AD5721RBRUZ [ADI]

Multiple Range, 12-Bit, Unipolar Voltage Output DACs with 2 PPM/⁰C Reference;
AD5721RBRUZ
型号: AD5721RBRUZ
厂家: ADI    ADI
描述:

Multiple Range, 12-Bit, Unipolar Voltage Output DACs with 2 PPM/⁰C Reference

光电二极管 转换器
文件: 总36页 (文件大小:1504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiple Range, 16-/12-Bit, Bipolar/Unipolar  
Voltage Output DACs with 2 ppm/°C Reference  
Data Sheet  
AD5761R/AD5721R  
FEATURES  
GENERAL DESCRIPTION  
8 software-programmable output ranges: 0 V to +5 V, 0 V to  
+10 V, 0 V to +16 V, 0 V to +20 V, 3 V, 5 V, 10 V, and −2.5 V  
to +7.5 V; 5% overrange  
Low drift 2.5 V reference: 2 ppm/°C typical  
Total unadjusted error (TUE): 0.1% FSR maximum  
16-bit resolution: 2 LSB maximum INL  
Guaranteed monotonicity: 1 LSB maximum  
Single channel, 16-/12-bit DACs  
The AD5761R/AD5721R are single channel, 16-/12-bit serial  
input, voltage output, digital-to-analog converters (DACs).  
They operate from single supply voltages from +4.75 V to  
+30 V or dual supply voltages from −16.5 V to 0 V VSS and  
+4.75 V to +16.5 V VDD. The integrated output amplifier,  
reference buffer, and reference provide a very easy to use,  
universal solution.  
The devices offer guaranteed monotonicity, integral nonlinearity  
(INL) of 2 LSB maximum, 35 nV/√Hz noise, and 7.5 μs settling  
time on selected ranges.  
Settling time: 7.5 μs typical  
Integrated reference buffers  
Low noise: 35 nV/√Hz  
The AD5761R/AD5721R use a serial interface that operates at  
clock rates of up to 50 MHz and are compatible with DSP and  
microcontroller interface standards. Double buffering allows the  
asynchronous updating of the DAC output. The input coding  
is user-selectable twos complement or straight binary. The  
asynchronous reset function resets all registers to their default  
state. The output range is user selectable, via the RA[2:0] bits  
in the control register.  
Low glitch: 1 nV-sec (0 V to 5 V range)  
1.7 V to 5.5 V digital supply range  
Asynchronous updating via LDAC  
Asynchronous RESET to zero scale/midscale  
DSP-/microcontroller-compatible serial interface  
Robust 4 kV HBM ESD rating  
16-lead, 3 mm × 3 mm LFCSP package  
16-lead TSSOP package  
Operating temperature range: −40°C to +125°C  
The devices available in a 3 mm × 3 mm LFCSP package and a  
16-lead TSSOP package offer guaranteed specifications over the  
−40°C to +125°C industrial temperature range.  
APPLICATIONS  
Industrial automation  
Instrumentation, data acquisition  
Open-/closed-loop servo control, process control  
Programmable logic controllers  
FUNCTIONAL BLOCK DIAGRAM  
V
V
/V  
DD  
REFIN REFOUT  
AD5761R/AD5721R  
2.5V  
REFERENCE  
REFERENCE  
BUFFERS  
DV  
CC  
0V TO 5V  
0V TO 10V  
0V TO 16V  
0V TO 20V  
±3V  
±5V  
±10V  
2.5V TO +7.5V  
ALERT  
SDI  
SCLK  
INPUT SHIFT  
REGISTER  
AND  
CONTROL  
LOGIC  
12/16  
12/16  
12-BIT/  
16-BIT  
DAC  
INPUT  
REG  
DAC  
REG  
V
OUT  
SYNC  
SDO  
RESET  
CLEAR  
DNC  
DGND  
V
LDAC  
AGND  
SS  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5761R/AD5721R  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Hysteresis .................................................................... 27  
Register Details ............................................................................... 28  
Input Shift Register .................................................................... 28  
Control Register ......................................................................... 29  
Readback Control Register ....................................................... 30  
Update DAC Register from Input Register............................. 31  
Readback DAC Register ............................................................ 31  
Write and Update DAC Register .............................................. 31  
Readback Input Register............................................................ 32  
Disable Daisy-Chain Functionality.......................................... 32  
Software Data Reset ................................................................... 32  
Software Full Reset..................................................................... 33  
No Operation Registers ............................................................. 33  
Applications Information.............................................................. 34  
Typical Operating Circuit ......................................................... 34  
Power Supply Considerations................................................... 34  
Evaluation Board........................................................................ 34  
Outline Dimensions....................................................................... 35  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Performance Characteristics................................................ 6  
Timing Characteristics ................................................................ 7  
Timing Diagrams.......................................................................... 7  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characterstics............................................. 12  
Terminology .................................................................................... 23  
Theory of Operation ...................................................................... 25  
Digital-to-Analog Converter .................................................... 25  
Transfer Function....................................................................... 25  
DAC Architecture....................................................................... 25  
Serial Interface ............................................................................ 26  
Hardware Control Pins.............................................................. 26  
REVISION HISTORY  
1/2018—Rev. B to Rev. C  
Changes to Figure 35...................................................................... 16  
Changes to Figure 37...................................................................... 17  
Changes to Figure 50...................................................................... 19  
Changes to Figure 58 to Figure 60................................................ 20  
Changes to Figure 61 to Figure 66................................................ 21  
Changes to Figure 69...................................................................... 22  
Added Figure 71 ............................................................................. 22  
Changes to Terminology Section ................................................. 23  
Changes to Digital-to-Analog Converter Section and Internal  
Reference Section ........................................................................... 25  
Changes to Transfer Function Section......................................... 25  
Moved DAC Output Amplifier Section....................................... 26  
Change to DB[15:11] Column, Table 11 and RA[2:0]  
Description Column, Table 12...................................................... 29  
Change to DB[15:13] Column, Table 15 ..................................... 30  
Updated Outline Dimensions....................................................... 35  
Moved Ordering Guide Section.................................................... 36  
Changes to Ordering Guide .......................................................... 36  
10/2016—Rev. A to Rev. B  
CLEAR  
Changes to Asynchronous Clear Function (  
) Section .......27  
Changes to Features Section ........................................................... 1  
Changes to Table 12 ....................................................................... 29  
Changes to Power Supply Considerations Section and  
Figure 77 .......................................................................................... 34  
Added Figure 79 ............................................................................. 35  
Updated Outline Dimensions....................................................... 35  
Changes to Ordering Guide.......................................................... 35  
5/2015—Rev. 0 to Rev. A  
Added LFCSP Package.......................................................Universal  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 6  
Changes to Table 4............................................................................ 9  
Added Figure 6 and Table 6; Renumbered Sequentially ........... 11  
Changes to Figure 21 to Figure 24................................................ 14  
11/2014—Revision 0: Initial Version  
Rev. C | Page 2 of 36  
 
Data Sheet  
AD5761R/AD5721R  
SPECIFICATIONS  
VDD1 = 4.75 V to 30 V, VSS1 = −16.5 V to 0 V, AGND = DGND = 0 V, VREFIN/VREFOUT = 2.5 V external, DVCC = 1.7 V to 5.5 V, RLOAD = 1 kΩ  
for all ranges except 0 V to 16 V and 0 V to 20 V for which RLOAD = 2 kΩ, CLOAD = 200 pF, all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
External reference3 and internal reference, outputs  
unloaded  
STATIC PERFORMANCE  
Programmable Output Ranges  
0
0
0
0
−2.5  
−3  
−5  
−10  
5
10  
16  
20  
+7.5  
+3  
+5  
+10  
V
V
V
V
V
V
V
V
AD5761R  
Resolution  
Relative Accuracy, INL  
A Grade  
16  
Bits  
−8  
−2  
+8  
+2  
LSB  
LSB  
External reference3 and internal reference  
All ranges except 0 V to 16 V and 0 V to 20 V,  
B Grade4  
VREFIN/VREFOUT = 2.5 V external and internal reference  
Differential Nonlinearity, DNL  
AD5721R  
Resolution  
−1  
12  
+1  
LSB  
Bits  
Relative Accuracy, INL  
B Grade  
Differential Nonlinearity, DNL  
Zero-Scale Error  
−0.5  
−0.5  
−6  
+0.5  
+0.5  
+6  
LSB  
LSB  
mV  
External reference3 and internal reference  
All ranges except 10 V and 0 V to 20 V, external  
reference3  
0 V to 20 V, 10 V ranges, external reference3  
All ranges except 5 V, 10 V and 0 V to 20 V,  
internal reference  
−10  
−6  
+10  
+6  
mV  
mV  
−8  
−9  
−13  
+8  
+9  
+13  
mV  
mV  
mV  
5 V range, internal reference  
0 V to 20 V range, internal reference  
10 V range, internal reference  
Zero-Scale Temperature  
Coefficient (TC)5  
5
µV/°C  
Unipolar ranges, external reference3 and internal  
reference  
15  
µV/°C  
Bipolar ranges, external reference3 and internal  
reference  
Bipolar Zero Error  
Bipolar Zero TC5  
−5  
−7  
+5  
+7  
mV  
mV  
µV/°C  
All bipolar ranges except 10 V  
10 V output range  
3 V range, external reference3 and internal  
reference  
All bipolar ranges except 3 V range, external  
reference3 and internal reference  
2
5
µV/°C  
mV  
Offset Error  
−6  
+6  
All ranges except 10 V and 0 V to 20 V, external  
reference3  
−10  
−6  
+10  
+6  
mV  
mV  
0 V to 20 V, 10 V ranges, external reference3  
All ranges except 5 V, 10 V, and 0 V to 20 V;  
internal reference  
−8  
−9  
−13  
+8  
+9  
+13  
mV  
mV  
mV  
5 V range, internal reference  
0 V to 20 V range, internal reference  
10 V range, internal reference  
Rev. C | Page 3 of 36  
 
