AD5453WBCPZ-RL [ADI]

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface; 8位/ 10位/ 12位/ 14位,高带宽乘法数模转换器,串行接口
AD5453WBCPZ-RL
型号: AD5453WBCPZ-RL
厂家: ADI    ADI
描述:

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
8位/ 10位/ 12位/ 14位,高带宽乘法数模转换器,串行接口

转换器 数模转换器
文件: 总28页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/10-/12-/14-Bit High Bandwidth  
Multiplying DACs with Serial Interface  
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
REF  
12 MHz multiplying bandwidth  
INL of 0.25 LSB at 8-bit  
DD  
R
FB  
8-lead TSOT and MSOP packages  
2.5 V to 5.5 V supply operation  
Pin-compatible 8-/10-/12-/14-bit current output DACs  
10 V reference input  
R
AD5450/  
AD5451/  
AD5452/  
AD5453  
8-/10-/12-/14-BIT REF  
R-2R DAC  
I
1
OUT  
50 MHz serial interface  
DAC REGISTER  
INPUT LATCH  
2.7 MSPS update rate  
Extended temperature range: –40°C to +125°C  
4-quadrant multiplication  
POWER-ON  
RESET  
Power-on reset with brownout detect  
<0.4 µA typical current consumption  
Guaranteed monotonic  
SYNC  
SCLK  
SDIN  
CONTROL LOGIC  
AND INPUT SHIFT  
REGISTER  
Qualified for automotive applications  
GND  
APPLICATIONS  
Figure 1.  
Portable battery-powered applications  
Waveform generators  
Analog processing  
Instrumentation applications  
Programmable amplifiers and attenuators  
Digitally controlled calibration  
Programmable filters and oscillators  
Composite video  
Ultrasound  
Gain, offset, and voltage trimming  
GENERAL DESCRIPTION  
The AD5450/AD5451/AD5452/AD54531 are CMOS 8-/10-/12-/  
14-bit current output digital-to-analog converters, respectively.  
These devices operate from a 2.5 V to 5.5 V power supply,  
making them suited to several applications, including battery-  
powered applications.  
The applied external reference input voltage (VREF) determines  
the full-scale output current. These parts can handle 10 V  
inputs on the reference, despite operating from a single-supply  
power supply of 2.5 V to 5.5 V. An integrated feedback resistor  
(RFB) provides temperature tracking and full-scale voltage  
output when combined with an external current-to-voltage  
precision amplifier.  
As a result of manufacture on a CMOS submicron process,  
these DACs offer excellent 4-quadrant multiplication  
characteristics of up to 12 MHz.  
The AD5450/AD5451/AD5452/AD5453 DACs are available in  
small 8-lead TSOT, and the AD5452/AD5453 are also available  
in MSOP packages. The AD5453 also comes in 8-lead LFCSP.  
These DACs use a double-buffered, 3-wire serial interface that  
is compatible with SPI®, QSPI™, MICROWIRE™, and most DSP  
interface standards. Upon power-up, the internal shift register  
and latches are filled with 0s, and the DAC output is at zero scale.  
The EV-AD5443/46/53SDZ evaluation board is available for  
evaluating DAC performance. For more information, see the UG-  
327 evaluation board user guide.  
1 U.S. Patent Number 5,689,257.  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DAC Section................................................................................ 16  
Circuit Operation....................................................................... 16  
Single-Supply Applications ....................................................... 18  
Adding Gain................................................................................ 18  
Divider or Programmable Gain Element................................ 19  
Reference Selection .................................................................... 19  
Amplifier Selection .................................................................... 19  
Serial Interface............................................................................ 21  
Microprocessor Interfacing....................................................... 22  
PCB Layout and Power Supply Decoupling ........................... 24  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 27  
Automotive Products................................................................. 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Terminology .................................................................................... 15  
General Description....................................................................... 16  
REVISION HISTORY  
1/10—Rev. B to Rev. C  
6/13—Rev. F to Rev. G  
Changes to DAC Control Bits C1, C0.......................................... 21  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide.......................................................... 28  
Change to General Description Section........................................ 1  
Change to Figure 56 and Figure 57 .............................................. 22  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide .......................................................... 27  
3/06—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes to Specifications.................................................................4  
Changes to Figure 27 and Figure 28............................................. 11  
Change to Table 9 ........................................................................... 20  
Changes to Table 12 ....................................................................... 26  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide.......................................................... 28  
4/12—Rev. E to Rev. F  
Changes to General Description Section ...................................... 1  
Deleted Evaluation Board for the DAC Section, Power Supplies  
for the Evaluation Board Section, and Figure 64;  
Renumbered Sequentially.............................................................. 25  
Deleted Figure 65 and Figure 66................................................... 26  
Deleted Figure 67............................................................................ 27  
Changes to Ordering Guide .......................................................... 27  
3/11—Rev. D to Rev. E  
7/05—Rev. 0 to Rev. A  
Changes to  
Function Section ............................................ 21  
SYNC  
Added AD5453 ...................................................................Universal  
Changes to Specifications.................................................................4  
Change to Figure 21 ....................................................................... 10  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide.......................................................... 28  
Added Figure 54 (Renumbered Sequentially) ............................ 21  
Added Figure 55 and Table 11 ..................................................... 22  
2/11—Rev. C to Rev. D  
Added 8-Lead LFCSP.........................................................Universal  
Changes to Features Section............................................................ 1  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide .......................................................... 28  
Added Automotive Products Section .......................................... 28  
1/05—Revision 0: Initial Version  
Rev. G | Page 2 of 28  
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V, VREF = 10 V. Temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX, unless otherwise  
noted. DC performance measured with OP177 and ac performance measured with AD8038, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
STATIC PERFORMANCE  
AD5450  
Resolution  
8
Bits  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Total Unadjusted Error  
Gain Error  
0.25  
0.5  
0.5  
0.25  
Guaranteed monotonic  
AD5451  
Resolution  
10  
0.25  
0.5  
0.5  
0.25  
Bits  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Total Unadjusted Error  
Gain Error  
Guaranteed monotonic  
Guaranteed monotonic  
AD5452  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Total Unadjusted Error  
Gain Error  
12  
0.5  
1
1
0.5  
Bits  
LSB  
LSB  
LSB  
LSB  
AD5453  
Resolution  
14  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Total Unadjusted Error  
Gain Error  
2
LSB  
LSB  
LSB  
LSB  
ppm FSR/°C  
nA  
−1/+2  
4
2.5  
Guaranteed monotonic  
Gain Error Temperature Coefficient1  
2
Output Leakage Current  
1
Data = 0x0000, TA = 25°C, IOUT1  
10  
nA  
Data = 0x0000, TA = −40°C to +125°C, IOUT1  
REFERENCE INPUT1  
Reference Input Range  
VREF Input Resistance  
RFB Feedback Resistance  
Input Capacitance  
10  
9
9
V
kΩ  
kΩ  
7
7
11  
11  
Input resistance, TC = −50 ppm/°C  
Input resistance, TC = −50 ppm/°C  
Zero-Scale Code  
Full-Scale Code  
18  
18  
22  
22  
pF  
pF  
DIGITAL INPUTS/OUTPUTS1  
Input High Voltage, VIH  
2.0  
1.7  
V
V
VDD = 3.6 V to 5 V  
VDD = 2.5 V to 3.6 V  
Input Low Voltage, VIL  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Input Leakage Current, IIL  
Input Capacitance  
0.8  
0.7  
V
V
V
V
V
V
nA  
nA  
pF  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
VDD − 1  
VDD − 0.5  
VDD = 4.5 V to 5 V, ISOURCE = 200 µA  
VDD = 2.5 V to 3.6 V, ISOURCE = 200 µA  
VDD = 4.5 V to 5 V, ISINK = 200 µA  
VDD = 2.5 V to 3.6 V, ISINK = 200 µA  
TA = 25°C  
0.4  
0.4  
1
10  
10  
TA = −40°C to +125°C  
Rev. G | Page 3 of 28  
 
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
DYNAMIC PERFORMANCE1  
Reference-Multiplying BW  
Multiplying Feedthrough Error  
12  
MHz  
VREF  
VREF  
=
=
3.5 V, DAC loaded with all 1s  
3.5 V, DAC loaded with all 0s  
72  
64  
44  
dB  
dB  
dB  
100 kHz  
1 MHz  
10 MHz  
Output Voltage Settling Time  
VREF = 10 V, RLOAD = 100 Ω; DAC latch alternately  
loaded with 0s and 1s  
Measured to 1 mV of FS  
Measured to 4 mV of FS  
Measured to 16 mV of FS  
Digital Delay  
10% to 90% Settling Time  
Digital-to-Analog Glitch Impulse  
Output Capacitance  
100  
24  
16  
20  
10  
2
110  
40  
33  
40  
30  
ns  
ns  
ns  
ns  
ns  
nV-s  
Interface delay time  
Rise and fall times, VREF = 10 V, RLOAD = 100 Ω  
1 LSB change around major carry, VREF = 0 V  
IOUT  
1
13  
28  
18  
5
pF  
pF  
pF  
pF  
DAC latches loaded with all 0s  
DAC latches loaded with all 1s  
DAC latches loaded with all 0s  
DAC latches loaded with all 1s  
IOUT  
2
Digital Feedthrough  
0.5  
nV-s  
Feedthrough to DAC output with CS high and  
alternate loading of all 0s and all 1s  
VREF = 3.5 V p-p, all 1s loaded, f = 1 kHz  
Clock = 1 MHz, VREF = 3.5 V  
Analog THD  
Digital THD  
83  
dB  
50 kHz fOUT  
20 kHz fOUT  
Output Noise Spectral Density  
SFDR Performance (Wide Band)  
50 kHz fOUT  
71  
77  
25  
dB  
dB  
nV/√Hz  
@ 1 kHz  
Clock = 1 MHz, VREF = 3.5 V  
78  
74  
dB  
dB  
20 kHz fOUT  
SFDR Performance (Narrow Band)  
50 kHz fOUT  
20 kHz fOUT  
Intermodulation Distortion  
POWER REQUIREMENTS  
Power Supply Range  
IDD  
Clock = 1 MHz, VREF = 3.5 V  
87  
85  
79  
dB  
dB  
dB  
f1 = 20 kHz, f2 = 25 kHz, clock = 1 MHz, VREF = 3.5 V  
2.5  
5.5  
10  
0.6  
0.001  
V
0.4  
µA  
µA  
%/%  
TA = −40°C to +125°C, logic inputs = 0 V or VDD  
TA = 25°C, logic inputs = 0 V or VDD  
∆VDD = 5%  
Power Supply Sensitivity1  
1 Guaranteed by design and characterization, not subject to production test.  
Rev. G | Page 4 of 28  
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. VDD = 2.5 V to 5.5 V,  
REF = 10 V, temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX, unless otherwise noted.  
V
Table 2.  
Parameter1  
VDD = 2.5 V to 5.5 V  
Unit  
Description  
fSCLK  
t1  
t2  
t3  
50  
20  
8
8
8
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
MSPS  
Maximum clock frequency  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK active edge setup time  
Data setup time  
Data hold time  
SYNC rising edge to SCLK active edge  
Minimum SYNC high time  
t4  
t5  
t6  
t7  
5
4.5  
5
t8  
30  
2.7  
Update Rate  
Consists of cycle time, SYNC high time, data setup, and  
output voltage settling time  
1 Guaranteed by design and characterization, not subject to production test.  
t1  
SCLK  
t2  
t3  
t8  
t7  
t4  
SYNC  
t6  
t5  
DIN  
DB15  
DB0  
Figure 2. Timing Diagram  
Rev. G | Page 5 of 28  
 
AD5450/AD5451/AD5452/AD5453  
ABSOLUTE MAXIMUM RATINGS  
Data Sheet  
Transient currents of up to 100 mA do not cause SCR latch-up.  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VREF, RFB to GND  
IOUT1 to GND  
Input Current to Any Pin Except Supplies  
Logic Inputs and Output1  
−0.3 V to +7 V  
−12 V to +12 V  
−0.3 V to +7 V  
10 mA  
−0.3 V to VDD + 0.3 V  
−40°C to +125°C  
ESD CAUTION  
Operating Temperature Range, Extended  
(Y Version)  
Storage Temperature Range  
Junction Temperature  
−65°C to +150°C  
150°C  
θJA Thermal Impedance  
8-Lead MSOP  
8-Lead TSOT  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature (<20 sec)  
206°C/W  
211°C/W  
300°C  
235°C  
1 Overvoltages at SCLK,  
, and SDIN are clamped by internal diodes.  
SYNC  
Rev. G | Page 6 of 28  
 
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
I
1
1
2
3
4
8
7
6
5
R
FB  
R
1
2
3
4
8
7
6
5
I
1
OUT  
FB  
OUT  
AD5450/  
AD5451/  
AD5452/  
AD5453  
AD5453  
V
GND  
REF  
GND  
V
V
REF  
DD  
TOP VIEW  
(Not to Scale)  
V
SCLK  
SDIN  
DD  
SCLK  
SDIN  
SYNC  
SYNC  
Figure 3. 8-Lead TSOT Pin Configuration  
NOTES  
1. THE EXPOSED PAD MUST BE  
CONNECTED TO GROUND.  
I
1
1
2
3
4
8
7
6
5
R
FB  
OUT  
GND  
V
V
REF  
DD  
AD5452/  
AD5453  
Figure 5. 8-Lead LFCSP Pin Configuration  
SCLK  
SDIN  
SYNC  
Figure 4. 8-Lead MSOP Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No1  
TSOT MSOP LFCSP Mnemonic Description  
1
8
8
RFB  
DAC Feedback Resistor. Establish voltage output for the DAC by connecting to external  
amplifier output.  
2
3
4
7
6
5
7
6
5
VREF  
VDD  
SYNC  
DAC Reference Voltage Input.  
Positive Power Supply Input. These parts can operate from a supply of 2.5 V to 5.5 V.  
Active Low Control Input. This is the frame synchronization signal for the input data. Data is  
loaded to the shift register upon the active edge of the following clocks.  
5
6
4
3
4
3
SDIN  
SCLK  
GND  
Serial Data Input. Data is clocked into the 16-bit input register upon the active edge of the serial  
clock input. By default, in power-up mode data is clocked into the shift register upon the falling  
edge of SCLK. The control bits allow the user to change the active edge to a rising edge.  
Serial Clock Input. By default, data is clocked into the input shift register upon the falling edge  
of the serial clock input. Alternatively, by means of the serial control bits, the device can be  
configured such that data is clocked into the shift register upon the rising edge of SCLK.  
7
2
2
Ground Pin.  
8
1
1
IOUT  
1
DAC Current Output.  
N/A  
N/A  
EPAD  
EPAD  
Exposed pad must be connected to ground.  
1 N/A = not applicable.  
Rev. G | Page 7 of 28  
 
