AD5583_15 [ADI]

Quad, Parallel Input, Voltage Output, 12-/10-Bit Digital-to-Analog Converters;
AD5583_15
型号: AD5583_15
厂家: ADI    ADI
描述:

Quad, Parallel Input, Voltage Output, 12-/10-Bit Digital-to-Analog Converters

文件: 总20页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, Parallel Input, Voltage Output,  
12-/10-Bit Digital-to-Analog Converters  
a
AD5582/AD5583  
FEATURES  
AD5582 FUNCTIONAL BLOCK DIAGRAM  
12-Bit Linearity and Monotonic AD5582  
10-Bit Linearity and Monotonic AD5583  
Wide Operating Range: Single 5 V to 15 V or  
Dual 5 V Supply  
V
V
V
V
V
V
REFHB  
DD3  
38  
REFLA  
10  
SS3  
37  
REFHA  
REFLB  
9
7
8
3
4
5
V
DD1  
33  
32  
AD5582  
A1  
A0  
ADDR  
V
DECODE  
SS1  
Unipolar or Bipolar Operation  
+
VOA  
VOB  
Double Buffered Registers Enable Independent or  
Simultaneous Multichannel Update  
4 Independent Rail-to-Rail Reference Inputs  
20 mA High Current Output Drive  
Parallel Interface  
31  
30  
29  
28  
26  
25  
24  
23  
21  
20  
19  
18  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
2
I
N
T
E
R
F
A
C
E
D
11 R1  
O
DAC  
REG  
Data Readback Capability  
5 s Settling Time  
IN  
REG  
20kꢅ  
20kꢅ  
D
12  
RCT  
I
Built-In Matching Resistor Simplifies  
Negative Reference  
Unconditionally Stable Under Any Capacitive Loading  
Compact Footprint: TSSOP-48  
Extended Temperature Range: 40C to 125C  
13  
1
R2  
AGND1  
AGND2  
4
4
48  
47  
OE  
VOC  
APPLICATIONS  
34  
35  
14  
17  
CS  
Process Control Equipment  
Closed-Loop Servo Control  
Data Acquisition Systems  
Digitally Controlled Calibration  
Optical Network Control Loops  
4 m to 20 mA Current Transmitter  
R/W  
CONTROL  
LOGIC  
DV  
DD  
+
44  
VOD  
MSB  
46  
45  
V
DD2  
16  
15  
RS  
V
SS2  
LDAC  
22  
27  
36  
40  
39  
41  
42  
GENERAL DESCRIPTION  
DGND1 DGND2 DGND3  
V
V
V
V
REFLC  
REFHD  
REFLD  
REFHC  
The AD5582/AD5583 family of quad, 12-/10-bit, voltage output  
digital-to-analog converters is designed to operate from a single  
5 V to 15 V or dual ±5 V supply. It offers the user ease of use in  
single- or dual-supply systems. Built using an advance BiCMOS  
process, this high performance DAC is dynamically stable, capable  
of high current drive, and in small form factor.  
AD5582/AD5583  
2.5V  
ADR421  
REF  
V
REFHA  
2.5V  
DAC A  
V
REFHB  
V
REFHC  
V
2.5V  
DAC B  
REFHD  
The applied external reference VREF determines the full-scale out-  
put voltage ranges from VSS to VDD, resulting in a wide selection  
of full-scale outputs. For multiplying and wide dynamic appli-  
cations, ac reference inputs can be as high as |VDD – VSS|. Two  
built-in precision trimmed resistors are available and can be  
configured easily to provide four-quadrant multiplications.  
R1  
R2  
RCT  
2.5V  
2.5V  
DAC C  
DAC D  
V
REFLA  
V
REFLB  
V
+
REFLC  
2.5V  
V
REFLD  
A doubled-buffered parallel interface offers a fast settling time.  
A common level sensitive load DAC strobe (LDAC) input allows  
additional simultaneous update of all DAC outputs. An external  
asynchronous reset (RS) forces all registers to the zero code state  
when the MSB = 0 or to midscale when the MSB = 1.  
DIGITAL CIRCUITRY OMITTED FOR CLARITY  
Figure 1. Using Built-In Matching Resistors  
to Generate a Negative Voltage Reference  
Both parts are offered in the same pinout and package to allow  
users to select the appropriate resolution for a given application  
without PCB layout changes.  
The AD5582 is well suited for DAC8412 replacement in medium  
voltage applications in new designs, as well as any other general  
purpose multichannel 10- to 12-bit applications.  
The AD5582/AD5583 are specified over the extended industrial  
(–40C to +125C) temperature range and offered in a thin and  
compact 1.1 mm TSSOP-48 package.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD5582/AD5583–SPECIFICATIONS  
(VDD = +5 V, VSS = –5 V, DVDD = +5 V 10%, VREFH = +2.5 V, VREFL = –2.5 V,  
ELECTRICAL CHARACTERISTICS –40C < TA < +125C, unless otherwise noted.)  
Parameter  
Symbol  
Condition  
Min  
Typ1 Max  
Unit  
STATIC PERFORMANCE  
Resolution2  
N
AD5582  
AD5583  
12  
10  
+1  
Bits  
Bits  
LSB  
LSB  
LSB  
Relative Accuracy3  
Differential Nonlinearity3  
Zero-Scale Error  
INL  
DNL  
VZSE  
–1  
–1  
–2  
Monotonic  
Data = 000H for AD5582  
and AD5583  
+2  
Gain Error  
VGE  
VGE  
VGE  
TCVFS  
Data = 0xFFFH for AD5582  
Data = 0x3FFH for AD5583  
VDD = 2.7 V to 4.5 V  
–2  
–4  
–4  
+2  
+4  
+4  
LSB  
LSB  
LSB  
ppm/C  
Gain Error  
Full-Scale Tempco4  
1.5  
REFERENCE INPUT  
VREFH Input Range  
VREFL Input Range5  
Input Resistance  
VREFH  
VREFL  
RREF  
VREFL + 0.5  
VSS  
12  
VDD  
VREFH – 0.5  
V
V
Data = 555H (Minimum RREF  
for AD5582 and 155H for AD5583  
)
20  
80  
kW1  
Input Capacitance4  
REF Input Current  
REF Multiplying Bandwidth BWREF  
CREF  
IREF  
pF  
mA  
MHz  
%
Data = 555H for AD5582  
Code = Full Scale  
AD5582  
500  
1.3  
±0.025  
±0.100  
R1–R2 Matching  
R1/R2  
AD5583  
%
ANALOG OUTPUT  
Output Current6  
IOUT  
IOUT  
Data = 800H for AD5582 and  
200H for AD5583, VOUT £ 2 mV  
Data = 800H for AD5582 and  
200H for AD5583, VOUT £ |–8 mV|  
VOUT £ ±15 mV  
±2  
mA  
Output Current6  
+20  
–20  
mA  
mA  
pF  
Capacitive Load4, 7  
CL  
No Oscillation  
Note 7  
LOGIC INPUTS  
Logic Input Low Voltage  
VIL  
VIH  
DVDD = 5 V ± 10%  
DVDD = 3 V ± 10%  
DVDD = 5 V ± 10%  
DVDD = 3 V ± 10%  
0.8  
0.4  
V
V
V
V
mA  
pF  
V
Logic Input High Voltage  
2.4  
2.1  
Input Leakage Current  
Input Capacitance4  
Output Voltage High  
Output Voltage Low  
IIL  
0.01  
5
1
CIL  
VOH  
VOL  
IOH = –0.8 mA  
IOL = 1.2 mA, TA = 85C,  
IOL = 0.6 mA, DVDD = 3 V  
2.4  
0.4  
0.4  
V
I
OL = 1.0 mA, TA = 125C,  
V
IOL = 0.5 mA, DVDD = 3 V  
AC CHARACTERISTICS  
Output Slew Rate  
SR  
Data = Zero Scale to Full Scale  
to Zero Scale  
To ±0.1% of Full Scale  
Code 7FFH to 800H to 7FFH  
for AD5582 and 1FFH to 200H  
to 1FFH for AD5583  
2
V/ms  
Settling Time8  
DAC Glitch  
tS  
Q
5
100  
ms  
nV-s  
Digital Feedthrough  
Analog Crosstalk  
Output Noise  
V
OUT/tCS  
Data = Midscale, CS Toggles at  
f = 16 MHz  
5
nV-s  
dB  
