AD633ARZ-R7 [ADI]

Low Cost Analog Multiplier; 低成本模拟乘法器
AD633ARZ-R7
型号: AD633ARZ-R7
厂家: ADI    ADI
描述:

Low Cost Analog Multiplier
低成本模拟乘法器

文件: 总16页 (文件大小:610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost  
Analog Multiplier  
AD633  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
X1  
4-quadrant multiplication  
1
Low cost, 8-lead SOIC and PDIP packages  
Complete—no external components required  
Laser-trimmed accuracy and stability  
Total error within 2% of full scale  
X2  
A
W
Z
1
10V  
Differential high impedance X and Y inputs  
High impedance unity-gain summing input  
Laser-trimmed 10 V scaling reference  
Y1  
Y2  
1
Figure 1.  
APPLICATIONS  
Multiplication, division, squaring  
Modulation/demodulation, phase detection  
Voltage-controlled amplifiers/attenuators/filters  
GENERAL DESCRIPTION  
The AD633 is a functionally complete, four-quadrant, analog  
multiplier. It includes high impedance, differential X and Y inputs,  
and a high impedance summing input (Z). The low impedance  
output voltage is a nominal 10 V full scale provided by a buried  
Zener. The AD633 is the first product to offer these features in  
modestly priced 8-lead PDIP and SOIC packages.  
The AD633 is available in 8-lead PDIP and SOIC packages. It is  
specified to operate over the 0°C to 70°C commercial temperature  
range (J Grade) or the −40°C to +85°C industrial temperature  
range (A Grade).  
PRODUCT HIGHLIGHTS  
1. The AD633 is a complete four-quadrant multiplier offered  
in low cost 8-lead SOIC and PDIP packages. The result is a  
product that is cost effective and easy to apply.  
2. No external components or expensive user calibration are  
required to apply the AD633.  
3. Monolithic construction and laser calibration make the  
device stable and reliable.  
4. High (10 MΩ) input resistances make signal source  
loading negligible.  
The AD633 is laser calibrated to a guaranteed total accuracy of  
2% of full scale. Nonlinearity for the Y input is typically less  
than 0.1% and noise referred to the output is typically less than  
100 μV rms in a 10 Hz to 10 kHz bandwidth. A 1 MHz bandwidth,  
20 V/μs slew rate, and the ability to drive capacitive loads make  
the AD633 useful in a wide variety of applications where  
simplicity and cost are key concerns.  
The versatility of the AD633 is not compromised by its simplicity.  
The Z input provides access to the output buffer amplifier, enabling  
the user to sum the outputs of two or more multipliers, increase  
the multiplier gain, convert the output voltage to a current, and  
configure a variety of applications.  
5. Power supply voltages can range from 8 V to 18 V. The  
internal scaling voltage is generated by a stable Zener diode;  
multiplier accuracy is essentially supply insensitive.  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD633  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.................................................................8  
Multiplier Connections ................................................................8  
Squaring and Frequency Doubling.............................................8  
Generating Inverse Functions .....................................................8  
Variable Scale Factor.....................................................................9  
Current Output..............................................................................9  
Linear Amplitude Modulator ......................................................9  
Voltage-Controlled, Low-Pass and High-Pass Filters...............9  
Voltage-Controlled Quadrature Oscillator................................... 10  
Automatic Gain Control (AGC) Amplifiers........................... 10  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Functional Description.................................................................... 7  
Error Sources................................................................................. 7  
REVISION HISTORY  
4/10—Rev. F to Rev. G  
2/12—Rev. H to Rev. I  
Changes to Equation 1......................................................................6  
Changes to Equation 5 and Figure 14.............................................7  
Changes to Figure 21.........................................................................9  
Changes to Figure 1.......................................................................... 1  
Changes to Figure 2.......................................................................... 5  
Changes to Generating Inverse Functions Section ...................... 8  
Changes to Figure 15........................................................................ 9  
Added Evaluation Board Section and Figure 23 to Figure 29,  
Renumbered Sequentially.............................................................. 12  
Changes to Ordering Guide .......................................................... 15  
10/09—Rev. E to Rev. F  
Changes to Format .............................................................Universal  
Changes to Figure 21.........................................................................9  
Updated Outline Dimensions....................................................... 11  
Changes to Ordering Guide.......................................................... 12  
4/11—Rev. G to Rev. H  
Changes to Figure 1, Deleted Figure 2........................................... 1  
Added Figure 2, Figure 3, Table 4, Table 5 .................................... 5  
Deleted Figure 9, Renumbered Subsequent Figures.................... 6  
Changes to Figure 15........................................................................ 9  
10/02—Rev. D to Rev. E  
Edits to Title of 8-Lead Plastic SOIC Package (RN-8) .................1  
Edits to Ordering Guide ...................................................................2  
Change to Figure 13 ..........................................................................7  
Updated Outline Dimensions..........................................................8  
Rev. I | Page 2 of 16  
 