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.25  
2.0  
1.6  
T
= 25°C  
T = 25°C  
A
A
V
= 10V  
V
V
= 10V  
0.20  
0.15  
0.10  
0.05  
0
REF  
= 5V  
REF  
= 5V  
DD  
V
DD  
1.2  
0.8  
0.4  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
CODE  
Figure 6. INL vs. Code (8-Bit DAC)  
Figure 9. INL vs. Code (14-Bit DAC)  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.5  
0.4  
T
V
V
= 25°C  
T = 25°C  
A
A
= 10V  
V
V
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.3  
0.2  
0.1  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE  
CODE  
Figure 7. INL vs. Code (10-Bit DAC)  
Figure 10. DNL vs. Code (8-Bit DAC)  
0.5  
0.4  
0.5  
0.4  
T
V
V
= 25°C  
T = 25°C  
A
A
= 10V  
V
V
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
512  
1024  
1536  
2048  
2560  
3072  
2584  
4096  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
CODE  
Figure 8. INL vs. Code (12-Bit DAC)  
Figure 11. DNL vs. Code (10-Bit DAC)  
Rev. G | Page 8 of 28  
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
2.0  
1.5  
1.0  
T
V
V
= 25°C  
A
T
= 25°C  
A
= 10V  
0.8  
0.6  
REF  
= 5V  
V
= 5V  
DD  
AD5452  
DD  
1.0  
0.4  
MAX DNL  
MIN DNL  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
512  
1024  
1536  
2048  
2560  
3072  
2584  
4096  
2
3
4
5
6
7
8
9
10  
REFERENCE VOLTAGE (V)  
CODE  
Figure 12. DNL vs. Code (12-Bit DAC)  
Figure 15. DNL vs. Reference Voltage  
2.0  
1.6  
0.5  
T
V
V
= 25°C  
REF  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
0.4  
0.3  
REF  
= 5V  
= 5V  
DD  
DD  
AD5450  
1.2  
0.8  
0.2  
0.4  
0.1  
0
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE  
Figure 13. DNL vs. Code (14-Bit DAC)  
Figure 16. TUE vs. Code (8-Bit DAC)  
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
T
V
V
= 25°C  
A
T
= 25°C  
A
= 10V  
REF  
= 5V  
V
= 5V  
DD  
AD5452  
DD  
AD5451  
MAX INL  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
MIN INL  
–0.25  
–0.50  
–0.75  
–1.00  
2
3
4
5
6
7
8
9
10  
0
128  
256  
384  
512  
640  
768  
896  
1024  
REFERENCE VOLTAGE (V)  
CODE  
Figure 14. INL vs. Reference Voltage  
Figure 17. TUE vs. Code (10-Bit DAC)  
Rev. G | Page 9 of 28  
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
1.0  
0.3  
0.2  
T
V
V
= 25°C  
A
= 10V  
0.8  
0.6  
REF  
= 5V  
DD  
0.4  
0.1  
V
= 3V  
= 5V  
DD  
0.2  
V
0
0
DD  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
0
512  
1024  
1536  
2048  
2560  
3072  
2584  
4096  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
CODE  
TEMPERATURE (°C)  
Figure 18. TUE vs. Code (12-Bit DAC)  
Figure 21. Gain Error (LSB) vs. Temperature  
2.0  
1.6  
2.0  
1.5  
T
V
V
= 25°C  
T
V
= 25°C  
DD  
A
A
= 10V  
= 5V  
REF  
= 5V  
AD5452  
DD  
1.2  
1.0  
0.8  
0.5  
0.4  
0
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
2
3
4
5
6
7
8
9
10  
REFERENCE VOLTAGE (V)  
Figure 19. TUE vs. Code (14-Bit DAC)  
Figure 22. Gain Error (LSB) vs. Reference Voltage  
2.0  
1.5  
1.0  
0.5  
0
2.0  
T
= 25°C  
= 5V  
A
V
I
1 V = 5V  
DD  
DD  
AD5452  
OUT  
1.6  
1.2  
0.8  
0.4  
0
I
1 V = 3V  
DD  
OUT  
MAX TUE  
MIN TUE  
–0.5  
–1.0  
–1.5  
–2.0  
2
3
4
5
6
7
8
9
10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 20. TUE vs. Reference Voltage  
Figure 23. IOUT1 Leakage Current vs. Temperature  
Rev. G | Page 10 of 28  
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
T
= 25°C  
A
T
= 25°C  
A
V
IH  
V
IL  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
V
= 3V  
DD  
0
1
2
3
4
5
2.5  
3.0  
3.5  
4.0  
VOLTAGE (V)  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
Figure 24. Supply Current vs. Logic Input Voltage  
Figure 27. Threshold Voltage vs. Supply Voltage  
10  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25°C  
A
ALL 1s  
ALL 0s  
LOADING  
ZS TO FS  
ALL ON  
DB13  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DB12  
DB11  
DB10  
V
DD  
= 5V  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
V
= 3V  
DD  
V
V
C
= 5V  
DD  
= ±3.5V  
REF  
DB2  
= 1.8pF  
COMP  
AD8038 AMPLIFIER  
10k  
100k  
1M  
10M 100M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 25. Supply Current vs. Temperature  
Figure 28. Reference Multiplying Bandwidth vs. Frequency and Code  
0.6  
0.4  
6
5
4
3
2
1
0
T
= 25°C  
A
AD5452  
LOADING 010101010101  
0.2  
0
–0.2  
–0.4  
–0.6  
V
= 5V  
DD  
T
V
= 25°C  
= 5V  
–0.8  
–1.0  
–1.2  
A
DD  
V
= ±3.5V  
REF  
C
= 1.8pF  
COMP  
AD8038 AMPLIFIER  
V
= 3V  
DD  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10k 100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. Supply Current vs. Update Rate  
Figure 29. Reference Multiplying Bandwidth—All 1s Loaded  
Rev. G | Page 11 of 28  
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
3
10  
0
T
V
= 25°C  
DD  
T
V
= 25°C  
= 5V  
A
A
= 3V  
DD  
AD8038 AMPLIFIER  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–3  
–6  
–9  
FULL SCALE  
ZERO SCALE  
V
V
V
V
V
= ±2V, AD8038 C  
= ±2V, AD8038 C  
= ±15V, AD8038 C  
= ±15V, AD8038 C  
= ±15V, AD8038 C  
= 1pF  
= 1.5pF  
REF  
REF  
REF  
REF  
REF  
COMP  
COMP  
= 1pF  
= 1.5pF  
= 1.8pF  
COMP  
COMP  
COMP  
10k  
100k  
1M  
10M  
100M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. Reference Multiplying Bandwidth vs. Frequency and  
Compensation Capacitor  
Figure 33. Power Supply Rejection Ratio vs. Frequency  
0.08  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
T
V
= 25°C  
DD  
T = 25°C  
A
V
= 5V  
A
DD  
= 0V  
V
= 5V  
0x7FF TO 0x800  
NRG = 2.154nVs  
DD  
AD8038 AMPLIFIER  
C
0.06  
0.04  
0.02  
0
V
= ±3.5V  
REF  
= 1.8pF  
COMP  
V
= 3V  
DD  
0x7FF TO 0x800  
NRG = 1.794nVs  
V
= 5V  
DD  
–0.02  
–0.04  
–0.06  
0x800 TO 0x7FF  
NRG = 0.694nVs  
V
= 5V  
0x800 TO 0x7FF  
NRG = 0.694nVs  
DD  
50  
75  
100  
125  
150  
175  
200  
225  
250  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TIME (ns)  
Figure 34. THD + Noise vs. Frequency  
Figure 31. Midscale Transition, VREF = 0 V  
100  
80  
60  
40  
20  
0
–1.66  
–1.68  
–1.70  
–1.72  
–1.74  
T
V
= 25°C  
DD  
V
= 5V  
A
DD  
MCLK = 200kHz  
= 3.5V  
0x7FF TO 0x800  
NRG = 2.154nVs  
MCLK = 500kHz  
AD8038 AMPLIFIER  
C
= 1.8pF  
COMP  
V
= 3V  
MCLK = 1MHz  
DD  
0x7FF TO 0x800  
NRG = 1.794nVs  
1.76  
V
= 5V  
DD  
0x800 TO 0x7FF  
NRG = 0.694nVs  
= 5V  
T
V
= 25°C  
A
–1.78  
–1.80  
V
DD  
= ±3.5V  
REF  
0x800 TO 0x7FF  
NRG = 0.694nVs  
AD8038 AMPLIFIER  
0
10  
20  
fOUT (kHz)  
30  
40  
50  
50  
75  
100  
125  
150  
175  
200  
225  
250  
TIME (ns)  
Figure 32. Midscale Transition, VREF = 3.5 V  
Figure 35. Wideband SFDR vs. fOUT Frequency  
Rev. G | Page 12 of 28  
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
0
0
–20  
T
V
V
= 25°C  
A
T
V
V
= 25°C  
A
= 5V  
DD  
= 5V  
DD  
= 3.5V  
REF  
= 3.5V  
–20  
REF  
AD8038 AMPLIFIER  
AD8038 AMPLIFIER  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
–120  
0
–120  
10k  
15k  
20k  
25k  
30k  
100k  
200k  
300k  
400k  
500k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 36. Wideband SFDR, fOUT = 20 kHz, Clock = 1 MHz  
Figure 38. Narrow-Band SFDR, fOUT = 20 kHz, Clock = 1 MHz  
0
–20  
0
T
V
V
= 25°C  
A
T
V
V
= 25°C  
A
= 5V  
DD  
= 5V  
DD  
= 3.5V  
REF  
= 3.5V  
–20  
–40  
REF  
AD8038 AMPLIFIER  
AD8038 AMPLIFIER  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
100k  
200k  
300k  
400k  
500k  
30k  
40k  
50k  
60k  
70k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. Wideband SFDR, fOUT = 50 kHz, Clock = 1 MHz  
Figure 39. Narrow-Band SFDR , fOUT = 50 kHz, Clock = 1 MHz  
Rev. G | Page 13 of 28  
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
T
= 25°C  
A
T
V
= 25°C  
A
AD8038 AMPLIFIER  
= 3.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
REF  
AD8038 AMPLIFIER  
FULL SCALE  
LOADED TO DAC  
MIDSCALE  
LOADED TO DAC  
ZERO SCALE  
LOADED TO DAC  
100  
1k  
10k  
100k  
1M  
10k  
15k  
20k  
25k  
30k  
35k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42. Output Noise Spectral Density  
Figure 40. Narrow-Band IMD, fOUT = 20 kHz, 25 kHz, Clock = 1 MHz  
0
T
V
= 25°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 3.5V  
REF  
AD8038 AMPLIFIER  
0
100k  
200k  
300k  
400k  
500k  
FREQUENCY (Hz)  
Figure 41. Wideband IMD, fOUT = 20 kHz, 25 kHz, Clock = 1 MHz  
Rev. G | Page 14 of 28  
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
TERMINOLOGY  
Relative Accuracy (Endpoint Nonlinearity)  
Digital Feedthrough  
A measure of the maximum deviation from a straight line passing  
through the endpoints of the DAC transfer function. It is mea-  
sured after adjusting for zero and full scale and is normally  
expressed in LSBs or as a percentage of the full-scale reading.  
When the device is not selected, high frequency logic activity  
on the device’s digital inputs may be capacitively coupled  
through the device and produce noise on the IOUT pins. This  
noise is coupled from the outputs of the device onto follow-on  
circuitry. This noise is digital feedthrough.  
Differential Nonlinearity  
The difference between the measured change and the ideal 1 LSB  
change between any two adjacent codes. A specified differential  
nonlinearity of −1 LSB maximum over the operating temperature  
range ensures monotonicity.  
Multiplying Feedthrough Error  
The error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal when all 0s are  
loaded to the DAC.  
Gain Error (Full-Scale Error)  
Total Harmonic Distortion (THD)  
A measure of the output error between an ideal DAC and the  
actual device output. For these DACs, ideal maximum output is  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower-order harmonics, such as  
second to fifth, are included.  
V
REF − 1 LSB. Gain error of the DACs is adjustable to zero with  
external resistance.  
2
2
2
2
V2 +V3 +V4 +V5  
Output Leakage Current  
THD = 20 log  
The current that flows into the DAC ladder switches when it is  
turned off. For the IOUT1 terminal, it can be measured by loading  
all 0s to the DAC and measuring the IOUT1 current.  
V1  
Digital Intermodulation Distortion (IMD)  
Second-order intermodulation measurements are the relative  
magnitudes of the fa and fb tones generated digitally by the  
DAC and the second-order products at 2fa − fb and 2fb − fa.  
Output Capacitance  
Capacitance from IOUT1 to AGND.  
Output Current Settling Time  
Compliance Voltage Range  
The maximum range of (output) terminal voltage for which the  
device provides the specified characteristics.  
The amount of time it takes for the output to settle to a specified  
level for a full-scale input change. For these devices, it is specified  
with a 100 Ω resistor to ground. The settling time specification  
Spurious-Free Dynamic Range (SFDR)  
includes the digital delay from the  
rising edge to the full-  
SYNC  
The usable dynamic range of a DAC before spurious noise  
interferes or distorts the fundamental signal. SFDR is the  
measure of difference in amplitude between the fundamental  
and the largest harmonically or nonharmonically related spur  
from dc to full Nyquist bandwidth (half the DAC sampling rate  
or fS/2). Narrow-band SFDR is a measure of SFDR over an  
arbitrary window size, in this case 50% of the fundamental.  
Digital SFDR is a measure of the usable dynamic range of the  
DAC when the signal is a digitally generated sine wave.  
scale output change.  
Digital-to-Analog Glitch Impulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA-s or nV-s, depending  
on whether the glitch is measured as a current or voltage signal.  
Rev. G | Page 15 of 28  
 
