AD633TRZ-EP [ADI]

Low Cost Analog Multiplier;
AD633TRZ-EP
型号: AD633TRZ-EP
厂家: ADI    ADI
描述:

Low Cost Analog Multiplier

文件: 总8页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost  
a
Analog Multiplier  
AD633  
FEATURES  
Four-Quadrant Multiplication  
CONNECTION DIAGRAMS  
8-Lead Plastic DIP (N) Package  
Low Cost 8-Lead Package  
Complete—No External Components Required  
Laser-Trimmed Accuracy and Stability  
Total Error Within 2% of FS  
Differential High Impedance X and Y Inputs  
High Impedance Unity-Gain Summing Input  
Laser-Trimmed 10 V Scaling Reference  
+V  
W
8
7
X1  
X2  
1
2
S
1
A
1
10V  
Z
Y1  
Y2  
3
4
6
5
APPLICATIONS  
1
–V  
Multiplication, Division, Squaring  
Modulation/Demodulation, Phase Detection  
Voltage-Controlled Amplifiers/Attenuators/Filters  
S
AD633JN/AD633AN  
8-Lead Plastic SOIC (SO-8) Package  
PRODUCT DESCRIPTION  
X2  
X1  
Y1  
Y2  
1
2
8
7
1
1
The AD633 is a functionally complete, four-quadrant, analog  
multiplier. It includes high impedance, differential X and Y  
inputs and a high impedance summing input (Z). The low im-  
pedance output voltage is a nominal 10 V full scale provided by  
a buried Zener. The AD633 is the first product to offer these  
features in modestly priced 8-lead plastic DIP and SOIC packages.  
1
10V  
–V  
+V  
A
3
4
6
5
S
S
W
Z
The AD633 is laser calibrated to a guaranteed total accuracy of  
2% of full scale. Nonlinearity for the Y-input is typically less  
than 0.1% and noise referred to the output is typically less than  
100 µV rms in a 10 Hz to 10 kHz bandwidth. A 1 MHz band-  
width, 20 V/µs slew rate, and the ability to drive capacitive loads  
make the AD633 useful in a wide variety of applications where  
simplicity and cost are key concerns.  
AD633JR/AD633AR  
(X – X ) (Y – Y )  
1
2
1
2
W =  
+ Z  
10V  
PRODUCT HIGHLIGHTS  
1. The AD633 is a complete four-quadrant multiplier offered in  
low cost 8-lead plastic packages. The result is a product that  
is cost effective and easy to apply.  
The AD633’s versatility is not compromised by its simplicity.  
The Z-input provides access to the output buffer amplifier,  
enabling the user to sum the outputs of two or more multipliers,  
increase the multiplier gain, convert the output voltage to a  
current, and configure a variety of applications.  
2. No external components or expensive user calibration are  
required to apply the AD633.  
3. Monolithic construction and laser calibration make the de-  
vice stable and reliable.  
4. High (10 M) input resistances make signal source loading  
The AD633 is available in an 8-lead plastic DIP package (N)  
and 8-lead SOIC (R). It is specified to operate over the 0°C to  
+70°C commercial temperature range (J Grade) or the –40°C to  
+85°C industrial temperature range (A Grade).  
negligible.  
5. Power supply voltages can range from ±8 V to ±18 V. The  
internal scaling voltage is generated by a stable Zener diode;  
multiplier accuracy is essentially supply insensitive.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
(TA = +25؇C, VS = ؎15 V, RL 2 k)  
AD633–SPECIFICATIONS  
Model  
AD633J, AD633A  
X1 X2 Y1 Y2  
(
)
(
)
W =  
+ Z  
TRANSFER FUNCTION  
10 V  
Parameter  
Conditions  
–10 V X, Y +10 V  
Min  
Typ  
Max  
Unit  
MULTIPLIER PERFORMANCE  
Total Error  
±1  
±3  
؎
2
% Full Scale  
% Full Scale  
% Full Scale  
% Full Scale  
% Full Scale  
% Full Scale  
% Full Scale  
% Full Scale  
mV  
TMIN to TMAX  
Scale Voltage Error  
Supply Rejection  
Nonlinearity, X  
Nonlinearity, Y  
X Feedthrough  
Y Feedthrough  
Output Offset Voltage  
SF = 10.00 V Nominal  
VS = ±14 V to ±16 V  
X = ±10 V, Y = +10 V  
Y = ±10 V, X = +10 V  
Y Nulled, X = ±10 V  
X Nulled, Y = ±10 V  
±0.25%  
±0.01  
±0.4  
±0.1  
±0.3  
±0.1  
±5  
؎
؎
؎
؎
؎
1
0.4  
1
0.4  
50  
DYNAMICS  
Small Signal BW  
Slew Rate  
VO = 0.1 V rms  
VO = 20 V p-p  
VO = 20 V  
1
20  
2
MHz  
V/µs  
µs  
Settling Time to 1%  
OUTPUT NOISE  
Spectral Density  
Wideband Noise  
0.8  
1
90  
µV/Hz  
mV rms  
µV rms  
f = 10 Hz to 5 MHz  
f = 10 Hz to 10 kHz  
OUTPUT  
Output Voltage Swing  
Short Circuit Current  
؎
11  
V
mA  
RL = 0 Ω  
30  
40  
INPUT AMPLIFIERS  
Signal Voltage Range  
Differential  
Common Mode  
؎
؎
10  
10  
V
V
mV  
dB  
µA  
MΩ  
Offset Voltage X, Y  
CMRR X, Y  
Bias Current X, Y, Z  
Differential Resistance  
±5  
80  
0.8  
10  
؎
30  
VCM = ±10 V, f = 50 Hz  
60  
2.0  
POWER SUPPLY  
Supply Voltage  
Rated Performance  
Operating Range  
Supply Current  
±15  
V
V
mA  
؎
8
؎
6
18  
Quiescent  
4
NOTES  
Specifications shown in boldface are tested on all production units at electrical test. Results from those tests are used to calculate outgoing quality levels. All min and  
max specifications are guaranteed, although only those shown in boldface are tested on all production units.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . 500 mW  
Input Voltages3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
AD633J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
AD633A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 V  
Temperature Package  
Package  
Option  
Model  
Range  
Description  
AD633AN  
AD633AR  
–40°C to +85°C Plastic DIP  
–40°C to +85°C Plastic SOIC  
AD633AR-REEL –40°C to +85°C 13" Tape and Reel SO-8  
AD633AR-REEL7 –40°C to +85°C 7" Tape and Reel SO-8  
N-8  
SO-8  
AD633JN  
AD633JR  
AD633JR-REEL  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
Plastic DIP  
Plastic SOIC  
13" Tape and Reel SO-8  
7" Tape and Reel SO-8  
N-8  
SO-8  
NOTES  
AD633JR-REEL7 0°C to +70°C  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied.  
28-Lead Plastic DIP Package: θJA = 90°C/W; 8-Lead Small Outline Package: θJA  
155°C/W.  
=
3For supply voltages less than ± 18 V, the absolute maximum input voltage is equal  
to the supply voltage.  
–2–  
REV. B  
AD633  
FUNCTIONAL DESCRIPTION  
voltage controlled amplifiers, and frequency doublers. Note that  
these applications show the pin connections for the AD633JN  
pinout (8-lead DIP), which differs from the AD633JR pinout  
(8-lead SOIC).  
The AD633 is a low cost multiplier comprising a translinear  
core, a buried Zener reference, and a unity gain connected  
output amplifier with an accessible summing node. Figure 1  
shows the functional block diagram. The differential X and Y  
inputs are converted to differential currents by voltage-to-current  
converters. The product of these currents is generated by the  
multiplying core. A buried Zener reference provides an overall  
scale factor of 10 V. The sum of (X × Y)/10 + Z is then applied  
to the output amplifier. The amplifier summing node Z allows  
the user to add two or more multiplier outputs, convert the  
output voltage to a current, and configure various analog com-  
putational functions.  
Multiplier Connections  
Figure 3 shows the basic connections for multiplication. The X  
and Y inputs will normally have their negative nodes grounded,  
but they are fully differential, and in many applications the  
grounded inputs may be reversed (to facilitate interfacing with  
signals of a particular polarity, while achieving some desired  
output polarity) or both may be driven.  
+15V  
0.1F  
+V  
1
2
3
4
8
7
6
5
S
X1  
X2  
X
+V  
8
7
X1  
X2  
1
2
(X – X ) (Y – Y )  
S
INPUT  
1
2
1
2
1
W
Z
W =  
+ Z  
10V  
AD633JN  
OPTIONAL SUMMING  
INPUT, Z  
A
Y1  
Y2  
W
Y
INPUT  
1
–V  
S
10V  
0.1F  
–15V  
Z
Y1  
Y2  
3
4
6
5
1
AD633  
–V  
S
Figure 3. Basic Multiplier Connections  
Squaring and Frequency Doubling  
Figure 1. Functional Block Diagram (AD633JN  
Pinout Shown)  
As Figure 4 shows, squaring of an input signal, E, is achieved  
simply by connecting the X and Y inputs in parallel to produce  
an output of E2/10 V. The input may have either polarity, but  
the output will be positive. However, the output polarity may be  
reversed by interchanging the X or Y inputs. The Z input may  
be used to add a further signal to the output.  
Inspection of the block diagram shows the overall transfer func-  
tion to be:  
X1 X2 Y1 Y2  
(
)
(
)
+ Z  
W =  
(Equation 1)  
10 V  
+15V  
0.1F  
ERROR SOURCES  
+V  
1
2
3
4
8
7
6
5
E
S
X1  
X2  
2
Multiplier errors consist primarily of input and output offsets,  
scale factor error, and nonlinearity in the multiplying core. The  
input and output offsets can be eliminated by using the optional  
trim of Figure 2. This scheme reduces the net error to scale  
factor errors (gain error) and an irreducible nonlinearity compo-  
nent in the multiplying core. The X and Y nonlinearities are  
typically 0.4% and 0.1% of full scale, respectively. Scale factor  
error is typically 0.25% of full scale. The high impedance Z  
input should always be referenced to the ground point of the  
driven system, particularly if this is remote. Likewise, the differ-  
ential X and Y inputs should be referenced to their respective  
grounds to realize the full accuracy of the AD633.  
E
W
W =  
10V  
AD633JN  
Y1  
Z
–V  
Y2  
S
0.1F  
–15V  
Figure 4. Connections for Squaring  
When the input is a sine wave E sin ωt, this squarer behaves as a  
frequency doubler, since  
2
)
E2  
20V  
+V  
S
E sin ωt  
(
(Equation 2)  
=
1 cos 2 ωt  
(
)
10 V  
؎50mV  
300k⍀  
TO APPROPRIATE  
INPUT TERMINAL  
(E.G. X , X , Z)  
50k⍀  
Equation 2 shows a dc term at the output which will vary  
strongly with the amplitude of the input, E. This can be avoided  
using the connections shown in Figure 5, where an RC network  
is used to generate two signals whose product has no dc term. It  
uses the identity:  
1k⍀  
2
2
–V  
S
Figure 2. Optional Offset Trim Configuration  
APPLICATIONS  
The AD633 is well suited for such applications as modulation  
and demodulation, automatic gain control, power measurement,  
1
cos θ sin θ = sin 2 θ  
(Equation 3)  
(
)
2
–3–  
REV. B  
AD633  
R
10k⍀  
+15V  
0.1F  
+15V  
0.1F  
+V  
1
2
3
4
8
7
6
5
E
S
X1  
X2  
+15  
2
R
E
+V  
0.1F  
E
1
8
7
6
5
W
Z
S
W =  
X1  
X2  
X
10V  
R1  
1k⍀  
R
10k⍀  
AD633JN  
W
Z
2
3
4
Y1  
Y2  
E
R2  
3k⍀  
C
1N4148  
AD633JN  
AD711  
Y1  
Y2  
–V  
S
0.1F  
–V  
S
0.1F  
0.1F  
–15V  
–15V  
W = –10V  
–15  
Figure 5. ”Bounceless” Frequency Doubler  
E
E
X
At ωo = 1/CR, the X input leads the input signal by 45° (and is  
attenuated by 2), and the Y input lags the X input by 45° (and  
is also attenuated by 2). Since the X and Y inputs are 90° out of  
phase, the response of the circuit will be (satisfying Equation 3):  
Figure 7. Connections for Division  
Likewise, Figure 7 shows how to implement a divider using a  
multiplier in a feedback loop. The transfer function for the  
divider is  
1
E
E
W =  
sin ωot + 45°  
sin ωot 45°  
(
) (  
)
E
10V  
2
2
(
)
W = − 10V  
(
)
(Equation 6)  
EX  
E2  
(Equation 4)  
=
sin 2 ωot  
(
)
+15V  
0.1F  
40V  
(
)
which has no dc component. Resistors R1 and R2 are included to  
restore the output amplitude to 10 V for an input amplitude of 10 V.  
+V  
S
1
2
3
4
8
7
6
5
X1  
X2  
X
INPUT  
(X – X ) (Y – Y ) (R1 + R2)  
1
2
1
2
W
W =  
+ S  
R1  
10V  
R1  
AD633JN  
The amplitude of the output is only a weak function of fre-  
quency: the output amplitude will be 0.5% too low at ω =  
0.9 ωo, and ωo = 1.1 ωo.  
1kR1, R2 100k⍀  
Y1  
Z
Y
R2  
INPUT  
–V  
Y2  
S
S
0.1F  
–15V  
Generating Inverse Functions  
Inverse functions of multiplication, such as division and square  
rooting, can be implemented by placing a multiplier in the feed-  
back loop of an op amp. Figure 6 shows how to implement a  
square rooter with the transfer function  
Figure 8. Connections for Variable Scale Factor  
Variable Scale Factor  
In some instances, it may be desirable to use a scaling voltage  
other than 10 V. The connections shown in Figure 8 increase  
the gain of the system by the ratio (R1 + R2)/R1. This ratio is  
limited to 100 in practical applications. The summing input, S,  
may be used to add an additional signal to the output or it may  
be grounded.  
W = − 10V E  
(Equation 5)  
(
)
for the condition E<0.  
R
10k⍀  
Current Output  
+15V  
0.1F  
The AD633’s voltage output can be converted to a current  
output by the addition of a resistor R between the AD633’s W  
and Z pins as shown in Figure 9 below. This arrangement forms  
+15  
+V  
0.1F  
1
8
7
6
5
X1  
X2  
S
R
10k⍀  
E
W
Z
2
3
4
1N4148  
AD633JN  
Y1  
AD711  
+15V  
0.1F  
–V  
Y2  
0.1F  
S
0.1F  
+V  
1
2
3
4
8
7
6
5
S
X1  
X2  
X
–15V  
W =  
R
(X – X ) (Y – Y )  
INPUT  
1
R
1
2
1
2
–15  
W
Z
I
=
O
10V  
–(10V)E  
AD633JN  
Y1  
Y2  
1k⍀  
R
100k⍀  
Y
INPUT  
Figure 6. Connections for Square Rooting  
–V  
S
0.1F  
–15V  
Figure 9. Current Output Connections  
–4–  
REV. B  
AD633  
dB  
the basis of voltage controlled integrators and oscillators as will  
be shown later in this Applications section. The transfer func-  
tion of this circuit has the form  
f2 f1  
f
0
+15V  
0.1F  
–6dB/OCTAVE  
OUTPUTA  
OUTPUTB  
+V  
1
2
3
4
8
7
6
5
X1  
X2  
S
CONTROL  
X1 X2 Y1 Y2  
(
)
(
)
1
1 + T P  
1
1 + T P  
INPUT E  
IO  
=
C
W
Z
(Equation 7)  
OUTPUT B =  
OUTPUT A =  
2
R
10V  
AD633JN  
R
1
SIGNAL  
Y1  
INPUT E  
1 + T P  
2
S
C
Linear Amplitude Modulator  
–V  
Y2  
1
W
S
T
T
=
=
= RC  
1
The AD633 can be used as a linear amplitude modulator with  
no external components. Figure 10 shows the circuit. The car-  
rier and modulation inputs to the AD633 are multiplied to  
produce a double-sideband signal. The carrier signal is fed  
forward to the AD633’s Z input where it is summed with the  
double-sideband signal to produce a double-sideband with carrier  
output.  
0.1F  
1
1
W
10  
R
=
2
E
–15V  
C
C
2
Figure 11. Voltage Controlled Low-Pass Filter  
dB  
f1 f2  
f
0
+15V  
0.1F  
Voltage Controlled Low-Pass and High-Pass Filters  
Figure 11 shows a single multiplier used to build a voltage con-  
trolled low-pass filter. The voltage at output A is a result of  
filtering, ES. The break frequency is modulated by EC, the con-  
trol input. The break frequency, f2, equals  
OUTPUTB  
+6dB/OCTAVE  
OUTPUTA  
+V  
1
2
3
4
8
7
6
5
S
X1  
X2  
CONTROL  
INPUT E  
C
W
Z
OUTPUT B  
OUTPUT A  
AD633JN  
C
SIGNAL  
INPUT E  
Y1  
S
R
–V  
Y2  
S
EC  
0.1F  
f2  
=
(Equation 8)  
20V π RC  
(
)
–15V  
and the rolloff is 6 dB per octave. This output, which is at a  
high impedance point, may need to be buffered.  
Figure 12. Voltage Controlled High-Pass Filter  
Voltage Controlled Quadrature Oscillator  
The voltage at output B, the direct output of the AD633, has  
same response up to frequency f1, the natural breakpoint of RC  
filter,  
Figure 13 shows two multipliers being used to form integrators  
with controllable time constants in a 2nd order differential  
equation feedback loop. R2 and R5 provide controlled current  
output operation. The currents are integrated in capacitors C1  
and C2, and the resulting voltages at high impedance are applied  
to the X inputs of the “next” AD633. The frequency control  
input, EC, connected to the Y inputs, varies the integrator gains  
with a calibration of 100 Hz/V. The accuracy is limited by the  
Y-input offsets. The practical tuning range of this circuit is  
100:1. C2 (proportional to C1 and C3), R3, and R4 provide  
regenerative feedback to start and maintain oscillation. The  
diode bridge, D1 through D4 (1N914s), and Zener diode D5  
provide economical temperature stabilization and amplitude  
stabilization at ±8.5 V by degenerative damping. The out-  
put from the second integrator (10 V sin ωt) has the lowest  
distortion.  
1
f1 =  
(Equation 9)  
2 π RC  
then levels off to a constant attenuation of f1/f2 = EC/10.  
+15V  
0.1F  
+V  
MODULATION  
INPUT  
1
2
3
4
8
7
6
5
S
X1  
X2  
E
M
؎E  
W
Z
M
W = 1+  
E
sin t  
C
10V  
AD633JN  
CARRIER  
INPUT  
Y1  
E
sin t  
C
–V  
Y2  
S
0.1F  
–15V  
AGC AMPLIFIERS  
Figure 14 shows an AGC circuit that uses an rms-dc converter  
to measure the amplitude of the output waveform. The AD633  
and A1, 1/2 of an AD712 dual op amp, form a voltage con-  
trolled amplifier. The rms dc converter, an AD736, measures  
the rms value of the output signal. Its output drives A2, an  
integrator/comparator, whose output controls the gain of the  
voltage controlled amplifier. The 1N4148 diode prevents the  
output of A2 from going negative. R8, a 50 kvariable resistor,  
sets the circuit’s output level. Feedback around the loop forces  
the voltages at the inverting and noninverting inputs of A2 to be  
equal, thus the AGC.  
Figure 10. Linear Amplitude Modulator  
For example, if R = 8 kand C = 0.002 µF, then output A has  
a pole at frequencies from 100 Hz to 10 kHz for EC ranging  
from 100 mV to 10 V. Output B has an additional zero at 10 kHz  
(and can be loaded because it is the multiplier’s low impedance  
output). The circuit can be changed to a high-pass filter Z inter-  
changing the resistor and capacitor as shown in Figure 12 below.  
–5–  
REV. B  
AD633  
D5  
1N95236  
D1  
1N914  
D3  
1N914  
(10V) cos t  
+15V  
0.1F  
D2  
1N914  
D4  
1N914  
R4  
C2  
+15V  
0.1F  
16k⍀  
0.01F  
+V  
1
2
3
4
8
7
6
5
S
X1  
X2  
R1  
1k⍀  
R3  
330k⍀  
+V  
W
1
2
3
4
8
7
6
5
S
X1  
X2  
R2  
AD633JN  
16k⍀  
E
W
Z
(10V) sin t  
Y1  
C
Z
R5  
16k⍀  
AD633JN  
0.1F  
E
C
10V  
–V  
Y1  
Y2  
S
f =  
kHz  
0.1F  
C3  
–V  
Y2  
S
0.1F  
0.1F  
–15V  
–15V  
Figure 13. Voltage Controlled Quadrature Oscillator  
R2  
1k  
R3  
10k⍀  
R4  
10k⍀  
AGC THRESHOLD  
ADJUSTMENT  
+15V  
0.1F  
+15V  
C1  
1F  
0.1F  
+V  
1
2
3
4
8
1/2  
S
X1  
X2  
E
AD712  
OUT  
W
7
6
5
R5  
10k⍀  
A1  
AD633JN  
E
Y1  
Z
R6  
1k⍀  
–V  
Y2  
S
+15V  
1
2
3
4
C
COMMON  
8
7
6
5
0.1F  
–15V  
C
0.1F  
V
+V  
S
AD736  
OUTPUT  
IN  
C
F
C2  
0.02F  
0.1F  
–V  
C
S
AV  
C3  
0.2F  
R10  
10k⍀  
–15V  
C4  
33F  
A2  
R9  
10k⍀  
1N4148  
1/2  
AD712  
+15V  
R8  
50k⍀  
OUTPUT  
LEVEL  
ADJUST  
0.1F  
–15V  
Figure 14. Connections for Use in Automatic Gain Control Circuit  
–6–  
REV. B  
Typical Characteristics–AD633  
100  
0dB = 0.1V rms, R = 2k⍀  
L
90  
80  
70  
60  
50  
40  
0
C
= 1000pF  
L
TYPICAL  
FOR X,Y  
INPUTS  
C
= 0dB  
L
–10  
–20  
–30  
NORMAL  
CONNECTION  
30  
20  
100  
100k  
1M  
1k  
10k  
10k  
1M  
10M  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 15. Frequency Response  
Figure 18. CMRR vs. Frequency  
1.5  
700  
600  
500  
400  
1
0.5  
300  
200  
0
10  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
100  
100k  
1k  
10k  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
Figure 16. Input Bias Current vs. Temperature (X, Y, or Z  
Inputs)  
Figure 19. Noise Spectral Density vs. Frequency  
14  
12  
1000  
Y-FEEDTHROUGH  
100  
OUTPUT, R  
2k⍀  
L
10  
8
X- FEEDTHROUGH  
10  
ALL INPUTS  
1
0
6
4
8
20  
10  
12  
14  
16  
18  
10  
100  
10k  
FREQUENCY – Hz  
1k  
100k  
1M  
10M  
PEAK POSITIVE OR NEGATIVE SUPPLY – Volts  
Figure 17. Input and Output Signal Ranges vs. Supply  
Voltages  
Figure 20. AC Feedthrough vs. Frequency  
–7–  
REV. B  
AD633  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
0.39 (9.91)  
MAX  
8
5
4
0.25 0.31  
(6.35) (7.87)  
1
PIN 1  
0.30 (7.62)  
REF  
0.10 (2.54)  
TYP  
0.035 ؎0.01  
(0.89 ؎0.25)  
0.165 ؎0.01  
(4.19 ؎0.25)  
0.18 ؎0.03  
(4.57 ؎0.76)  
0.125 (3.18)  
MIN  
0.11 ؎0.003  
(0.28 ؎0.08)  
0.018 ؎0.003  
(0.46 ؎0.03)  
SEATING  
PLANE  
0.033 (0.84)  
NOM  
0-15؇  
8-Lead Plastic SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
؋
 45؇  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
8؇  
0؇  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
–8–  
REV. B  

相关型号:

AD636

Low Level, True RMS-to-DC Converter
ADI

AD636J

Low Level, True RMS-to-DC Converter
ADI

AD636JC/D

RMS-to-DC Converter
ETC

AD636JCHIP

IC RMS TO DC CONVERTER, 0.1 MHz, UUC10, DIE-11, Analog Special Function Converter
ADI

AD636JCHIPS

RMS-to-DC Converter
ETC

AD636JCWE

RMS-to-DC Converter
ETC

AD636JD

Low Level, True RMS-to-DC Converter
ADI

AD636JD/+

RMS-to-DC Converter
ETC

AD636JDZ

Low Level, True RMS-to-DC Converter
ADI

AD636JH

Low Level, True RMS-to-DC Converter
ADI

AD636JHZ

Low Level, True RMS-to-DC Converter
ADI

AD636JN

RMS-to-DC Converter
ETC