Data Sheet  
AD633  
SPECIFICATIONS  
TA = 25°C, VS = 15 V, RL ≥ 2 kΩ.  
Table 1.  
AD633J, AD633A  
Typ  
Parameter  
Conditions  
Min  
Max  
Unit  
TRANSFER FUNCTION  
(
X1 X2)(Y1 Y2  
)
W =  
+ Z  
10 V  
MULTIPLIER PERFORMANCE  
Total Error  
−10 V ≤ X, Y ≤ +10 V  
±1  
±3  
±±1  
% full scale  
% full scale  
% full scale  
% full scale  
% full scale  
% full scale  
% full scale  
% full scale  
mV  
TMIN to TMAX  
Scale Voltage Error  
Supply Rejection  
Nonlinearity, X  
SF = 10.00 V nominal  
VS = ±14 V to ±16 V  
X = ±10 V, Y = +10 V  
Y = ±10 V, X = +10 V  
Y nulled, X = ±10 V  
X nulled, Y = ±10 V  
±0.±5%  
±0.01  
±0.4  
±0.1  
±0.3  
±0.1  
±5  
±11  
±0.41  
±11  
±0.41  
±501  
Nonlinearity, Y  
X Feedthrough  
Y Feedthrough  
Output Offset Voltage  
DYNAMICS  
Small Signal Bandwidth  
Slew Rate  
Settling Time to 1%  
OUTPUT NOISE  
Spectral Density  
Wideband Noise  
VO = 0.1 V rms  
VO = ±0 V p-p  
ΔVO = ±0 V  
1
±0  
±
MHz  
V/µs  
µs  
0.8  
1
90  
µV/√Hz  
mV rms  
µV rms  
f = 10 Hz to 5 MHz  
f = 10 Hz to 10 kHz  
OUTPUT  
Output Voltage Swing  
Short Circuit Current  
INPUT AMPLIFIERS  
Signal Voltage Range  
±111  
V
mA  
RL = 0 Ω  
30  
401  
Differential  
Common mode  
±101  
±101  
V
V
Offset Voltage (X, Y)  
CMRR (X, Y)  
Bias Current (X, Y, Z)  
Differential Resistance  
POWER SUPPLY  
±5  
80  
0.8  
10  
±301  
±.01  
mV  
dB  
µA  
MΩ  
VCM = ±10 V, f = 50 Hz  
601  
Supply Voltage  
Rated Performance  
Operating Range  
Supply Current  
±15  
4
V
V
mA  
±81  
±181  
61  
Quiescent  
1 This specification was tested on all production units at electrical test. Results from those tests are used to calculate outgoing quality levels. All minimum and maximum  
specifications are guaranteed; however, only this specification was tested on all production units.  
Rev. I | Page 3 of 16  
 
 
AD633  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
±18 V  
Internal Power Dissipation  
Input Voltages1  
500 mW  
±18 V  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
AD633J  
Indefinite  
−65°C to +150°C  
THERMAL RESISTANCE  
0°C to 70°C  
−40°C to +85°C  
300°C  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
AD633A  
Lead Temperature (Soldering, 60 sec)  
ESD Rating  
1000 V  
Table 3.  
1 For supply voltages less than ±18 V, the absolute maximum input voltage is  
equal to the supply voltage.  
Package Type  
8-Lead PDIP  
8-Lead SOIC  
θJA  
90  
155  
Unit  
°C/W  
°C/W  
ESD CAUTION  
Rev. I | Page 4 of 16  
 