AD5761R/AD5721R  
Data Sheet  
Parameter2  
Offset Error TC5  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Unipolar ranges, external reference3 and internal  
reference  
5
µV/°C  
15  
µV/°C  
Bipolar ranges, external reference3 and internal  
reference  
Gain Error  
−0.1  
+0.1  
+0.15  
% FSR  
% FSR  
External reference3  
−0.15  
Internal reference  
Gain Error TC5  
TUE  
1.5  
ppm FSR/°C External reference3 and internal reference  
% FSR  
% FSR  
−0.1  
+0.1  
+0.15  
External reference3  
Internal reference  
−0.15  
REFERENCE INPUT (EXTERNAL)5  
Reference Input Voltage (VREF  
Input Current  
)
2.5  
0.5  
V
µA  
V
1% for specified performance  
3 mV, at ambient temperature  
−2  
2
+2  
3
Reference Range  
REFERENCE OUTPUT (INTERNAL)5  
Output Voltage  
Voltage Reference TC  
Output Impedance  
Output Voltage Noise  
Noise Spectral Density  
Line Regulation  
2.5  
2
25  
6
10  
6
80  
3.5  
V
5
ppm/°C  
kΩ  
µV p-p  
nV/√Hz  
µV/V  
ppm  
ms  
0.1 Hz to 10 Hz  
At ambient; f = 10 kHz  
At ambient  
Thermal Hysteresis  
Start-Up Time  
First temperature cycle  
Coming out of power-down mode with a 10 nF  
capacitor on the VREFIN/VREFOUT pin to improve noise  
performance; outputs unloaded  
OUTPUT CHARACTERISTICS5  
Output Voltage Range  
−VOUT  
+VOUT  
See Table 7 for the different output voltage ranges  
available  
−10  
−10.5  
+10  
+10.5  
V
V
VDD/VSS  
VDD/VSS  
=
=
11 V, 10 V output range  
11 V, 10 V output range with 5%  
overrange  
Capacitive Load Stability  
Headroom  
1
1
nF  
V
0.5  
RLOAD = 1 kΩ for all ranges except 0 V to16 V and 0 V  
to 20 V ranges (RLOAD = 2 kΩ)  
Output Voltage TC  
Short-Circuit Current  
Resistive Load  
3
25  
ppm FSR/°C  
mA  
kΩ  
kΩ  
mV/mA  
10 V range, external reference  
Short on the VOUT pin  
All ranges except 0 V to16 V and 0 V to 20 V  
0 V to 16 V, 0 V to 20 V ranges  
Outputs unloaded  
1
2
Load Regulation  
DC Output Impedance  
LOGIC INPUTS5  
Input Voltage  
High, VIH  
0.3  
0.5  
Outputs unloaded  
DVCC = 1.7 V to 5.5 V, JEDEC compliant  
0.7 × DVCC  
V
V
Low, VIL  
0.3 × DVCC  
Input Current  
Leakage Current  
−1  
+1  
+1  
µA  
µA  
µA  
pF  
SDI, SCLK, SYNC  
−1  
LDAC, CLEAR, RESET pins held high  
LDAC, CLEAR, RESET pins held low  
Per pin, outputs unloaded  
−55  
Pin Capacitance  
5
Rev. C | Page 4 of 36  
Data Sheet  
AD5761R/AD5721R  
Parameter2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC OUTPUTS (SDO, ALERT)5  
Output Voltage  
Low, VOL  
High, VOH  
High Impedance, SDO Pin  
Leakage Current  
0.4  
+1  
V
V
DVCC = 1.7 V to 5.5 V, sinking 200 µA  
DVCC = 1.7 V to 5.5 V, sourcing 200 µA  
DVCC − 0.5  
−1  
µA  
pF  
Pin Capacitance  
5
POWER REQUIREMENTS  
VDD  
VSS  
DVCC  
IDD  
ISS  
DICC  
4.75  
−16.5  
1.7  
30  
0
5.5  
6.5  
3
V
V
V
5.1  
1
0.005  
67.1  
0.1  
mA  
mA  
µA  
mW  
mV/V  
Outputs unloaded, external reference  
Outputs unloaded  
VIH = DVCC, VIL = DGND  
11 V operation, outputs unloaded, TSSOP package  
VDD 10%, VSS = −15 V  
1
Power Dissipation  
DC Power Supply Rejection  
Ratio (PSRR)5  
0.1  
65  
mV/V  
dB  
VSS 10%, VDD = +15 V  
VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V, internal  
reference, CLOAD = 100 nF  
AC PSRR5  
65  
80  
80  
dB  
dB  
dB  
VSS 200 mV, 50 Hz/60 Hz, VDD = +15 V, internal  
reference, CLOAD = 100 nF  
VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V, external  
reference, CLOAD = unloaded  
VSS 200 mV, 50 Hz/60 Hz, VDD = +15 V, external  
reference, CLOAD = unloaded  
1 For specified performance, headroom requirement is 1 V.  
2 Temperature range: −40°C to +125°C, typical at +25°C.  
3 External reference means 2 V to 2.85 V with overrange and 2 V to 3 V without overrange.  
4 Integral nonlinearity error is specified at 4 LSB (min/max) for 16 V and 20 V ranges with VREFIN/VREFOUT = 2.5 V external and internal, and for all ranges with VREFIN/VREFOUT  
2 V to 2.85 V with overrange and 2 V to 3 V without overrange.  
=
5 Guaranteed by design and characterization, not production tested.  
Rev. C | Page 5 of 36  
 
 
 
AD5761R/AD5721R  
Data Sheet  
AC PERFORMANCE CHARACTERISTICS  
VDD1 = 4.75 V to 30 V, VSS1 = −16.5 V to 0 V, AGND = DGND = 0 V, VREFIN/VREFOUT = 2.5 V external, DVCC = 1.7 V to 5.5 V, RLOAD = 1 kΩ  
for all ranges except 0 V to 16 V and 0 V to 20 V for which RLOAD = 2 kΩ, CLOAD = 200 pF, all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter2  
DYNAMIC PERFORMANCE3  
Min Typ Max Unit  
Test Conditions/Comments  
Output Voltage Settling Time  
9
7.5  
12.5 µs  
20 V step to 1 LSB at 16-bit resolution  
10 V step to 1 LSB at 16-bit resolution  
512 LSB step to 1 LSB at 16-bit resolution  
10 V range  
0 V to 5 V range  
10 V range  
8.5  
5
µs  
µs  
Digital-to-Analog Glitch Impulse  
Glitch Impulse Peak Amplitude  
8
1
15  
10  
100  
0.6  
nV-sec  
nV-sec  
mV  
mV  
mV p-p  
nV-sec  
0 V to 5 V range  
Power-On Glitch  
Digital Feedthrough  
Output Noise  
0.1 Hz to 10 Hz Bandwidth  
100 kHz Bandwidth  
15  
45  
35  
25  
15  
80  
µV p-p  
µV rms  
µV rms  
µV rms  
µV rms  
nV/√Hz  
0 V to 20 V and 0 V to 16 V ranges, 2.5 V external reference  
0 V to 10 V, 10 V, and −2.5 V to +7.5 V ranges, 2.5 V external reference  
5 V range, 2.5 V external reference  
0 V to 5 V and 3 V ranges, 2.5 V external reference  
10 V range, 2.5 V external reference  
Output Noise Spectral Density,  
at 10 kHz  
35  
70  
nV/√Hz  
nV/√Hz  
3 V range, 2.5 V external reference  
5 V, 0 V to 10 V, and −2.5 V to +7.5 V ranges, 2.5 V external reference  
110  
90  
45  
nV/√Hz 0 V to 20 V range, 2.5 V external reference  
nV/√Hz 0 V to 16 V range, 2.5 V external reference  
nV/√Hz 0 V to 5 V range, 2.5 V external reference  
Total Harmonic Distortion (THD)4  
Signal-to-Noise Ratio (SNR)  
Peak Harmonic or Spurious  
Noise (SFDR)  
−87  
92  
92  
dB  
dB  
dB  
2.5 V external reference, 1 kHz tone  
At ambient, 2.5 V external reference, BW = 20 kHz, fOUT = 1 kHz  
At ambient, 2.5 V external reference, BW = 20 kHz, fOUT = 1 kHz  
Signal-to-Noise-and-Distortion  
(SINAD) Ratio  
85  
dB  
At ambient, 2.5 V external reference, BW = 20 kHz, fOUT = 1 kHz  
1 For specified performance, headroom requirement is 1 V.  
2 Temperature range: −40°C to +125°C, typical at +25°C.  
3 Guaranteed by design and characterization, not production tested.  
4 Digitally generated sine wave at 1 kHz.  
Rev. C | Page 6 of 36  
 
 
Data Sheet  
AD5761R/AD5721R  
TIMING CHARACTERISTICS  
DVCC = 1.7 V to 5.5 V, all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Limit at TMIN, TMAX  
Unit  
Description  
1
t1  
t2  
t3  
t4  
20  
10  
10  
15  
10  
20  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
µs typ  
µs typ  
ns min  
ns typ  
ns min  
ns max  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge time  
Minimum SYNC high time (write mode)  
Data setup time  
t5  
t6  
t7  
t8  
t9  
5
Data hold time  
10  
20  
20  
9
7.5  
20  
200  
10  
40  
50  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t10  
t11  
t12  
DAC output settling time, 20 V step to 1 LSB at 16-bit resolution (see Table 2)  
DAC output settling time, 10 V step to 1 LSB at 16-bit resolution  
CLEAR pulse width low  
t13  
t14  
t15  
t16  
t17  
CLEAR pulse activation time  
SYNC rising edge to SCLK falling edge  
SCLK rising edge to SDO valid (CL_SDO2 = 15 pF)  
Minimum SYNC high time (readback/daisy-chain mode)  
1 Maximum SCLK frequency is 50 MHz for write mode and 33 MHz for readback mode.  
2 CL_SDO is the capacitive load on the SDO output.  
TIMING DIAGRAMS  
t1  
SCLK  
1
2
24  
t3  
t2  
t6  
t5  
t4  
SYNC  
SDI  
t8  
t7  
DB23  
DB0  
t11  
t9  
t10  
LDAC  
t12  
V
OUT  
OUT  
t12  
V
t13  
CLEAR  
t14  
V
OUT  
Figure 2. Serial Interface Timing Diagram  
Rev. C | Page 7 of 36  
 
 
 
AD5761R/AD5721R  
Data Sheet  
t1  
SCLK  
24  
48  
t3  
t2  
t5  
t17  
t15  
t4  
SYNC  
SDI  
t8  
t7  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N – 1  
INPUT WORD FOR DAC N  
t16  
DB23  
DB0  
SDO  
t10  
UNDEFINED  
t11  
LDAC  
Figure 3. Daisy-Chain Timing Diagram  
SCLK  
1
1
24  
24  
t17  
SYNC  
DB23  
DB0  
DB23  
DB0  
SDI  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
DB23  
DB0  
DB23  
DB0  
SDO  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 4. Readback Timing Diagram  
Rev. C | Page 8 of 36  
 
Data Sheet  
AD5761R/AD5721R  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
200 mA do not cause silicon controlled rectifier (SCR) latch-up.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4.  
Parameter  
Rating  
VDD to AGND  
VSS to AGND  
VDD to VSS  
DVCC to DGND  
Digital Inputs to DGND  
−0.3 V to +34 V  
+0.3 V to −17 V  
−0.3 V to +34 V  
−0.3 V to +7 V  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
ESD CAUTION  
Digital Outputs to DGND  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
VREFIN/VREFOUT to DGND  
VOUT to AGND  
−0.3 V to +7 V  
VSS to VDD  
AGND to DGND  
Operating Temperature Range,  
TA Industrial  
−0.3 V to +0.3 V  
−40°C to +125°C  
Storage Temperature Range  
Junction Temperature, TJ MAX  
16-Lead TSSOP Package  
θJA Thermal Impedance  
θJC Thermal Impedance  
16-Lead LFCSP Package  
θJA Thermal Impedance  
θJC Thermal Impedance  
Power Dissipation  
−65°C to +150°C  
150°C  
113°C/W1  
28°C/W  
75°C/W1  
4.5°C/W2  
(TJ MAX − TA)/θJA  
JEDEC industry standard  
J-STD-020  
Lead Temperature  
Soldering  
ESD (Human Body Model)  
4 kV  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
2 Measured to exposed paddle, with infinite heat sink on package top surface.  
Rev. C | Page 9 of 36  
 