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
GENERAL DESCRIPTION  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages.  
DAC SECTION  
The AD5450/AD5451/AD5452/AD5453 are 8-/10-/12-/14-bit  
current output DACs, respectively, consisting of a segmented  
(4-bit) inverting R-2R ladder configuration. A simplified  
diagram for the 12-bit AD5452 is shown in Figure 43.  
V
DD  
R2  
C1  
V
R
FB  
DD  
AD5450/  
AD5451/  
AD5452/  
AD5453  
R
R
R
I
1
OUT  
V
V
REF  
V
REF  
REF  
A1  
R1  
GND  
2R  
S2  
2R  
S3  
2R  
2R  
V
= 0 TO –V  
REF  
2R  
S1  
OUT  
SYNC SCLK SDIN  
R
S12  
R
FB  
AGND  
I
1
OUT  
µCONTROLLER  
DAC DATA LATCHES  
AND DRIVERS  
NOTES  
AGND  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 43. AD5452 Simplified Ladder  
Figure 44. Unipolar Mode Operation  
The feedback resistor, RFB, has a value of R. The value of R is  
typically 9 kΩ (with a minimum value of 7 kΩ and a maximum  
value of 11 kΩ). If IOUT1 is kept at the same potential as GND, a  
constant current flows in each ladder leg, regardless of digital  
input code. Therefore, the input resistance presented at VREF is  
always constant and nominally of value R. The DAC output  
(IOUT1) is code-dependent, producing various resistances and  
capacitances. When choosing the external amplifier, take into  
account the variation in impedance generated by the DAC on  
the amplifiers inverting input node.  
These DACs are designed to operate with either negative or  
positive reference voltages. The VDD power pin is only used by  
the internal digital logic to drive the on and off states of the  
DAC switches.  
These DACs are designed to accommodate ac reference input  
signals in the range of −10 V to +10 V.  
With a fixed 10 V reference, the circuit shown in Figure 44 gives  
a unipolar 0 V to −10 V output voltage swing. When VIN is an ac  
signal, the circuit performs 2-quadrant multiplication.  
Access is provided to the VREF, RFB, and IOUT1 terminals of the  
DAC, making the device extremely versatile and allowing it to be  
configured in several operating modes; for example, it can provide  
a unipolar output or can provide 4-quadrant multiplication in  
bipolar mode. Note that a matching switch is used in series with  
the internal RFB feedback resistor. If users attempt to measure  
RFB, power must be applied to VDD to achieve continuity.  
Table 5 shows the relationship between the digital code and  
the expected output voltage for a unipolar operation using the  
8-bit AD5450.  
Table 5. Unipolar Code Table for the AD5450  
Digital Input  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
Analog Output (V)  
−VREF (255/256)  
−VREF (128/256) = −VREF/2  
−VREF (1/256)  
CIRCUIT OPERATION  
Unipolar Mode  
Using a single op amp, these devices can easily be configured to  
provide a 2-quadrant multiplying operation or a unipolar output  
voltage swing, as shown in Figure 44. When an output amplifier  
is connected in unipolar mode, the output voltage is given by  
−VREF (0/256) = 0  
D
VOUT = −  
×VREF  
2n  
where:  
D is the fractional representation of the digital word loaded to  
the DAC.  
D
= 0 to 255 (8-bit AD5450).  
= 0 to 1023 (10-bit AD5451).  
= 0 to 4095 (12-bit AD5452).  
= 0 to 16,383 (14-bit AD5453).  
n is the number of bits.  
Rev. G | Page 16 of 28  
 
 
 
 
 
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
Bipolar Mode  
When VIN is an ac signal, the circuit performs 4-quadrant  
multiplication. Table 6 shows the relationship between the  
digital code and the expected output voltage for a bipolar  
operation using the 8-bit AD5450.  
In some applications, it may be necessary to generate a full  
4-quadrant multiplying operation or a bipolar output swing.  
This can be easily accomplished by using another external  
amplifier and some external resistors, as shown in Figure 45. In  
this circuit, the second amplifier, A2, provides a gain of 2.  
Biasing the external amplifier with an offset from the reference  
voltage results in full 4-quadrant multiplying operation. The  
transfer function of this circuit shows that both negative and  
positive output voltages are created as the input data (D) is  
incremented from Code 0 (VOUT = − VREF) to midscale  
(VOUT − 0 V ) to full scale (VOUT = +VREF).  
Table 6. Bipolar Code Table for the AD5450  
Digital Input  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
Analog Output (V)  
+VREF (127/128)  
0
−VREF (127/128)  
−VREF (128/128)  
D
VOUT = V  
×
V  
REF  
REF  
2n1  
where:  
D is the fractional representation of the digital word loaded to  
the DAC.  
D
= 0 to 255 (8-bit AD5450).  
= 0 to 1023 (10-bit AD5451).  
= 0 to 4095 (12-bit AD5452).  
n is the resolution of the DAC.  
R3  
20kΩ  
V
V
DD  
R5  
20kΩ  
R2  
C1  
R
DD  
FB  
AD5450/  
AD5451/  
AD5452/  
AD5453  
R4  
10kΩ  
I
1
OUT  
V
±10V  
REF  
V
REF  
A1  
R1  
GND  
A2  
V
=
–V  
REF  
TO +V  
REF  
OUT  
SYNC SCLK SDIN  
AGND  
µCONTROLLER  
NOTES  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
OUT  
2. MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS  
R3 AND R4.  
3. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1/A2 IS A HIGH SPEED AMPLIFIER.  
Figure 45. Bipolar Mode Operation (4-Quadrant Multiplication)  
Rev. G | Page 17 of 28  
 
 
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
Stability  
Positive Output Voltage  
In the I-to-V configuration, the IOUT of the DAC and the  
inverting node of the op amp must be connected as close as  
possible, and proper PCB layout techniques must be employed.  
Because every code change corresponds to a step function, gain  
peaking may occur if the op amp has limited gain bandwidth  
product (GBP) and there is excessive parasitic capacitance at the  
inverting node. This parasitic capacitance introduces a pole into  
the open-loop response, which can cause ringing or instability  
in the closed-loop applications circuit.  
The output voltage polarity is opposite to the VREF polarity for  
dc reference voltages. To achieve a positive voltage output, an  
applied negative reference to the input of the DAC is preferred  
over the output inversion through an inverting amplifier  
because of the resistors’ tolerance errors. To generate a negative  
reference, the reference can be level-shifted by an op amp such  
that the VOUT and GND pins of the reference become the virtual  
ground and −2.5 V, respectively, as shown in Figure 47.  
V
= +5V  
DD  
ADR03  
V
V
An optional compensation capacitor, C1, can be added in parallel  
with RFB for stability, as shown in Figure 44 and Figure 45. Too  
small a value of C1 can produce ringing at the output, and too  
large a value can adversely affect the settling time. C1 should be  
found empirically, but 1 pF to 2 pF is generally adequate for the  
compensation.  
OUT  
IN  
GND  
+5V  
C1  
V
R
FB  
DD  
I
1
–2.5V  
OUT  
V
V
= 0V TO +2.5V  
OUT  
REF  
GND  
–5V  
SINGLE-SUPPLY APPLICATIONS  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
Voltage-Switching Mode  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 46 shows these DACs operating in the voltage-switching  
mode. The reference voltage, VIN, is applied to the IOUT1 pin, and  
the output voltage is available at the VREF terminal. In this  
configuration, a positive reference voltage results in a positive  
output voltage, making single-supply operation possible. The  
output from the DAC is voltage at a constant impedance (the  
DAC ladder resistance); therefore, an op amp is necessary to  
buffer the output voltage. The reference input no longer sees  
constant input impedance, but one that varies with code;  
therefore, the voltage input should be driven from a low  
impedance source.  
Figure 47. Positive Output Voltage with Minimum Components  
ADDING GAIN  
In applications in which the output voltage is required to be  
greater than VIN, gain can be added with an additional external  
amplifier, or it can be achieved in a single stage. It is important  
to consider the effect of the temperature coefficients of the  
DAC’s thin film resistors. Simply placing a resistor in series  
with the RFB resistor causes mismatches in the temperature  
coefficients and results in larger gain temperature coefficient  
errors. Instead, increase the gain of the circuit by using the  
recommended configuration shown in Figure 48. R1, R2, and  
R3 should have similar temperature coefficients, but they need  
not match the temperature coefficients of the DAC. This  
approach is recommended in circuits where gains greater than 1  
are required.  
R1  
R2  
V
DD  
R
V
FB  
DD  
V
OUT  
V
I
1
V
REF  
IN  
OUT  
GND  
V
DD  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
C1  
V
R
DD  
FB  
I
1
R1  
OUT  
Figure 46. Single-Supply Voltage-Switching Mode  
V
IN  
V
REF  
V
OUT  
R3  
R2  
It is important to note that with this configuration VIN is limited  
to low voltages because the switches in the DAC ladder do not  
have the same source-drain drive voltage. As a result, their on  
resistance differs, which degrades the integral linearity of the  
DAC. Also, VIN must not go negative by more than 0.3 V, or an  
internal diode turns on, causing the device to exceed the  
maximum ratings. In this type of application, the full range of  
multiplying capability of the DAC is lost.  
GND  
R2 + R3  
R2  
GAIN =  
R2R3  
R2 + R3  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
R1 =  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 48. Increasing Gain of Current-Output DAC  
Rev. G | Page 18 of 28  
 
 
 
 
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
DIVIDER OR PROGRAMMABLE GAIN ELEMENT  
REFERENCE SELECTION  
Current-steering DACs are very flexible and lend themselves to  
many different applications. If this type of DAC is connected as  
the feedback element of an op amp and RFB is used as the input  
resistor as shown in Figure 49, the output voltage is inversely  
proportional to the digital input fraction, D.  
When selecting a reference for use with this series of current-  
output DACs, pay attention to the reference’s output voltage  
temperature coefficient specification. This parameter not only  
affects the full-scale error, but also may affect the linearity (INL  
and DNL) performance. The reference temperature coefficient  
should be consistent with the system accuracy specifications.  
For example, an 8-bit system is required to hold its overall  
specification to within 1 LSB over the temperature range 0°C to  
50°C, and the system’s maximum temperature drift should be  
less than 78 ppm/°C.  
For D = 1 − 2n, the output voltage is  
VIN  
D
VIN  
VOUT  
=
=
(
12n  
)
As D is reduced, the output voltage increases. For small values  
of the digital fraction, D, it is important to ensure that the  
amplifier does not saturate and that the required accuracy is  
met. For example, an 8-bit DAC driven with the binary code  
0x10 (00010000), that is, 16 decimal, in the circuit of Figure 49  
should cause the output voltage to be 16 times VIN.  
A 12-bit system within 2 LSB accuracy requires a maximum  
drift of 10 ppm/°C. Choosing a precision reference with a low  
output temperature coefficient minimizes this error source.  
Table 7 lists some dc references available from Analog Devices  
that are suitable for use with this range of current-output DACs.  
V
DD  
AMPLIFIER SELECTION  
V
IN  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset voltage.  
The input offset voltage of an op amp is multiplied by the variable  
gain of the circuit due to the code-dependent output resistance of  
the DAC. A change in this noise gain between two adjacent digital  
fractions produces a step change in the output voltage due to the  
offset voltage of the amplifiers input. This output voltage change  
is superimposed on the desired change in output between the two  
codes and gives rise to a differential linearity error, which if  
large enough, could cause the DAC to be nonmonotonic.  
R
V
FB  
DD  
I
1
V
REF  
OUT  
GND  
V
OUT  
NOTE  
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 49. Current-Steering DAC Used as a Divider or  
Programmable Gain Element  
The input bias current of an op amp generates an offset at the  
voltage output as a result of the bias current flowing in the  
feedback resistor, RFB. Most op amps have input bias currents  
low enough to prevent significant errors in 12-bit applications.  
However, for 14-bit applications, some consideration should be  
given to selecting an appropriate amplifier.  
However, if the DAC has a linearity specification of 0.5 LSB, D  
can have weight anywhere in the range of 15.5/256 to 16.5/256.  
Therefore, the possible output voltage is in the range of 15.5 VIN  
to 16.5 VIN—an error of 3%, even though the DAC itself has a  
maximum error of 0.2%.  
Common-mode rejection of the op amp is important in voltage-  
switching circuits because it produces a code-dependent error  
at the voltage output of the circuit. Most op amps have adequate  
common-mode rejection for use at 8-, 10-, and 12-bit resolutions.  
DAC leakage current is also a potential error source in divider  
circuits. The leakage current must be counterbalanced by an  
opposite current supplied from the op amp through the DAC.  
Because only a fraction, D, of the current in the VREF terminal is  
routed to the IOUT1 terminal, the output voltage changes as follows:  
Provided that the DAC switches are driven from true wideband  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage-  
switching DAC circuit is determined largely by the output op  
amp. To obtain minimum settling time in this configuration, it  
is important to minimize capacitance at the VREF node (the voltage  
output node in this application) of the DAC. This is done by using  
low input-capacitance buffer amplifiers and careful board design.  
Output Error Voltage Dueto Leakage = (Leakage × R)/D  
where R is the DAC resistance at the VREF terminal.  
For a DAC leakage current of 10 nA, R = 10 kΩ, and a gain  
(that is, 1/D) of 16, the error voltage is 1.6 mV.  
Most single-supply circuits include ground as part of the analog  
signal range, which in turn requires an amplifier that can handle  
rail-to-rail signals. There is a large range of single-supply amplifiers  
available from Analog Devices.  
Rev. G | Page 19 of 28  
 
 
 
 
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
Table 7. Suitable ADI Precision References  
Part No. Output Voltage (V)  
Initial Tolerance (%)  
Temp Drift (ppm/°C)  
ISS (mA)  
Output Noise (µV p-p) Package  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR431  
ADR435  
ADR391  
ADR395  
10  
10  
5
0.05  
0.05  
0.06  
0.06  
0.10  
0.10  
0.10  
0.10  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
9
9
1
1
1
1
1
1
1
1
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
SOIC-8  
TSOT-23  
TSOT-23  
5
2.5  
2.5  
3
3
2.5  
5
6
10  
10  
3.5  
8
5
8
2.5  
5
Table 8. Suitable ADI Precision Op Amps  
0.1 Hz to 10 Hz  
Noise (µV p-p)  
Part No.  
OP97  
OP1177  
AD8551  
AD8603  
AD8628  
Supply Voltage (V)  
2 to 20  
2.5 to 15  
2.7 to 5  
1.8 to 6  
2.7 to 6  
VOS (Max) (µV)  
IB (Max) (nA)  
Supply Current (µA)  
Package  
25  
60  
5
50  
5
0.1  
2
0.05  
0.001  
0.1  
0.5  
0.4  
1
2.3  
0.5  
600  
500  
975  
50  
SOIC-8  
MSOP, SOIC-8  
MSOP, SOIC-8  
TSOT  
850  
TSOT, SOIC-8  
Table 9. Suitable ADI High Speed Op Amps  
Part No.  
AD8065  
AD8021  
AD8038  
AD9631  
Supply Voltage (V)  
BW @ ACL (MHz)  
Slew Rate (V/µs)  
VOS (Max) (µV) IB (Max) (nA)  
Package  
5 to 24  
2.5 to 12  
3 to 12  
145  
490  
350  
320  
180  
120  
425  
1300  
1500  
1000  
3000  
10000  
0.006  
10500  
750  
SOIC-8, SOT-23, MSOP  
SOIC-8, MSOP  
SOIC-8, SC70-5  
SOIC-8  
3 to  
6
7000  
Rev. G | Page 20 of 28  
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
SERIAL INTERFACE  
The serial interface to the AD5450 uses a 16-bit shift register.  
Take care to avoid incomplete data sequences as these will be  
latched to update the DAC output.  
The AD5450/AD5451/AD5452/AD5453 have an easy-to-use  
3-wire interface that is compatible with SPI, QSPI, MICROWIRE,  
and most DSP interface standards. Data is written to the device in  
16-bit words. This 16-bit word consists of two control bits and 8,  
10, 12, or 14 data bits, as shown in Figure 50, Figure 51, Figure 52,  
and Figure 53. The AD5453 uses all 14 bits of DAC data, the  
AD5452 uses 12 bits and ignores the two LSBs, the AD5451 uses  
10 bits and ignores the four LSBs, and the AD5450 uses 8 bits  
and ignores the six LSBs.  
For example,  
Loading 0x3FFF (a complete data sequence) will update  
the output to 10 V (full scale).  
User intends to write 0x3200 but after 12 active edges  
SYNC  
goes high (incomplete write sequence). This will  
actually update the following code: 0xF200.  
SYNC  
DAC Control Bits C1, C0  
The user expects an output of 5.6 V. However, if  
goes high after 12 valid clock edges then an incomplete  
data sequence of 12 bits is loaded. To complete the shift  
register the 4 LSBs from the previous sequence are taken  
and used as the 4 MSBs missing. The addition of these  
4 bits will put the part in rising edge mode and the output  
will show no change. Figure 54, Figure 55, and Table 11  
show the data frames for this example.  
Control Bits C1 and C0 allow the user to load and update the  
new DAC code and to change the active clock edge. By default,  
the shift register clocks data upon the falling edge; this can be  
changed via the control bits. If changed, the DAC core is  
inoperative until the next data frame, and a power recycle is  
required to return it to active on the falling edge. A power cycle  
resets the core to default condition. On-chip power-on reset  
circuitry ensures that the device powers on with zero scale  
loaded to the DAC register and IOUT line.  
Also note that if more then 16-bits are loaded to the part before  
SYNC  
goes high the last 16-bits will be latched.  
DB15 (MSB)  
DB0 (LSB)  
Table 10. DAC Control Bits  
C1 C0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
X
X
X
X
X
C1  
C0  
Function Implemented  
Load and update (power-on default)  
Reserved  
DATA BITS  
0
0
CONTROL BITS  
0
1
Figure 50. AD5450 8-Bit Input Shift Register Contents  
1
0
Reserved  
1
1
Clock data to shift register upon rising edge  
DB15 (MSB)  
C1  
DB0 (LSB)  
Function  
SYNC  
C0 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
X
X
X
is an edge-triggered input that acts as a frame-  
SYNC  
DATA BITS  
CONTROL BITS  
synchronization signal and chip enable. Data can only be  
transferred to the device while is low. To start the serial  
Figure 51. AD5451 10-Bit Input Shift Register Contents  
SYNC  
should be taken low, observing the  
data transfer,  
SYNC  
falling to SCLK falling edge setup time, t4. To  
minimum  
SYNC  
DB15 (MSB)  
C1 C0  
DB0 (LSB)  
DB9 DB8 DB7 DB6 DB5 DB4  
DATA BITS  
DB1 DB0  
DB3 DB2  
X
DB11 DB10  
X
minimize the power consumption of the device, the interface  
powers up fully only when the device is being written to, that is,  
CONTROL BITS  
upon the falling edge of  
. The SCLK and SDIN input  
SYNC  
Figure 52. AD5452 12-Bit Input Shift Register Contents  
buffers are powered down upon the rising edge of  
.
SYNC  
After the falling edge of the 16th SCLK pulse, bring  
to transfer data from the input shift register to the DAC register.  
high  
DB15 (MSB)  
SYNC  
DB0 (LSB)  
DB3 DB2 DB1 DB0  
DB5 DB4  
C1  
C0  
DB11 DB10 DB9 DB8 DB7 DB6  
DATA BITS  
DB13 DB12  
CONTROL BITS  
Figure 53. AD5453 14-Bit Input Shift Register Contents  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DATA BITS  
CONTROL BITS  
Figure 54. AD5453 First Write, Complete Data Sequence (0x3FFF)  
Rev. G | Page 21 of 28  
 
 
 
 
 
 
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
DATA BITS  
DATA BITS  
CONTROL BITS  
CONTROL BITS  
INTENDED DATA FRAME  
ACTUAL DATA FRAME  
Figure 55. AD5453 Second Write, Incomplete Data Sequence (0x3200) and Subsequent Additional Bits (0xF200)  
Table 11.  
Writing  
Sequence  
Data Write in  
Shift Register  
Data Transfer to  
the Device  
Action Expected  
Action Carried Out  
1
0x3FFF  
Load and update 0x3FFF  
0x3FFF  
Load and update 0x3FFF  
2
0x3200  
Load and update 0x3200  
0xF200  
Clock data to shift register upon rising edge (0xF200)  
MICROPROCESSOR INTERFACING  
AD5450/AD5451/  
AD5452/AD5453*  
ADSP-2101/  
ADSP-2191M*  
Microprocessor interfacing to a AD5450/AD5451/AD5452  
/AD5453 DAC is through a serial bus that uses standard protocol  
and is compatible with microcontrollers and DSP processors.  
The communication channel is a 3-wire interface consisting of  
a clock signal, a data signal, and a synchronization signal. The  
AD5450/AD5451/AD5452/AD5453 require a 16-bit word, with  
the default being data valid upon the falling edge of SCLK, but  
this is changeable using the control bits in the data-word.  
TFS  
SYNC  
DT  
SDIN  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 57. ADSP-2101/ADSP-2191M-  
to-AD5450/AD5451/AD5452/AD5453 Interface  
Communication between two devices at a given clock speed is  
possible when the following specifications are compatible:  
ADSP-21xx-to-AD5450/AD5451/AD5452/AD5453  
Interface  
frame  
delay and frame  
setup-and-hold, data delay  
SYNC  
and data setup-and-hold, and SCLK width. The DAC interface  
expects a t4 ( falling edge to SCLK falling edge setup time)  
SYNC  
The ADSP-21xx family of DSPs is easily interfaced to a AD5450/  
AD5451/AD5452/AD5453 DAC without the need for extra glue  
logic. Figure 56 is an example of an SPI interface between the DAC  
and the ADSP-2191M. SCK of the DSP drives the serial data line,  
SYNC  
of 13 ns minimum. See the ADSP-21xx User Manual for infor-  
mation on clock and frame frequencies for the SPORT  
SYNC  
SDIN.  
is driven from one of the port lines, in this case  
SYNC  
register. Table 12 shows the setup for the SPORT control register.  
.
SPIxSEL  
Table 12. SPORT Control Register Setup  
AD5450/AD5451/  
ADSP-2191M*  
AD5452/AD5453*  
Name  
TFSW  
INVTFS  
DTYPE  
ISCLK  
TFSR  
Setting  
Description  
SYNC  
SDIN  
SPIxSEL  
1
1
00  
1
1
Alternate framing  
Active low frame signal  
Right justify data  
Internal serial clock  
Frame every word  
Internal framing signal  
16-bit data-word  
MOSI  
SCK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
ITFS  
1
Figure 56. ADSP-2191M SPI-to-AD5450/AD5451/AD5452/AD5453 Interface  
SLEN  
1111  
A serial interface between the DAC and DSP SPORT is shown  
in Figure 57. In this example, SPORT0 is used to transfer data to  
the DAC shift register. Transmission is initiated by writing a  
word to the Tx register after the SPORT has been enabled. In a  
write sequence, data is clocked out upon each rising edge of the  
DSP’s serial clock and clocked into the DAC input shift register  
upon the falling edge of its SCLK. The update of the DAC  
ADSP-BF5xx-to-AD5450/AD5451/AD5452/AD5453  
Interface  
The ADSP-BF5xx family of processors has an SPI-compatible  
port that enables the processor to communicate with SPI-  
compatible devices. A serial interface between the BlackFin®  
processor and the AD5450/AD5451/AD5452/AD5453 DAC is  
shown in Figure 58. In this configuration, data is transferred  
output takes place upon the rising edge of the  
signal.  
SYNC  
through the MOSI (master output, slave input) pin.  
is  
SYNC  
driven by the  
pin, which is a reconfigured  
SPIxSEL  
programmable flag pin.  
Rev. G | Page 22 of 28  
 
 
 
 
 
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
AD5450/AD5451/  
AD5452/AD5453*  
AD5450/AD5451/  
AD5452/AD5453*  
ADSP-BF5xx*  
8051*  
TxD  
RxD  
P1.1  
SCLK  
SDIN  
SYNC  
SYNC  
SDIN  
SPIxSEL  
MOSI  
SCK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 60. 80C51/80L51-to-AD5450/AD5451/AD5452/AD5453 Interface  
Figure 58. ADSP-BF5xx-to-AD5450/AD5451/AD5452/AD5453 Interface  
MC68HC11-to-AD5450/AD5451/AD5452/AD5453  
Interface  
The ADSP-BF5xx processor incorporates channel synchronous  
serial ports (SPORT). A serial interface between the DAC and  
the DSP SPORT is shown in Figure 59. When the SPORT is  
enabled, initiate transmission by writing a word to the Tx register.  
The data is clocked out upon each rising edge of the DSPs serial  
clock and clocked into the DACs input shift register upon the  
falling edge its SCLK. The DAC output is updated by using the  
Figure 61 is an example of a serial interface between the DAC  
and the MC68HC11 microcontroller. The serial peripheral  
interface (SPI) on the MC68HC11 is configured for master  
mode (MSTR) = 1, clock polarity bit (CPOL) = 0, and clock  
phase bit (CPHA) = 1. The SPI is configured by writing to the  
SPI control register (SPCR); see the 68HC11 User Manual. SCK  
of the 68HC11 drives the SCLK of the DAC interface; the MOSI  
output drives the serial data line (SDIN) of the DAC.  
transmit frame synchronization (TFS) line to provide a  
SYNC  
signal.  
The  
signal is derived from a port line (PC7). When data  
SYNC  
is being transmitted to the AD5450/AD5451/AD5452/AD5453,  
the line is taken low (PC7). Data appearing on the MOSI  
AD5450/AD5451/  
AD5452/AD5453*  
ADSP-BF5xx*  
TFS  
DT  
SYNC  
SYNC  
SDIN  
output is valid upon the falling edge of SCK. Serial data from the  
68HC11 is transmitted in 8-bit bytes with only eight falling clock  
edges occurring in the transmit cycle. Data is transmitted MSB  
first. To load data to the DAC, PC7 is left low after the first eight  
bits are transferred, and a second serial write operation is performed  
to the DAC. PC7 is taken high at the end of this procedure.  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 59. ADSP-BF5xx SPORT-to-AD5450/AD5451/AD5452/AD5453 Interface  
80C51/80L51-to-AD5450/AD5451/AD5452/AD5453  
Interface  
MC68HC11*  
AD5450/AD5451/  
AD5452/AD5453*  
A serial interface between the DAC and the 80C51/80L51 is  
shown in Figure 60. TxD of the 80C51/80L51 drives SCLK of  
the DAC serial interface, and RxD drives the serial data line,  
SDIN. P1.1 is a bit-programmable pin on the serial port and is used  
PC7  
SCK  
SYNC  
SCLK  
SDIN  
MOSI  
to drive  
. As data is transmitted to the switch, P1.1 is taken  
*ADDITIONAL PINS OMITTED FOR CLARITY  
SYNC  
low. The 80C51/80L51 transmit data only in 8-bit bytes; there-  
fore, only eight falling clock edges occur in the transmit cycle.  
Figure 61. MC68HC11-to-AD5450/AD5451/AD5452/AD5453 Interface  
If the user wants to verify the data previously written to the  
input shift register, the SDO line can be connected to MISO of  
To load data correctly to the DAC, P1.1 is left low after the first  
eight bits are transmitted, and a second write cycle is initiated to  
transmit the second byte of data. Data on RxD is clocked out of  
the microcontroller upon the rising edge of TxD and is valid upon  
the falling edge. As a result, no glue logic is required between the  
DAC and microcontroller interface. P1.1 is taken high following  
the completion of this cycle. The 80C51/80L51 provide the LSB  
of its SBUF register as the first bit in the data stream. The DAC  
input register acquires its data with the MSB as the first bit received.  
The transmit routine should take this into account.  
the MC68HC11. In this configuration with  
low, the shift  
SYNC  
register clocks data out upon the rising edges of SCLK.  
Rev. G | Page 23 of 28  
 
 
 
 
AD5450/AD5451/AD5452/AD5453  
Data Sheet  
MICROWIRE-to-AD5450/AD5451/AD5452/AD5453  
Interface  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which a  
AD5450/AD5451/AD5452/AD5453 DAC is mounted should be  
designed so that the analog and digital sections are separated  
and confined to certain areas of the board. If the DAC is in a  
system where multiple devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
The star ground point should be established as close as possible  
to the device.  
Figure 62 shows an interface between the DAC and any  
MICROWIRE-compatible device. Serial data is shifted out  
upon the falling edge of the serial clock, SK, and is clocked into  
the DAC input shift register upon the rising edge of SK, which  
corresponds to the falling edge of the DACs SCLK.  
MICROWIRE*  
AD5450/AD5451/  
AD5452/AD5453*  
SK  
SO  
CS  
SCLK  
SDIN  
SYNC  
These DACs should have ample supply bypassing of 10 µF in  
parallel with 0.1 µF on the supply located as close to the package  
as possible, ideally right up against the device. The 0.1 µF  
capacitor should have low effective series resistance (ESR) and  
low effective series inductance (ESI), like the common ceramic  
types that provide a low impedance path to ground at high  
frequencies, to handle transient currents due to internal logic  
switching. Low ESR 1 µF to 10 µF tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 62. MICROWIRE-to-AD5450/AD5451/AD5452/AD5453 Interface  
PIC16C6x/PIC16C7x-to-  
AD5450/AD5451/AD5452/AD5453 Interface  
The PIC16C6x/PIC16C7x synchronous serial port (SSP) is  
configured as an SPI master with the clock polarity bit (CKP) = 0.  
This is done by writing to the synchronous serial port control  
register (SSPCON); see the PIC16/PIC17 Microcontroller  
User Manual.  
Components, such as clocks, that produce fast switching signals  
should be shielded with a digital ground to avoid radiating noise  
to other parts of the board, and they should never be run near  
the reference inputs.  
In this example, I/O Port RA1 is used to provide a  
signal  
SYNC  
and enable the serial port of the DAC. This microcontroller  
transfers only eight bits of data during each serial transfer  
operation; therefore, two consecutive write operations are  
required. Figure 63 shows the connection diagram.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feedthrough through the board. A microstrip  
technique is the best solution, but its use is not always possible  
with a double-sided board. In this technique, the component  
side of the board is dedicated to the ground plane and signal  
traces are placed on the solder side.  
AD5450/AD5451/  
AD5452/AD5453*  
PIC16C6x/PIC16C7x*  
SCK/RC3  
SDI/RC4  
RA1  
SCLK  
SDIN  
SYNC  
*ADDITIONAL PINS OMITTED FOR CLARITY  
It is good practice to employ compact, minimum lead length  
PCB layout design. Leads to the input should be as short as  
possible to minimize IR drops and stray inductance.  
Figure 63. PIC16C6x/7x-to-AD5450/AD5451/AD5452/AD5453 Interface  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error. To optimize high frequency  
performance, the I-to-V amplifier should be located as close to  
the device as possible.  
Rev. G | Page 24 of 28  
 
 
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
Table 13. Overview of AD54xx and AD55xx Devices  
Part No.  
AD5424  
AD5426  
AD5428  
AD5429  
AD5450  
AD5432  
AD5433  
AD5439  
AD5440  
AD5451  
AD5443  
AD5444  
AD5415  
AD5405  
AD5445  
AD5447  
AD5449  
AD5452  
AD5446  
AD5453  
AD5553  
AD5556  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
Resolution  
No. DACs  
INL (LSB)  
Interface  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Serial  
Parallel  
Parallel  
Parallel  
Serial  
Serial  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Package1  
Features  
8
1
1
2
2
1
1
1
2
2
1
1
1
2
2
2
2
2
1
1
1
1
1
2
2
1
1
2
2
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.25  
1
RU-16, CP-20  
RM-10  
RU-20  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
12 MHZ BW, 50 MHz serial interface  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
12 MHz BW, 50 MHz serial interface  
10 MHz BW, 50 MHz serial  
12 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
12 MHz BW, 50 MHz serial interface  
12 MHz BW, 50 MHz serial  
8
8
8
8
RU-10  
UJ-8  
RM-10  
RU-20, CP-20  
RU-16  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
RU-24  
UJ-8  
RM-10  
RM-10  
RU-24  
0.5  
1
1
CP-40  
1
RU-20, CP-20  
RU-24  
1
1
0.5  
1
2
1
RU-16  
UJ-8, RM-8  
RM-10  
UJ-8, RM-8  
RM-8  
12 MHz BW, 50 MHz serial  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 n WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
1
RU-28  
1
1
RM-8  
RU-38  
2
2
RM-8  
RU-28  
2
2
RU-16  
RU-38  
1 RU = TSSOP, CP = LFCSP, RM = MSOP, UJ = TSOT.  
Rev. G | Page 25 of 28  
AD5450/AD5451/AD5452/AD5453  
OUTLINE DIMENSIONS  
Data Sheet  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
2.80 BSC  
PIN 1  
INDICATOR  
0.65 BSC  
1.95  
BSC  
*
0.90  
0.87  
0.84  
*
0.20  
0.08  
1.00 MAX  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.10 MAX  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-BA WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 64. 8-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-8)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 65. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. G | Page 26 of 28  
 
Data Sheet  
AD5450/AD5451/AD5452/AD5453  
3.10  
3.00 SQ  
2.90  
0.35  
0.30  
0.25  
0.65 BSC  
8
5
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
1
4
0.20 MIN  
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.2)  
2.48  
2.38  
2.23  
0.80 MAX  
0.55 NOM  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
Figure 66. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Resolution  
INL  
0.25  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead TSOT  
8-Lead TSOT  
Package Option  
UJ-8  
UJ-8  
Branding  
D6Y  
D6Y  
D6Z  
D6Z  
D70  
AD5450YUJZ-REEL  
AD5450YUJZ-REEL7  
AD5451YUJZ-REEL  
AD5451YUJZ-REEL7  
AD5452YUJZ-REEL  
AD5452YUJZ-REEL7  
AD5452YRM  
8
8
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
2
2
2
2
2
2
2
2
10  
10  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
14  
14  
14  
8-Lead TSOT  
8-Lead TSOT  
UJ-8  
UJ-8  
8-Lead TSOT  
8-Lead TSOT  
UJ-8  
UJ-8  
D70  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead LFCSP_WD  
8-Lead TSOT  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
CP-8-3  
UJ-8  
D1Z  
D1Z  
D70  
D70  
D70  
AD5452YRM-REEL  
AD5452YRMZ  
AD5452YRMZ-REEL  
AD5452YRMZ-REEL7  
AD5453WBCPZ-RL  
AD5453YUJZ-REEL  
AD5453YUJZ-REEL7  
AD5453YRM  
AD5453YRM-REEL  
AD5453YRM-REEL7  
AD5453YRMZ  
DG3  
DAH  
DAH  
D26  
D26  
D26  
DAH  
DAH  
DAH  
8-Lead TSOT  
UJ-8  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
Evaluation Board  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
AD5453YRMZ-REEL  
AD5453YRMZ-REEL7  
EV-AD5443/46/53SDZ  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD5453WBCPZ-RL model is available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
Rev. G | Page 27 of 28  
 
 
AD5450/AD5451/AD5452/AD5453  
NOTES  
Data Sheet  
©2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04587-0-6/13(G)  
Rev. G | Page 28 of 28  

相关型号:

AD5453YRM

8/10/12/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453YRM-REEL

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453YRM-REEL7

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453YRMREEL7

IC SERIAL INPUT LOADING, 14-BIT DAC, PDSO8, MO-187AA, MSOP-8, Digital to Analog Converter
ADI

AD5453YRMZ

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453YRMZ-REEL

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453YRMZ-REEL7

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453YUJ

8/10/12/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453YUJ-REEL

暂无描述
ADI

AD5453YUJZ-REEL

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453YUJZ-REEL7

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5453_15

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI