. Establishes VOUTB full-scale voltage. Specified range of operation VSS < VREFB < VDD  
.
GND  
Common Analog and Digital Ground.  
LDAC  
Load DAC register strobe, active low. Transfers all four Input Register data into their DAC registers. Asynchronous  
active low input. DAC Register is transparent when LDAC = 0. See Control Logic Truth Table for operation.  
8
9
CLR  
CS  
Clears all Input and DAC registers to the zero condition. Asynchronous active low input. The serial register is not effected.  
Chip Select, Active Low Input. Disables shift register loading when high. Transfers Serial Input Register Data to the  
decoded Input Register when CS returns HIGH. Does not effect LDAC operation.  
10  
11  
CLK  
Clock input, positive edge clocks data into shift register. Disabled by chip select CS.  
SDI/SHDN Serial Data-Input loads directly into the shift register, MSB first. Hardware shutdown (SHDN) control input, active  
when pin is left floating by a three-state logic driver. Does not effect DAC register contents as long as power is  
present on VDD  
Channel D Reference Input. Establishes VOUTD full-scale voltage. Specified range of operation VSS < VREFD < VDD  
Channel C Reference Input. Establishes VOUTC full-scale voltage. Specified range of operation VSS < VREFC < VDD  
.
12  
13  
14  
15  
VREF  
VREF  
VDD  
D
.
C
.
Positive power supply input. Specified range of operation +2.7 V to +5.5 V.  
VOUT  
D
Channel D rail-to-rail buffered DAC voltage output. Full-scale set by reference voltage applied to VREFD pin. Output  
is open circuit when SHDN is enabled.  
16  
V
OUTC  
Channel C rail-to-rail buffered DAC voltage output. Full-scale set by reference voltage applied to VREFC pin. Output  
is open circuit when SHDN is enabled.  
AD7305 PIN FUNCTION DESCRIPTIONS  
Function  
Pin # Name  
1
V
OUTB  
Channel B rail-to-rail buffered DAC voltage output. Full scale set by reference voltage applied to VREFB pin. Output  
is open circuit when SHDN is enabled.  
2
V
OUTA  
Channel A rail-to-rail buffered DAC voltage output. Full scale set by reference voltage applied to VREFA pin. Output  
is open circuit when SHDN is enabled.  
3
4
5
6
VSS  
Negative Power Supply Input. Specified range of operation 0 V to –5.5 V.  
VREF  
GND  
LDAC  
Channel B Reference Input. Establishes VOUT full-scale voltage. Specified range of operation VSS < VREF < VDD  
.
Common Analog and Digital Ground.  
Load DAC register strobe, active low. Transfers all four Input Register data into their DAC registers. Asynchronous  
active low input. DAC Register is transparent when LDAC = 0. See Control Logic Truth Table for operation.  
7
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
WR  
MSB Digital Input Data Bit.  
8
Data Bit 6.  
9
Data Bit 5.  
10  
11  
12  
13  
14  
15  
16  
17  
Data Bit 4.  
Data Bit 3.  
Data Bit 2.  
Data Bit 1.  
LSB Digital Input Data Bit.  
Write data into Input Register control line, active low. See Control Logic Truth Table for operation.  
Address Bit 1.  
A1  
A0/SHDN  
Address Bit 0/Hardware shutdown (SHDN) control input, active when pin is left floating by a three-state logic driver.  
Does not effect DAC register contents as long as power is present on VDD  
.
18  
19  
VDD  
Positive Power Supply Input. Specified range of operation +2.7 V to +5.5 V.  
VOUT  
D
C
Channel D rail-to-rail buffered DAC voltage output. Full scale set by reference voltage applied to VREFD pin. Output  
is open circuit when SHDN is enabled.  
20  
VOUT  
Channel C rail-to-rail buffered DAC voltage output. Full scale set by reference voltage applied to VREFC pin. Output  
is open circuit when SHDN is enabled.  
6–  
REV. A  
Typical Performance CharacteristicsAD7304/AD7305  
144  
120  
96  
72  
48  
24  
0
1.0  
V
V
V
= +5V  
= 5V  
DD  
SS  
= V  
REF  
DD  
0.6  
DATA = 00  
H
DAC D  
0.2  
0.2  
DAC C  
DAC B  
V
V
= +5V  
= 5V  
DD  
SS  
DAC A  
0.6  
1.0  
DATA = 80  
H
T
= +25C  
A
0
3
6
9
12  
15  
5.0  
3.0  
1.0  
1.0  
3.0  
5.0  
V
mV  
REFERENCE INPUT VOLTAGE Volts  
OUT  
Figure 6. IOUTSINK vs. VOUT Rail-to-Rail Performance  
Figure 9. INL vs. Reference Input Voltage  
0.500  
0.375  
35  
V
V
V
= +5V  
= 5V  
DD  
V
V
V
= +5V  
= 5V  
DD  
SS  
SS  
= 2.5V  
REF  
28  
21  
14  
7  
= V  
REF  
DD  
0.250  
DATA = FF  
H
0.125  
0.000  
0.125  
0.250  
0.375  
0.500  
0
0
32  
64  
96  
128  
160  
192  
224  
256  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
CODE Decimal  
V
OUTPUT VOLTAGE Volts  
OUT  
Figure 10. DNL vs. Code  
Figure 7. IOUTSOURCE vs. VOUT Rail-to-Rail Performance  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1
V
V
V
= +5.5V  
DD  
SS  
0
DAC A  
= 0V  
= +5.45V  
1  
REF  
1
0
DAC B  
1  
1
0
V
V
V
= +5V  
= 5V  
DD  
DAC C  
SS  
1  
1
= +2.5V  
REF  
T
= +25C  
A
0
DAC D  
64  
1  
0
32  
96  
128  
160  
192  
224  
256  
55  
35  
15  
5
25  
45  
65  
85  
105  
125  
CODE Decimal  
TEMPERATURE C  
Figure 8. INL vs. Code, All DAC Channels  
Figure 11. Zero Scale Voltage vs. Temperature  
7–  
REV. A  
AD7304/AD7305  
CS  
V
V
= +5V  
DD  
NO LOAD  
= 70kꢃ  
V
C
= +5V  
= 150pF  
DD  
= +4V  
REF  
V
OUT  
L
R
L
DATA = 00  
FF  
H
H
R
= 10kꢃ  
L
0V  
5V  
0V  
V
OUT  
CS  
5s/DIV  
2s/DIV  
Figure 15. Time to Shutdown  
Figure 12. Large-Signal Settling Time  
CS  
5V  
DATA = FF  
V
H
REFIN  
I
DD  
(5V @  
50kHz)  
0V  
5V  
5V  
1mA/V  
V
= +5V  
DD  
0V  
V
OUT  
V
OUTA  
5V  
2s/DIV  
Figure 13. Multiplying Mode Step Response and Output  
Slew Rate  
Figure 16. Shutdown Recovery Time (Wakeup)  
6
10  
V
V
= +5V  
= 5V  
DD  
A
SS  
V
V
= +5V  
= 5V  
DD  
SS  
DATA = FF  
H
4
0
V
= 100mV rms  
REF  
1
0.1  
f3dB = 2.6MHz  
4  
0.010  
0.001  
6  
8  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
10m  
1
2
3
V
4
5
6
7
8
9
10  
AMPLITUDE V p-p  
REF  
Figure 14. Multiplying Mode Gain vs. Frequency  
Figure 17. THD vs. Reference Input Amplitude  
8–  
REV. A  
AD7304/AD7305  
1
A
V
V
= +5V  
= 5V  
DD  
SS  
V
V
V
= +5V  
= 5V  
DD  
SS  
= 2.5V  
REF  
0.1  
V
OUT  
F = 1MHz  
DATA = 80  
7F  
H
H
0.010  
0.001  
CS  
20  
100  
1k  
10k  
100k  
FREQUENCY Hz  
Figure 18. THD vs. Frequency  
Figure 21. Midscale Transition Glitch  
3.0  
2.4  
1.8  
40  
20  
0
V
V
V
= +5V  
= 5V  
V
V
V
= +5V  
= 5V  
DD  
SS  
DD  
SS  
= 4V  
= 50mV rms  
REF  
REF  
DATA = FF  
DAC A DATA = FF  
DAC B, C, D DATA = 00  
H
H
20  
40  
H
60  
80  
1.2  
0.6  
0
100  
120  
140  
160  
V
OUTB  
CT = 20 LOG  
V
REF  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 22. Crosstalk vs. Frequency  
Figure 19. Output Noise Voltage Density vs. Frequency  
60  
50  
40  
PSRR, V = 5V ꢀ ꢄ10%  
SS  
+PSRR, V = +5V ꢀ ꢄ10%  
DD  
V
PSRR, V = 3V ꢀ ꢄ10%  
SS  
OUTB  
30  
20  
10  
0
+PSRR, V = +3V ꢀ ꢄ10%  
DD  
V
V
V
= +5V  
= 5V  
DD  
SS  
= 2.5V  
REF  
DAC A = FF  
DAC B = OO  
F = 2MHz  
H
H
CLK  
DATA = 80  
H
T
= +25C  
A
10  
100  
1k  
10k  
100k  
50ns/DIV  
FREQUENCY Hz  
Figure 23. Power Supply Rejection vs. Frequency  
Figure 20. Digital Feedthrough  
9–  
REV. A  
AD7304/AD7305  
80  
70  
60  
50  
40  
12  
V
V
V
= +5V  
= 5V  
= 2.5V  
V
V
V
= +5.5V  
= 5.5V  
= 2.5V  
DD  
SS  
DD  
SS  
10  
8
REF  
REF  
A0 = 5V  
ALL OTHER DIGITAL  
PINS VARYING  
PIN A0 FLOATING  
6
I
DD  
4
I
SS  
2
30  
20  
0
0
1
2
3
4
5
55  
35  
15  
5
25  
45  
65  
85  
105  
125  
DIGITAL INPUT VOLTAGE Volts  
TEMPERATURE C  
Figure 24. Supply Current vs. Digital Input Voltage  
Figure 27. Shutdown Supply Current vs. Temperature  
10.0000  
1.0000  
0.08  
READING MADE AT T = +25C  
SAMPLE SIZE = 924 UNITS  
A
0.04  
0
V
V
V
= +5V  
= 5V  
DD  
0.1000  
0.0100  
SS  
V
= 2.7V  
DD  
= 2.5V  
REF  
ALL DIGITAL PINS VARY,  
EXCEPT A0 = 5V  
I
DD  
V
= 5.5V  
DD  
0.04  
0.08  
I
0.0010  
0.0001  
SS  
0
1
2
3
4
5
0
84  
168  
252  
336  
420  
504  
DIGITAL INPUT VOLTAGE Volts  
DEGREES CELCIUS  
Figure 25. Shutdown Supply Current vs. Digital Input  
Voltage (A0 Only)  
Figure 28. Normalized TUE Drift Accelerated by Burn-In  
Hours of Operation @ 150°C  
5.0  
V
V
V
= +5V  
= 5V  
DD  
SS  
= 2.5V  
4.4  
3.8  
3.2  
2.6  
2.0  
REF  
I
AND I  
SS  
DD  
55  
35  
15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE C  
Figure 26. Supply Current vs. Temperature  
10–  
REV. A  
AD7304/AD7305  
directly to the same supply as the VDD or VSS pin (Figure 30).  
Under these conditions clean power supply voltages (low ripple,  
avoid switching supplies) appropriate for the application should  
be used.  
CIRCUIT OPERATION  
The AD7304/AD7305 are a set of four-channel, 8-bit, voltage-  
output, digital-to-analog converters differing primarily in digital  
logic interface and number of reference inputs. Both parts share  
the same internal DAC design and true rail-to-rail output buff-  
ers. The AD7304 contains four independent multiplying refer-  
ence inputs, while the AD7305 has one common reference input.  
The AD7304 uses a 3-wire SPI compatible serial data interface,  
while the AD7305 offers a 8-bit parallel data interface.  
V
DD  
Q1  
V
X
OUT  
120kꢃ  
Q2  
D/A Converter Section  
Each part contains four voltage-switched R-2R ladder DACs.  
Figure A shows a typical equivalent DAC. These DACs are  
designed to operate both single-supply or dual supply, depend-  
ing on whether the user supplies a negative voltage on the VSS  
pin. In a single-supply application the VSS is tied to ground. In  
either mode the DAC output voltage is determined by the VREF  
input voltage and the digital data (D) loaded into the corre-  
sponding DAC register according to Equation 1.  
V
SS  
Figure 30. Equivalent DAC Amplifier Output Circuit  
AD7304 SERIAL DATA INTERFACE  
The AD7304 uses a 3-wire (CS, SDI, CLK) SPI compatible  
serial data interface. New serial data is clocked into the serial  
input register in a 12-bit data-word format. MSB bits are loaded  
first. Table II defines the 12 data-word bits. Data is placed on  
the SDI/SHDN pin and clocked into the register on the positive  
clock edge of CLK subject to the data setup and data hold time  
requirements specified in the TIMING SPECIFICATIONS.  
Data can only be clocked in while the CS chip select pin is  
active low. Only the last 12-bits clocked into the serial register  
will be interrogated when the CS pin returns to the logic high  
state, extra data bits are ignored. Since most microcontrollers  
output serial data in 8-bit bytes, two right justified data bytes  
can be written to the AD7304. Keeping the CS line low between  
the first and second byte transfer will result in a successful serial  
register update.  
V
OUT = VREF × D/256  
(1)  
Note that the output full-scale polarity is the same as the VREF  
polarity for dc reference voltages.  
V
DD  
V
REF  
DB7  
DB6  
V
OUT  
2R  
2R  
R
V
SS  
DB0  
2R  
Once the data is properly aligned in the shift register the positive  
edge of the CS initiates either the transfer of new data to the  
target DAC register, determined by the decoding of address bits  
A1 and A0, or the shutdown features will be activated based on  
the SAC or SDC bits. When either SAC or SDC pins are set  
(Logic = 0) the loading of new data determined by Bits B9 to  
B0 are still loaded, but the results do not appear on the buffer  
outputs until the device is brought out of the shutdown state.  
The selected DAC output voltages become high impedance with  
a nominal resistance of 120 kto ground, Figure 30. If both  
SAC and SDC pins are set, all channels are still placed in the  
shutdown mode. When the AD7304 has been programmed into  
the power shutdown state, the present DAC register data is  
maintained as long as VDD remains greater than 2.7 volts. The  
remaining characteristics of the software serial interface are  
defined by Tables I, II and Figure 3 timing diagram.  
2R  
Figure 29. Typical Equivalent DAC Channel  
These DACs are also designed to accommodate ac reference  
input signals. As long as the ac signals are maintained between  
VSS < VREF <VDD, the user can expect 50 kHz of full-power  
multiplying bandwidth performance. In order to use negative  
input reference voltages, the VSS pin must be biased with a nega-  
tive voltage of equal or greater magnitude than the reference  
voltage.  
The reference inputs are code-dependent, exhibiting worst case  
minimum resistance values specified in the parametric specifica-  
tion table. The DAC outputs VOUTA, B, C, D are each capable  
of driving 2 kloads in parallel with up to 500 pF loads. Output  
source and sink current is shown in Figures 6 and 7. The output  
slew rate is nominally 3.6 V/µs while operating from 5 V sup-  
plies. The low output impedance of the buffers minimizes  
crosstalk between analog input channels. At 100 kHz, 65 dB of  
channel-to-channel isolation exists (Figure 22). Output voltage  
noise is plotted in Figure 19. In order to maintain good analog  
performance, power supply bypassing of 0.01 µF in parallel with  
1 µF is recommended. The true rail-to-rail capability of the  
AD7304/AD7305 allows the user to connect the reference inputs  
Two additional pins CLR and LDAC on the AD7304 provide  
hardware control over the clear function and the DAC Register  
loading. If these functions are not needed the CLR pin can be  
tied to logic high, and the LDAC pin can be tied to logic low.  
The asynchronous input CLR pin forces all input and DAC  
registers to the zero-code state. The asynchronous LDAC pin  
can be strobed to active low when all DAC Registers need to be  
updated simultaneously from their respective Input Registers.  
The LDAC pin places the DAC Register in a transparent mode  
while in the logic low state.  
11–  
REV. A  
AD7304/AD7305  
VREF  
A
VREF  
B
VREF  
C
VREF  
D
VDD  
VREF  
VDD  
EN  
CS  
CLK  
AD7304  
8
AD7305  
DATA  
DB0DB7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
INPUT  
REGISTER  
DAC A  
INPUT  
DAC A  
DAC A  
DAC A  
OE  
WR  
VOUT  
A
B
V
OUTA  
REGISTER  
OE  
REGISTER  
REGISTER  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
SDI  
g
8
D
Q
DACA  
DAC A  
INPUT  
REGISTER  
DAC B  
REGISTER  
INPUT  
REGISTER  
DAC B  
REGISTER  
DAC B  
OE  
A1  
DAC B  
OE  
VOUT  
VOUT  
B
B
C
B
C
2:4  
DECODE  
2:4  
DECODE  
A0  
A1  
g
A0/SHDN  
D
D
D
Q
SDC  
SAC  
INPUT  
REGISTER  
DAC C  
REGISTER  
DAC C  
OE  
INPUT  
REGISTER  
DAC C  
REGISTER  
DAC C  
OE  
VOUT  
C
D
VDD  
VOUT  
C
D
g
V
DD  
640k680kꢃ  
D
Q
640kꢃ  
680kꢃ  
DAC D  
REGISTER  
INPUT  
REGISTER  
DAC D  
OE  
DAC D  
REGISTER  
INPUT  
REGISTER  
DAC D  
OE  
VOUT  
VOUT  
80kꢃ  
g
D
80kꢃ  
Q
POWER-  
ON  
RESET  
POWER-  
ON  
RESET  
280k320kꢃ  
280kꢃ  
320kꢃ  
VSS  
GND  
LDAC  
CLR  
VSS  
GND  
LDAC  
Figure 31. AD7304 Equivalent Logic Interface  
AD7304 Hardware Shutdown SHDN  
Figure 32. AD7305 Equivalent Logic Interface  
the same time. This will result in the analog outputs all chang-  
ing to their new values at the same time. The LDAC pin is a  
level-sensitive input. If the simultaneous update feature is not  
required the LDAC pin can be tied to logic low. When the  
LDAC is tied to logic low, the DAC Registers become transpar-  
ent and the Input Register data determines the DAC output  
voltage. See Figure 32 for an equivalent interface logic diagram.  
If a three-state driver is used on the SDI/SHDN pin, the AD7304  
can be placed into a power shutdown mode when the SDI/  
SHDN pin is placed in a high impedance state. For proper  
operation no other termination voltages should be present on  
this pin. An internal window comparator will detect when the  
logic voltage on the SHDN pin is between 28% and 36% of  
VDD. A high impedance internal bias generator provides this  
voltage on the SHDN pin. The four DAC output voltages be-  
come high impedance with a nominal resistance of 120 kto  
ground. See Figure 30 for an equivalent circuit.  
AD7226 Pin Compatibility  
By tying the LDAC pin to ground, the AD7305 has the same  
pin out and functionality as the AD7226, with the exception of  
a lower power supply operating voltage.  
AD7305 Hardware Shutdown SHDN  
AD7304/AD7305 POWER ON RESET  
If a three state driver is used on the A0/SHDN pin, the AD7305  
can be placed into a power shutdown mode when the A0/SHDN  
pin is placed in a high impedance state. For proper operation no  
other termination voltages should be present on this pin. An  
internal window comparator will detect when the logic voltage  
on the SHDN pin is between 28% and 36% of VDD. A high  
impedance internal bias generator provides this voltage on the  
SHDN pin. The four DAC output voltages become high imped-  
ance with a nominal resistance of 120 kto ground.  
When the VDD power supply is turned on, an internal reset  
strobe forces all the Input and DAC registers to the zero-code  
state. The VDD power supply should have a monotonically in-  
creasing ramp in order to have consistent results, especially in  
the region of VDD = 1.5 V to 2.3 V. The VSS supply has no effect  
on the power ON reset performance. The DAC register data  
will stay at zero until a valid serial register software load takes  
place. In the case of the double buffered AD7305 the output  
DAC register can only be changed once the LDAC strobe is  
initiated.  
ESD Protection Circuits  
All logic input pins contain back-biased ESD protection Zeners  
connected to ground (GND). The VREF pins also contain a  
back-biased ESD protection Zener connected to VDD (see  
Figure 33).  
AD7305 PARALLEL DATA INTERFACE  
The AD7305 has an 8-bit parallel interface DB7 = MSB,  
DB0 = LSB. Two address Bits A1 and A0 are decoded when an  
active low write strobe is placed on the WR pin, see Table III.  
The WR is a level-sensitive input pin, therefore the data setup  
and data hold times defined in the TIMING SPECIFICATIONS  
need to be adhered to.  
DIGITAL  
INPUTS  
V
DD  
V
X
REF  
The LDAC pin provides the capability of simultaneously updat-  
ing all DAC registers with new data from the Input Registers at  
GND  
Figure 33. Equivalent ESD Protection Circuits  
12–  
REV. A  
AD7304/AD7305  
APPLICATIONS  
+5V  
10kꢃ  
10kꢃ  
The AD7304/AD7305 is inherently a 2-quadrant multiplying  
D/A converter. That is, it can easily be set up for unipolar out-  
put operation. The full-scale output polarity is the same as the  
reference input voltage polarity.  
5V < V  
< +5V  
OUT  
AD7304  
REF  
In some applications it may be necessary to generate the full  
4-quadrant multiplying capability or a bipolar output swing.  
This is easily accomplished using an external true rail-to-rail op  
amp, such as the OP295. Connecting the external amplifier with  
two equal value resistors as shown in Figure 34 results in a full  
4-quadrant multiplying circuit. In this circuit the amplifier pro-  
vides a gain of two, which increases the output span magnitude  
to 10 volts. The transfer equation of this circuit shows that both  
negative and positive output voltages are created as the input  
data (D) is incremented from code zero (VOUT = –5 V) to mid-  
scale (VOUT = 0 V) to full scale (VOUT = +5 V).  
Figure 34. Four-Quadrant Multiplying Application Circuit  
V
OUT = (D/128 –1) × VREF  
(2)  
13–  
REV. A  
AD7304/AD7305  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
20-Lead SOIC  
(R-20)  
16-Lead Wide SOIC  
(R-16)  
0.5118 (13.00)  
0.4961 (12.60)  
0.4133 (10.50)  
0.3977 (10.00)  
20  
11  
16  
9
1
10  
1
8
0.1043 (2.65)  
0.0926 (2.35)  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
PIN 1  
0.0291 (0.74)  
0.0098 (0.25)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45ꢂ  
x 45ꢂ  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0157 (0.40)  
0.0500 (1.27)  
0.0157 (0.40)  
8ꢂ  
0ꢂ  
8ꢂ  
0ꢂ  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
16-Lead Plastic DIP  
(N-16)  
20-Lead Plastic DIP  
(N-20)  
1.060 (26.90)  
0.925 (23.50)  
0.840 (21.33)  
0.745 (18.93)  
20  
1
11  
10  
16  
1
9
8
0.280 (7.11)  
0.240 (6.10)  
0.280 (7.11)  
0.240 (6.10)  
0.325 (8.25)  
0.300 (7.62)  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
0.195 (4.95)  
0.115 (2.93)  
PIN 1  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.060 (1.52)  
0.015 (0.38)  
0.210 (5.33)  
MAX  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
16-Lead TSSOP  
(RU-16)  
20-Lead Thin Surface Mount (TSSOP)  
(RU-20)  
0.201 (5.10)  
0.193 (4.90)  
0.260 (6.60)  
0.252 (6.40)  
16  
20  
11  
10  
9
8
1
1
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8ꢂ  
0ꢂ  
0.028 (0.70)  
0.020 (0.50)  
8ꢂ  
0ꢂ  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
BSC  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
14–  
REV. A  

相关型号:

AD7305YR-REEL

3 V/5 V, Rail-to-Rail Quad, 8-Bit DAC
ADI

AD7305YRZ

+3V/+5V, Rail-to-Rail Quad, 8-Bit DAC Parallel-IN
ADI

AD7305YRZ

PARALLEL, 8 BITS INPUT LOADING, 1 us SETTLING TIME, 8-BIT DAC, PDSO20, MS-013AC, SOIC-20
ROCHESTER

AD7305YRZ-REEL

+3V/+5V, Rail-to-Rail Quad, 8-Bit DAC Parallel-IN
ADI

AD7305YRZ-REEL

PARALLEL, 8 BITS INPUT LOADING, 1 us SETTLING TIME, 8-BIT DAC, PDSO20, MS-013AC, SOIC-20
ROCHESTER

AD7305_15

3 V/5 V, Rail-to-Rail Quad, 8-Bit DAC
ADI

AD7306

+5 V Powered RS-232/RS-422 Transceiver
ADI

AD7306AN

+5 V Powered RS-232/RS-422 Transceiver
ADI

AD7306AN

LINE TRANSCEIVER, PDIP24, PLASTIC, DIP-24
ROCHESTER

AD7306ANZ

+5 V Powered RS-232/RS-422 Transceiver
ADI

AD7306ANZ

LINE TRANSCEIVER, PDIP24, PLASTIC, DIP-24
ROCHESTER

AD7306AR

+5 V Powered RS-232/RS-422 Transceiver
ADI