 
AD5761R/AD5721R  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ALERT  
CLEAR  
RESET  
DGND  
DV  
CC  
SCLK  
SYNC  
SDI  
AD5761R/  
AD5721R  
V
V
REFIN/ REFOUT  
TOP VIEW  
AGND  
(Not to Scale)  
V
LDAC  
SDO  
DNC  
SS  
V
OUT  
V
DD  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT  
TO THIS PIN.  
Figure 5. 16-Lead TSSOP Pin Configuration  
Table 5. 16-Lead TSSOP Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
ALERT  
Active Low Alert. This pin is asserted low when the die temperature exceeds approximately 150°C, or when an  
output short circuit or a brownout occurs. This pin is also asserted low during power-up, a full software reset, or  
a hardware reset, for which a write to the control register asserts the pin high.  
2
3
CLEAR  
RESET  
Falling Edge Clear Input. Asserting this pin sets the DAC register to zero scale, midscale, or full-scale code (user  
selectable) and updates the DAC output. This pin can be left floating because there is an internal pull-up resistor.  
Active Low Reset Input. Asserting this pin returns the AD5761R/AD5721R to their default power-on status  
where the output is clamped to ground and the output buffer is powered down. This pin can be left floating  
because there is an internal pull-up resistor.  
4
VREFIN/VREFOUT Internal Reference Voltage Output and External Reference Voltage Input. For specified performance,  
VREFIN/VREFOUT = 2.5 V. Connect a 10 nF capacitor with the internal reference to minimize the noise.  
5
6
AGND  
VSS  
Ground Reference Pin for Analog Circuitry.  
Negative Analog Supply Connection. A voltage in the range of −16.5 V to 0 V can be connected to this pin. For  
unipolar output ranges, connect this pin to 0 V. VSS must be decoupled to AGND.  
7
8
VOUT  
VDD  
Analog Output Voltage of the DAC. The output amplifier is capable of directly driving a 2 kΩ, 1 nF load.  
Positive Analog Supply Connection. A voltage in the range of 4.75 V to 30 V can be connected to this pin for  
unipolar output ranges. Bipolar output ranges accept a voltage in the range of 4.75 V to 16.5 V. VDD must be  
decoupled to AGND.  
9
10  
DNC  
SDO  
Do Not Connect. Do not connect to this pin.  
Serial Data Output. This pin clocks data from the serial register in daisy-chain or readback mode. Data is clocked  
out on the rising edge of SCLK and is valid on the falling edge of SCLK.  
11  
LDAC  
Load DAC. This logic input updates the DAC register and, consequently, the analog output. When tied  
permanently low, the DAC register is updated when the input register is updated. If LDAC is held high during  
the write to the input register, the DAC output register is not updated, and the DAC output update is held off  
until the falling edge of LDAC. This pin can be left floating because there is an internal pull-up resistor.  
12  
13  
SDI  
SYNC  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
Active Low Synchronization Input. This pin is the frame synchronization signal for the serial interface. While  
SYNC is low, data is transferred in on the falling edge of SCLK. Data is latched on the rising edge of SYNC.  
14  
15  
16  
SCLK  
DVCC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of SCLK. This pin operates at  
clock speeds of up to 50 MHz.  
Digital Supply. The voltage range is from 1.7 V to 5.5 V. The applied voltage sets the voltage at which the digital  
interface operates.  
DGND  
Digital Ground.  
Rev. C | Page 10 of 36  
 
Data Sheet  
AD5761R/AD5721R  
RESET  
1
2
3
4
12 SCLK  
11 SYNC  
AD5761R/  
AD5721R  
V
/V  
REFIN REFOUT  
TOP VIEW  
10  
9
AGND  
SDI  
(Not to Scale)  
V
LDAC  
SS  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED PAD MUST BE MECHANICALLY CONNECTED TO THE PCB  
COPPER PLANE FOR OPTIMAL THERMAL PERFORMANCE. THE EXPOSED PAD  
CAN BE LEFT ELECTRICALLY FLOATING.  
Figure 6. 16-Lead LFCSP Pin Configuration  
Table 6. 16-Lead LFCSP Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
RESET  
Active Low Reset Input. Asserting this pin returns the AD5761R/AD5721R to their default power-on status  
where the output is clamped to ground and the output buffer is powered down. This pin can be left floating  
because there is an internal pull-up resistor.  
2
VREFIN/VREFOUT Internal Reference Voltage Output and External Reference Voltage Input. For specified performance,  
VREFIN/VREFOUT = 2.5 V. Connect a 10 nF capacitor with the internal reference to minimize the noise.  
3
4
AGND  
VSS  
Ground Reference Pin for Analog Circuitry.  
Negative Analog Supply Connection. A voltage in the range of −16.5 V to 0 V can be connected to this pin. For  
unipolar output ranges, connect this pin to 0 V. VSS must be decoupled to AGND.  
5
6
VOUT  
VDD  
Analog Output Voltage of the DAC. The output amplifier is capable of directly driving a 2 kΩ, 1 nF load.  
Positive Analog Supply Connection. A voltage in the range of 4.75 V to 30 V can be connected to this pin for  
unipolar output ranges. Bipolar output ranges accept a voltage in the range of 4.75 V to 16.5 V. VDD must be  
decoupled to AGND.  
7
8
DNC  
SDO  
Do Not Connect. Do not connect to this pin.  
Serial Data Output. This pin clocks data from the serial register in daisy-chain or readback mode. Data is clocked  
out on the rising edge of SCLK and is valid on the falling edge of SCLK.  
9
LDAC  
Load DAC. This logic input updates the DAC register and, consequently, the analog output. When tied  
permanently low, the DAC register is updated when the input register is updated. If LDAC is held high during  
the write to the input register, the DAC output register is not updated, and the DAC output update is held off  
until the falling edge of LDAC. This pin can be left floating because there is an internal pull-up resistor.  
10  
11  
SDI  
SYNC  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
Active Low Synchronization Input. This pin is the frame synchronization signal for the serial interface. While  
SYNC is low, data is transferred in on the falling edge of SCLK. Data is latched on the rising edge of SYNC.  
12  
13  
SCLK  
DVCC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of SCLK. This pin operates at  
clock speeds of up to 50 MHz.  
Digital Supply. The voltage range is from 1.7 V to 5.5 V. The applied voltage sets the voltage at which the digital  
interface operates.  
14  
15  
DGND  
ALERT  
Digital Ground.  
Active Low Alert. This pin is asserted low when the die temperature exceeds approximately 150°C, or when an  
output short circuit or a brownout occurs. This pin is also asserted low during power-up, a full software reset, or  
a hardware reset, for which a write to the control register asserts the pin high.  
16  
CLEAR  
EPAD  
Falling Edge Clear Input. Asserting this pin sets the DAC register to zero scale, midscale, or full-scale code (user  
selectable) and updates the DAC output. This pin can be left floating because there is an internal pull-up resistor.  
Exposed Pad. The exposed pad must be mechanically connected to the PCB copper plane for optimal thermal  
performance. The exposed pad can be left electrically floating.  
Rev. C | Page 11 of 36  
AD5761R/AD5721R  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERSTICS  
2.0  
0.5  
0.4  
V
V
= +21V  
= –11V  
+5V SPAN  
+10V SPAN  
+16V SPAN  
+20V SPAN  
±3V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
DD  
SS  
±5V SPAN  
±10V SPAN  
–2.5V TO +7.5V SPAN  
1.5  
1.0  
0.3  
0.2  
0.5  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC CODE  
DAC CODE  
Figure 7. AD5761R INL Error vs. DAC Code, Unipolar Output  
Figure 10. AD5721R INL Error vs. DAC Code, Bipolar Output  
0.5  
1.0  
+5V SPAN  
+10V SPAN  
+16V SPAN  
+20V SPAN  
V
V
= +21V  
= –11V  
+5V SPAN  
+10V SPAN  
+16V SPAN  
+20V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
DD  
SS  
0.4  
0.3  
0.8  
0.6  
0.2  
0.4  
0.1  
0.2  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC CODE  
0
10000  
20000  
30000  
40000  
50000  
60000  
DAC CODE  
Figure 8. AD5721R INL Error vs. DAC Code, Unipolar Output  
Figure 11. AD5761R DNL Error vs. DAC Code, Unipolar Output  
2.0  
0.5  
V
V
= +21V  
= –11V  
±3V SPAN  
DD  
SS  
+5V SPAN  
+10V SPAN  
+16V SPAN  
+20V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
±5V SPAN  
0.4  
0.3  
±10V SPAN  
–2.5V TO +7.5V SPAN  
1.5  
1.0  
0.2  
0.5  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC CODE  
DAC CODE  
Figure 9. AD5761R INL Error vs. DAC Code, Bipolar Output  
Figure 12. AD5721R DNL Error vs. DAC Code, Unipolar Output  
Rev. C | Page 12 of 36  
 
 
 