 
 
 
Data Sheet  
AD633  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
X1  
X2  
Y1  
Y2  
1
2
3
4
8
7
6
5
+V  
W
Z
Y1  
Y2  
1
2
3
4
8
7
6
5
X2  
X1  
+V  
W
S
1
1
1
A
1
10V  
1
10V  
–V  
S
S
A
1
Z
–V  
S
AD633JN/AD633AN  
AD633JR/AD633AR  
(X1 – X2)(Y1 – Y2)  
(X1 – X2)(Y1 – Y2)  
W =  
+ Z  
W =  
+ Z  
10V  
10V  
Figure 2. 8-Lead PDIP  
Figure 3. 8-Lead SOIC  
Table 4. 8-Lead PDIP Pin Function Descriptions  
Table 5. 8-Lead SOIC Pin Function Descriptions  
Pin No. Mnemonic Description  
Pin No.  
Mnemonic Description  
1
±
3
4
5
6
7
8
X1  
X±  
Y1  
Y±  
−VS  
Z
X Multiplicand Noninverting Input  
X Multiplicand Inverting Input  
Y Multiplicand Noninverting Input  
Y Multiplicand Inverting Input  
Negative Supply Rail  
Summing Input  
Product Output  
Positive Supply Rail  
1
±
3
4
5
6
7
8
Y1  
Y±  
−VS  
Z
Y Multiplicand Noninverting Input  
Y Multiplicand Inverting Input  
Negative Supply Rail  
Summing Input  
Product Output  
Positive Supply Rail  
X Multiplicand Noninverting Input  
X Multiplicand Inverting Input  
W
+VS  
X1  
X±  
W
+VS  
Rev. I | Page 5 of 16  
 
AD633  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0dB = 0.1V rms, R = 2kΩ  
L
0
–10  
–20  
C
= 1000pF  
L
C
= 0dB  
L
TYPICAL  
FOR X, Y  
INPUTS  
NORMAL  
CONNECTION  
–30  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
Figure 7. CMRR vs. Frequency  
Figure 4. Frequency Response  
1.5  
1.0  
700  
600  
500  
400  
300  
200  
0.5  
0
10  
100  
1k  
10k  
100k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 5. Input Bias Current vs. Temperature (X, Y, or Z Inputs)  
Figure 8. Noise Spectral Density vs. Frequency  
14  
1k  
100  
10  
Y-FEEDTHROUGH  
12  
OUTPUT, R ≥ 2kΩ  
L
10  
8
X-FEEDTHROUGH  
ALL INPUTS  
1
6
4
0.1  
10  
8
10  
12  
14  
16  
18  
20  
100  
1k  
10k  
100k  
1M  
10M  
PEAK POSITIVE OR NEGATIVE SUPPLY (V)  
FREQUENCY (Hz)  
Figure 6. Input and Output Signal Ranges vs. Supply Voltages  
Figure 9. AC Feedthrough vs. Frequency  
Rev. I | Page 6 of 16  
 
Data Sheet  
AD633  
FUNCTIONAL DESCRIPTION  
The AD633 is a low cost multiplier comprising a translinear  
core, a buried Zener reference, and a unity-gain connected  
output amplifier with an accessible summing node. Figure 1  
shows the functional block diagram. The differential X and Y  
inputs are converted to differential currents by voltage-to-  
current converters. The product of these currents is generated  
by the multiplying core. A buried Zener reference provides an  
overall scale factor of 10 V. The sum of (X × Y)/10 + Z is then  
applied to the output amplifier. The amplifier summing node Z  
allows the user to add two or more multiplier outputs, convert  
the output voltage to a current, and configure various analog  
computational functions.  
ERROR SOURCES  
Multiplier errors consist primarily of input and output offsets,  
scale factor error, and nonlinearity in the multiplying core. The  
input and output offsets can be eliminated by using the optional  
trim of Figure 10. This scheme reduces the net error to scale  
factor errors (gain error) and an irreducible nonlinearity  
component in the multiplying core. The X and Y nonlinearities  
are typically 0.4% and 0.1% of full scale, respectively. Scale  
factor error is typically 0.25% of full scale. The high impedance  
Z input should always reference the ground point of the driven  
system, particularly if it is remote. Likewise, the differential X  
and Y inputs should reference their respective grounds to  
realize the full accuracy of the AD633.  
Inspection of the block diagram shows the overall transfer  
function is  
+V  
S
(
X1 X2)(Y1 Y2  
)
+ Z  
±50mV  
W =  
(1)  
300kΩ  
TO APPROPRIATE  
INPUT TERMINAL  
(FOR EXAMPLE, X2, Y2, Z)  
50kΩ  
10 V  
1kΩ  
–V  
S
Figure 10. Optional Offset Trim Configuration  
Rev. I | Page 7 of 16  
 
 
 
AD633  
Data Sheet  
APPLICATIONS INFORMATION  
+15V  
0.1µF  
The AD633 is well suited for such applications as modulation  
and demodulation, automatic gain control, power measurement,  
voltage-controlled amplifiers, and frequency doublers. These  
applications show the pin connections for the AD633JN (8-lead  
PDIP), which differs from the AD633JR (8-lead SOIC).  
+V  
8
E
1
2
3
4
X1  
X2  
S
2
E
R
C
W =  
W
Z
7
6
5
10V  
R1  
1k  
AD633JN  
Y1  
R2  
3kΩ  
–V  
MULTIPLIER CONNECTIONS  
Y2  
S
Figure 11 shows the basic connections for multiplication. The X  
and Y inputs normally have their negative nodes grounded, but  
they are fully differential, and in many applications, the grounded  
inputs may be reversed (to facilitate interfacing with signals of a  
particular polarity while achieving some desired output polarity),  
or both may be driven.  
0.1µF  
–15V  
Figure 13. Bounceless Frequency Doubler  
At ωo = 1/CR, the X input leads the input signal by 45° (and is  
attenuated by √2), and the Y input lags the X input by 45° (and  
is also attenuated by √2). Because the X and Y inputs are 90° out of  
phase, the response of the circuit is (satisfying Equation 3)  
+15V  
0.1µF  
+V  
8
7
+
+
1
2
3
4
X1  
X2  
1
10V  
E
2
E
2
S
X
W   
sin 0t 45  
sin 0t 45  
(X1 – X2)(Y1 – Y2)  
10V  
INPUT  
W =  
+ Z  
W
Z
AD633JN  
OPTIONAL SUMMING  
INPUT, Z  
E2  
40 V  
Y1  
6
5
Y
sin 2 0t  
(4)  
INPUT  
–V  
Y2  
S
0.1µF  
which has no dc component. Resistors R1 and R2 are included  
to restore the output amplitude to 10 V for an input amplitude  
of 10 V.  
–15V  
Figure 11. Basic Multiplier Connections  
SQUARING AND FREQUENCY DOUBLING  
The amplitude of the output is only a weak function of frequency;  
the output amplitude is 0.5% too low at ω = 0.9 ω0 and ω0 = 1.1 ω0.  
As is shown in Figure 12, squaring of an input signal, E, is  
achieved simply by connecting the X and Y inputs in parallel to  
produce an output of E2/10 V. The input can have either polarity,  
but the output is positive. However, the output polarity can be  
reversed by interchanging the X or Y inputs. The Z input can be  
used to add a further signal to the output.  
GENERATING INVERSE FUNCTIONS  
Inverse functions of multiplication, such as division and square  
rooting, can be implemented by placing a multiplier in the feedback  
loop of an op amp. Figure 14 shows how to implement square  
rooting with the transfer function for the condition E < 0.  
+15V  
0.1µF  
The 1N4148 diode is required to prevent latchup, which can  
occur in such applications if the input were to change polarity,  
even momentarily.  
+V  
8
E
1
2
3
4
X1  
X2  
S
2
E
W =  
W
Z
7
6
5
10V  
AD633JN  
Y1  
W  
10E  
V  
(5)  
–V  
Y2  
S
10k  
0.1µF  
+15V  
0.1µF  
+15V  
–15V  
+V  
8
1
2
3
4
X1  
X2  
S
Figure 12. Connections for Squaring  
0.1µF  
6
10kΩ  
W
Z
7
6
5
7
When the input is a sine wave E sin ωt, this squarer behaves as a  
frequency doubler, because  
2
3
E < 0V  
1N4148  
–15V  
0.1µF  
AD633JN  
AD711  
Y1  
Y2  
4
2
E2  
20 V  
–V  
S
E sin t  
10 V  
0.1µF  
1 cos 2 t  
(2)  
–15V  
W =  
10V)E  
Equation 2 shows a dc term at the output that varies strongly  
with the amplitude of the input, E. This can be avoided using  
the connections shown in Figure 13, where an RC network is  
Figure 14. Connections for Square Rooting  
used to generate two signals whose product has no dc term. It  
uses the identity  
1
2
cos θ sin θ   
sin 2 θ  
(3)  
Rev. I | Page 8 of 16  
 
 
 
 
 
 
 
Data Sheet  
AD633  
Likewise, Figure 15 shows how to implement a divider using a  
multiplier in a feedback loop. The transfer function for the  
divider is  
This arrangement forms the basis of voltage-controlled integrators  
and oscillators as is shown later in this section. The transfer  
function of this circuit has the form  
E
EX  
1
R
(
X1X2)(Y1Y2  
10 V  
)
W = −  
(
10 V  
)
(6)  
IO =  
(7)  
R
10kΩ  
LINEAR AMPLITUDE MODULATOR  
The AD633 can be used as a linear amplitude modulator with no  
external components. Figure 18 shows the circuit. The carrier  
and modulation inputs to the AD633 are multiplied to produce  
a double sideband signal. The carrier signal is fed forward to the  
Z input of the AD633 where it is summed with the double  
sideband signal to produce a double sideband with the carrier  
output.  
+15V  
0.1µF  
+15V  
0.1µF  
+V  
8
E
1
2
3
4
X1  
X2  
S
X
R
10kΩ  
W
Z
7
6
5
7
2
3
E
AD633JN  
6
Y1  
Y2  
AD711  
0.1µF  
4
–V  
S
0.1µF  
+15V  
–15V  
W' = –10V  
–15V  
E
E
X
0.1µF  
MODULATION  
INPUT  
+V  
8
+
1
2
3
4
X1  
X2  
S
E
M
±E  
Figure 15. Connections for Division  
M
W
Z
7
6
5
W = 1+  
E sin ωt  
C
10V  
AD633JN  
CARRIER  
INPUT  
Y1  
Y2  
VARIABLE SCALE FACTOR  
E
sin ωt  
C
–V  
S
In some instances, it may be desirable to use a scaling voltage  
0.1µF  
other than 10 V. The connections shown in Figure 16 increase  
the gain of the system by the ratio (R1 + R2)/R1. This ratio is  
limited to 100 in practical applications. The summing input, S,  
can be used to add an additional signal to the output, or it can  
be grounded.  
–15V  
Figure 18. Linear Amplitude Modulator  
VOLTAGE-CONTROLLED, LOW-PASS AND HIGH-  
PASS FILTERS  
+15V  
Figure 19 shows a single multiplier used to build a voltage-  
controlled, low-pass filter. The voltage at Output A is a result  
of filtering, ES. The break frequency is modulated by EC, the control  
input. The break frequency, f2, equals  
0.1µF  
+V  
8
7
6
+
+
1
2
3
4
X1  
X2  
S
X
INPUT  
(X1 – X2)(Y1 – Y2) R1 + R2  
W
Z
W =  
+ S  
10V  
R1  
AD633JN  
R1  
R2  
1kΩ ≤ R1, R2 ≤ 100kΩ  
Y1  
Y2  
Y
EC  
INPUT  
–V  
5
f2 =  
(8)  
S
(
20 V π RC  
)
0.1µF  
S
and the roll-off is 6 dB per octave. This output, which is at a  
high impedance point, may need to be buffered.  
–15V  
dB  
Figure 16. Connections for Variable Scale Factor  
f2 f1  
f
0
CURRENT OUTPUT  
+15V  
0.1µF  
–6dB/OCTAVE  
The voltage output of the AD633 can be converted to a current  
output by the addition of a resistor, R, between the W and Z pins of  
the AD633 as shown in Figure 17.  
OUTPUT B  
OUTPUT A  
+V  
8
1
2
3
4
X1  
X2  
S
CONTROL  
INPUT E  
1 + T P  
1
C
OUTPUT B =  
W
Z
7
6
5
1 + T P  
2
1
+15V  
AD633JN  
R
SIGNAL  
INPUT E  
Y1  
Y2  
OUTPUT A =  
1
1 + T P  
2
S
0.1µF  
C
–V  
S
+V  
8
+
+
1
2
3
4
X1  
X2  
S
T
=
= R  
1
C
X
W
1
0.1µF  
–15V  
R
1
(X1 – X2)(Y1 – Y2)  
10V  
INPUT  
I
=
1
10  
W
Z
7
6
5
O
T
=
=
R
2
AD633JN  
W
E
R
2
C
C
1kΩ ≤ R ≤ 100kΩ  
Y1  
Y2  
Y
Figure 19. Voltage-Controlled, Low-Pass Filter  
INPUT  
–V  
S
The voltage at Output B, the direct output of the AD633, has the  
same response up to frequency f1, the natural breakpoint of RC  
filter, and then levels off to a constant attenuation of f1/f2 = EC/10.  
0.1µF  
–15V  
Figure 17. Current Output Connections  
1
f1 =  
(9)  
2 π RC  
Rev. I | Page 9 of 16  
 
 
 
 
 
 
 
 
 
 
AD633  
Data Sheet  
For example, if R = 8 kΩ and C = 0.002 µF, then Output A has a  
pole at frequencies from 100 Hz to 10 kHz for EC ranging from  
100 mV to 10 V. Output B has an additional 0 at 10 kHz (and  
can be loaded because it is the low impedance output of the  
multiplier). The circuit can be changed to a high-pass filter Z  
interchanging the resistor and capacitor as shown in Figure 20.  
EC, connected to the Y inputs, varies the integrator gains with a  
calibration of 100 Hz/V. The accuracy is limited by the Y input  
offsets. The practical tuning range of this circuit is 100:1. C2  
(proportional to C1 and C3), R3, and R4 provide regenerative  
feedback to start and maintain oscillation. The diode bridge, D1  
through D4 (1N914s), and Zener diode D5 provide economical  
temperature stabilization and amplitude stabilization at 8.5 V  
by degenerative damping. The output from the second integrator  
(10 V sin ωt) has the lowest distortion.  
dB  
f1 f2  
f
0
+15V  
0.1µF  
OUTPUT B  
+6dB/OCTAVE  
AUTOMATIC GAIN CONTROL (AGC) AMPLIFIERS  
OUTPUT A  
+V  
8
1
2
3
4
X1  
X2  
S
CONTROL  
INPUT E  
Figure 22 shows an AGC circuit that uses an rms-to-dc  
converter to measure the amplitude of the output waveform.  
The AD633 and A1, ½ of an AD712 dual op amp, form a  
voltage-controlled amplifier. The rms-to-dc converter, an  
AD736, measures the rms value of the output signal. Its output  
drives A2, an integrator/comparator whose output controls the  
gain of the voltage-controlled amplifier. The 1N4148 diode  
prevents the output of A2 from going negative. R8, a 50 kΩ  
variable resistor, sets the output level of the circuit. Feedback  
around the loop forces the voltages at the inverting and  
noninverting inputs of A2 to be equal, thus the AGC.  
C
OUTPUT B  
OUTPUT A  
W
Z
7
6
5
C
AD633JN  
SIGNAL  
INPUT E  
Y1  
Y2  
S
R
–V  
S
0.1µF  
–15V  
Figure 20. Voltage-Controlled, High-Pass Filter  
VOLTAGE-CONTROLLED QUADRATURE OSCILLATOR  
Figure 21 shows two multipliers being used to form integrators  
with controllable time constants in second-order differential  
equation feedback loop. R2 and R5 provide controlled current  
output operation. The currents are integrated in capacitors C1  
and C2, and the resulting voltages at high impedance are applied  
to the X inputs of the next AD633. The frequency control input,  
D5  
1N5236  
D1  
D3  
1N914  
1N914  
(10V) cos ωt  
D2  
1N914  
D4  
1N914  
+15V  
0.1µF  
C2  
0.01µF  
R4  
16kΩ  
+15V  
0.1µF  
+V  
8
1
2
3
4
X1  
X2  
S
R1  
1kΩ  
R3  
330kΩ  
+V  
8
W
Z
7
6
5
1
2
3
4
X1  
X2  
S
R2  
16kΩ  
AD633JN  
E
C
Y1  
Y2  
W
Z
7
6
5
(10V) sin ωt  
C1  
0.01µF  
R5  
AD633JN  
16kΩ  
C3  
0.01µF  
–V  
Y1  
Y2  
S
0.1µF  
0.1µF  
–15V  
–V  
S
E
C
f =  
= kHz  
–15V  
10V  
Figure 21. Voltage-Controlled Quadrature Oscillator  
Rev. I | Page 10 of 16  
 
 
 
 
Data Sheet  
AD633  
R2  
1kΩ  
R3  
10kΩ  
R4  
10kΩ  
AGC THRESHOLD  
ADJUSTMENT  
+15V  
0.1µF  
+15V  
C1  
1µF  
8
0.1µF  
2
3
+V  
8
1
2
3
4
X1  
X2  
S
1/2  
AD712  
1
E
OUT  
R5  
W
7
6
5
10kΩ  
AD633JN  
A1  
R6  
1kΩ  
Y1  
Y2  
Z
E
–V  
S
+15V  
COMMON  
8
7
1
2
3
4
C
V
C
0.1µF  
0.1µF  
+V  
S
IN  
–15V  
AD736  
C
OUTPUT  
6
5
C2  
0.02µF  
F
0.1µF  
C
–V  
AV  
S
C3  
0.2µF  
R10  
10kΩ  
–15V  
C4  
33µF  
A2  
R9  
10kΩ  
6
5
1N4148  
+15V  
1/2  
AD712  
7
OUTPUT  
LEVEL  
ADJUST  
R8  
50kΩ  
4
0.1µF  
–15V  
Figure 22. Connections for Use in Automatic Gain Control Circuit  
Rev. I | Page 11 of 16  
 
AD633  
Data Sheet  
EVALUATION BOARD  
The evaluation board of the AD633 enables simple bench-top  
experimenting to be performed with easy control of the  
AD633. Built-in flexibility allows convenient configuration  
to accommodate most operating configurations. Figure 23 is  
a photograph of the AD633 evaluation board.  
Figure 24. Component Side Copper  
Figure 23. AD633 Evaluation Board  
Any dual-polarity power supply capable of providing 10 mA  
or greater is all that is required, in addition to whatever test  
equipment the user wishes to perform the intended tests.  
Referring to the schematic in Figure 30, inputs to the multiplier are  
differential and dc-coupled. Three-position slide switches enhance  
flexibility by enabling the multiplier inputs to be connected to  
an active signal source, to ground, or to a test loop connected  
directly to the device pin for direct measurements, such as bias  
current. Inputs may be connected single ended or differentially,  
but must have a dc path to ground for bias current. If an input  
source’s impedance is non-zero, an equal value impedance must  
be connected to the opposite polarity input to avoid introducing  
additional offset voltage.  
Figure 25. Circuit Side Copper  
The AD633-EVALZ can be configured for multiplier or divider  
operation by switch S1. Refer to Figure 15 for divider circuit  
connections.  
Figure 24 through Figure 27 are the signal, power, and ground-  
plane artworks, and Figure 28 shows the component and circuit  
side silkscreen. Figure 29 shows the assembly.  
Figure 26. Inner Layer Ground Plane  
Rev. I | Page 1± of 16  
 
 
Data Sheet  
AD633  
Figure 27. Inner Layer Power Plane  
Figure 29. AD633-EVALZ Assembly  
Figure 28. Component Side Silk Screen  
G1  
G2  
G3  
G4  
G5  
G6  
+V  
GND  
–V  
–V  
C5  
+
C6  
10µF  
25V  
10µF  
+
25V  
+V  
Y1_IN  
X2_IN  
X2_TP  
D
FUNCT(1)  
IN  
IN  
SEL_Y1  
SEL_Y2  
GND  
GND  
SEL_X1  
M
TEST  
TEST  
IN  
Y1_TP  
Y1  
Y2_IN  
X1_IN (DENOM)  
Y2_TP  
X1_TP  
1
2
8
7
IN  
X2  
X1  
GND  
GND  
SEL_X2  
1
Y2  
Z1  
TEST  
+V  
TEST  
AD633ARZ  
S
R1  
100Ω  
3
4
6
5
–V  
+V  
S
–V  
S
C3  
0.1µF  
Z
W
C2  
0.1µF  
C1  
0.1µF  
7
3
Z_IN  
Z_TP  
6
R2  
10kΩ  
IN  
D
2
SEL_Z  
GND  
TEST  
4
MULTIPLICATION:  
[(X1-X2)(Y1-Y2)/10V] + Z  
DIVISION:  
FUNCT(2)  
C4  
0.1µF  
M
R3  
10kΩ  
NOM_TP  
–10V (NUM/DENOM)  
D
NUMERATOR  
NOTES  
1. Z1 TO HAVE DUAL FOOTPRINT FOR  
SOLDER MOUNT OR THRUHOLE SOCKET.  
FUNCT(3)  
OUT  
M
OUT_TP  
Figure 30. Schematic of the AD633 Evaluation Board  
Rev. I | Page 13 of 16  
 
 
 
AD633  
Data Sheet  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 31. 8-Lead Plastic Dual-in-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 32. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. I | Page 14 of 16  
 
Data Sheet  
AD633  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD633ANZ  
AD633ARZ  
AD633ARZ-R7  
AD633ARZ-RL  
AD633JN  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
8-Lead Plastic Dual-in-Line Package [PDIP]  
N-8  
R-8  
R-8  
R-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N], 7" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N], 13" Tape and Reel  
8-Lead Plastic Dual-in-Line Package [PDIP]  
AD633JNZ  
AD633JR  
8-Lead Plastic Dual-in-Line Package [PDIP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N], 13" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N], 7" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N], 7" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N], 13" Tape and Reel  
Evaluation Board  
AD633JR-REEL  
AD633JR-REEL7  
AD633JRZ  
AD633JRZ-R7  
AD633JRZ-RL  
AD633-EVALZ  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
1 Z = RoHS Compliant Part.  
Rev. I | Page 15 of 16  
 
 
AD633  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00786-0-2/12(I)  
Rev. I | Page 16 of 16  

相关型号:

AD633ARZ-REEL

IC ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, PDSO8, PLASTIC, MS-012AA, SOIC-8, Analog Computational Function
ADI

AD633ARZ-REEL7

Low Cost Analog Multiplier
ADI

AD633ARZ-RL

Low Cost Analog Multiplier
ADI

AD633JN

Low Cost Analog Multiplier
ADI

AD633JNZ

Low Cost Analog Multiplier
ADI

AD633JR

Low Cost Analog Multiplier
ADI

AD633JR-REEL

Low Cost Analog Multiplier
ADI

AD633JR-REEL7

Low Cost Analog Multiplier
ADI

AD633JRZ

Low Cost Analog Multiplier
ADI

AD633JRZ-R7

Low Cost Analog Multiplier
ADI

AD633JRZ-REEL

ANALOG MULTIPLIER OR DIVIDER, 1MHz BAND WIDTH, PDSO8, PLASTIC, MS-012AA, SOIC-8
ADI

AD633JRZ-RL

Low Cost Analog Multiplier
ADI