VOUT/VREF VREF = 1.5 V dc + 1 V p-p,  
Data = 000H, f = 100 kHz  
eN  
–80  
33  
f = 1 kHz  
nV/÷Hz  
2–  
REV. A  
AD5582/AD5583  
Parameter  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
SUPPLY CHARACTERISTICS  
Single-Supply Voltage Range VDD  
Dual-Supply Voltage Range  
VSS = 0 V  
VDD = +2.7 V to +6.5 V,  
VSS = –6.5 V to –2.7 V  
3
–9  
18  
+9  
V
V
VDD/VSS  
Digital Logic Supply  
Positive Supply Current6  
Negative Supply Current  
Power Dissipation  
DVDD  
IDD  
ISS  
PDISS  
PSS  
2.7  
8
3
3
30  
V
mA  
mA  
mW  
ppm/V  
VIL = 0 V, No Load  
VIL = 0 V, No Load  
VIL = 0 V, No Load  
VDD = ±5%  
1.7  
1.5  
16  
Power Supply Sensitivity  
30  
NOTES  
1Typical specifications represent average readings measured at 25C.  
2DAC Output Equation: VOUT = VREFL + [(VREFH – VREFL) D/2N], where D = data loaded in corresponding DAC Register A, B, C, D, and N equals the number of bits;  
AD5582 = 12 bits, AD5583 = 10 bits. One LSB step voltage = (VREFH – VREFL)/4096 V and (VREFH – VREFL)/1024 V for AD5582 and AD5583, respectively.  
3The first two codes (000H, 001H) of the AD5583 and the first four codes (000H, 001H, 002H, 003H) of the AD5582 are excluded from the linearity error measurement  
in single-supply operation.  
4These parameters are guaranteed by design and not subject to production testing.  
5Dual-supply operation, VREFL = VSS, exclude the lowest eight codes for the AD5582 and two codes for the AD5583 for INL and DNL errors.  
6Short circuit output and supply currents are 24 mA and 25 mA, respectively.  
7Part is stable under any capacitive loading conditions.  
8The settling time specification does not apply for negative-going transitions within the last 3 LSBs of ground in single-supply operation.  
Specifications subject to change without notice.  
(VDD = 15 V, VSS = 0 V, DVDD = 5 V 10%, VREFH = 10 V, VREFL = 0 V,  
ELECTRICAL CHARACTERISTICS  
–40C < TA < +125C, unless otherwise noted.)  
Parameter  
Symbol  
Condition  
Min  
Typ1 Max  
Unit  
STATIC PERFORMANCE  
Resolution2  
N
AD5582  
AD5583  
12  
10  
+1  
Bits  
Bits  
LSB  
LSB  
LSB  
Relative Accuracy3  
Differential Nonlinearity3  
Zero-Scale Error  
INL  
DNL  
VZSE  
–1  
–1  
–2  
Monotonic  
Data = 000H for AD5582  
and AD5583  
+2  
Gain Error  
VGE  
VGE  
TCVFS  
Data = 0xFFFH for AD5582  
Data = 0x3FFH for AD5583  
–2  
–4  
+2  
+4  
LSB  
LSB  
ppm/C  
Full-Scale Tempco4  
1.5  
REFERENCE INPUT  
VREFH Input Range  
VREFL Input Range5  
Input Resistance  
VREFH  
VREFL  
RREF  
VREFL + 0.5  
VSS  
12  
VDD  
VREFH – 0.5  
V
V
Data = 555H (Minimum RREF  
for AD5582 and 155H for AD5583  
)
20  
80  
kW1  
Input Capacitance4  
REF Input Current  
REF Multiplying Bandwidth BWREF  
CREF  
IREF  
pF  
mA  
MHz  
%
Data = 555H for AD5582  
Code = Full Scale  
AD5582  
1000  
1.3  
±0.025  
±0.100  
R1–R2 Matching  
R1/R2  
AD5583  
%
ANALOG OUTPUT  
Output Current6  
IOUT  
IOUT  
Data = 800H for AD5582 and  
200H for AD5583, VOUT £ 2 mV  
Data = 800H for AD5582 and  
200H for AD5583, VOUT £ |–8 mV|  
VOUT £ 15 mV  
2
mA  
Output Current6  
+20  
–20  
mA  
mA  
pF  
Capacitive Load4, 7  
CL  
No Oscillation  
Note 7  
REV. A  
3–  
AD5582/AD5583  
ELECTRICAL CHARACTERISTICS (continued)  
Parameter  
Symbol  
Condition  
Min  
Typ1 Max  
Unit  
LOGIC INPUTS/OUTPUTS  
Logic Input Low Voltage  
VIL  
VIH  
0.8  
0.4  
V
V
V
V
mA  
pF  
V
DVDD = 3 V ± 10%  
DVDD = 3 V ± 10%  
Logic Input High Voltage  
2.4  
2.1  
Input Leakage Current  
Input Capacitance4  
Output Voltage High  
Output Voltage Low  
IIL  
CIL  
VOH  
VOL  
IOH = –0.8 mA  
2.4  
IOL = 1.2 mA, TA = 85C,  
IOL = 0.6 mA, DVDD = 3 V  
IOL = 1.0 mA, TA = 125C,  
IOL = 0.5 mA, DVDD = 3 V  
0.4  
0.4  
V
VOL  
V
AC CHARACTERISTICS  
Output Slew Rate  
SR  
Data = Zero Scale to Full Scale  
to Zero Scale  
To ±0.1% of Full Scale  
Code 7FFH to 800H to 7FFH for  
AD5582 and 1FFH to 200H to  
1FFH for AD5583  
2
V/ms  
Settling Time8  
DAC Glitch  
tS  
Q
14  
100  
ms  
nV-s  
Digital Feedthrough  
Analog Crosstalk  
Output Noise  
V
OUT/tCS  
VOUT/VREF  
eN  
Data = Midscale, CS Toggles at  
f = 16 MHz  
VREF = 1.5 V dc + 1 V p-p,  
Data = 000H, f = 100 kHz  
f = 1 kHz  
5
nV-s  
dB  
–80  
33  
nV/÷Hz  
SUPPLY CHARACTERISTICS  
Single-Supply Voltage Range  
Dual-Supply Voltage Range  
VDD  
VDD/VSS  
VSS = 0 V  
VDD = +2.7 V to +6.5 V,  
VSS = –6.5 V to –2.7 V  
3
–6.5  
16.5  
+6.5  
V
V
Digital Logic Supply  
Positive Supply Current6  
Power Dissipation  
DVDD  
IDD  
PDISS  
PSS  
2.7  
6.5  
3.5  
52.5  
V
mA  
mW  
ppm/V  
VIL = 0 V, No Load  
VIL = 0 V, No Load  
VDD = ±5%  
2.3  
34.5  
30  
Power Supply Sensitivity  
NOTES  
1Typical specifications represent average readings measured at 25C.  
2DAC Output Equation: VOUT = VREFL + [(VREFH – VREFL) D/2N], where D = data in decimal loaded in corresponding DAC Register A, B, C, D, and N equals the number of  
bits; AD5582 = 12 bits, AD5583 = 10 bits. One LSB step voltage = (VREFH – VREFL)/4096 V and = (VREFH – VREFL)/1024 V for AD5582 and AD5583, respectively.  
3The first two codes (000H, 001H) of the AD5583 and the first four codes (000H, 001H, 002H, 003H) of the AD5582 are excluded from the linearity error measurement  
in single-supply operation.  
4These parameters are guaranteed by design and not subject to production testing.  
5Dual-supply operation, VREFL = VSS, exclude the lowest eight codes for the AD5582 and two codes for the AD5583 for INL and DNL errors.  
6Short circuit output and supply currents are 24 mA and 25 mA, respectively.  
7Part is stable under any capacitive loading conditions.  
8The settling time specification does not apply for negative-going transitions within the last 3 LSBs of ground in single-supply operation.  
Specifications subject to change without notice.  
4–  
REV. A  
AD5582/AD5583  
(VDD = 15 V or 5 V, VSS = 0 V, DVDD = 5 V 10%, VREFH = 10 V, VREFL = 0 V, –40C < TA < +125C,  
TIMING CHARACTERISTICS unless otherwise noted.)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
INTERFACE TIMING*  
Chip Select Write Pulse Width  
Chip Select Read Pulse Width  
Write Setup  
Write Hold  
Address Setup  
Address Hold  
Load Setup  
Load Hold  
Write Data Setup  
tWCS  
tRCS  
tWS  
tWH  
tAS  
tAH  
tLS  
tLH  
tWDS  
tWDH  
tLDW  
tRESET  
tRDH  
tRDS  
tDZ  
tCSD  
tCSP  
tLDS  
tLDH  
20  
130  
35  
0
35  
0
0
0
35  
0
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Data Hold  
Load Data Pulse Width  
Reset Pulse Width  
Read Data Hold  
Read Data Setup  
Data to Hi-Z  
Chip Select to Data  
Chip Select Repetitive Pulse Width  
Load Setup in Double Buffer Mode  
Load Data Hold  
0
CL = 10 pF  
CL = 10 pF  
100  
100  
10  
20  
0
*All input control signals are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
Specifications subject to change without notice.  
(VDD = 15 V or 5 V, VSS = 0 V, DVDD = 3 V 10%, VREFH = 10 V, VREFL = 0 V, –40C < TA < +125C,  
TIMING CHARACTERISTICS  
unless otherwise noted.)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
INTERFACE TIMING*  
Chip Select Write Pulse Width  
Chip Select Read Pulse Width  
Write Setup  
Write Hold  
Address Setup  
Address Hold  
Load Setup  
Load Hold  
Write Data Setup  
tWCS  
tRCS  
tWS  
tWH  
tAS  
tAH  
tLS  
tLH  
tWDS  
tWDH  
tLDW  
tRESET  
tRDH  
tRDS  
tDZ  
tCSD  
tCSP  
tLDS  
tLDH  
35  
130  
50  
0
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
50  
0
35  
35  
0
Write Data Hold  
Load Data Pulse Width  
Reset Pulse Width  
Read Data Hold  
Read Data Setup  
Data to Hi-Z  
Chip Select to Data  
Chip Select Repetitive Pulse Width  
Load Setup in Double Buffer Mode  
Load Data Hold  
0
CL = 10 pF  
CL = 10 pF  
80  
80  
20  
35  
0
100  
100  
*All input control signals are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
Specifications subject to change without notice.  
REV. A  
5–  
AD5582/AD5583  
ABSOLUTE MAXIMUM RATINGS*  
Thermal Resistance Junction to Case, JC . . . . . . . . . . 42C/W  
Maximum Junction Temperature (TJ Max) . . . . . . . . . . 150C  
Package Power Dissipation = (TJ Max – TA)/JA  
Operating Temperature Range . . . . . . . . . . –40C to +125C  
Storage Temperature Range . . . . . . . . . . . . –65C to +150C  
Lead Temperature  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +18 V  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +18 V  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –9 V  
VDD to VREF+ . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +18 V  
VREF– to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +18 V  
VREFH to VREFL . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +18 V  
DVDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
Logic Inputs to GND . . . . . . . . . . . VSS – 0.3 V, VDD + 0.3 V  
VOUT to GND . . . . . . . . . . . . . . . . . VSS – 0.3 V, VDD + 0.3 V  
IOUT Short Circuit to GND . . . . . . . . . . . . . . . . . . . . . . 24 mA  
Thermal Resistance Junction to Ambient, JA . . . . . . 115C/W  
RV-48 (Soldering, 60 secs) . . . . . . . . . . . . . . . . . . . . 300C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
ORDERING GUIDE1  
Resolution  
(Bits)  
Temperature  
Range  
Package  
Description  
Package  
Option  
Container  
Quantity  
Top  
Model  
Marking2  
AD5582YRV-REEL1 12  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
TSSOP-48  
TSSOP-48  
TSSOP-48  
TSSOP-48  
RV-48  
RV-48  
RV-48  
RV-48  
2500  
2500  
39  
AD5582Y  
AD5583Y  
AD5582Y  
AD5583Y  
AD5583YRV-REEL  
10  
12  
10  
AD5582YRV1  
AD5583YRV  
39  
NOTES  
1The AD5582 contains 4116 transistors. The die size measures 108 mil 144 mil.  
2First row marking is shown in the table above. Second row marking contains date code in YYWW format. Third row marking contains the lot number.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD5582/AD5583 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
6–  
REV. A  
AD5582/AD5583  
AD5582 PIN CONFIGURATION  
AGND1  
VOB  
1
2
48 AGND2  
47 VOC  
V
3
46  
45  
V
DD2  
DD1  
V
4
V
SS2  
SS1  
VOA  
NC  
5
44 VOD  
43 NC  
6
V
7
42  
41  
40  
39  
38  
37  
V
REFLC  
REFLB  
V
8
V
REFHC  
REFHB  
V
9
V
REFHD  
REFHA  
V
10  
V
REFLD  
REFLA  
AD5582  
TOP VIEW  
(Not to Scale)  
R1 11  
RCT 12  
R2 13  
V
DD3  
V
SS3  
36 DGND3  
DV  
14  
15  
16  
35  
34  
R/W  
DD  
LDAC  
CS  
33 A1  
RS  
MSB 17  
DB0 18  
32 A0  
31 DB11  
30 DB10  
29 DB9  
28 DB8  
27 DGND2  
26 DB7  
25 DB6  
DB1 19  
DB2 20  
DB3 21  
DGND1 22  
DB4 23  
DB5 24  
NC = NO CONNECT  
AD5582 PIN FUNCTION DESCRIPTIONS*  
Pin  
Pin  
No. Mnemonic Description  
No. Mnemonic Description  
1
2
3
4
5
6
7
8
9
AGND1  
VOB  
VDD1  
VSS1  
VOA  
Analog Ground for DAC A and B  
DAC B Output  
Positive Power Supply for DAC A and B  
Negative Power Supply for DAC A and B  
DAC A Output  
25 DB6  
26 DB7  
27 DGND2  
28 DB8  
29 DB9  
30 DB10  
31 DB11  
32 A0  
Data Bit 6  
Data Bit 7  
Digital Ground 2  
Data Bit 8  
Data Bit 9  
Data Bit 10  
Data Bit 11  
Address Input 0  
Address Input 1  
Chip Select, Active Low  
Read/Write Mode Select  
Digital Ground 3  
Negative Power Supply for Analog Switches  
Positive Power Supply for Analog Switches  
DAC D Voltage Reference Low Terminal  
DAC D Voltage Reference High Terminal  
DAC C Voltage Reference High Terminal  
DAC C Voltage Reference Low Terminal  
No Connect  
NC  
No Connect  
VREFLB  
VREFHB  
VREFHA  
DAC B Voltage Reference Low Terminal  
DAC B Voltage Reference High Terminal  
DAC A Voltage Reference High Terminal  
DAC A Voltage Reference Low Terminal  
R1 Terminal (for Negative Reference)  
Center Tap Terminal (for Negative Reference)  
R2 Terminal (for Negative Reference)  
Power Supply for Digital Circuits  
DAC Register Load, Active Low Level Sensitive  
Reset Strobe  
33 A1  
34 CS  
10 VREFLA  
11 R1  
12 RCT  
13 R2  
14 DVDD  
15 LDAC  
16 RS  
35 R/W  
36 DGND3  
37 VSS3  
38 VDD3  
39 VREFLD  
40 VREFHD  
41 VREFHC  
42 VREFLC  
43 NC  
44 VOD  
45 VSS2  
46 VDD2  
47 VOC  
48 AGND2  
17 MSB  
MSB = 0, Reset to 000H.  
MSB = 1, Reset to 800H.  
18 DB0  
19 DB1  
20 DB2  
21 DB3  
22 DGND1  
23 DB4  
24 DB5  
Data Bit 0  
Data Bit 1  
Data Bit 2  
Data Bit 3  
Digital Ground 1  
Data Bit 4  
Data Bit 5  
DAC D Output  
Negative Power Supply for DAC C and D  
Positive Power Supply for DAC C and D  
DAC C Output  
Analog Ground for DAC C and D  
*AD5582 optimizes internal layout design to reduce die area so that all supply voltage pins are required to be connected externally. See Figure 5.  
REV. A  
7–  
AD5582/AD5583  
AD5583 PIN CONFIGURATION  
AGND1  
VOB  
1
2
48 AGND2  
47 VOC  
V
3
46  
45  
V
DD2  
DD1  
V
4
V
SS2  
SS1  
VOA  
NC  
5
44 VOD  
43 NC  
6
V
7
42  
41  
40  
39  
38  
37  
V
REFLC  
REFLB  
V
8
V
REFHB  
REFHC  
VREFHD  
V
9
REFHA  
V
10  
V
REFLD  
REFLA  
AD5583  
TOP VIEW  
(Not to Scale)  
R1 11  
RCT 12  
R2 13  
V
DD3  
V
SS3  
36 DGND3  
DV  
14  
15  
16  
35  
34  
R/W  
DD  
LDAC  
RS  
CS  
33 A1  
MSB 17  
NC 18  
32 A0  
31 DB9  
30 DB8  
29 DB7  
28 DB6  
27 DGND2  
26 DB5  
25 DB4  
NC 19  
DB0 20  
DB1 21  
DGND1 22  
DB2 23  
DB3 24  
NC = NO CONNECT  
AD5583 PIN FUNCTION DESCRIPTIONS*  
Pin  
Pin  
No. Mnemonic Description  
No. Mnemonic Description  
1
2
3
4
5
6
AGND1  
VOB  
VDD1  
VSS1  
VOA  
NC  
Analog Ground for DAC A and B  
DAC B Output  
Positive Power Supply for DAC A and B  
Negative Power Supply for DAC A and B  
DAC A Output  
25 DB4  
26 DB5  
27 DGND2  
28 DB6  
29 DB7  
30 DB8  
31 DB9  
32 A0  
Data Bit 4  
Data Bit 5  
Digital Ground 2  
Data Bit 6  
Data Bit 7  
Data Bit 8  
Data Bit 9  
Address Input 0  
No Connect (Do Not Connect Anything  
other than Dummy Pad)  
7
8
9
VREFLB  
VREFHB  
VREFHA  
DAC B Voltage Reference Low Terminal  
DAC B Voltage Reference High Terminal  
DAC A Voltage Reference High Terminal  
DAC A Voltage Reference Low Terminal  
R1 Terminal (for Negative Reference)  
Center Tap Terminal (for Negative Reference)  
R2 Terminal (for Negative Reference)  
Power Supply for Digital Circuits  
DAC Register Load, Active Low Level Sensitive  
Reset Strobe  
MSB = 0, Reset to 000H.  
MSB = 1, Reset to 200H.  
No Connect (Do Not Connect Anything  
other than Dummy Pad)  
No Connect (Do Not Connect Anything  
other than Dummy Pad)  
33 A1  
34 CS  
Address Input 1  
Chip Select, Active Low  
Read/Write Mode Select  
Digital Ground 3  
10 VREFLA  
11 R1  
12 RCT  
13 R2  
14 DVDD  
15 LDAC  
16 RS  
35 R/W  
36 DGND3  
37 VSS3  
38 VDD3  
39 VREFLD  
40 VREFHD  
41 VREFHC  
42 VREFLC  
43 NC  
Negative Power Supply for Analog Switches  
Positive Power Supply for Analog Switches  
DAC D Voltage Reference Low Terminal  
DAC D Voltage Reference High Terminal  
DAC C Voltage Reference High Terminal  
DAC C Voltage Reference Low Terminal  
No Connect (Do Not Connect Anything  
other than Dummy Pad)  
DAC D Output  
17 MSB  
18 NC  
19 NC  
44 VOD  
45 VSS2  
46 VDD2  
47 VOC  
48 AGND2  
Negative Power Supply for DAC C and D  
Positive Power Supply for DAC C and D  
DAC C Output  
20 DB0  
21 DB1  
22 DGND1  
23 DB2  
24 DB3  
Data Bit 0  
Data Bit 1  
Digital Ground 1  
Data Bit 2  
Analog Ground for DAC C and D  
Data Bit 3  
*AD5583 optimizes internal layout design to reduce die area so that all supply voltage pins are required to be connected externally. See Figure 5.  
8–  
REV. A  
AD5582/AD5583  
TIMING DIAGRAMS  
tCSP = 10ns  
tWCS = 20ns  
CS  
tWS = 35ns  
tWH = 0ns  
R/W  
tAS = 35ns  
ADDRESS  
ONE  
ADDRESS  
TWO  
ADDRESS  
THREE  
ADDRESS  
FOUR  
ADDRESS  
tLS = 0ns  
tLH = 0ns  
LDAC  
tWDH = 0ns  
tWDS = 35ns  
DATA1  
VALID  
DATA2  
VALID  
DATA3  
VALID  
DATA4  
VALID  
DATA IN  
Figure 2a. Single Buffer Mode, Output Updated Individually, DVDD = 5 V  
tCSP = 10ns  
tWCS = 20ns  
CS  
tWH = 0ns  
tWS = 35ns  
R/W  
tAS = 35ns  
ADDRESS  
ONE  
ADDRESS  
TWO  
ADDRESS  
THREE  
ADDRESS  
FOUR  
ADDRESS  
tLDH = 0ns  
tLDS = 0ns  
LDAC  
tLDW = 20ns  
tWDS = 35ns  
tWDH = 0ns  
DATA1  
VALID  
DATA2  
VALID  
DATA3  
VALID  
DATA4  
VALID  
DATA IN  
Figure 2b. Double Buffer Mode, Output Updated Simultaneously, DVDD = 5 V  
REV. A  
9–  
AD5582/AD5583  
tWCS = 20ns  
CS  
tWS = 35ns  
tWH = 0ns  
R/W  
tAH = 0ns  
tAS = 35ns  
A0/A1  
tLDW = 20ns  
tLH = 0ns  
tLS = 0ns  
LDAC  
tWDH = 0ns  
tWDS = 35ns  
DATA IN  
tRESET= 20ns  
RS  
Figure 2c. Data Write (Input and Output Registers) Timing  
tRCS = 130ns  
CS  
tRDS = 35ns  
tRDH = 0ns  
R/W  
tAS = 35ns  
tAH = 0ns  
A0/A1  
tCSD = 100ns MAX  
HI-Z  
tDZ = 100ns MAX  
HI-Z  
DATA OUT  
DATAVALID  
Figure 2d. Data Output (Read Timing)  
10–  
REV. A  
Typical Performance Characteristics–AD5582/AD5583  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE (Decimal)  
CODE (Decimal)  
TPC 1. AD5582 Integral Nonlinearity Error  
TPC 4. AD5583 Differential Nonlinearity Error  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
V
SS  
= 5V  
= 0V  
DD  
V
V
= 0V  
REFL  
4
2
NO LOAD  
INL  
GE  
ZSE  
DNL  
0
–0.2  
–2  
–4  
–6  
–0.4  
–0.6  
–0.8  
–1.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
5
10  
15  
20  
25  
30  
CODE (Decimal)  
V
–V  
(mV)  
REFH  
DD  
TPC 2. AD5582 Differential Nonlinearity Error  
TPC 5. AD5582 INL, DNL, ZSE, and GE at Positive  
Rail-to-Rail Operation  
1.0  
0.8  
0.6  
0.4  
0.2  
4
V
SS  
= +5V  
= –5V  
DD  
V
3
2
V
= +4V  
REFH  
ZSE  
NO LOAD  
1
DNL  
DAC-A  
DAC-C  
DAC-B  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
–1  
–2  
–3  
–4  
INL  
DAC-D  
GE  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
5
10  
15  
20  
(mV)  
25  
30  
35  
CODE (Decimal)  
V
–V  
SS  
REFL  
TPC 3. AD5583 Integral Nonlinearity Error  
TPC 6. AD5582 INL, DNL, GE, and ZSE at Negative  
Rail-to-Rail Operation  
REV. A  
11–  
AD5582/AD5583  
1.0  
40  
30  
V
= 5V  
= 5V  
DD  
ZERO  
SCALE  
ERROR  
ZERO  
SCALE  
ERROR  
0.8  
0.6  
V
SS  
V
= 4V  
= 0V  
REFH  
V
REFL  
20  
R
= NO LOAD  
L
0.4  
V
>V  
SS  
V
=V  
SS  
REFL  
REFL  
R
= 260ꢅ  
L
10  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–10  
–20  
–30  
–40  
R
= 790ꢅ  
L
R
= 390ꢅ  
L
GAIN  
GAIN  
ERROR  
ERROR  
RESISTIVE LOAD R IS BETWEEN  
L
PULL-UP RESISTIVE LOAD R  
IS BETWEENV  
L
V
AND GND  
OUT  
ANDV  
DD  
OUT  
100  
1k  
10k  
R _PU ()  
100k  
1M  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
L
CODE (Decimal)  
TPC 7. AD5582 INL at Various Resistive Loads  
TPC 10. AD5582 Gain and Zero-Scale Error vs.  
Pull-Up Resistive Loads  
0.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
V
= 5V  
= 5V  
= 4V  
DD  
0.4  
0.3  
V
SS  
V
REFH  
V
= 0V  
REFL  
0.2  
R
= NO LOAD  
L
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
R
= 260ꢅ  
L
1.5  
INL  
1.0  
RESISTIVE LOAD R IS BETWEEN  
V
L
DNL  
AND GND  
0.5  
OUT  
0
512  
1024  
1536  
2048  
2560  
3072  
3584 4096  
0
0
2
4
6
8
10  
12  
CODE (Decimal)  
V
–V  
(V)  
REFL  
REFH  
TPC 8. AD5582 DNL at Various Resistive Loads  
TPC 11. AD5582 Linearity Errors vs. Differential  
Reference Ranges  
0
2.00  
1.95  
1.90  
–2  
V
= +5V OR +15V  
= –5V OR 0V  
= +4V  
= 0V  
DD  
V
SS  
–4  
–6  
V
= 0V  
SS  
V
REFH  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
V
= +4V  
REFH  
V
REFL  
V
= 0V  
REFL  
V
= +5V  
= –5V  
DD  
–8  
V
SS  
V
= +15V  
= 0V  
= +10V  
DD  
V
= +4V  
REFH  
V
SS  
–10  
–12  
–14  
–16  
V
REFH  
V
= 0V  
REFL  
RESISTIVE LOAD R IS BETWEEN  
L
V
AND GND  
OUT  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
12  
14  
16  
R
()  
L
V
(V)  
DD  
TPC 9. AD5582 Gain Error vs. Resistive Load  
TPC 12. AD5582 Supply Current vs. Supply Voltage  
12–  
REV. A  
AD5582/AD5583  
300  
250  
200  
150  
100  
50  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
= 0V  
= 4V  
DD  
V
SS  
V
REFH  
V
= 0V  
REFL  
V
= +15V  
= 0V  
DD  
V
= +5V  
= –5V  
DD  
V
SS  
V
SS  
V
= 0V  
REFL  
V
= –5V  
REFL  
V
= +5V  
= 0V  
DD  
V
SS  
V
= 0V  
REFL  
0
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
–10  
–5  
0
5
10  
15  
20  
CODE (Decimal)  
V
(V)  
REFH  
TPC 13. AD5582 Supply Current vs. Reference Voltage  
TPC 16. AD5582 Reference Current  
4.0  
140  
120  
100  
80  
V
= 15V  
= 0V  
= 10V  
= 0V  
DD  
V
SS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
REFH  
V
REFL  
60  
V
= 5V  
= 5V  
= 4V  
DD  
V
SS  
40  
V
REFH  
V
= 0V  
REFL  
20  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
TEMPERATURE (C)  
CODE (Decimal)  
TPC 14. AD5582 Supply Current vs. Temperature  
TPC 17. AD5582 Referenced Input Resistance  
20  
6
V
= 5V OR 15V  
DD  
= 0V  
DD  
V
= 5V 0.5V  
= 0V  
= 4V  
DD  
18  
16  
14  
12  
10  
8
DV = 3V  
V
SS  
V
SS  
V
5
4
3
2
1
0
REF  
DATA = 800  
H
V
= 5V OR 15V  
DD  
= 0V  
DD  
DV = 5V  
V
SS  
6
4
2
0
0
1
2
3
4
5
10k  
100k  
1M  
10M  
100M  
V
(V)  
CLOCK FREQUENCY (Hz)  
IH  
TPC 15. AD5582 Supply Current vs. Logic Input Voltage  
TPC 18. AD5582 Supply Current vs. Clock Frequency  
REV. A  
13–  
AD5582/AD5583  
–100  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
V
= 5V 0.5V  
= 0V  
= 4V  
DD  
DATA 5V/DIV  
V
SS  
V
REF  
DATA = 800  
100  
90  
H
V
= 5V  
= 0V  
= 2.5V  
DD  
V
SS  
V
REFH  
10  
0
5s/DIV  
V
0.5V/DIV  
OUT  
1
10  
100  
1k  
10k  
100k  
1M  
GRAPH <1>  
: C = 0  
L
GRAPH <2> w/RINGING : C = 10nF  
FREQUENCY (Hz)  
L
TPC 19. AD5582 PSRR vs. Frequency  
TPC 22. Large Signal Settling When Loaded  
(See Test Circuit 1)  
V
200mV/DIV  
OUT  
V
200mV/DIV  
2s/DIV  
V
0.1V/DIV  
5s/DIV  
REF  
OUT  
TPC 20. Small Signal Response Operating  
at Near Rail, CL = 2 nF (See Test Circuit 1)  
TPC 23. Midscale Transition Glitch  
3980  
1260  
398  
V
V
= 15V  
= 0V  
R
= 30Hz  
DD  
BW  
33nV/ Hz @ 1kHz  
SS  
100  
90  
V
= 10V  
REFH  
23004  
7285  
2300  
730  
230  
73  
126  
V
2V/DIV  
OUT  
39.90  
12.60  
4.00  
1.26  
0.40  
0.13  
10  
0
23  
5s/DIV  
DATA 5V/DIV  
0.04  
7.3  
2kHz  
1Hz  
TPC 21. Large Signal Settling  
TPC 24. AD5582 Output Noise Density  
14–  
REV. A  
AD5582/AD5583  
FFF  
0
0.8  
0.6  
H
800  
V
= +5V  
= –5V  
H
DD  
400  
H
V
SS  
200  
H
V
= +4V  
= –4V  
REFH  
100  
–24  
–48  
–72  
–96  
H
V
REFL  
080  
0.4  
H
040  
H
ZSE DRIFT  
020  
H
0.2  
010  
+3ꢆ  
H
008  
H
004  
0
H
–3ꢆ  
002  
H
001  
H
–0.2  
–0.4  
–0.6  
–0.8  
+3ꢆ  
–3ꢆ  
000  
H
GE DRIFT  
100  
1k  
10k  
100k  
1M  
10M  
0
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
HOURS OF OPERATION AT 150C  
TPC 25. AD5582 Multiplying Bandwidth  
TPC 26. AD5582 Long-Term Drift  
Test Circuit  
V
DD  
1kꢅ  
V
OUT  
DAC  
C
1kꢅ  
L
Test Circuit 1  
THEORY OF OPERATION  
The AD5582/AD5583 are quad, voltage output, 12-/10-bit parallel  
input DACs in compact TSSOP-48 packages.  
These DACs feature double buffers, which allow both synchro-  
nous and asynchronous channels update with additional data  
readback capability. These parts can be reset to zero scale or mid-  
scale controlled by the RS and MSB pins. When RS is activated,  
the MSB of 0 resets the DACs to zero scale and the MSB of 1  
resets the DACs to midscale. The ability to operate from wide  
supply voltages, +5 V to +15 V or ±5 V, with multiplying bipolar  
references is another key feature of these DACs.  
Each DAC is a voltage switching, high impedance (R = 20 kW),  
R-2R ladder configuration with segmentation to optimize die  
area and precision. Figure 3 shows a simplified R-2R structure  
without the segmentation. The 2R resistances are switched  
between VREFH and VREFL, and the output is obtained from  
the rightmost ladder node. As the code is sequenced through  
all possible states, the voltage of this node changes in steps of  
(2/3 VREFH – VREFL)/(2N – 1) starting from the lowest VREFL and  
going to the highest VREFH – DUTLSB. Buffering it with an  
amplifier with a gain of 1.5 brings the output to:  
R
R
R
+
V
O
2R  
2R  
2R  
2R  
2R  
2R  
R
2R  
SW0  
SW1  
SW2  
SWn–3  
SWn–1  
D
2N – 1  
VOUT  
=
V
VREFL + V  
(1)  
(
)
(
)
REFH  
REFL  
V
V
+
REFL  
+
REFH  
where D is the decimal equivalent of the data bits and N is the  
numbers of bits.  
b0  
b1  
b2  
bn–2  
bn–1  
If –VREFL is equal to VREFH as VREF, VOUT is simplified to:  
Figure 3. Simplified R-2R Architecture  
(Segmentation Not Shown)  
Ê 2D  
ˆ
Power Supplies  
There are three separate power supplies needed for the opera-  
VOUT  
=
– 1 V  
Á
˜
(For AD5582) (2)  
REF  
Ë
¯
4095  
tion of the DACs. For dual supply, VSS can be set from –6.5 V  
to –2.7 V and VDD can be set from +2.7 V to +6.5 V. For single  
supply, VSS should be set at 0 V while VDD is set from 3 V to  
16.5 V. However, setting the single supply of VDD below 4.5 V  
can impact the overall accuracy of the device.  
Ê 2D  
ˆ
¯
VOUT  
=
– 1 V  
Á
˜
(For AD5583) (3)  
REF  
Ë
1023  
The advantage of this scheme is that it allows the DAC to inter-  
polate between two voltages for differential references or  
single-ended reference.  
REV. A  
15–  
AD5582/AD5583  
Since these DACs can be operated at high voltages, the digital  
signal levels are therefore controlled separately by the provision  
of DVDD. DVDD can be set as low as 2.7 V but no greater than  
6.5 V. This allows the DAC to be operable from low level digital  
signals generated from a wide range of microcontrollers, FPGA,  
and signal processors.  
Reset  
The RS function can be used either at power-up or at any time  
during operation. The RS function has priority over any other  
digital inputs. This pin is active low and sets the DAC output  
registers to either zero scale or midscale, determined by the state  
of the MSB. The reset to midscale is useful when the DAC is  
configured for bipolar references and the output will be reset to 0 V.  
Reference Input  
All four channels of DACs allow independent and differential  
reference voltages. The flexibility of independent references  
allows users to apply a unique reference voltage to each channel.  
Similarly, bipolar references can be applied across the differential  
references. To maintain optimum accuracy, the difference between  
VREFH and VREFL should be greater than 1 V. See TPC 11.  
Output Amplifiers  
Unlike many voltage output DACs, the AD5582/AD5583 feature  
buffered voltage outputs with high output current driving capa-  
bility. Each output is capable of both sourcing and sinking ±20 mA,  
eliminating the need for external buffers when driving any capaci-  
tive loads without oscillation. These amplifiers also have short  
circuit protection.  
The voltages applied to these reference inputs set the output  
voltage limits of all four channels of the DACs, and VREFH must  
always be higher than VREFL. VREFH can be set at any voltage from  
VREFL + 0.5 V to VDD, while VREFL can be set at any voltage from  
VSS to VREFH – 0.5 V. In addition, a symmetrical negative reference  
can be generated easily by an external op amp in an inverting  
mode with a pair of built-in precision resistors, R1 and R2. These  
resistors are matched within ±0.025% for the AD5582 and 0.1%  
for the AD5583, which is equivalent to less than 1 LSB mis-  
match. Figure 4 shows a simple configuration.  
Glitch  
The worst-case glitch of the AD5582 occurs at the transitions  
between midscale (1000 0000 0000B) to midscale minus 1  
(0111 1111 1111B), or vice versa. The glitch energy is mea-  
sured as 100 mV 1 ms or equivalent to 100 nV-s. Such glitch  
occurs in a shorter duration than the settling time and therefore  
most applications will be immune to such an effect without a  
deglitcher.  
Layout and Power Supply Bypassing  
Common reference or references can be applied to all four chan-  
nels, but each reference pin should be decoupled with a 0.1 mF  
ceramic capacitor mounted close to the pin.  
It is a good practice to employ compact, minimum lead length  
PCB layout design. The leads to the input should be as short as  
possible to minimize IR drop and stray inductance.  
It is also essential to bypass the power supplies with quality capaci-  
tors for optimum stability. Supply leads to the device should be  
bypassed with 0.01 mF to 0.1 mF disc or chip ceramics capacitors.  
Low ESR 1 mF to 10 mF tantalum or electrolytic capacitors should  
also be applied at the supplies to minimize transient disturbance.  
The AD5582/AD5583 optimize internal layout design to reduce  
die area so that all analog supply pins are required to be con-  
nected externally. See Figure 5.  
AD5582  
+2.5V  
ADR421  
V
REFHA  
REF  
2.5V  
2.5V  
DAC A  
V
REFHB  
V
REFHC  
V
DAC B  
REFHD  
R1  
R2  
RCT  
2.5V  
2.5V  
DAC C  
DAC D  
V
REFLA  
V
REFLB  
AD5582/  
AD5583  
V
+
REFLC  
–2.5V  
V
REFLD  
V
V
DD  
DD1  
+
+
V
C1  
C2  
DD2  
Figure 4. Using On-Board Matching Resistors  
to Generate a Negative Voltage REF  
10F  
0.1F  
V
DD3  
AGND1  
AGND2  
C3  
10F  
C4  
0.1F  
Digital I/O  
V
V
SS  
SS1  
Digital I/O consists of a 12-/10-bit bidirectional data bus, two  
register select inputs, A0 and A1, an R/W input, a Reset (RS), a  
Chip Select (CS), and a Load DAC (LDAC) input. Control of  
the DACs and the bus direction is determined by these inputs  
as shown in Table I. All digital pins are TTL/CMOS compat-  
ible and all internal registers are level triggered.  
V
SS2  
V
SS3  
DV  
DD  
C5  
0.1F  
DGND  
Figure 5. Power Supply Configurations  
APPLICATIONS  
The register selects inputs A0 and A1. Decoding of the registers  
is enabled by the CS input. When CS is high, no decoding is  
taking place and neither the writing nor the reading of the input  
registers is enabled. The loading of the second bank of registers  
is controlled by the asynchronous LDAC input. By taking LDAC  
low while CS is enabled, the individual channel is updated as  
single buffer mode, Figure 2a. If CS is enabled sequentially to  
load data into all input registers, then a subsequent LDAC pulse  
will allow all channels to be updated simultaneously as double  
buffer mode, Figure 2b.  
Programmable Current Source  
AD5582/AD5583 high current capability allow them to be used  
directly in programmable current source applications, such as  
4 m to 20 mA current transmitter and other general purpose  
applications. For higher compliance voltage that is higher than  
15 V, Figure 6 shows a versatile V-I conversion circuit using an  
improved Howland Current Pump. In addition to the precision  
current conversion it provides, this circuit enables a bidirec-  
tional current flow and high voltage compliance. The voltage  
R/W controls the writing to and reading from the input register.  
16–  
REV. A  
AD5582/AD5583  
Table I. AD5582/AD5583 Logic Table  
INPUT  
REGISTER  
DAC  
REGISTER  
OPERATION  
MODE  
SELECTED  
DAC  
A1  
A0  
R/W  
CS  
LDAC  
RS  
0
0
1
1
0
0
1
1
0
0
1
1
X
X
X
X
0
1
0
1
0
1
0
1
0
1
0
1
X
X
X
X
0
0
0
0
0
0
0
0
1
1
1
1
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
1
X
1
0
0
0
0
1
1
1
1
1
1
1
1
0
1
X
X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Read  
Read  
Read  
Read  
Hold  
Hold  
Transparent  
Transparent  
Transparent  
Transparent  
Hold  
Hold  
Hold  
Hold  
Hold  
Transparent  
Transparent  
Transparent  
Transparent  
Write Input  
Write Input  
Write Input  
Write Input  
Readback to D0 to DN  
Readback to D0 to DN  
Readback to D0 to DN  
Readback to D0 to DN  
Update All Registers  
Hold  
A
B
C
D
A
B
C
D
A
B
Hold  
Hold  
Hold  
C
D
All  
All  
All  
All  
Update All Registers  
Hold  
All registers reset to midscale or zero scale.  
All registers latched to midscale or zero scale.  
MSB = 0 resets to zero scale, MSB = 1 resets to midscale. X: Don’t Care. Input and output registers are transparent when asserted.  
This circuit is versatile, but users must pay attention to the  
compensation. Without C1, it can be shown that the output  
impedance becomes:  
compliance is mainly limited by the op amp supply voltages.  
This circuit can be used in 4 to 20 mA current transmitters with  
up to 500 W of load.  
R1'R3 R1 + R2  
(
)
R1'  
R2'  
ZO  
=
(5)  
150kꢅ  
15kꢅ  
R1 R2'+ R3' – R1' R2 + R3  
(
)
(
)
C1  
10pF  
If the resistors are perfectly matched, ZO is infinite, which is  
highly desirable. On the other hand, if they are not matched, ZO  
can either be positive or negative. The latter, because of the  
pole in the right S-plane, can cause oscillation. As a result, C1  
in the range of a few pF is needed to prevent the oscillation. For  
critical applications, C1 should be found empirically without  
overcompensating.  
+15V  
R3'  
50ꢅ  
U4  
AD8510  
+
U1  
ADR421  
+2.5V  
+5V  
+5V  
R3  
50ꢅ  
V
DAC  
V
V
DD  
REFH  
–15V  
R1  
RCT  
R2  
V
Boosted Programmable Voltage Source  
ADU52582  
VL  
IL  
For users who need higher than 20 mA current driving capabil-  
ity, they can add an external op amp and power transistors. The  
capacitive loading capability will change, but it can still drive  
100 nF capacitive load without oscillation in this circuit. Figure 7  
shows a programmable power supply with 200 mA capability.  
R1  
150kꢅ  
R2  
15kꢅ  
V
SS  
REFL  
+5V  
LOAD  
–5V  
OP1177  
+
–2.5V  
FDV30IN  
V
V
O
DD  
DECOUPLING CAPS ARE OMITTED FOR CLARITY  
+5V  
–5V  
N1  
+4.096V  
V
U1  
REF198  
+15V  
U3  
Figure 6. Programmable Current Source with Bidirectional  
Current Control and High Voltage Compliance Capabilities  
V
REFH  
DD  
LOAD  
ADU52582  
C1  
1F  
+
Figure 6 shows that if the resistor network is matched, the load  
current is:  
OP1177  
V
V
REFL  
SS  
R2 + R3 / R1  
(
)
IL  
=
VDAC  
(4)  
DECOUPLING CAPS ARE OMITTED FOR CLARITY  
R3  
Figure 7. Boosted Programmable Voltage Source  
R3 in theory can be made small to achieve the current needed  
within the U4 output current driving capability. In this circuit,  
the AD8510 can deliver ±20 mA in both directions and the  
voltage compliance approaches ±15 V.  
REV. A  
17–  
AD5582/AD5583  
V
V
DD  
DD  
+10V  
FDBK  
+10V  
FDBK  
G+  
VINP  
G–  
G+  
VINP  
G–  
V+  
U5  
AD603  
V–  
V+  
U6  
AD603  
V–  
C1  
C2  
C3  
V
V
IN  
DD  
OUT  
OUT  
V
O
0.1F  
0.1F  
0.1F  
R3  
50kꢅ  
R1  
100ꢅ  
COMM  
COMM  
+
U4  
AD8565  
R4  
50kꢅ  
V
DD  
V
DD  
VOA VOB  
V
1-TO-3 VOC VOD  
DD  
R2  
10kꢅ  
R1  
V
REFHA  
DV  
DD  
10kꢅ  
2.0V  
1.0V  
V
REFHB  
V
REFHC  
+IN  
V
REFHD  
U1  
AD5582  
U2  
ADR510  
V
REFLA  
–IN  
V
REFLB  
V
REFLC  
+IN  
V
REFLD  
V
1-TO-3  
SS  
U3  
ADR510  
–IN  
DECOUPLING CAPS ARE OMITTED FOR CLARITY  
Figure 8. Programmable PGA  
In this circuit, the inverting input of the op amp forces the VO to  
be equal to the DAC output. The load current is then delivered by  
the supply via the N-Ch FET N1. U3 needs to be a rail-to-rail  
input type. With a VDD of 5 V, this circuit can source a maximum  
of 200 mA at 4.096 V full scale, 100 mA at midscale, and 50 mA  
near zero-scale outputs. Higher current can be achieved with N1  
in a larger package mounted on a heat sink.  
The decibel gain is linear in dB, accurately calibrated, and stable  
over temperature and supply. The gain is controlled at a high  
impedance (50 MW), low bias (200 nA) differential input; the  
scaling is 25 mV/dB, requiring a gain control voltage of only 1 V  
to span the central 40 dB of the gain range. An overrange and  
underrange of 1 dB is provided whatever the selected range. The  
gain control response time is less than 1 ms for a 40 dB change.  
Programmable PGA  
The differential gain control interface allows the use of either  
differential or single-ended positive or negative control voltages,  
where the common-mode range is –1.2 V to +2.0 V. The  
AD5582/AD5583 is ideally suited to provide the differential  
input range of 1 V within the common-mode range of 0 V to 2 V.  
To accomplish this, place VREFH at 2.0 V and VREFL at 1.0 V,  
then all 4096 V levels of the AD5582 will fall within the gain  
control range of the AD603. Please refer to the AD603 data  
sheet for further information regarding gain control, layout, and  
general operation.  
The AD603 is a low noise, voltage controlled amplifier for use in  
RF and IF AGC (automatic gain control) systems. It provides  
accurate, pin selectable gains of –11 dB to +31 dB with a band-  
width of 90 MHz, or 9 dB to 51 dB with a bandwidth of 9 MHz.  
Any intermediate gain range may be arranged using one external  
resistor between Pin 5 and Pin 7. The input referred noise spectral  
density is only 1.3 nV/÷Hz and power consumption is 125 mW  
at the recommended ±5 V supplies.  
18–  
REV. A  
AD5582/AD5583  
OUTLINE DIMENSIONS  
48-Lead Thin Shrink Small Outline Package [TSSOP]  
(RV-48)  
Dimensions shown in millimeters  
12.60  
12.50  
12.40  
48  
25  
6.20  
6.10  
6.00  
8.10 BSC  
1
24  
PIN 1  
1.20 MAX  
0.15  
0.05  
0.75  
8ꢃ  
0ꢃ  
0.60  
0.45  
0.5  
BSC  
0.27  
0.17  
SEATING  
PLANE  
0.20  
0.09  
COMPLIANT TO JEDEC STANDARDS MO-153ED  
REV. A  
19–  
AD5582/AD5583  
Revision History  
Location  
Page  
8/03—Data Sheet changed from REV. 0 to REV. A.  
Change to Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Changes to PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Changes to Figures 2a, 2b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
20–  
REV. A  

相关型号:

AD558J

DACPORT Low Cost, Complete uP-Compatible 8-Bit DAC
ADI

AD558JCHIPS

8-Bit Digital-to-Analog Converter
ETC

AD558JD

DACPORT Low Cost, Complete uP-Compatible 8-Bit DAC
ADI

AD558JD

PARALLEL, 8 BITS INPUT LOADING, 0.8 us SETTLING TIME, 8-BIT DAC, CDIP16, HERMETIC SEALED, CERAMIC, TO-116, DIP-16
ROCHESTER

AD558JD/+

暂无描述
ADI

AD558JN

DACPORT Low Cost, Complete uP-Compatible 8-Bit DAC
ADI

AD558JN

PARALLEL, 8 BITS INPUT LOADING, 0.8us SETTLING TIME, 8-BIT DAC, PDIP16, PLASTIC, DIP-16
ROCHESTER

AD558JN/+

8-Bit Digital-to-Analog Converter
ETC

AD558JNZ

DACPORT LOW COST, COMPLETE P-COMPATIBLE 8-BIT DAC
ADI

AD558JNZ

PARALLEL, 8 BITS INPUT LOADING, 0.8 us SETTLING TIME, 8-BIT DAC, PDIP16, PLASTIC, DIP-16
ROCHESTER

AD558JP

DACPORT Low Cost, Complete uP-Compatible 8-Bit DAC
ADI

AD558JP

PARALLEL, 8 BITS INPUT LOADING, 0.8 us SETTLING TIME, 8-BIT DAC, PQCC20, PLASTIC, LCC-20
ROCHESTER