Data Sheet  
AD5761R/AD5721R  
1.0  
1.0  
0.8  
±3V SPAN  
V
V
= +21V  
= –11V  
DD  
SS  
±5V SPAN  
0.8  
0.6  
±10V SPAN  
–2.5V TO +7.5V SPAN  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+5V U2 EXT MIN DNL  
±10V U2 EXT MIN DNL  
+5V U1 INT MIN DNL  
±10V U1 INT MIN DNL  
+5V U2 EXT MAX DNL  
±10V U2 EXT MAX DNL  
+5V U1 INT MAX DNL  
±10V U1 INT MAX DNL  
V
V
= +21V  
DD  
SS  
= –11V  
0
10000  
20000  
30000  
40000  
50000  
60000  
–40  
–20  
0
25  
50  
85  
105  
125  
DAC CODE  
TEMPERATURE (°C)  
Figure 13. AD5761R DNL Error vs. DAC Code, Bipolar Output  
Figure 16. DNL Error vs. Temperature  
0.5  
0.4  
2.0  
1.5  
+5V U2 EXT MAX INL  
+5V U1 INT MAX INL  
±10V U2 EXT MAX INL  
±10V U1 NT MAX INL  
+5V U2 EXT MIN INL  
+5V U1 INT MIN INL  
±10V U2 EXT MIN INL  
±10V U1 INT MIN INL  
V
V
= +21V  
= –11V  
V
V
T
= +21V  
±3V SPAN  
DD  
SS  
DD  
SS  
A
= –11V  
±5V SPAN  
= 25°C  
±10V SPAN  
–2.5V TO +7.5V SPAN  
NO LOAD  
0.3  
1.0  
0.2  
0.5  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
+5V SPAN VDD/VSS = +6V/–1V  
V
DD/VSS = +10V/–1V  
V
DD/VSS = +16.5V/–1V  
0
500  
1000 1500 2000 2500 3000 3500 4000  
DAC CODE  
±10V SPAN VDD/VSS = +11V/–11V  
V
DD/VSS = +13.5V/–13.5V  
VDD/VSS = +16.5V/–16.5V  
VDD/VSS = +7.5V/–1V  
V
DD/VSS = +12.5V/–1V  
V
DD/VSS = +12.5V/–12.5V  
VDD/VSS = +14.5V/–14.5V  
SUPPLY VOLTAGE (V)  
Figure 14. AD5721R DNL Error vs. DAC Code, Bipolar Output  
Figure 17. INL Error vs. Supply Voltage  
1.5  
1.0  
1.0  
0.8  
+5V U2 EXT MAX DNL  
+5V U1 INT MAX DNL  
±10V U2 EXT MAX DNL  
±10V U1 NT MAX DNL  
+5V U2 EXT MIN DNL  
+5V U1 INT MIN DNL  
±10V U2 EXT MIN DNL  
±10V U1 INT MIN DNL  
+5V U1 INT MAX INL  
+5V U2 EXT MAX INL  
±10V U1 INT MAX INL  
±10V U2 EXT MAX INL  
+5V U1 INT MIN INL  
+5V U2 EXT MIN INL  
±10V U1 INT MIN INL  
±10V U2 EXT MIN INL  
V
V
A
= +21V  
= –11V  
DD  
SS  
T
= 25°C  
NO LOAD  
0.6  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
V
V
= +21V  
= –11V  
DD  
SS  
+5V SPAN VDD/VSS = +6V/–1V  
V
DD/VSS = +10V/–1V  
V
DD/VSS = +16.5V/–1V  
–40  
–20  
0
25  
50  
85  
105  
125  
±10V SPAN VDD/VSS = +11V/–11V  
VDD/VSS = +13.5V/–13.5V  
VDD/VSS = +16.5V/–16.5V  
VDD/VSS = +7.5V/–1V  
VDD/VSS = +12.5V/–12.5V  
VDD/VSS = +12.5V/–1V  
VDD/VSS = +14.5V/–14.5V  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 15. INL Error vs. Temperature  
Figure 18. DNL Error vs. Supply Voltage  
Rev. C | Page 13 of 36  
AD5761R/AD5721R  
Data Sheet  
3
0.006  
0.004  
0.002  
0
MAX INL, +5V SPAN  
MAX INL, ±10V SPAN  
MIN INL, +5V SPAN  
V
V
= +21V  
= –11V  
V
V
= +21V  
= –11V  
DD  
SS  
DD  
SS  
+5V U1 EXT  
+5V U2 INT  
±10V U1 EXT  
±10V U2 INT  
MIN INL, ±10V SPAN  
2
1
0
–1  
–2  
–3  
–0.002  
–0.004  
–0.006  
2.00  
2.25  
2.50  
REFERENCE VOLTAGE (V)  
2.75  
3.00  
–40  
–20  
0
25  
50  
85  
105  
125  
TEMPERATURE (°C)  
Figure 19. INL Error vs. Reference Voltage  
Figure 22. Midscale Error vs. Temperature  
1.0  
0.8  
0.010  
0.008  
0.006  
0.004  
0.002  
0
MAX DNL, ±10V SPAN  
MAX DNL, +5V SPAN  
MIN DNL, ±10V SPAN  
MIN DNL, +5V SPAN  
V
V
= +21V  
= –11V  
V
V
= +21V  
= –11V  
DD  
SS  
DD  
SS  
+5V U1 EXT  
+5V U2 INT  
±10V U1 EXT  
±10V U2 INT  
0.6  
0.4  
0.2  
0
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–40  
–20  
0
25  
50  
85  
105  
125  
2.00  
2.25  
2.50  
2.75  
3.00  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
Figure 20. DNL Error vs. Reference Voltage  
Figure 23. Full-Scale Error vs. Temperature  
0.15  
0.10  
0.05  
0
0.010  
0.008  
0.006  
0.004  
0.002  
0
V
V
= +21V  
= –11V  
V
V
= +21V  
= –11V  
DD  
SS  
DD  
SS  
+5V U1 EXT  
+5V U2 INT  
±10V U1 EXT  
±10V U2 INT  
+5V U1 EXT  
+5V U2 INT  
±10V U1 EXT  
±10V U2 INT  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.05  
–0.10  
–0.15  
–40  
–20  
0
25  
50  
85  
105  
125  
–40  
–20  
0
25  
50  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. Gain Error vs. Temperature  
Figure 21. Zero-Scale Error vs. Temperature  
Rev. C | Page 14 of 36  
 
 
Data Sheet  
AD5761R/AD5721R  
0.0010  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
T
V
= 25°C  
T
V
= 25°C  
A
A
0.0005  
0
= 2.5V  
= 2.5V  
REF  
REF  
+5V U2 EXT  
+5V U1 INT  
±10V U2 EXT  
±10V U1 INT  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
–0.0030  
–0.0035  
–0.0040  
–0.0045  
–0.0050  
+5V U2 EXT  
+5V U1 INT  
±10V U2 EXT  
±10V U1 INT  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.030  
+5V SPAN VDD/VSS = +6V/–1V  
V
DD/VSS = +10V/–1V  
VDD/VSS = +16.5V/–1V  
+5V SPAN VDD/VSS = +6V/–1V  
V
DD/VSS = +10V/–1V  
VDD/VSS = +16.5V/–1V  
±10V SPAN VDD/VSS = +11V/–11V  
V
DD/VSS = +13.5V/–13.5V  
V
DD/VSS = +16.5V/–16.5V  
±10V SPAN VDD/VSS = +11V/–11V  
V
DD/VSS = +13.5V/–13.5V  
VDD/VSS = +16.5V/–16.5V  
V
DD/VSS = +7.5V/–1V  
V
DD/VSS = +12.5V/–1V  
V
DD/VSS = +7.5V/–1V  
VDD/VSS = +12.5V/–1V  
V
DD/VSS = +12.5V/–12.5V  
V
DD/VSS = +14.5V/–14.5V  
VDD/VSS = +12.5V/–12.5V  
VDD/VSS = +14.5V/–14.5V  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 25. Zero-Scale Error vs. Supply Voltage  
Figure 28. Gain Error vs. Supply Voltage  
0.005  
0.003  
0.0005  
0
V
V
A
= +21V  
= –11V  
+5V SPAN  
±10V SPAN  
DD  
SS  
T
V
= 25°C  
A
= 2.5V  
REF  
T
= 25C  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
–0.0030  
0.001  
+5V U2 EXT  
+5V U1 INT  
±10V U2 EXT  
±10V U1 INT  
–0.001  
–0.003  
–0.005  
2.0  
2.5  
3.0  
+5V SPAN VDD/VSS = +6V/–1V  
V
DD/VSS = +10V/–1V  
V
DD/VSS = +16.5V/–1V  
±10V SPAN VDD/VSS = +11V/–11V  
V
DD/VSS = +13.5V/–13.5V  
V
DD/VSS = +16.5V/–16.5V  
REFERENCE VOLTAGE (V)  
VDD/VSS = +7.5V/–1V  
V
DD/VSS = +12.5V/–1V  
V
DD/VSS = +12.5V/–12.5V  
VDD/VSS = +14.5V/–14.5V  
SUPPLY VOLTAGE (V)  
Figure 26. Midscale Error vs. Supply Voltage  
Figure 29. Zero-Scale Error vs. Reference Voltage  
0.0010  
0.0008  
0.0006  
0.0004  
0.0002  
0
0.0010  
0.0005  
0
+5V SPAN  
±10V SPAN  
V
V
A
= +21V  
DD  
SS  
T
V
= 25°C  
= 2.5V  
A
= –11V  
REF  
T
= 25°C  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0002  
–0.0004  
–0.0006  
–0.0008  
–0.0010  
+5V U2 EXT  
+5V U1 INT  
±10V U2 EXT  
±10V U1 INT  
2.0  
2.5  
3.0  
+5V SPAN VDD/VSS = +6V/–1V  
±10V SPAN VDD/VSS = +11V/–11V  
VDD/VSS = +10V/–1V  
VDD/VSS = +13.5V/–13.5V  
VDD/VSS = +16.5V/–1V  
VDD/VSS = +16.5V/–16.5V  
REFERENCE VOLTAGE (V)  
VDD/VSS = +7.5V/–1V  
VDD/VSS = +12.5V/–12.5V  
VDD/VSS = +12.5V/–1V  
VDD/VSS = +14.5V/–14.5V  
SUPPLY VOLTAGE (V)  
Figure 30. Midscale Error vs. Reference Voltage  
Figure 27. Full-Scale Error vs. Supply Voltage  
Rev. C | Page 15 of 36  
AD5761R/AD5721R  
Data Sheet  
0.05  
0.03  
0.005  
T
= 25°C  
+5V SPAN  
±10V SPAN  
V
V
A
= +21V  
= –11V  
A
DD  
SS  
T
= 25°C  
0.003  
0.001  
0.01  
–0.01  
–0.03  
–0.05  
–0.001  
–0.003  
± 5V SPAN_INT  
–2.5V TO +7.5V SPAN_INT  
±5V SPAN_EXT  
±10V SPAN_INT  
±3V SPAN_INT  
±10V SPAN_EXT  
±3V SPAN_EXT  
–2.5V TO +7.5V SPAN_EXT  
–0.005  
2.0  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
2.5  
REFERENCE VOLTAGE (V)  
3.0  
Figure 31. Full-Scale Error vs. Reference Voltage  
Figure 34. TUE vs. Code, Bipolar Output  
0.05  
0.03  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
+5V SPAN  
±10V SPAN  
+5V_U1_EXTREF  
+5V_U2_INTREF  
+5V_U3_INTREF  
±10V_U1_EXTREF  
±10V_U2_INTREF  
±10V_U3_INTREF  
V
V
= +21V  
= –11V  
V
V
T
= +21V  
= –11V  
DD  
SS  
DD  
SS  
A
= 25°C  
0.01  
–0.01  
–0.03  
–0.05  
2.0  
2.5  
3.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
REFERENCE VOLTAGE (V)  
TEMPERATURE (C)  
Figure 35. TUE vs. Temperature  
Figure 32. Gain Error vs. Reference Voltage  
0.030  
0.028  
0.026  
0.024  
0.022  
0.020  
0.018  
0.016  
0.014  
0.012  
0.01  
0.05  
0.03  
+5V SPAN_INT  
+16V SPAN_INT  
+5V SPAN_EXT  
+16V SPAN_EXT  
+10V SPAN_INT  
+20V SPAN_INT  
+10V SPAN_EXT  
+20V SPAN_EXT  
T
V
= 25°C  
T
= 25°C  
A
A
= 2.5V  
REF  
0.01  
–0.01  
–0.03  
–0.05  
0.008  
0.006  
0.004  
0.002  
0
+5V U2 EXT  
+5V U1 INT  
±10V U2 EXT  
±10V U1 INT  
+5V SPAN VDD/VSS = +6V/–1V  
±10V SPAN VDD/VSS = +11V/–11V  
VDD/VSS = +10V/–1V  
VDD/VSS = +16.5V/–1V  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
V
DD/VSS = +13.5V/–13.5V  
V
DD/VSS = +16.5V/–16.5V  
VDD/VSS = +7.5V/–1V  
V
DD/VSS = +12.5V/–1V  
V
DD/VSS = +12.5V/–12.5V  
VDD/VSS = +14.5V/–14.5V  
SUPPLY VOLTAGE (V)  
Figure 36. TUE vs. Supply Voltage  
Figure 33. TUE vs. Code, Unipolar Output  
Rev. C | Page 16 of 36  
Data Sheet  
AD5761R/AD5721R  
0.00001  
0.000001  
V
REF  
V
OUT  
0.0000001  
0.00000001  
0.000000001  
500mV  
AV  
= 21V  
SYNC  
DD  
5V  
5V  
AV = –11V  
DV  
LOAD = 2k||200pF  
CAP ON V = 10nF  
SS  
= 5V  
CC  
REF  
10  
100  
1k  
10k  
100k  
1M  
200µs/DIV  
FREQUENCY (Hz)  
Figure 37. Reference Output Voltage Turn On Transient  
Figure 40. Reference Output Noise Spectral Density vs. Frequency  
10  
8
2.5014  
2.5012  
2.5010  
2.5008  
2.5006  
2.5004  
2.5002  
2.5000  
V
V
A
= +21V  
= –11V  
DD  
SS  
T
= 25C  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
2.4998  
VSS –13.50 –13.75 –14.00 –14.25 –14.50 –14.75 –15.00 –15.25 –15.50 –15.75 –16.00 –16.25  
VDD  
13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00 16.25  
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6  
2.0  
SUPPLY VOLTAGE (V)  
TIME (Seconds)  
Figure 38. Internal Reference Noise (100 kHz Bandwidth)  
Figure 41. Reference Output Voltage (VREFOUT) vs. Supply Voltage  
10  
8
3.0  
V
V
T
= +21V  
= –11V  
V
V
T
= +21V  
= –11V  
DD  
SS  
A
DD  
SS  
A
= 25°C  
= 25C  
6
4
2.5  
2.0  
1.5  
2
0
–2  
–4  
–6  
–8  
–10  
BIPOLAR 10V  
UNIPOLAR 10V  
BIPOLAR 5V  
UNIPOLAR 5V  
–2.5V TO 7.5V  
BIPOLAR 3V  
UNIPOLAR 16V  
UNIPOLAR 20V  
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6 2.0  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
TIME (Second)  
LOAD CURRENT (µA)  
Figure 39. Internal Reference Noise (0.1 Hz to 10 Hz Bandwidth)  
Figure 42. Internal Reference vs. Load Current  
Rev. C | Page 17 of 36  
AD5761R/AD5721R  
Data Sheet  
2.50200  
2.50175  
2.50150  
2.50125  
2.50100  
2.50075  
2.50050  
2.50025  
2.50000  
15000  
10000  
5000  
±10V  
+10V  
±5V  
+5V  
–2.5V TO +7.5V  
±3V  
+16V  
+20V  
0
–5000  
–10000  
–15000  
–20000  
V
V
A
= +21V  
DD  
SS  
= 11V  
T
= 25°C  
–40  
–20  
0
25  
55  
85  
105  
125  
–30  
–20  
–10  
0
10  
20  
30  
TEMPERATURE (°C)  
SOURCE/SINK CURRENT (mA)  
Figure 43. Reference Output Voltage vs. Temperature  
Figure 46. Source and Sink Capability of Output Amplifier with  
Negative Full Scale Loaded  
0.0010  
70  
60  
50  
40  
30  
20  
10  
0
IDV 3V  
CC  
V
V
= +21V  
= –11V  
= 25C  
DD  
SS  
IDV 5V  
CC  
0.0009  
0.0008  
0.0007  
0.0006  
0.0005  
0.0004  
0.0003  
0.0002  
0.0001  
0
T
A
LOAD = 2k|| 200pF  
INTERNAL REFERENCE  
0
1
2
3
4
5
LOGIC INPUT VOLTAGE (V)  
TEMPERATURE DRIFT (ppm/°C)  
Figure 44. Reference Output TC  
Figure 47. Supply Current vs. Logic Input Voltage  
6
4
30000  
25000  
20000  
15000  
10000  
5000  
V
V
A
= +21V  
= –11V  
DD  
SS  
±10V  
+10V  
T
= 25°C  
±5V  
+5V  
LOAD = 2k||200pF  
–2.5V TO +7.5V  
±3V  
+16V  
+20V  
2
0
–2  
–4  
–6  
0
–5000  
–10000  
–15000  
V
V
A
= +21V  
DD  
SS  
SYNC  
= 11V  
±5V, ZERO SCALE TO FULL SCALE  
T
= 25°C  
–8.0 –6.0 –4.0 –2.0  
0
2.0 4.0 6.0 8.0 10.0 12.0 14.0  
TIME (µs)  
–30  
–20  
–10  
0
10  
20  
30  
40  
SOURCE/SINK CURRENT (mA)  
Figure 45. Source and Sink Capability of Output Amplifier with  
Positive Full Scale Loaded  
Figure 48. Full-Scale Settling Time (Rising Voltage Step), 5 V Range  
Rev. C | Page 18 of 36  
 
 
Data Sheet  
AD5761R/AD5721R  
6
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
SYNC  
500-CODE STEP, ±5V SPAN  
4
2
V
V
A
=+21V  
= –11V  
DD  
SS  
T
= 25°C  
LOAD = 2kΩ||200pF  
0
–2  
V
V
A
= +21V  
= –11V  
DD  
SS  
–4  
T
= 25°C  
LOAD = 2kΩ||200pF  
SYNC  
–0.01  
±5V, FULL SCALE TO ZERO SCALE  
–2  
–1  
0
1
2
3
4
5
–6  
–8.0 –6.0 –4.0 –2.0  
0
2.0 4.0 6.0 8.0 10.0 12.0 14.0  
TIME (µs)  
TIME (µs)  
Figure 52. 500-Code Step Settling Time, 5 V Range  
Figure 49. Full-Scale Settling Time (Falling Voltage Step), 5 V Range  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
12  
V
V
A
= +21V  
= –11V  
SYNC  
DD  
SS  
500-CODE STEP, ±10V SPAN  
10  
8
T
= 25°C  
LOAD = 2kΩ||200pF  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–12  
V
V
= +21V  
= –11V  
DD  
SS  
T
= 25°C  
A
SYNC  
LOAD = 2kΩ||200pF  
±10V, ZERO SCALE TO FULL SCALE  
–0.01  
–2  
–1  
0
1
2
3
4
5
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
TIME (µs)  
TIME (µs)  
Figure 53. 500-Code Step Settling Time, 10 V Range  
Figure 50. Full-Scale Settling Time (Rising Voltage Step), 10 V Range  
12  
10  
8
12  
0nF  
1nF  
5nF  
7nF  
10nF  
SYNC  
10  
8
±10V, FULLSCALE TO ZERO SCALE  
6
6
4
4
2
2
0
0
–2  
–4  
–6  
–8  
–10  
–12  
–2  
–4  
–6  
–8  
–10  
–12  
V
V
=+21V  
= –11V  
= 25°C  
V
V
T
= +21V  
= –11V  
DD  
SS  
DD  
SS  
A
= 25°C  
T
A
LOAD = 2kΩ||200pF  
LOAD = 2kΩ  
–5  
0
5
10  
15  
20  
–3.0 –1.0  
1.0 3.0  
5.0  
7.0  
9.0  
11.0 13.0 15.0  
TIME (µs)  
TIME (µs)  
Figure 54. Full-Scale Settling Time at Various Capacitive Loads, 10 V Range  
Figure 51. Full-Scale Settling Time (Falling Voltage Step), 10 V Range  
Rev. C | Page 19 of 36  
 
AD5761R/AD5721R  
Data Sheet  
6.0  
0nF  
1nF  
5nF  
7nF  
10nF  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10V  
V
DD  
10V  
5V  
V
SS  
V
/V  
REFIN REFOUT  
V
OUT  
20mV  
V
V
T
= +21V  
= –11V  
DD  
SS  
A
= 25C  
LOAD = 2kΩ  
2
–3 –2 –1  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
20ms/DIV  
TIME (µs)  
Figure 58. Power-Up Glitch  
Figure 55. Full-Scale Settling Time at Various Capacitive Loads,  
0 V to 5 V Range  
0.005  
0.004  
0.003  
0.002  
0.001  
0
5V  
SCLK  
SDI  
5V  
5V  
SYNC  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.006  
1V  
–0.007  
–0.008  
–0.009  
–0.010  
V
V
= 21V  
= –11V  
DD  
SS  
V
OUT  
LOAD = 2kΩ||200pF  
T
= 25°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5  
200µs/DIV  
TIME (µs)  
Figure 59. Software Full Reset Glitch from Full Scale with Output Loaded,  
0 V to 5 V Range  
Figure 56. Digital-to-Analog Glitch Energy, 5 V Range  
0.004  
0.002  
0
5V  
SCLK  
5V  
5V  
SYNC  
SDI  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
500mV  
V
V
= 21V  
= –11V  
DD  
V
OUT  
SS  
LOAD = 2kΩ||200pF  
T
= 25°C  
A
200µs/DIV  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5  
TIME (µs)  
Figure 57. Digital-to-Analog Glitch Energy, 10 V Range  
Figure 60. Software Full Reset Glitch from Midscale with Output Loaded,  
5 V Range  
Rev. C | Page 20 of 36  
 
 
Data Sheet  
AD5761R/AD5721R  
5V  
5V  
SCLK  
SCLK  
SDI  
5V  
5V  
5V  
5V  
SYNC  
SYNC  
SDI  
200mV  
V
2V  
OUT  
V
OUT  
200µs/DIV  
200µs/DIV  
Figure 64. Software Full Reset Glitch from Zero Scale with Output Loaded,  
10 V Range  
Figure 61. Software Full Reset Glitch from Zero Scale with Output Loaded,  
0 V to 5 V Range  
5V  
SCLK  
SDI  
5V  
SCLK  
5V  
5V  
5V  
SYNC  
SYNC  
5V  
1V  
SDI  
V
OUT  
2V  
V
OUT  
200µs/DIV  
200µs/DIV  
Figure 62. Software Full Reset Glitch from Full Scale with Output Loaded,  
10 V Range  
Figure 65. Output Range Change Glitch, 0 V to 5 V Range  
5V  
5V  
SCLK  
SCLK  
SYNC  
5V  
5V  
SYNC  
5V  
SDI  
5V  
SDI  
V
OUT  
200mV  
500mV  
V
OUT  
200µs/DIV  
200µs/DIV  
Figure 66. Output Range Change Glitch, 10 V Range  
Figure 63. Software Full Reset Glitch from Midscale with Output Loaded,  
10 V Range  
Rev. C | Page 21 of 36  
AD5761R/AD5721R  
Data Sheet  
10  
0.0015  
0.0010  
0.0005  
0
V
V
V
T
= +21V  
= –11V  
NOISE INT REF  
NOISE EXT REF  
DD  
SS  
= 2.5V  
8
6
REFIN  
= 25C  
A
4
2
T
V
V
DV  
= 25°C  
0
A
= 21V  
= –11V  
= 5V  
DD  
SS  
–0.0005  
–0.0010  
–2  
–4  
CC  
2.5V EXT REF  
LOAD = 2kΩ||200pF  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
TIME (Seconds)  
TIME (µs)  
Figure 70. Digital Feedthrough  
Figure 67. Peak-to-Peak Noise (Voltage Output Noise), 0.1 Hz to 10 Hz  
Bandwidth  
0
–20  
30  
NOISE EXT REF  
NOISE INT REF  
20  
–40  
10  
0
–60  
–80  
–100  
–120  
–140  
–160  
–10  
V
V
V
= +21V  
= –11V  
DD  
SS  
–20  
= 2.5V  
REFIN  
T
= 25°C  
A
–30  
–2.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
FREQUENCY (kHz)  
TIME (Seconds)  
Figure 71. Total Harmonic Distortion  
Figure 68. Peak-to-Peak Noise (Voltage Output Noise), 100 kHz Bandwidth  
1600  
V
V
A
= +21V  
= –11V  
DD  
SS  
1400  
1200  
1000  
800  
600  
400  
200  
0
T
= 25°C  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 69. DAC Output Noise Spectral Density (NSD) vs. Frequency,  
10 V Range  
Rev. C | Page 22 of 36  
 
Data Sheet  
AD5761R/AD5721R  
TERMINOLOGY  
Total Unadjusted Error (TUE)  
Gain Error  
Total unadjusted error is a measure of the output error taking  
all the various errors into account, namely INL error, offset  
error, gain error, and output drift over supplies, temperature,  
and time. TUE is expressed in % FSR.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed in % FSR. A plot of gain error vs. temperature is  
shown in Figure 24.  
Relative Accuracy or Integral Nonlinearity (INL)  
Gain Error Temperature Coefficient (TC)  
For the DAC, relative accuracy, or integral nonlinearity, is a  
measure of the maximum deviation, in LSB, from a straight line  
passing through the endpoints of the DAC transfer function.  
A typical INL error vs. DAC code plot is shown in Figure 7.  
Gain error TC is a measure of the change in gain error with  
changes in temperature. It is expressed in ppm FSR/°C.  
DC Power Supply Rejection Ratio (DC PSRR)  
DC power supply rejection ratio is a measure of the rejection of  
the output voltage to dc changes in the power supplies applied  
to the DAC. It is measured for a given dc change in power  
supply voltage and is expressed in mV / V.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent codes.  
A specified differential nonlinearity of 1 LSB maximum ensures  
monotonicity. The AD5761R/AD5721R are guaranteed monotonic.  
A typical DNL error vs. code plot is shown in Figure 11.  
AC Power Supply Rejection Ratio (AC PSRR)  
AC power supply rejection ratio is a measure of the rejection of  
the output voltage to ac changes in the power supplies applied  
to the DAC. It is measured for a given amplitude and frequency  
change in power supply voltage and is expressed in decibels.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5761R/AD5721R  
are monotonic over their full operating temperature range.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output to settle to a specified level for a full-scale input  
change. Full-scale settling time is shown in Figure 48 to Figure 51.  
Bipolar Zero Error  
Bipolar zero error is the deviation of the analog output from the  
ideal half-scale output of 0 V when the DAC register is loaded  
with 0x8000 (straight binary coding) or 0x0000 (twos complement  
coding) for the AD5761R/AD5721R.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec  
and is measured when the digital input code is changed by 1 LSB at  
the major carry transition (see Figure 56 and Figure 57).  
Bipolar Zero Temperature Coefficient (TC)  
Bipolar zero TC is a measure of the change in the bipolar zero  
error with a change in temperature. It is expressed in µV/°C.  
Zero-Scale Error  
Glitch Impulse Peak Amplitude  
Zero-scale error is the error in the DAC output voltage when  
0x0000 (straight binary coding) or 0x8000 (twos complement  
coding) is loaded to the DAC register. Ideally, the output voltage  
is negative full scale. A plot of zero-scale error vs. temperature is  
shown in Figure 21.  
Glitch impulse peak amplitude is the peak amplitude of the  
impulse injected into the analog output when the input code in  
the DAC register changes state. It is specified as the amplitude  
of the glitch in mV and is measured when the digital input code  
is changed by 1 LSB at the major carry transition.  
Zero-Scale Error Temperature Coefficient (TC)  
Digital Feedthrough  
Zero-scale error TC is a measure of the change in zero-scale  
error with a change in temperature. It is expressed in µV/°C.  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus.  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function.  
Noise Spectral Density (NSD)  
Noise spectral density is a measurement of the internally  
generated random noise characterized as a spectral density  
(nV/√Hz). It is measured by loading the DAC to full scale and  
measuring noise at the output. It is measured in nV/√Hz. A plot  
of noise spectral density is shown in Figure 69.  
Offset Error Temperature Coefficient (TC)  
Offset error TC is a measurement of the change in offset error  
with a change in temperature. It is expressed in µV/°C.  
Rev. C | Page 23 of 36  
 
AD5761R/AD5721R  
Data Sheet  
Voltage Reference Temperature Coefficient (TC)  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of harmonics to the fundamental.  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The reference TC  
is calculated using the box method, which defines the TC as the  
maximum change in the reference output over a given  
temperature range expressed in ppm/°C as follows:  
For the AD5761R/AD5721R, it is defined as  
V22 +V32 +V42 +V52 +V62  
THD (dB) = 20× log  
V
1
VREF _ MAX VREF _ MIN  
×Temp Range  
where:  
TC =  
×106  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
through the sixth harmonics.  
V
REF _ NOM  
where:  
REF_MAX is the maximum reference output measured over the  
total temperature range.  
REF_MIN is the minimum reference output measured over the  
total temperature range.  
REF_NOM is the nominal reference output voltage, 2.5 V.  
V
V
V
Temp Range is the specified temperature range, −40°C to  
+125°C.  
Rev. C | Page 24 of 36  
Data Sheet  
AD5761R/AD5721R  
THEORY OF OPERATION  
V
REFIN  
DIGITAL-TO-ANALOG CONVERTER  
The AD5761R/AD5721R are single channel, 16-/12-bit voltage  
output DACs. The AD5761R/AD5721R output ranges are  
software selectable and can be configured as follows:  
V
/
REFIN  
V
REFOUT  
DAC REGISTER  
R-2R  
V
OUT  
Unipolar output voltage: 0 V to 5 V, 0 V to 10 V, 0 V to  
16 V, 0 V to 20 V  
Bipolar output voltage: −2.5 V to +7.5 V, ±± V, ±5 V, ±10 V  
CONFIGURABLE  
OUTPUT  
AMPLIFIER  
AGND  
AGND  
OUTPUT  
Data is written to the AD5761R/AD5721R in a 24-bit word  
format via a 4-wire, serial peripheral interface (SPI) compatible,  
digital interface. The devices also offer an SDO pin to facilitate  
daisy-chaining and readback.  
RANGE CONTROL  
Figure 72. DAC Architecture  
R-2R DAC  
The architecture of the AD5761R consists of two matched DAC  
sections. A simplified circuit diagram is shown in Figure 7±. The  
6 MSBs of the 16-bit data-word are decoded to drive 6± switches,  
E0 to E62, while the remaining 10 bits of the data-word drive  
the S0 to S9 switches of a 10-bit voltage mode R-2R ladder  
network.  
TRANSFER FUNCTION  
The internal reference is on by default. The input coding to the  
DAC can be straight binary or twos complement (bipolar ranges  
case only). Therefore, the transfer function is given by  
D
VOUT VREF M   
C  
2N  
The code loaded into the DAC register determines which arms  
of the ladder are switched between VREF and ground (AGND).  
The output voltage is taken from the end of the ladder and  
amplified afterwards to provide the selected output voltage.  
where:  
REF is 2.5 V.  
V
M is the slope for a given output range.  
D is the decimal equivalent of the code loaded to the DAC  
register as follows:  
R
R
R
V
OUT  
2R  
2R  
S0  
2R ...  
2R  
S9  
2R  
2R ... 2R  
...  
0 to 4095 for the 12-bit device.  
...  
S1  
E62  
E61  
E0  
0 to 65,5±5 for the 16-bit device.  
N is the number of bits. N is 12 for the AD5721R and 16 for the  
AD5761R.  
V
REF  
AGND  
10-BIT R-2R LADDER  
6 MSBs DECODED INTO  
63 EQUAL SEGMENTS  
C is the offset for a given output range.  
Figure 73. DAC Ladder Structure  
The values for M and C are as shown in Table 7.  
Internal Reference  
Table 7. M and C Values for Various Output Ranges  
The AD5761R/AD5721R feature an on-chip reference. The  
on-chip reference is on at power-up, and this reference can be  
turned off by setting the software-programmable bit, DB5, in  
the control register. Table 12 shows how the state of the bit  
corresponds to the mode of operation.  
Range  
M
C
±±1 ꢀ  
±5 ꢀ  
±3 ꢀ  
−2.5 ꢀ to +7.5 ꢀ  
1 ꢀ to 21 ꢀ  
1 ꢀ to ±6 ꢀ  
1 ꢀ to ±1 ꢀ  
1 ꢀ to 5 ꢀ  
8
4
2.4  
4
8
6.4  
4
2
4
2
±.2  
±
1
1
1
1
The internal reference is available at the VRFEFIN/VREFOUT pin.  
A buffer is required if the reference output is used to drive  
external loads. Place a capacitor in the range of 1 nF to 100 nF  
between the reference output and DGND to improve the noise  
performance.  
DAC ARCHITECTURE  
Reference Buffer  
The DAC architecture consists of an R-2R DAC followed by an  
output buffer amplifier. Figure 72 shows a block diagram of the  
DAC architecture. Note that the reference input is buffered  
prior to being applied to the DAC. The AD5761R/AD5721R  
offer a 2.5 V, 5 ppm/°C maximum internal reference on chip.  
The AD5761R/AD5721R can operate with either an external or  
internal reference. The reference input has an input range of 2 V  
to ± V with 2.5 V for specified performance. This input voltage  
is then buffered before it is applied to the DAC core.  
The output voltage range obtained from the configurable output  
amplifier is selected by writing to the ± LSBs (RA[2:0]) in the  
control register.  
Rev. C | Page 25 of 36  
 
 
 
 
 
 
 
AD5761R/AD5721R  
Data Sheet  
DAC Output Amplifier  
Daisy-Chain Operation  
The output amplifier is capable of generating both unipolar and  
bipolar output voltages. It is capable of driving a load of 2 kΩ in  
parallel with 1 nF to AGND. The source and sink capabilities of  
the output amplifier are shown in Figure 45.  
For systems that contain several devices, use the SDO pin to  
daisy chain several devices together. Daisy-chain mode is useful  
in system diagnostics and in reducing the number of serial  
SYNC  
interface lines. The first falling edge of  
cycle. SCLK is continuously applied to the input shift register  
SYNC  
starts the write  
SERIAL INTERFACE  
when  
is low. If more than 24 clock pulses are applied, the  
SYNC  
The AD5761R/AD5721R 4-wire digital interface (  
SDI, and SDO) is SPI compatible. The write sequence begins  
SYNC  
, SCLK,  
data ripples out of the shift register and appears on the SDO  
line. This data is clocked out on the rising edge of SCLK and is  
valid on the falling edge.  
after bringing the  
line low, and maintaining this line low  
until the complete data-word is loaded from the SDI pin. Data  
is loaded in at the SCLK falling edge transition (see Figure 2).  
By connecting the SDO of the first device to the SDI input of  
the next device in the chain, a multidevice interface is constructed.  
Each device in the system requires 24 clock pulses. Therefore,  
the total number of clock cycles must equal 24 × N, where N is  
the total number of AD5761R/AD5721R devices in the chain.  
SYNC  
When  
is brought high again, the serial data-word is  
decoded according to the instructions in Table 10. The  
AD5761R/AD5721R contain an SDO pin to allow the user  
to daisy-chain multiple devices together or to read back the  
contents of the registers.  
SYNC  
When the serial transfer to all devices is complete,  
is  
taken high, which latches the input data in each device in the  
daisy chain and prevents any further data from being clocked  
into the input shift register.  
Standalone Operation  
The serial interface works with both a continuous and  
noncontinuous serial clock. A continuous SCLK source can  
CONTROLLER  
AD5761R/  
SYNC  
be used only when  
of clock cycles.  
is held low for the correct number  
AD5721R*  
SDI  
DATA OUT  
SERIAL CLOCK  
CONTROL OUT  
DATA IN  
In gated clock mode, a burst clock containing the exact number  
SYNC  
SCLK  
SYNC  
of clock cycles must be used, and  
must be taken high  
after the final clock to latch the data. The first falling edge of  
SDO  
SYNC  
starts the write cycle. Exactly 24 falling clock edges must  
SYNC  
be applied to SCLK before  
is brought high again. If  
SDI  
SYNC  
is brought high before the 24th falling SCLK edge, the  
data written is invalid. If more than 24 falling SCLK edges are  
AD5761R/  
AD5721R*  
SYNC  
applied before  
invalid.  
is brought high, the input data is also  
SCLK  
SYNC  
SDO  
SYNC  
must be brought  
The input shift register is updated on the rising edge of  
SYNC  
.
For another serial transfer to take place,  
low again. After the end of the serial data transfer, data is  
automatically transferred from the input shift register to the  
addressed register. When the write cycle is complete, the output  
SDI  
AD5761R/  
AD5721R*  
LDAC  
SYNC  
can be updated by taking  
low while  
is high.  
SCLK  
Readback Operation  
SYNC  
SDO  
The contents of the input, DAC, and control registers can be  
read back via the SDO pin. Figure 4 shows how the registers are  
decoded. After a register has been addressed for a read, the next  
24 clock cycles clock the data out on the SDO pin. The clocks  
*
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 74. Daisy-Chain Block Diagram  
SYNC  
SYNC  
must be applied while  
is low. When  
is returned  
HARDWARE CONTROL PINS  
LDAC  
high, the SDO pin is placed in tristate. For a read of a single  
register, the no operation (NOP) function clocks out the data.  
Alternatively, if more than one register is to be read, the data of  
the first register to be addressed clocks out at the same time that  
the second register to be read is being addressed. The SDO pin  
must be enabled to complete a readback operation. The SDO pin  
is enabled by default.  
Load DAC Function (  
)
After data transfers into the input register of the DAC, there are  
two ways to update the DAC register and DAC output. Depend-  
SYNC  
LDAC  
ing on the status of both  
and  
, one of two update  
modes is selected: synchronous DAC update or asynchronous  
DAC update.  
Rev. C | Page 26 of 36  
 
 
Data Sheet  
AD5761R/AD5721R  
In the event of the die temperature exceeding approximately  
Synchronous DAC Update  
ALERT  
150°C, the  
pin is low and the value of the ETS bit  
LDAC  
In synchronous DAC update mode,  
is held low while  
determines the state of the digital supply of the device, whether  
the internal digital supply is powered on or powered down. If  
the ETS bit is set to 0, the internal digital supply is powered on  
when the internal die temperature exceeds approximately  
150°C. If the ETS bit is set to 1, the internal digital supply is  
powered down when the internal die temperature exceeds  
approximately 150°C, and the device becomes nonfunctional  
(see Table 11 and Table 12).  
data is being clocked into the input shift register. The DAC  
SYNC  
output is updated on the rising edge of  
.
Asynchronous DAC Update  
LDAC  
In asynchronous DAC update mode,  
data is being clocked into the input shift register. The DAC output  
LDAC SYNC  
is held high while  
is asynchronously updated by taking  
taken high. The update then occurs on the falling edge of  
RESET  
low after  
is  
LDAC  
.
The AD5761R/AD5721R temperature at power-up must be less  
than 150°C for proper operation of the devices.  
Reset Function (  
The AD5761R/AD5721R can be reset to their power-on state  
RESET  
)
THERMAL HYSTERESIS  
by two means: either by asserting the  
software full reset registers (see Table 26).  
CLEAR  
pin or by using the  
Thermal hysteresis is the voltage difference induced on the  
reference voltage by sweeping the temperature from ambient to  
cold, to hot, and then back to ambient. Thermal hysteresis data  
was tested for the AD5761R as shown in Figure 75. It is measured  
by sweeping the temperature from ambient to −40°C, then to  
125°C, and returning to ambient. The VREF delta is then  
measured between the two ambient measurements (shown in  
Figure 75).  
Asynchronous Clear Function (  
CLEAR  
)
The  
pin is a falling edge active input that allows the  
output to be cleared to a user defined value. The clear code  
value is programmed by writing to Bit 10 and Bit 9 in the  
CLEAR  
control register (see Table 11 and Table 12). Maintain  
low for the minimum time of 20 ns to complete the operation  
5
CLEAR  
(see Figure 2). When the  
signal is returned high, the  
output remains at the clear value until a new value is loaded to  
the DAC register.  
4
3
2
1
0
ALERT  
Alert Function (  
)
ALERT  
When the  
pin is asserted low, a readback from the control  
register is required to clarify whether a short-circuit or brownout  
condition occurred, depending on the values of Bit 12 and Bit 11,  
the SC and BO bits, respectively (see Table 15 and Table 16). If  
neither of these conditions occurred, the temperature exceeded  
approximately 150°C.  
ALERT  
The  
a hardware reset. After the first write to the control register to  
ALERT  
pin is low during power-up, a software full reset, or  
–120  
–100  
–80  
–60  
–40  
–20  
DISTORTION (ppm)  
configure the DAC, the  
pin is asserted high.  
Figure 75. Thermal Hysteresis  
Rev. C | Page 27 of 36  
 
 
AD5761R/AD5721R  
Data Sheet  
REGISTER DETAILS  
INPUT SHIFT REGISTER  
The input shift register is 24 bits wide. Data is loaded into the device MSB first as a 24-bit word under the control of a serial clock input,  
SCLK, which can operate at rates of up to 50 MHz. The input shift register consists of three don’t care bits, one fixed value bit (DB20 = 0),  
four address bits, and a 16-bit or 12-bit data-word as shown in Table 8 and Table 9, respectively.  
Table 8. AD5761R 16-Bit Input Shift Register Format  
MSB  
DB23  
X1  
LSB  
DB22  
X1  
DB21  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:0]  
0
Register address  
Register data  
1 X is don’t care.  
Table 9. AD5721R 12-Bit Input Shift Register Format  
MSB  
LSB  
DB23  
X1  
DB22  
X1  
DB21  
X1  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:4]  
DB[3:0]  
XXXX1  
0
Register address  
Register data  
1 X is don’t care.  
Table 10. Input Shift Register Commands  
Register Address  
DB19 DB18 DB17 DB16 Command  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No operation  
Write to input register (no update)  
Update DAC register from input register  
Write and update DAC register  
Write to control register  
No operation  
No operation  
Software data reset  
Reserved  
Disable daisy-chain functionality  
Readback input register  
Readback DAC register  
Readback control register  
No operation  
No operation  
Software full reset  
Rev. C | Page 28 of 36  
 
 
 
 
 
 
Data Sheet  
AD5761R/AD5721R  
CONTROL REGISTER  
The control register controls the mode of operation of the AD5761R/AD5721R. The control register options are shown in Table 11 and  
Table 12.  
On power-up, after a full reset, or after a hardware reset, the output of the DAC is clamped to ground through a 1 kΩ resistor and the  
output buffer remains in power-down mode. A write to the control register is required to configure the device, remove the clamp to  
ground, and power up the output buffer.  
When the DAC output range is reconfigured during operation, a software full reset command (see Table 26) must be written to the device  
before writing to the control register.  
Table 11. Write to Control Register  
MSB  
LSB  
DB[23:21]  
DB20  
DB[19:16]  
Register address  
0100  
DB[15:11]  
DB[10:9]  
DB8  
DB7  
Register data  
B2C ETS  
DB6  
DB5  
DB[4:3]  
DB[2:0]  
XXX1  
0
XXXXX1  
CV[1:0]  
OVR  
IRO  
PV[1:0]  
RA[2:0]  
1 X is don’t care.  
Table 12. Control Register Functions  
Bit Name  
Description  
CV[1:0]  
CLEAR voltage selection.  
00: zero scale  
01: midscale  
10, 11: full scale  
OVR  
B2C  
ETS  
5% overrange.  
0: 5% overrange disabled  
1: 5% overrange enabled  
Bipolar range.  
0: DAC input for bipolar output range is straight binary coded  
1: DAC input for bipolar output range is twos complement coded  
Thermal shutdown alert. The alert may not work correctly if the device powers on with temperature conditions >150°C  
(greater than the maximum rating of the device).  
0: internal digital supply does not power down if die temperature exceeds 150°C.  
1: internal digital supply powers down if die temperature exceeds 150°C.  
IRO  
Internal reference.  
0: internal reference turned off  
1: internal reference turned on  
PV[1:0]  
Power up voltage.  
00: zero scale  
01: midscale  
10, 11: full scale  
RA[2:0]  
Output range. Before an output range configuration, the device must be reset.  
000: −10 V to +10 V  
001: 0 V to +10 V  
010: −5 V to +5 V  
011: 0 V to 5 V  
100: −2.5 V to +7.5 V  
101: −3 V to +3 V  
110: 0 V to 16 V  
111: 0 V to 20 V  
Rev. C | Page 29 of 36  
 
 
 
AD5761R/AD5721R  
Data Sheet  
Table 13. Bipolar Output Range Possible Codes  
Straight Binary  
Decimal Code  
Twos Complement  
0111  
1111  
7
1110  
6
0110  
1101  
5
0101  
1100  
4
0100  
1011  
3
0011  
1010  
2
0010  
1001  
1
0001  
1000  
0
0000  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
READBACK CONTROL REGISTER  
The readback control register operation provides the contents of the control register by setting the register address to 1100. Table 14  
outlines the 24-bit shift register for this command, where the last 16 bits are don’t care bits.  
During the next command, the control register contents are shifted out of the SDO pin with the MSB shifted out first. Table 15 outlines  
the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.  
Table 14. Readback Control Register, 24-Bit Shift Register to the SDI Pin  
MSB  
LSB  
DB[23:21]  
DB20  
DB[19:16]  
Register address  
1100  
DB[15:0]  
Register data  
Don’t care  
XXX1  
0
1 X is don’t care.  
Table 15. Readback Control Register, 24-Bit Data Read from the SDO Pin  
MSB  
LSB  
DB8 DB7 DB6 DB5 DB[4:3] DB[2:0]  
Register data  
OVR B2C  
DB[23:21] DB20 DB[19:16]  
Register address  
1100  
DB[15:13] DB12 DB11 DB[10:9]  
XXXX1  
SC BO CV[1:0]  
XXX1  
0
ETS  
IRO  
PV[1:0]  
RA[2:0]  
1 X is don’t care.  
Table 16. Readback Control Register Bit Descriptions  
Bit Name  
Description  
SC  
Short-circuit condition. The SC bit is reset at every control register write.  
0: no short-circuit condition detected  
1: short-circuit condition detected  
BO  
Brownout condition. The BO bit is reset at every control register write.  
0: no brownout condition detected  
1: brownout condition detected  
Rev. C | Page 30 of 36  
 
 
 
 
Data Sheet  
AD5761R/AD5721R  
UPDATE DAC REGISTER FROM INPUT REGISTER  
The update DAC register function loads the DAC register with the data saved in the input register and updates the DAC output voltage.  
LDAC  
This operation is equivalent to a software  
. Table 17 outlines how data is written to the DAC register.  
Table 17. Update DAC Register from Input Register  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:0]  
Register address  
0010  
Register data  
Don’t care  
X1  
X1  
X1  
0
1 X is don’t care.  
READBACK DAC REGISTER  
The readback DAC register operation provides the contents of the DAC register by setting the register address to 1011. Table 18 outlines  
the 24-bit shift register for this command. During the next command, the DAC register contents are shifted out of the SDO pin with the  
MSB shifted out first. Table 19 outlines the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.  
Table 18. Readback DAC Register, 24-Bit Shift Register to SDI Pin  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:0]  
Register address  
1011  
Register data  
Don’t care  
X1  
X1  
X1  
0
1 X is don’t care.  
Table 19. Readback DAC Register, 24-Bit Data Read from SDO Pin  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
Register address  
1011  
DB17  
DB16  
DB[15:0]  
Register data  
X1  
X1  
X1  
0
Data read from DAC register  
1 X is don’t care.  
WRITE AND UPDATE DAC REGISTER  
The write and update DAC register (Register Address 0011) updates the input register and the DAC register with the entered data-word  
LDAC  
from the input shift register, irrespective of the state of  
.
Setting the register address to 0001 writes the input register with the data from the input shift register, clocked in MSB first on the SDI pin.  
Table 20. Write and Update DAC Register  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:0]  
Register address  
0001  
Register data  
Data loaded  
Data loaded  
X1  
X1  
X1  
X1  
X1  
X1  
0
0
0011  
1 X is don’t care.  
Rev. C | Page 31 of 36  
 
 
 
 
 
 
AD5761R/AD5721R  
Data Sheet  
READBACK INPUT REGISTER  
The readback input register operation provides the contents of the input register by setting the register address to 1010. Table 21 outlines  
the 24-bit shift register for this command. During the next command, the input register contents are shifted out of the SDO pin with the  
MSB shifted out first. Table 22 outlines the 24-bit data read from the SDO pin, where DB23 is the first bit shifted out.  
Table 21. Readback Input Register, 24-Bit Shift Register to the SDI Pin  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:0]  
Register address  
1010  
Register data  
Don’t care  
X1  
X1  
X1  
0
1 X is don’t care.  
Table 22. Readback Input Register, 24-Bit Data Read from the SDO Pin  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
Register address  
1010  
DB17  
DB16  
DB[15:0]  
Register data  
X1  
X1  
X1  
0
Data read from input register  
1 X is don’t care.  
DISABLE DAISY-CHAIN FUNCTIONALITY  
The daisy-chain feature can be disabled to save the power consumed by the SDO buffer when this functionality is not required (see Table 23).  
When disabled, a readback request is not accepted because the SDO pin remains in tristate.  
Table 23. Disable Daisy-Chain Functionality Register  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:1]  
DB0  
Register address  
1001  
Register data  
X1  
X1  
X1  
0
Don’t care  
DDC  
1 X is don’t care.  
Table 24. Disable Daisy-Chain Bit Description  
Bit Name Description  
DDC  
DDC decides whether daisy-chain functionality is enabled or disabled for the device. By default, daisy-chain functionality is  
enabled.  
0: daisy-chain functionality is enabled for the device.  
1: daisy-chain functionality is disabled for the device.  
SOFTWARE DATA RESET  
The AD5761R/AD5721R can be reset via software to zero scale, midscale, or full scale (see Table 25). The value to which the device is  
reset is specified by the PV[1:0] bits, which are set in the write to control register command (see Table 11 and Table 12).  
Table 25. Software Data Reset Register  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:0]  
Register address  
0111  
Register data  
Don’t care  
X1  
X1  
X1  
0
1 X is don’t care.  
Rev. C | Page 32 of 36  
 
 
 
 
 
 
 
Data Sheet  
AD5761R/AD5721R  
SOFTWARE FULL RESET  
The device can also be reset completely via software (see Table 26). When the register address is set to 1111, the device behaves in a  
power-up state, where the output is clamped to AGND and the output buffer is powered down. The user must write to the control register  
to configure the device, remove the 1 kΩ resistor clamp to ground, and power up the output buffer.  
The software full reset command is also issued when the DAC output range is reconfigured during normal operation.  
Table 26. Software Full Reset Register  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:0]  
Register address  
1111  
Register data  
Don’t care  
X1  
X1  
X1  
0
1 X is don’t care.  
NO OPERATION REGISTERS  
The no operation registers are ignored and do not vary the state of the device (see Table 27).  
Table 27. No Operation Registers  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB[15:0]  
Register address  
Register data  
Don’t care  
X1  
X1  
X1  
0
0000/0101/0110/1101/1110  
1 X is don’t care.  
Rev. C | Page 33 of 36  
 
 
 
 
AD5761R/AD5721R  
Data Sheet  
APPLICATIONS INFORMATION  
TYPICAL OPERATING CIRCUIT  
POWER SUPPLY CONSIDERATIONS  
Figure 76 shows the typical operating circuit for the AD5761R/  
AD5721R. The only external components needed for this  
precision 16-/12-bit DAC are decoupling capacitors on the  
supply pins and supply voltage. Because the AD5761R/AD5721R  
incorporate a voltage reference and reference buffers, they  
eliminate the need for an external bipolar reference and  
associated buffers, resulting in overall savings in both cost and  
board space.  
The AD5761R/AD5721R must be powered by the following  
three supplies to provide any of the eight output voltage ranges  
available on the DAC: VDD = 21 V, VSS = −11 V, and DVCC = 5 V.  
For applications requiring optimal high power efficiency and  
low noise performance, it is recommended to use the ADP5070  
switching regulator to convert the 5 V input rail into two  
intermediate rails (+23 V and −13 V). These intermediate rails  
are then postregulated by very low noise, low dropout (LDO)  
regulators (ADP7142 and ADP7182). Figure 77 shows the  
recommended method.  
In Figure 76, VDD is connected to 15 V and VSS is connected to  
−15 V, but VDD and VSS can operate with supplies from 4.75 V to  
30 V and from −16.5 V to 0 V, respectively.  
ADP5070  
+23V  
DC-TO-DC  
SWITCHING  
REGULATOR  
AD5761R/  
AD5721R  
ADP7142  
LDO  
+5V INPUT  
+21V: VDD  
+5V: DVCC  
100nF  
1
2
3
4
5
6
7
8
ALERT  
CLEAR  
RESET  
16  
15  
14  
13  
12  
11  
10  
9
ALERT  
CLEAR  
RESET  
DGND  
DV  
+
ADP7142  
LDO  
10µF  
+5V  
CC  
SCLK  
SYNC  
SDI  
SCLK  
SYNC  
SDI  
ADP5070  
DC-TO-DC  
SWITCHING  
REGULATOR  
V
V
/
REFIN  
REFOUT  
–13V  
V
ADP7182  
LDO  
REFIN  
–11V: VSS  
+5V INPUT  
AGND  
100nF  
100nF  
–15V  
V
LDAC  
SDO  
LDAC  
SDO  
SS  
10µF  
10µF  
Figure 77. Postregulation by ADP7142 and ADP7182  
V
V
V
OUT  
OUT  
DD  
EVALUATION BOARD  
+15V  
DNC  
An evaluation board is available for the AD5761R to aid  
designers in evaluating the high performance of the device  
with minimum effort. The AD5761R evaluation kit includes a  
populated and tested AD5761R printed circuit board (PCB).  
The evaluation board interfaces to the USB port of a PC. Software  
is available with the evaluation board to allow the user to easily  
program the AD5761R. The EVAL-AD5761RSDZ user guide  
provides full details on the operation of the evaluation board.  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 76. Typical Operating Circuit  
Rev. C | Page 34 of 36  
 
 
 
 
 
 
Data Sheet  
AD5761R/AD5721R  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 78. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
DETAIL A  
(JEDEC 95)  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
13  
16  
TIONS  
INDICATOR AREA OP  
(SEE DETAIL A)  
0.50  
BSC  
12  
1
1.75  
1.60 SQ  
1.45  
EXPOSED  
PAD  
9
4
8
5
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TOJEDEC STANDARDS MO-220-WEED-6.  
Figure 79. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-22)  
Dimensions shown in millimeters  
Rev. C | Page 35 of 36  
 
AD5761R/AD5721R  
Data Sheet  
ORDERING GUIDE  
Resolution  
(Bits)  
Internal  
Reference (V)  
Temperature  
Range  
INL  
(LSB)  
Package  
Description  
Package  
Option  
Marking  
Code  
Model1, 2  
AD5721RBRUZ  
12  
12  
12  
16  
16  
16  
16  
16  
16  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
0.5  
0.5  
0.5  
8
8
2
2
8
2
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead LFCSP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead LFCSP  
16-Lead LFCSP  
Evaluation Board  
SDP Controller Board  
RU-16  
RU-16  
CP-16-22  
RU-16  
RU-16  
RU-16  
RU-16  
CP-16-22  
CP-16-22  
AD5721RBRUZ-RL7  
AD5721RBCPZ-RL7  
AD5761RARUZ  
AD5761RARUZ-RL7  
AD5761RBRUZ  
AD5761RBRUZ-RL7  
AD5761RACPZ-RL7  
AD5761RBCPZ-RL7  
EVAL-AD5761RSDZ  
EVAL-SDP-CB1Z  
DHN  
DJ5  
DJ6  
1 Z = RoHS Compliant Part.  
2 The EVAL-AD5761RSDZ can be used to evaluate the AD5721R.  
©2014–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12355-0-1/18(C)  
Rev. C | Page 36 of 36  
 

相关型号:

AD5721RBRUZ-RL7

Multiple Range, 16-/12-Bit, Bipolar/Unipolar Multiple Range
ADI

AD5722

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722AREZ

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722AREZ-REEL7

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722BREZ

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5722BREZ-REEL7

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5722R

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5722RBREZ

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722RBREZ-REEL7

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5722_17

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs
ADI

AD5724

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5724AREZ

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI