AD7305BRUZ [ADI]

3 V/5 V, Rail-to-Rail Quad, 8-Bit DAC; 3 V / 5 V ,轨到轨四路, 8位DAC
AD7305BRUZ
型号: AD7305BRUZ
厂家: ADI    ADI
描述:

3 V/5 V, Rail-to-Rail Quad, 8-Bit DAC
3 V / 5 V ,轨到轨四路, 8位DAC

转换器 数模转换器 光电二极管 PC
文件: 总20页 (文件大小:902K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 V/5 V, Rail-to-Rail  
Quad, 8-Bit DAC  
AD7304/AD7305  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Four 8-bit DACs in one package  
V
B
V
A
V
REF  
REF  
DD  
+3 V, +5 V, and 5 V operation  
8
8
8
8
8
PWR-ON  
RESET  
INPUT  
REG A  
DAC A  
REG  
V
V
V
V
A
B
C
D
DAC A  
DAC B  
DAC C  
DAC D  
Rail-to-rail REF input to voltage output swing  
2.6 MHz reference multiplying bandwidth  
Internal power-on reset  
SPI serial interface-compatible—AD7304  
Fast parallel interface—AD7305  
40 µA power shutdown  
OUT  
8
8
8
8
INPUT  
REG B  
DAC B  
REG  
OUT  
CS  
INPUT  
REG C  
DAC C  
REG  
OUT  
OUT  
SERIAL  
REG  
SDI/SHDN  
CLK  
INPUT  
REG D  
DAC D  
REG  
APPLICATIONS  
Automotive output span voltage  
Instrumentation, digitally controlled calibration  
Pin-compatible AD7226 replacement when VDD < 5.5 V  
AD7304  
V
GND  
V
C V  
D
REF  
SS  
REF  
CLR LDAC  
Figure 1.  
V
8
V
REF  
DD  
GENERAL DESCRIPTION  
8
PWR-ON  
RESET  
INPUT  
REG A  
DAC A  
The AD7304/AD73051 are quad, 8-bit DACs that operate from  
a single +3 V to +5 V supply, or 5 V supplies. The AD7304 has  
a serial interface, while the AD7305 has a parallel interface.  
Internal precision buffers swing rail-to-rail. The reference input  
range includes both supply rails, allowing for positive or negative  
full-scale output voltages. Operation is guaranteed over the  
supply voltage range of 2.7 V to 5.5 V, consuming less than  
9 mW from a 3 V supply.  
V
V
A
DAC A  
DAC B  
DAC C  
DAC D  
OUT  
REG  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
8
8
8
8
8
INPUT  
REG B  
DAC B  
B
OUT  
REG  
8
INPUT  
REG C  
DAC C  
V
V
C
D
OUT  
OUT  
REG  
8
8
INPUT  
REG D  
DAC D  
REG  
WR  
A0/SHDN  
A1  
DECODE  
AD7305  
V
SS  
GND  
LDAC  
The full-scale voltage output is determined by the external  
reference input voltage applied. The rail-to-rail VREF input to  
DAC VOUT allows for a full-scale voltage set equal to the positive  
supply, VDD, the negative supply, VSS, or any value in between.  
Figure 2.  
When operating from less than 5.5 V, the AD7305 is  
pin-compatible with the popular industry-standard AD7226.  
The AD7304s doubled-buffered serial data interface offers high  
speed, 3-wire, SPI®-, and microcontroller-compatible inputs  
An internal power-on reset places both parts in the zero-scale  
state at turn-on. A 40 µA power shutdown (SHDN) feature is  
activated on both parts by three-stating the SDI/SHDN pin on  
the AD7304 and three-stating the A0/SHDN address pin on the  
AD7305.  
CS  
using data in (SDI), clock (CLK), and chip select ( ) pins.  
Additionally, an internal power-on reset sets the output to zero  
scale.  
The parallel input AD7305 uses a standard address decode  
The AD7304/AD7305 are specified over the extended industrial  
−40°C to +85°C and the automotive −40°C to +125°C  
temperature ranges. AD7304s are available in a wide-body  
16-lead SOIC (R-16) package. The parallel input AD7305 is  
available in the wide-body 20-lead SOIC (R-20) surface-mount  
package. For ultracompact applications, the thin 1.1 mm,  
16-lead TSSOP (RU-16) package is available for the AD7304,  
while the 20-lead TSSOP (RU-20) houses the AD7305.  
WR  
along with the  
registers.  
control line to load data into the input  
The double-buffered architecture allows all four input registers  
LDAC  
to be preloaded with new values, followed by an  
control  
strobe that copies all the new data into the DAC registers,  
thereby updating the analog output values.  
_____________________________________________________  
1 Protected under Patent No. 5684481.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
 
AD7304/AD7305  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 10  
Circuit Operation ........................................................................... 14  
DAC Section................................................................................ 14  
AD7304 Serial Data Interface ....................................................... 15  
AD7304 Hardware Shutdown SHDN...................................... 15  
AD7304/AD7305 Power-On Reset.......................................... 15  
Power up sequence..................................................................... 15  
AD7305 Parallel Data Interface.................................................... 16  
AD7226 Pin Compatibility ....................................................... 16  
AD7305 Hardware Shutdown SHDN...................................... 16  
ESD Protection Circuits ............................................................ 16  
Applications..................................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Revision History  
11/04—Data Sheet Changed from Rev. B to Rev. C  
Update Format ....................................................................Universal  
Update Features ................................................................................ 1  
Changes to Figure 35...................................................................... 15  
Add Power-Up Sequence............................................................... 15  
Changes to Figure 36...................................................................... 16  
Change to Figure 37 ....................................................................... 16  
Updated Outline Dimensions....................................................... 18  
2/04—Data Sheet Changed from Rev. A to Rev. B  
Renumber TPCs and Figures............................................Universal  
Deleted N-16 and N-20 packages.....................................Universal  
Changes to Absolute Maximum Ratings....................................... 3  
Changes to Ordering Guide ............................................................ 4  
Updated Outline Dimensions....................................................... 14  
3/98—Changed from Rev. 0 to Rev. A  
2/98—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
AD7304/AD7305  
SPECIFICATIONS  
@ VDD = 3 V or 5 V, VSS = 0 V; or VDD = +5 V and VSS = –5 V, VSS ≤ VREF ≤ VDD, −40°C < TA < +85°C/+125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Condition  
3 V 10%  
5 V 10%  
5 V 10% Unit  
STATIC PERFORMANCE  
Resolution1  
Integral Nonlinearity2  
Differential Nonlinearity  
Zero-Scale Error  
Full-Scale Voltage Error  
Full-Scale Temperature  
Coefficient3  
N
8
8
8
5
Bits  
LSB max  
INL  
DNL  
VZSE  
VFSE  
TCVFS  
1
1
1
Monotonic, all codes 0 to 0xFF  
Data = 0x00  
Data = 0xFF  
1
1
1
15  
4
LSB max  
mV max  
LSB max  
ppm/°C typ4  
15  
4
5
15  
4
5
REFERENCE INPUT  
VREFIN Range  
Input Resistance (AD7304) RREFIN  
Input Resistance (AD7305) RREFIN  
Input Capacitance3  
VREFIN  
VSS/VDD  
28  
7.5  
VSS/VDD  
28  
7.5  
VSS/VDD  
28  
7.5  
V min/max  
kΩ typ  
kΩ typ  
Code = 0x55  
All DACs at code = 0x55  
CREFIN  
5
5
5
pF typ  
ANALOG OUTPUTS  
Output Voltage Range  
Output Current Drive  
Shutdown Resistance  
VOUT  
IOUT  
ROUT  
VSS/VDD  
3
120  
VSS/VDD  
3
120  
VSS/VDD  
3
120  
V min/max  
mA typ  
kΩ typ  
Code = 0x80, ∆VOUT < 1 LSB  
DAC outputs placed in shutdown  
state  
Capacitive Load3  
LOGIC INPUTS  
CL  
No oscillation  
200  
200  
200  
pF typ  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current5  
Input Capacitance3  
AC CHARACTERISTICS3  
Output Slew Rate  
Reference Multiplying  
Total Harmonic Distortion  
Settling Time6  
Shutdown Recovery Time  
Time to Shutdown  
DAC Glitch  
Digital Feedthrough  
Feedthrough  
VIL  
VIH  
IIL  
0.6  
2.1  
10  
8
0.8  
2.4  
10  
8
0.8  
2.4  
10  
8
V min  
V max  
µA max  
pF max  
CIL  
SR  
Code = 0x00 to 0xFFto 0x00  
Small signal, VSS = –5 V  
1/2.7  
1/3.6  
1.0/3.6  
2.6  
V/µs min/typ  
MHz typ  
%
µs typ/max  
µs max  
µs typ  
nVs typ  
nVs typ  
dB  
BW  
THD  
tS  
tSDR  
tSDN  
Q
VREF = 4 V p-p, VSS = –5 V, f = 1 kHz  
To 0.1% of full scale  
To 0.1% of full scale  
0.025  
1.0/2  
2
15  
15  
1.1/2  
2
15  
15  
2
1.0/2  
2
15  
15  
2
Q
2
VOUT/VREF  
Code = 0x00, VREF = 1 V p-p, f = 100 kHz  
−65  
SUPPLY CHARACTERISTICS  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
Power Down  
Power Supply Sensitivity  
IDD  
ISS  
PDISS  
IDD_SD  
PSS  
VLOGIC = 0 V or VDD, no load  
VSS = –5 V  
VLOGIC = 0 V or VDD, no load  
SDI/SHDN = floating  
6
6
6
6
mA max  
mA max  
mW max  
µA typ  
15  
40  
0.004  
30  
40  
0.004  
60  
40  
0.004  
∆VDD  
=
10%  
%/%  
1 One LSB = VREF/256.  
2 The first three codes (0x00, 0x01, 0x10) are excluded from the integral nonlinearity error measurement in single-supply operation 3 V or 5 V.  
3 These parameters are guaranteed by design and not subject to production testing.  
4 Typical specifications represent average readings measured at 25°C.  
5 The SDI/SHDN and A0/SHDN pins have a 30 µA maximum IIL input leakage current.  
6 The settling time specification does not apply for negative going transitions within the last three LSBs of ground in single-supply operation.  
Rev. C | Page 3 of 20  
 
 
 
 
 
 
 
AD7304/AD7305  
+5V  
V
= 10V p-p  
REF  
f = 20kHz  
+5V  
0V  
0V  
–5V  
V
= 10V p-p  
OUT  
–5V  
(OUT)  
(IN)  
Figure 3. Rail-to-Rail Reference Input to Output at 20 kHz  
TIMING SPECIFICATIONS  
@ VDD = 3 V or 5 V, VSS = 0 V; or VDD = +5 V and VSS = –5 V, VSS ≤ VREF ≤ VDD, –40°C < TA < +85°C/+125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
3 V 10%  
5 V 10%  
5 V 10%  
Unit  
INTERFACE TIMING SPECIFICATIONS1, 2  
AD7304 Only  
Clock Width High  
Clock Width Low  
Data Setup  
tCH  
tCL  
tDS  
tDH  
tLDW  
tLD1  
tLD2  
tCLWR  
tCSS  
tCSH  
70  
70  
50  
30  
70  
40  
40  
60  
30  
60  
55  
55  
40  
20  
60  
30  
30  
60  
20  
40  
55  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
55  
40  
20  
60  
30  
30  
60  
20  
40  
Data Hold  
Load Pulse Width  
Load Setup  
Load Hold  
Clear Pulse Width  
Select  
Deselect  
AD7305 Only  
Data Setup  
tDS  
tDH  
tAS  
tAH  
tWR  
tLDW  
tLS  
60  
30  
60  
30  
60  
60  
60  
30  
40  
20  
40  
20  
50  
50  
40  
20  
40  
20  
40  
20  
50  
50  
40  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Data Hold  
Address Setup  
Address Hold  
Write Width  
Load Pulse Width  
Load Setup  
Load Hold  
tLH  
1 These parameters are guaranteed by design and not subject to production testing.  
2 All input control signals are specified with tR = tF = 2 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 V.  
Rev. C | Page 4 of 20  
 
 
 
AD7304/AD7305  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability.  
Rating  
VDD to GND  
0.3 V, +8 V  
+0.3 V, 8 V  
VSS, VDD  
VSS to GND  
VREFX to GND  
Logic Inputs to GND  
VOUTX to GND  
0.3 V, VDD + 0.3 V  
0.3 V, VDD + 0.3 V  
50 mA  
IOUT Short-Circuit to GND  
Package Power Dissipation  
(TJ MAX – TA)/θJA  
Thermal Resistance θJA  
16-Lead SOIC Package (R-16)  
16-Lead TSSOP Package (RU-16)  
20-Lead SOIC Package (R-20)  
20-Lead TSSOP Package (RU-20)  
73°C/W  
180°C/W  
74°C/W  
155°C/W  
Maximum Junction Temperature (TJ MAX  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature  
)
150°C  
40°C to +85°C  
65°C to +150°C  
R-16, R-20, RU-16, RU-20 (Vapor Phase, 60 sec) 235°C  
R-16, R-20, RU-16, RU-20 (Infrared, 15 sec)  
220°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 5 of 20  
 
AD7304/AD7305  
SA  
SI  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
CLK  
tCSS  
tCSH  
CS  
tLD2  
LDAC  
tLD1  
SDI  
tDS  
tDH  
tCH  
tCL  
CLK  
tLDW  
LDAC  
tCLRW  
CLR  
FS  
tS  
±1 LSB  
ERROR BAND  
V
OUT  
ZS  
tS  
Figure 4. AD7304 General Timing Diagram  
tSDN  
tSDR  
SDI/SHDN  
I
DD  
Figure 5. AD7304 Timing Diagram Zoom In  
Table 4. AD7304 Control Logic Truth Table  
CLK1 LDAC CLR1 Serial Shift Register Function Input REG Function  
1
CS  
DAC Register Function  
H
L
X
H
H
H
L
H
H
No effect  
Data advanced 1 bit  
No effect  
No effect  
No effect  
No effect  
No effect  
+  
L
H
Updated with SR contents2 No effect  
Latched with SR contents2  
+  
H
H
H
X
H
No effect  
All input register contents transferred3  
X
H
H
No effect  
Loaded with 0x00  
Loaded with 0x00  
Latched with 0x00  
–  
+  
X
No effect  
Latched with 0x00  
1 + positive logic transition; – negative logic transition; X Don’t Care.  
2 One input register receives the data bits D7–D0 decoded from the SR address bits (A1, A0), where REG A = (0, 0), B = (0, 1), C = (1, 0), and D = (1, 1).  
3 LDAC  
is a level-sensitive input.  
Table 5. AD7304 Serial Input Register Data Format, Data is Loaded in MSB-First Format  
MSB  
B11  
LSB  
B0  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
AD7304 SAC  
SDC  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
If B11 (SAC), Shutdown All Channels, is set to logic low, all DACs are placed in a power shutdown mode, and all output voltages become  
high resistance. If B10 (SDC), Shutdown Decoded Channel, is set to logic low, only the DAC decoded by Address Bits A1 and A0 is placed  
in shutdown mode.  
Rev. C | Page 6 of 20  
 
 
 
 
 
 
 
 
AD7304/AD7305  
Table 6. AD7305 Control Logic Truth Table  
WR 1  
A1  
A0  
LDAC2 Input Register Function  
DAC Register Function  
L
L
L
L
L
H
H
H
H
H
H
H
H
L
Register A loaded with DB0 to DB7  
Latched with previous contents, no change  
Latched with previous contents, no change  
Latched with previous contents, no change  
Latched with previous contents, no change  
Latched with previous contents, no change  
Latched with previous contents, no change  
Latched with previous contents, no change  
Latched with previous contents, no change  
All input register contents loaded, register transparent  
Register transparent  
Register A latched with DB0 to DB7  
Register B loaded with DB0 to DB7  
Register B latched with DB0 to DB7  
Register C loaded with DB0 to DB7  
Register C latched with DB0 to DB7  
Register D loaded with DB0 to DB7  
Register D latched with DB0 to DB7  
No effect  
+  
L
L
L
H
H
L
+  
L
H
H
H
H
X
X
X
X
L
+  
L
H
H
X
X
X
X
+  
H
L
L
Input register x transparent to DB0 to DB7  
No effect  
H
All input register contents latched  
+  
H
H
No effect, device not selected  
No effect, device not selected  
1 + positive logic transition; – negative logic transition; X don’t care.  
2 LDAC  
is a level-sensitive input.  
tWR  
WR  
tAS  
tAH  
A0, A1  
tDS  
tDH  
D0–D7  
LDAC  
tLS  
tLDW  
tLH  
tS  
±1 LSB  
ERROR BAND  
V
OUT  
Figure 6. AD7305 General Timing Diagram  
tSDN  
tSDR  
A0/SHDN  
I
DD  
Figure 7. AD7305 Timing Diagram Zoom In  
Rev. C | Page 7 of 20  
 
 
 
AD7304/AD7305  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
V
B
A
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
V
V
V
V
V
C
D
OUT  
OUT  
OUT  
DD  
OUT  
V
SS  
AD7304  
V
V
A
B
C
REF  
REF  
REF  
REF  
TOP VIEW  
(Not to Scale)  
D
GND  
11 SDI/SHDN  
10 CLK  
LDAC  
CLR  
9
CS  
Figure 8. AD7304 Pin Configuration  
Table 7. AD7304 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
VOUT  
VOUT  
VSS  
B
Channel B Rail-to-Rail Buffered DAC Voltage Output. Full-scale set by reference voltage applied to VREFB pin.  
Output is open circuit when SHDN is enabled.  
Channel A Rail-to-Rail Buffered DAC Voltage Output. Full-scale set by reference voltage applied to VREFA pin.  
Output is open circuit when SHDN is enabled.  
A
Negative Power Supply Input. Specified range of operation is 0 V to 5.5 V.  
4
5
6
7
VREF  
VREF  
GND  
A
B
Channel A Reference Input. Establishes VOUTA full-scale voltage. Specified range of operation is VSS < VREFA < VDD.  
Channel B Reference Input. Establishes VOUTB full-scale voltage. Specified range of operation is VSS < VREFB < VDD.  
Common Analog and Digital Ground.  
Load DAC Register Strobe, Active Low. Simultaneously transfers data from all four input registers into the  
corresponding DAC registers. Asynchronous active low input. DAC register is transparent when LDAC = 0. See  
Table 4 for operation.  
LDAC  
8
9
CLR  
CS  
Clears All Input and DAC Registers to the Zero Condition. Asynchronous active low input. The serial register is  
not effected.  
Chip Select, Active Low Input. Disables shift register loading when high. Transfers serial input register data to  
the decoded input register when CS returns high. Does not effect LDAC operation.  
10  
11  
CLK  
Clock Input, Positive Edge Clocks Data into Shift Register. Disabled by chip select CS.  
SDI/SHDN  
Serial Data Input Loads Directly into the Shift Register, MSB First. Hardware shutdown (SHDN) control input,  
active when pin is left floating by a three-state logic driver. Does not effect DAC register contents as long as  
power is present on VDD.  
12  
13  
14  
15  
VREF  
VREF  
VDD  
D
C
Channel D Reference Input. Establishes VOUTD full-scale voltage. Specified range of operation is VSS < VREFD < VDD.  
Channel C Reference Input. Establishes VOUTC full-scale voltage. Specified range of operation is VSS VREFC < VDD.  
Positive Power Supply Input. Specified range of operation is 2.7 V to 5.5 V.  
Channel D Rail-to-Rail Buffered DAC Voltage Output. Full-scale set by reference voltage applied to VREFD pin.  
Output is open circuit when SHDN is enabled.  
VOUT  
D
C
16  
VOUT  
Channel C Rail-to-Rail Buffered DAC Voltage Output. Full-scale set by reference voltage applied to VREFC pin.  
Output is open circuit when SHDN is enabled.  
Rev. C | Page 8 of 20  
 
AD7304/AD7305  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
B
A
V
C
OUT  
OUT  
V
V
D
OUT  
OUT  
DD  
3
V
SS  
AD7305  
TOP VIEW  
(Not to Scale)  
4
V
A0/SHDN  
A1  
REF  
5
GND  
6
LDAC  
DB7  
DB6  
DB5  
DB4  
WR  
7
DB0  
DB1  
DB2  
DB3  
8
9
10  
Figure 9. AD7305 Pin Configuration  
Table 8. AD7305 Pin Function Description  
Pin No. Mnemonic Description  
1
VOUTB  
Channel B Rail-to-Rail Buffered DAC Voltage Output. Full-scale set by reference voltage applied to VREFB pin. Output is  
open circuit when SHDN is enabled.  
2
VOUTA  
Channel A Rail-to-Rail Buffered DAC Voltage Output. Full-scale set by reference voltage applied to VREFA pin. Output is  
open circuit when SHDN is enabled.  
3
4
5
6
VSS  
VREF  
GND  
Negative Power Supply Input. Specified range of operation is 0 V to –5.5 V.  
Channel B Reference Input. Establishes VOUT full-scale voltage. Specified range of operation is VSS < VREF < VDD.  
Common Analog and Digital Ground.  
Load DAC Register Strobe, Active Low. Simultaneously transfers data from all four input registers into the  
corresponding DAC registers. Asynchronous active low input. DAC register is transparent when LDAC = 0. See Table 6  
for operation.  
LDAC  
7
8
9
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
WR  
MSB Digital Input Data Bit.  
Data Bit 6.  
Data Bit 5.  
Data Bit 4.  
Data Bit 3.  
Data Bit 2.  
Data Bit 1.  
LSB Digital Input Data Bit.  
10  
11  
12  
13  
14  
15  
16  
17  
Write Data into Input Register Control Line, Active Low. See Table 6 for operation.  
Address Bit 1.  
Address Bit 0/Hardware Shutdown (SHDN) Control Input, Active When Pin Is Left Floating by a Three-State Logic  
Driver. Does not effect DAC register contents as long as power is present on VDD.  
A1  
A0/SHDN  
18  
19  
VDD  
VOUT  
Positive Power Supply Input. Specified range of operation is 2.7 V to 5.5 V.  
Channel D Rail-to-Rail Buffered DAC Voltage Output. Full-scale set by reference voltage applied to VREFD pin. Output is  
open circuit when SHDN is enabled.  
Channel C Rail-to-Rail Buffered DAC Voltage Output. Full-scale set by reference voltage applied to VREFC pin. Output is  
open circuit when SHDN is enabled.  
D
C
20  
VOUT  
Rev. C | Page 9 of 20  
AD7304/AD7305  
TYPICAL PERFORMANCE CHARACTERISTICS  
144  
1.0  
0.6  
V
V
V
= +5V  
= 5V  
DD  
SS  
120  
96  
72  
48  
24  
0
= V  
REF  
DD  
DATA = 0x00  
DAC D  
0.2  
–0.2  
DAC C  
DAC B  
V
V
= +5V  
= –5V  
DD  
DAC A  
SS  
DATA = 0x80  
–0.6  
–1.0  
T
= +25°C  
A
0
3
6
9
12  
15  
–5.0  
–3.0  
–1.0  
1.0  
3.0  
5.0  
V
(mV)  
OUT  
REFERENCE INPUT VOLTAGE (V)  
Figure 10. IOUT Sink vs. VOUT Rail-to-Rail Performance  
Figure 13. INL vs. Reference Input Voltage  
–35  
–28  
–21  
–14  
–7  
0.500  
0.375  
0.250  
0.125  
0
V
V
V
= +5V  
= –5V  
DD  
V
V
V
= +5V  
= 5V  
DD  
SS  
SS  
= +2.5V  
REF  
= V  
REF  
DD  
DATA = 0xFF  
–0.125  
–0.250  
–0.375  
–0.500  
0
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
V
OUTPUT VOLTAGE (V)  
OUT  
CODE (Decimal)  
Figure 11. IOUT SOURCE vs. VOUT Rail-to-Rail Performance  
Figure 14. DNL vs. Code  
+1  
0
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
V
V
V
= 5.5V  
= 0V  
DD  
DAC A  
DAC B  
SS  
= 5.45V  
–1  
+1  
0
REF  
–1  
+1  
0
–1  
+1  
0
V
V
V
= +5V  
= –5V  
DD  
DAC C  
SS  
= +2.5V  
REF  
T
= +25°C  
A
DAC D  
64  
–1  
0
32  
96  
128  
160  
192  
224  
256  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 12. INL vs. Code, All DAC Channels  
Figure 15. Zero-Scale Voltage vs. Temperature  
Rev. C | Page 10 of 20  
 
 
 
AD7304/AD7305  
CS  
V
V
= 5V  
= 4V  
DD  
NO LOAD  
= 70kΩ  
V
C
= 5V  
= 150pF  
REF  
DD  
V
OUT  
DATA = 0x00  
0xFF  
L
R
L
R
= 10kΩ  
L
0V  
5V  
0V  
V
OUT  
CS  
2µs/DIV  
5µs/DIV  
Figure 19. Time to Shutdown  
Figure 16. Large-Signal Settling Time  
CS  
+5V  
0V  
DATA = 0xFF  
V
REFIN  
I
DD  
1mA/V  
(±5V @  
50kHz)  
5V  
+5V  
0V  
V
= 5V  
DD  
V
OUT  
V
A
OUT  
5V  
2µs/DIV  
Figure 20. Shutdown Recovery Time (Wakeup)  
Figure 17. Multiplying Mode Step Response and Output Slew Rate  
6
10  
1
V
V
= +5V  
= –5V  
DD  
SS  
V
V
= +5V  
= –5V  
DD  
SS  
DATA = 0xFF  
= 100mV rms  
V
4
0
REF  
0.1  
f
= 2.6MHz  
–3dB  
–4  
0.01  
–6  
–8  
0.001  
10k  
100k  
1M  
10M  
10m  
1
2
3
4
5
6
7
8
9
10  
V
AMPLITUDE (V p-p)  
FREQUENCY (Hz)  
REF  
Figure 21. THD vs. Reference Input Amplitude  
Figure 18. Multiplying Mode Gain vs. Frequency  
Rev. C | Page 11 of 20  
AD7304/AD7305  
1
V
V
= +5V  
= –5V  
DD  
SS  
V
V
V
= +5V  
= 5V  
DD  
SS  
= +2.5V  
REF  
0.1  
F = 1MHz  
V
OUT  
DATA = 0x80 0x7F  
0.01  
CS  
0.001  
20  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 25. Midscale Transition Glitch  
Figure 22. THD vs. Frequency  
3.0  
2.4  
1.8  
1.2  
0.6  
0
40  
20  
V
V
V
= +5V  
= –5V  
V
V
V
= +5V  
= –5V  
= +4V  
DD  
SS  
DD  
SS  
= 50mV rms  
REF  
REF  
0
–20  
–40  
DAC A DATA = 0xFF  
DAC B, DAC C, DAC D DATA = 0x00  
DATA = 0xFF  
–60  
–80  
–100  
–120  
–140  
–160  
V
B
OUT  
CT = 20 LOG  
V
REF  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. Crosstalk vs. Frequency  
Figure 23. Output Noise Voltage Density vs. Frequency  
60  
50  
40  
–PSRR, V = –5V ± ∆10%  
SS  
+PSRR, V = +5V ± ∆10%  
DD  
V
B
OUT  
–PSRR, V = –3V ± ∆10%  
SS  
V
V
V
= +5V  
= 5V  
DD  
30  
20  
10  
0
+PSRR, V = +3V ± ∆10%  
DD  
SS  
= +2.5V  
REF  
DAC A = 0xFF  
DAC B = 0x00  
F = 2MHz  
CLK  
DATA = 0x80  
= +25°C  
T
A
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
50ns/DIV  
50ns/DIV  
Figure 27. Power-Supply Rejection vs. Frequency  
Figure 24. Digital Feedthrough  
Rev. C | Page 12 of 20  
 
 
AD7304/AD7305  
80  
70  
60  
50  
40  
12  
10  
8
V
V
V
= +5V  
= –5V  
V
V
V
= +5.5V  
= –5.5V  
= +2.5V  
DD  
SS  
DD  
SS  
= +2.5V  
REF  
REF  
A0 = +5V  
ALL OTHER DIGITAL  
PINS VARYING  
PIN A0 FLOATING  
6
I
DD  
4
I
SS  
2
30  
20  
0
0
1
2
3
4
5
–55  
–35  
–15  
5
25  
45  
65  
C)  
85  
105  
125  
TEMPERATURE (  
°
DIGITAL INPUT VOLTAGE (V)  
Figure 28. Supply Current vs. Digital Input Voltage  
Figure 31. Shutdown Supply Current vs. Temperature  
0.08  
0.04  
0
10  
1
READING MADE AT T = +25°C  
A
SAMPLE SIZE = 924 UNITS  
V
V
V
= +5V  
= –5V  
DD  
0.1  
0.01  
SS  
V
= +2.7V  
DD  
= +2.5V  
REF  
ALL DIGITAL PINS VARY,  
EXCEPT A0 = +5V  
I
DD  
I
V
= +5.5V  
DD  
–0.04  
–0.08  
0.001  
SS  
0.0001  
0
84  
168  
252  
336  
C)  
420  
504  
0
1
2
3
4
5
TEMPERATURE (  
°
DIGITAL INPUT VOLTAGE (V)  
Figure 32. Normalized TUE Drift Accelerated by Burn-In Hours  
of Operation @ 150°C  
Figure 29. Shutdown Supply Current vs. Digital Input Voltage (A0 Only)  
5.0  
V
V
V
= +5V  
= –5V  
DD  
SS  
= +2.5V  
REF  
4.4  
3.8  
3.2  
2.6  
2.0  
I
AND I  
SS  
DD  
–55 –35  
–15  
5
25  
45  
65  
C)  
85  
105  
125  
TEMPERATURE (  
°
Figure 30. Supply Current vs. Temperature  
Rev. C | Page 13 of 20  
AD7304/AD7305  
CIRCUIT OPERATION  
The AD7304/AD7305 are 4-channel, 8-bit, voltage output  
DACs, differing primarily in digital logic interface and number  
of reference inputs. Both parts share the same internal DAC  
design and true rail-to-rail output buffers. The AD7304 contains  
four independent multiplying reference inputs, while the  
AD7305 has one common reference input. The AD7304 uses a  
3-wire SPI-compatible serial data interface, while the AD7305  
offers an 8-bit parallel data interface.  
These DACs are also designed to accommodate ac reference  
input signals. As long as the ac signals are maintained between  
VSS < VREF < VDD, the user can expect 50 kHz of full power,  
multiplying bandwidth performance. In order to use negative  
input reference voltages, the VSS pin must be biased with a  
negative voltage of equal or greater magnitude than the  
reference voltage.  
The reference inputs are code dependent, exhibiting worst-case  
minimum resistance values specified in the parametric specifi-  
DAC SECTION  
cation table. The DAC outputs VOUTA, VOUTB, VOUTC, and VOUT  
D
Each part contains four voltage-switched R-2R ladder DACs.  
Figure 33 shows a typical equivalent DAC. These DACs are  
designed to operate both single-supply or dual-supply,  
depending on whether the user supplies a negative voltage on  
the VSS pin. In a single-supply application, the VSS is tied to  
ground. In either mode, the DAC output voltage is determined  
by the VREF input voltage and the digital data (D) loaded into  
the corresponding DAC register according to Equation 1.  
are each capable of driving 2 kΩ loads in parallel with up to 500 pF  
loads. Output sink current and source current are shown in  
Figure 10 and Figure 11, respectively. The output slew rate is  
nominally 3.6 V/µs while operating from 5 V supplies. The  
low output impedance of the buffers minimizes crosstalk  
between analog input channels. At 100 kHz, 65 dB of channel-  
to-channel isolation exists (Figure 26). Output voltage noise is  
plotted in Figure 23. In order to maintain good analog perform-  
ance, power supply bypassing of 0.01 µF in parallel with 1 µF is  
recommended. The true rail-to-rail capability of the AD7304/AD7305  
allows the user to connect the reference inputs directly to the  
same supply as the VDD or VSS pin (Figure 34). Under these  
conditions, clean power supply voltages (low ripple, avoid  
switching supplies) appropriate for the application should be  
used.  
V
OUT = VREF D/256  
(1)  
Note that the output full-scale polarity is the same as the VREF  
polarity for dc reference voltages.  
V
DD  
V
REF  
DB7  
DB6  
V
2R  
2R  
OUT  
V
R
DD  
V
SS  
Q1  
V
X
OUT  
DB0  
2R  
120k  
Q2  
2R  
V
SS  
Figure 33. Typical Equivalent DAC Channel  
Figure 34. Equivalent DAC Amplifier Output Circuit  
Rev. C | Page 14 of 20  
 
 
 
AD7304/AD7305  
AD7304 SERIAL DATA INTERFACE  
V
A
V
B
V
D
V
DD  
V
C
REF  
REF  
REF  
REF  
CS  
The AD7304 uses a 3-wire ( , SDI, CLK) SPI-compatible  
serial data interface. New serial data is clocked into the serial  
input register in a 12-bit data-word format. MSB bits are loaded  
first.  
CS  
CLK  
AD7304  
EN  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
INPUT  
REGISTER  
DAC A  
OE  
DAC A  
V
V
A
B
C
D
REGISTER  
OUT  
R
R
R
R
R
R
SDI  
8
Table 5 defines the 12 data-word bits. Data is placed on the  
SDI/SHDN pin and clocked into the register on the positive  
clock edge of CLK subject to the data setup and data hold time  
requirements specified in the Timing Specifications section.  
D
Q
DAC A  
INPUT  
REGISTER  
DAC B  
OE  
DAC B  
REGISTER  
B
C
OUT  
2:4  
DECODE  
A0  
A1  
SDC  
SAC  
D
D
Q
CS  
Data can only be clocked in while the  
active low. Only the last 12-bits clocked into the serial register  
CS  
chip select pin is  
INPUT  
REGISTER  
DAC C  
OE  
DAC C  
REGISTER  
V
V
V
OUT  
DD  
R
R
are interrogated when the  
pin returns to the logic high state,  
640k680kΩ  
D
Q
extra data bits are ignored. Since most microcontrollers output  
serial data in 8-bit bytes, two right-justified data bytes can be  
DAC D  
OE  
INPUT  
REGISTER  
DAC D  
REGISTER  
OUT  
80kΩ  
CS  
written to the AD7304. Keeping the  
line low between the  
D
Q
first and second byte transfer results in a successful serial  
register update.  
POWER-  
ON  
RESET  
280k320kΩ  
Once the data is properly aligned in the shift register, the  
GND  
V
SS  
LDAC  
CLR  
CS  
positive edge of the  
initiates either the transfer of new data  
Figure 35. AD7304 Equivalent Logic Interface  
to the target DAC register, determined by the decoding of  
Address Bits A1 and A0, or the shutdown features is activated  
based on the SAC or SDC bits. When either SAC or SDC pins  
are set (Logic 0), the loading of new data determined by Bits B9  
to B0 are still loaded, but the results do not appear on the buffer  
outputs until the device is brought out of the shutdown state.  
The selected DAC output voltages become high impedance with  
a nominal resistance of 120 kΩ to ground, see Figure 34. If  
both the SAC and SDC pins are set, all channels are still placed  
in shutdown mode. When the AD7304 has been programmed  
into the power shutdown state, the present DAC register data is  
maintained as long as VDD remains greater than 2.7 V. The  
remaining characteristics of the software serial interface are  
defined by Table 4, Table 5, and Figure 5.  
AD7304 HARDWARE SHUTDOWN SHDN  
If a three-state driver is used on the SDI/SHDN pin, the  
AD7304 can be placed into a power shutdown mode when the  
SDI/ SHDN pin is placed in a high impedance state. For proper  
operation, no other termination voltages should be present on  
this pin. An internal window comparator detects when the logic  
voltage on the SHDN pin is between 28% and 36% of VDD. A  
high impedance internal bias generator provides this voltage on  
the SHDN pin. The four DAC output voltages become high  
impedance with a nominal resistance of 120 kΩ to ground (see  
Figure 34 for an equivalent circuit).  
AD7304/AD7305 POWER-ON RESET  
When the VDD power supply is turned on, an internal reset  
strobe forces all the input and DAC registers to the zero-code  
state. The VDD power supply should have a monotonically  
increasing ramp in order to have consistent results, especially in  
the region of VDD = 1.5 V to 2.3 V. The VSS supply has no effect  
on the power-on reset performance. The DAC register data  
stays at zero until a valid serial register software load takes  
place. In the case of the double-buffered AD7305, the output  
CLR  
LDAC  
, on the AD7304 provide  
Two additional pins,  
hardware control over the clear function and the DAC register  
CLR  
and  
loading. If these functions are not needed, the  
tied to logic high, and the  
pin can be  
pin can be tied to logic low.  
pin forces all input and DAC  
LDAC  
CLR  
The asynchronous input  
LDAC  
registers to the zero-code state. The asynchronous  
pin  
can be strobed to active low when all DAC registers need to be  
updated simultaneously from their respective input registers.  
LDAC  
DAC register can only be changed once the  
initiated.  
strobe is  
LDAC  
The  
pin places the DAC register in a transparent mode  
POWER-UP SEQUENCE  
while in the logic low state.  
It is recommended to power VDD/VSS first before applying any  
voltage to the reference terminals to avoid potential latch up.  
The ideal power-up sequence is in the following order: GND,  
VDD, VSS, Digital Inputs, and VREFx. The order of powering  
digital inputs and reference inputs is not important as long as  
they are powered after VDD/VSS.  
Rev. C | Page 15 of 20  
 
AD7304/AD7305  
AD7305 PARALLEL DATA INTERFACE  
LDAC  
is tied to Logic Low, the DAC registers become  
The AD7305 has an 8-bit parallel interface DB7 = MSB, DB0 =  
LSB. Two address bits, A1 and A0, are decoded when an active  
transparent and the input register data determines the DAC  
output voltage (see Figure 36 for an equivalent interface logic  
diagram).  
WR  
WR  
low write strobe is placed on the  
pin, see Table 6. The  
is a level-sensitive input pin, therefore, the data setup and data  
hold times defined in the Timing Specifications section need to  
be adhered to.  
AD7226 PIN COMPATIBILITY  
LDAC  
By tying the  
pin to ground, the AD7305 has the same pin  
V
V
DD  
REF  
configuration and functionality as the AD7226, with the  
exception of a lower power supply operating voltage.  
8
AD7305  
DATA  
DB0–DB7  
AD7305 HARDWARE SHUTDOWN SHDN  
INPUT  
DAC A  
DAC A  
WR  
V
V
V
V
A
B
C
D
REGISTER  
OUT  
OUT  
OUT  
OUT  
If a three-state driver is used on the A0/SHDN pin, the AD7305  
can be placed into a power shutdown mode when the A0/SHDN  
pin is placed in a high impedance state. For proper operation,  
no other termination voltages should be present on this pin. An  
internal window comparator detects when the logic voltage on  
the SHDN pin is between 28% and 36% of VDD. A high imped-  
ance, internal-bias generator provides this voltage on the SHDN  
pin. The four DAC output voltages become high impedance  
with a nominal resistance of 120 kΩ to ground.  
REGISTER  
OE  
R
R
R
R
R
DAC A  
INPUT  
REGISTER  
DAC B  
REGISTER  
DAC B  
OE  
A1  
B
C
R
R
R
2:4  
A0/SHDN  
DECODE  
D
INPUT  
REGISTER  
DAC C  
REGISTER  
DAC C  
OE  
V
DD  
680k  
640k  
INPUT  
REGISTER  
DAC D  
REGISTER  
DAC D  
OE  
ESD PROTECTION CIRCUITS  
80k  
All logic input pins contain back-biased ESD protection Zeners  
connected to ground (GND). The VREF pins also contain a back-  
biased ESD protection Zener connected to VDD (see Figure 37).  
POWER-  
ON  
RESET  
280k  
320k  
V
GND  
LDAC  
SS  
DIGITAL  
INPUTS  
V
DD  
Figure 36. AD7305 Equivalent Logic Interface  
LDAC  
V
X
The  
updating all DAC registers with new data from the input  
registers at the same time. This results in the analog outputs all  
LDAC  
pin provides the capability of simultaneously  
REF  
GND  
Figure 37. Equivalent ESD Protection Circuits  
changing to their new values at the same time. The  
a level-sensitive input. If the simultaneous update feature is not  
LDAC  
pin is  
required, the  
pin can be tied to logic low. When the  
Rev. C | Page 16 of 20  
 
 
 
AD7304/AD7305  
APPLICATIONS  
The AD7304/AD7305 are inherently 2-quadrant multiplying  
DACs. That is, they can easily be set up for unipolar output  
operation. The full-scale output polarity is the same as the  
reference input voltage polarity.  
the input data (D) is incremented from code zero (VOUT = –5 V)  
to midscale (VOUT = 0 V) to full scale (VOUT = +5 V).  
D
(2)  
VOUT  
=
×VREF  
128 1  
In some applications, it may be necessary to generate the full  
4-quadrant multiplying capability or a bipolar output swing.  
This is easily accomplished using an external true rail-to-rail op  
amp, such as the OP295. Connecting the external amplifier with  
two equal value resistors, as shown in Figure 38, results in a full  
4-quadrant multiplying circuit. In this circuit, the amplifier  
provides a gain of two, which increases the output span  
+5V  
10kΩ  
10kΩ  
2.2pF  
–5V < V  
< +5V  
OUT  
AD7304  
REF  
magnitude to 10 V. The transfer equation of this circuit shows  
Figure 38. 4-Quadrant Multiplying Application Circuit  
that both negative and positive output voltages are created as  
Rev. C | Page 17 of 20  
 
 
AD7304/AD7305  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
5.10  
5.00  
4.90  
16  
1
9
7.60 (0.2992)  
7.40 (0.2913)  
16  
9
8
4.50  
4.40  
4.30  
10.65 (0.4193)  
10.00 (0.3937)  
6.40  
BSC  
8
1
1.27 (0.0500)  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
PIN 1  
BSC  
× 45°  
1.20  
MAX  
0.30 (0.0118)  
0.10 (0.0039)  
0.15  
0.05  
0.20  
0.09  
8°  
0°  
0.75  
0.60  
0.45  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
8°  
0°  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.30  
0.19  
0.33 (0.0130)  
0.20 (0.0079)  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-153AB  
Figure 41. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Figure 39. 16-Lead Standard Small Outline Package [SOIC]  
Wide Body (R-16)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
6.60  
6.50  
6.40  
13.00 (0.5118)  
12.60 (0.4961)  
20  
1
11  
10  
7.60 (0.2992)  
7.40 (0.2913)  
20  
11  
10  
4.50  
4.40  
4.30  
10.65 (0.4193)  
10.00 (0.3937)  
6.40 BSC  
1
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
× 45°  
PIN 1  
0.30 (0.0118)  
0.10 (0.0039)  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.20  
0.09  
1.27  
(0.0500)  
BSC  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.75  
0.60  
0.45  
COPLANARITY  
0.10  
0.33 (0.0130)  
0.20 (0.0079)  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-013AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-153AC  
Figure 42. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Figure 40. 20-Lead Standard Small Outline Package [SOIC]  
Wide Body (R-20)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 18 of 20  
 
AD7304/AD7305  
ORDERING GUIDE  
Model  
AD7304BR  
AD7304BR-REEL  
AD7304BRZ1  
AD7304BRZ-REEL1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
16-Lead SOIC  
16-Lead SOIC  
16-Lead SOIC  
16-Lead SOIC  
16-Lead SOIC  
16-Lead SOIC  
16-Lead TSSOP  
16-Lead TSSOP  
20-Lead SOIC  
20-Lead SOIC  
20-Lead SOIC  
20-Lead SOIC  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
Package Options  
R-16  
R-16  
R-16  
R-16  
AD7304YR  
AD7304YRZ1  
R-16  
R-16  
AD7304BRU  
AD7304BRU-REEL7  
AD7305BR  
AD7305BR-REEL  
AD7305YR  
AD7305YR-REEL  
AD7305BRU  
AD7305BRU-REEL7  
AD7305BRUZ1  
AD7305BRUZ-REEL71  
RU-16  
RU-16  
R-20  
R-20  
R-20  
R-20  
RU-20  
RU-20  
RU-20  
RU-20  
1 Z = Pb-free part.  
Rev. C | Page 19 of 20  
 
 
 
AD7304/AD7305  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective companies.  
Printed in the U.S.A. C01114-0-11/04(C)  
Rev. C | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY